401
|
Duan J, Chen Z, Wu Y, Zhu B, Yang L, Yang C. Metabolic remodeling induced by mitokines in heart failure. Aging (Albany NY) 2019; 11:7307-7327. [PMID: 31498116 PMCID: PMC6756899 DOI: 10.18632/aging.102247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/22/2019] [Indexed: 04/11/2023]
Abstract
The prevalence rates of heart failure (HF) are greater than 10% in individuals aged >75 years, indicating an intrinsic link between aging and HF. It has been recognized that mitochondrial dysfunction contributes to the pathology of HF. Mitokines are a type of cytokines, peptides, or signaling pathways produced or activated by the nucleus or the mitochondria through cell non-autonomous responses during cellular stress. In addition to promoting the communication between the mitochondria and the nucleus, mitokines also exert a systemic regulatory effect by circulating to distant tissues. It is noteworthy that increasing evidence has demonstrated that mitokines are capable of reducing the metabolic-related HF risk factors and are associated with HF severity. Consequently, mitokines might represent a potential therapy target for HF.
Collapse
Affiliation(s)
- Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zijun Chen
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yeshun Wu
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Chun Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
402
|
Kenny TC, Gomez ML, Germain D. Mitohormesis, UPR mt, and the Complexity of Mitochondrial DNA Landscapes in Cancer. Cancer Res 2019; 79:6057-6066. [PMID: 31484668 DOI: 10.1158/0008-5472.can-19-1395] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/25/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
Abstract
The discovery of the Warburg effect, the preference of cancer cells to generate ATP via glycolysis rather than oxidative phosphorylation, has fostered the misconception that cancer cells become independent of the electron transport chain (ETC) for survival. This is inconsistent with the need of ETC function for the generation of pyrimidines. Along with this misconception, a large body of literature has reported numerous mutations in mitochondrial DNA (mtDNA), further fueling the notion of nonfunctional ETC in cancer cells. More recent findings, however, suggest that cancers maintain oxidative phosphorylation capacity and that the role of mtDNA mutations in cancer is likely far more nuanced in light of the remarkable complexity of mitochondrial genetics. This review aims at describing the various model systems that were developed to dissect the role of mtDNA in cancer, including cybrids, and more recently mitochondrial-nuclear exchange and conplastic mice. Furthermore, we put forward the notion of mtDNA landscapes, where the surrounding nonsynonymous mutations and variants can enhance or repress the biological effect of specific mtDNA mutations. Notably, we review recent studies describing the ability of some mtDNA landscapes to activate the mitochondrial unfolded protein response (UPRmt) but not others. Furthermore, the role of the UPRmt in maintaining cancer cells in the mitohormetic zone to provide selective adaptation to stress is discussed. Among the genes activated by the UPRmt, we suggest that the dismutases SOD2 and SOD1 may play key roles in the establishment of the mitohormetic zone. Finally, we propose that using a UPRmt nuclear gene expression signature may be a more reliable readout than mtDNA landscapes, given their diversity and complexity.
Collapse
Affiliation(s)
- Timothy C Kenny
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maria L Gomez
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Doris Germain
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
403
|
Gordaliza‐Alaguero I, Cantó C, Zorzano A. Metabolic implications of organelle-mitochondria communication. EMBO Rep 2019; 20:e47928. [PMID: 31418169 PMCID: PMC6726909 DOI: 10.15252/embr.201947928] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 12/31/2022] Open
Abstract
Cellular organelles are not static but show dynamism-a property that is likely relevant for their function. In addition, they interact with other organelles in a highly dynamic manner. In this review, we analyze the proteins involved in the interaction between mitochondria and other cellular organelles, especially the endoplasmic reticulum, lipid droplets, and lysosomes. Recent results indicate that, on one hand, metabolic alterations perturb the interaction between mitochondria and other organelles, and, on the other hand, that deficiency in proteins involved in the tethering between mitochondria and the ER or in specific functions of the interaction leads to metabolic alterations in a variety of tissues. The interaction between organelles is an emerging field that will permit to identify key proteins, to delineate novel modulation pathways, and to elucidate their implications in human disease.
Collapse
Affiliation(s)
- Isabel Gordaliza‐Alaguero
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- CIBER de Diabetes y Enfermedades Metabolicas AsociadasBarcelonaSpain
- Departamento de Bioquimica i Biomedicina MolecularFacultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Carlos Cantó
- Nestle Institute of Health Sciences (NIHS)LausanneSwitzerland
- School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- CIBER de Diabetes y Enfermedades Metabolicas AsociadasBarcelonaSpain
- Departamento de Bioquimica i Biomedicina MolecularFacultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| |
Collapse
|
404
|
Ermolaeva M, Neri F, Ori A, Rudolph KL. Cellular and epigenetic drivers of stem cell ageing. Nat Rev Mol Cell Biol 2019; 19:594-610. [PMID: 29858605 DOI: 10.1038/s41580-018-0020-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adult tissue stem cells have a pivotal role in tissue maintenance and regeneration throughout the lifespan of multicellular organisms. Loss of tissue homeostasis during post-reproductive lifespan is caused, at least in part, by a decline in stem cell function and is associated with an increased incidence of diseases. Hallmarks of ageing include the accumulation of molecular damage, failure of quality control systems, metabolic changes and alterations in epigenome stability. In this Review, we discuss recent evidence in support of a novel concept whereby cell-intrinsic damage that accumulates during ageing and cell-extrinsic changes in ageing stem cell niches and the blood result in modifications of the stem cell epigenome. These cumulative epigenetic alterations in stem cells might be the cause of the deregulation of developmental pathways seen during ageing. In turn, they could confer a selective advantage to mutant and epigenetically drifted stem cells with altered self-renewal and functions, which contribute to the development of ageing-associated organ dysfunction and disease.
Collapse
Affiliation(s)
- Maria Ermolaeva
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Francesco Neri
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| | - K Lenhard Rudolph
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany. .,Medical Faculty Jena, University Hospital Jena (UKJ), Jena, Germany.
| |
Collapse
|
405
|
Fresenius HL, Wohlever ML. Sorting out how Msp1 maintains mitochondrial membrane proteostasis. Mitochondrion 2019; 49:128-134. [PMID: 31394253 DOI: 10.1016/j.mito.2019.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
Abstract
Robust membrane proteostasis networks are essential for cells to withstand proteotoxic stress arising from environmental insult and intrinsic errors in protein production (Labbadia and Morimoto, 2015; Hegde and Zavodszky, 2019). Failures in mitochondrial membrane proteostasis are associated with cancer, aging, and a range of cardiovascular and neurodegenerative diseases (Wallace et al., 2010; Martin, 2012; Gustafsson and Gottlieb, 2007). As a result, mitochondria possess numerous pathways to maintain proteostasis (Avci and Lemberg, 2015; Shi et al., 2016; Weidberg and Amon, 2018; Shpilka and Haynes, 2018; Quirós et al., 2016; Sorrentino et al., 2017). Mitochondrial Sorting of Proteins 1 (Msp1) is a membrane anchored AAA ATPase that extracts proteins from the outer mitochondrial membrane (OMM) (Chen et al., 2014; Okreglak and Walter, 2014). In the past few years, several papers have addressed various aspects of Msp1 function. Here, we summarize these recent advances to build a basic model for how Msp1 maintains mitochondrial membrane proteostasis while also highlighting outstanding questions in the field.
Collapse
Affiliation(s)
- Heidi L Fresenius
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Matthew L Wohlever
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
406
|
Anderson AJ, Jackson TD, Stroud DA, Stojanovski D. Mitochondria-hubs for regulating cellular biochemistry: emerging concepts and networks. Open Biol 2019; 9:190126. [PMID: 31387448 PMCID: PMC6731593 DOI: 10.1098/rsob.190126] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are iconic structures in biochemistry and cell biology, traditionally referred to as the powerhouse of the cell due to a central role in energy production. However, modern-day mitochondria are recognized as key players in eukaryotic cell biology and are known to regulate crucial cellular processes, including calcium signalling, cell metabolism and cell death, to name a few. In this review, we will discuss foundational knowledge in mitochondrial biology and provide snapshots of recent advances that showcase how mitochondrial function regulates other cellular responses.
Collapse
Affiliation(s)
- Alexander J Anderson
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Thomas D Jackson
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
407
|
Germany EM, Zahayko N, Khalimonchuk O. Isolation of Specific Neuron Populations from Roundworm Caenorhabditis elegans. J Vis Exp 2019:10.3791/60145. [PMID: 31449245 PMCID: PMC7227805 DOI: 10.3791/60145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During the aging process, many cells accumulate high levels of damage leading to cellular dysfunction, which underlies many geriatric and pathological conditions. Post-mitotic neurons represent a major cell type affected by aging. Although multiple mammalian models of neuronal aging exist, they are challenging and expensive to establish. The roundworm Caenorhabditis elegans is a powerful model to study neuronal aging, as these animals have short lifespan, an available robust genetic toolbox, and well-cataloged nervous system. The method presented herein allows for seamless isolation of specific cells based on the expression of a transgenic green fluorescent protein (GFP). Transgenic animal lines expressing GFP under distinct, cell type-specific promoters are digested to remove the outer cuticle and gently mechanically disrupted to produce slurry containing various cell types. The cells of interest are then separated from non-target cells through fluorescence-activated cell sorting, or by anti-GFP-coupled magnetic beads. The isolated cells can then be cultured for a limited time or immediately used for cell-specific ex vivo analyses such as transcriptional analysis by real time quantitative PCR. Thus, this protocol allows for rapid and robust analysis of cell-specific responses within different neuronal populations in C. elegans.
Collapse
Affiliation(s)
| | | | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska; Nebraska Redox Biology Center, University of Nebraska; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center;
| |
Collapse
|
408
|
Goodrum JM, Lever AR, Coody TK, Gottschling DE, Hughes AL. Rsp5 and Mdm30 reshape the mitochondrial network in response to age-induced vacuole stress. Mol Biol Cell 2019; 30:2141-2154. [PMID: 31141470 PMCID: PMC6743467 DOI: 10.1091/mbc.e19-02-0094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial decline is a hallmark of aging, and cells are equipped with many systems to regulate mitochondrial structure and function in response to stress and metabolic alterations. Here, using budding yeast, we identify a proteolytic pathway that contributes to alterations in mitochondrial structure in aged cells through control of the mitochondrial fusion GTPase Fzo1. We show that mitochondrial fragmentation in old cells correlates with reduced abundance of Fzo1, which is triggered by functional alterations in the vacuole, a known early event in aging. Fzo1 degradation is mediated by a proteolytic cascade consisting of the E3 ubiquitin ligases SCFMdm30 and Rsp5, and the Cdc48 cofactor Doa1. Fzo1 proteolysis is activated by metabolic stress that arises from vacuole impairment, and loss of Fzo1 degradation severely impairs mitochondrial structure and function. Together, these studies identify a new mechanism for stress-responsive regulation of mitochondrial structure that is activated during cellular aging.
Collapse
Affiliation(s)
- Jenna M. Goodrum
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Austin R. Lever
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Troy K. Coody
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112
| | | | - Adam L. Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
409
|
Frottin F, Schueder F, Tiwary S, Gupta R, Körner R, Schlichthaerle T, Cox J, Jungmann R, Hartl FU, Hipp MS. The nucleolus functions as a phase-separated protein quality control compartment. Science 2019; 365:342-347. [PMID: 31296649 DOI: 10.1126/science.aaw9157] [Citation(s) in RCA: 331] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/23/2019] [Accepted: 06/27/2019] [Indexed: 12/24/2022]
Abstract
The nuclear proteome is rich in stress-sensitive proteins, which suggests that effective protein quality control mechanisms are in place to ensure conformational maintenance. We investigated the role of the nucleolus in this process. In mammalian tissue culture cells under stress conditions, misfolded proteins entered the granular component (GC) phase of the nucleolus. Transient associations with nucleolar proteins such as NPM1 conferred low mobility to misfolded proteins within the liquid-like GC phase, avoiding irreversible aggregation. Refolding and extraction of proteins from the nucleolus during recovery from stress was Hsp70-dependent. The capacity of the nucleolus to store misfolded proteins was limited, and prolonged stress led to a transition of the nucleolar matrix from liquid-like to solid, with loss of reversibility and dysfunction in quality control. Thus, we suggest that the nucleolus has chaperone-like properties and can promote nuclear protein maintenance under stress.
Collapse
Affiliation(s)
- F Frottin
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - F Schueder
- Research Group "Molecular Imaging and Bionanotechnology," Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany.,Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, D-80539 Munich, Germany
| | - S Tiwary
- Research Group "Computational Systems Biochemistry," Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - R Gupta
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - R Körner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - T Schlichthaerle
- Research Group "Molecular Imaging and Bionanotechnology," Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany.,Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, D-80539 Munich, Germany
| | - J Cox
- Research Group "Computational Systems Biochemistry," Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - R Jungmann
- Research Group "Molecular Imaging and Bionanotechnology," Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany. .,Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, D-80539 Munich, Germany
| | - F U Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany. .,Munich Cluster for Systems Neurology (SyNergy), D-80336 Munich, Germany
| | - M S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany. .,Munich Cluster for Systems Neurology (SyNergy), D-80336 Munich, Germany
| |
Collapse
|
410
|
Mitochondrial dysfunction in diabetic kidney disease. Clin Chim Acta 2019; 496:108-116. [PMID: 31276635 DOI: 10.1016/j.cca.2019.07.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/26/2022]
Abstract
Although diabetic kidney disease (DKD) is the most common cause of end-stage kidney disease worldwide, the pathogenic mechanisms are poorly understood. There is increasing evidence that mitochondrial dysfunction contributes to the development and progression of DKD. Because the kidney is the organ with the second highest oxygen consumption in our body, it is distinctly sensitive to mitochondrial dysfunction. Mitochondrial dysfunction contributes to the progression of chronic kidney disease irrespective of underlying cause. More importantly, high plasma glucose directly damages renal tubular cells, resulting in a wide range of metabolic and cellular dysfunction. Overproduction of reactive oxygen species (ROS), activation of apoptotic pathway, and defective mitophagy are interlinked mechanisms that play pivotal roles in the progression of DKD. Although renal tubular cells have the highest mitochondrial content, podocytes, mesangial cells, and glomerular endothelial cells may all be affected by diabetes-induced mitochondrial injury. Urinary mitochondrial DNA (mtDNA) is readily detectable and may serve as a marker of mitochondrial damage in DKD. Unfortunately, pharmacologic modulation of mitochondrial dysfunction for the treatment of DKD is still in its infancy. Nonetheless, understanding the pathobiology of mitochondrial dysfunction in DKD would facilitate the development of novel therapeutic strategies.
Collapse
|
411
|
Dimos BA, Mahmud SA, Fuess LE, Mydlarz LD, Pellegrino MW. Uncovering a mitochondrial unfolded protein response in corals and its role in adapting to a changing world. Proc Biol Sci 2019; 286:20190470. [PMID: 31238849 PMCID: PMC6599992 DOI: 10.1098/rspb.2019.0470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Anthropocene will be characterized by increased environmental disturbances, leading to the survival of stress-tolerant organisms, particularly in the oceans, where novel marine diseases and elevated temperatures are re-shaping ecosystems. These environmental changes underscore the importance of identifying mechanisms which promote stress tolerance in ecologically important non-model species such as reef-building corals. Mitochondria are central regulators of cellular stress and have dedicated recovery pathways including the mitochondrial unfolded protein response, which increases the transcription of protective genes promoting protein homeostasis, free radical detoxification and innate immunity. In this investigation, we identify a mitochondrial unfolded protein response in the endangered Caribbean coral Orbicella faveolata, by performing in vivo functional replacement using a transcription factor (Of-ATF5) originating from a coral in the model organism Caenorhabditis elegans. In addition, we use RNA-seq network analysis and transcription factor-binding predictions to identify a transcriptional network of genes likely to be regulated by Of-ATF5 which is induced during the immune challenge and temperature stress. Overall, our findings uncover a conserved cellular pathway which may promote the ability of reef-building corals to survive increasing levels of environmental stress.
Collapse
Affiliation(s)
- Bradford A Dimos
- Department of Biology, University of Texas at Arlington , Arlington, TX 76019 , USA
| | - Siraje A Mahmud
- Department of Biology, University of Texas at Arlington , Arlington, TX 76019 , USA
| | - Lauren E Fuess
- Department of Biology, University of Texas at Arlington , Arlington, TX 76019 , USA
| | - Laura D Mydlarz
- Department of Biology, University of Texas at Arlington , Arlington, TX 76019 , USA
| | - Mark W Pellegrino
- Department of Biology, University of Texas at Arlington , Arlington, TX 76019 , USA
| |
Collapse
|
412
|
Bigland MJ, Brichta AM, Smith DW. Effects of Ageing on the Mitochondrial Genome in Rat Vestibular Organs. Curr Aging Sci 2019; 11:108-117. [PMID: 30777575 PMCID: PMC6388513 DOI: 10.2174/1874609811666180830143358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/21/2018] [Accepted: 08/01/2018] [Indexed: 01/07/2023]
Abstract
Background: Deterioration in vestibular function occurs with ageing and is linked to age-related falls. Sensory hair cells located in the inner ear vestibular labyrinth are critical to vestibular function. Vestibular hair cells rely predominantly on oxidative phosphorylation (OXPHOS) for ener-gy production and contain numerous mitochondria. Mitochondrial DNA (mtDNA) mutations and perturbed energy production are associated with the ageing process. Objective: We investigated the effects of ageing on mtDNA in vestibular hair and support cells, and vestibular organ gene expression, to better understand mechanisms of age-related vestibular deficits. Methods: Vestibular hair and supporting cell layers were microdissected from young and old rats, and mtDNA was quantified by qPCR. Additionally, vestibular organ gene expression was analysed by microarray and gene set enrichment analyses. Results: In contrast to most other studies, we found no evidence of age-related mtDNA deletion mu-tations. However, we found an increase in abundance of major arc genes near the mtDNA control re-gion. There was also a marked age-related reduction in mtDNA copy number in both cell types. Ves-tibular organ gene expression, gene set enrichment analysis showed the OXPHOS pathway was down regulated in old animals. Conclusion: Given the importance of mtDNA to mitochondrial OXPHOS and hair cell function, our findings suggest the vestibular organs are potentially on the brink of an energy crisis in old animals
Collapse
Affiliation(s)
- Mark J Bigland
- Neurobiology of Ageing and Dementia Laboratory, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.,Preclinical Neurobiology Program, Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Alan M Brichta
- Neurobiology of Ageing and Dementia Laboratory, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.,Preclinical Neurobiology Program, Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Doug W Smith
- Neurobiology of Ageing and Dementia Laboratory, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.,Preclinical Neurobiology Program, Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
413
|
Signaling and Regulation of the Mitochondrial Unfolded Protein Response. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033944. [PMID: 30617048 DOI: 10.1101/cshperspect.a033944] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mitochondrial proteome encompasses more than a thousand proteins, which are encoded by the mitochondrial and nuclear genomes. Mitochondrial biogenesis and network health relies on maintenance of protein import pathways and the protein-folding environment. Cell-extrinsic or -intrinsic stressors that challenge mitochondrial proteostasis negatively affect organellar function. During conditions of stress, cells use impaired protein import as a sensor for mitochondrial dysfunction to activate a stress response called the mitochondrial unfolded protein response (UPRmt). UPRmt activation leads to an adaptive transcriptional program that promotes mitochondrial recovery, metabolic adaptations, and innate immunity. In this review, we discuss the regulation of UPRmt activation as well as its role in maintaining mitochondrial homeostasis in physiological and pathological scenarios.
Collapse
|
414
|
Organelle crosstalk in the kidney. Kidney Int 2019; 95:1318-1325. [DOI: 10.1016/j.kint.2018.11.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 01/24/2023]
|
415
|
Boosting the photodynamic therapy efficiency with a mitochondria-targeted nanophotosensitizer. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.03.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
416
|
Mitochondrial protein translocation-associated degradation. Nature 2019; 569:679-683. [PMID: 31118508 DOI: 10.1038/s41586-019-1227-y] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/25/2019] [Indexed: 01/12/2023]
Abstract
Mitochondrial biogenesis and functions depend on the import of precursor proteins via the 'translocase of the outer membrane' (TOM complex). Defects in protein import lead to an accumulation of mitochondrial precursor proteins that induces a range of cellular stress responses. However, constitutive quality-control mechanisms that clear trapped precursor proteins from the TOM channel under non-stress conditions have remained unknown. Here we report that in Saccharomyces cerevisiae Ubx2, which functions in endoplasmic reticulum-associated degradation, is crucial for this quality-control process. A pool of Ubx2 binds to the TOM complex to recruit the AAA ATPase Cdc48 for removal of arrested precursor proteins from the TOM channel. This mitochondrial protein translocation-associated degradation (mitoTAD) pathway continuously monitors the TOM complex under non-stress conditions to prevent clogging of the TOM channel with precursor proteins. The mitoTAD pathway ensures that mitochondria maintain their full protein-import capacity, and protects cells against proteotoxic stress induced by impaired transport of proteins into mitochondria.
Collapse
|
417
|
Guaragnella N, Coyne LP, Chen XJ, Giannattasio S. Mitochondria-cytosol-nucleus crosstalk: learning from Saccharomyces cerevisiae. FEMS Yeast Res 2019; 18:5066171. [PMID: 30165482 DOI: 10.1093/femsyr/foy088] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are key cell organelles with a prominent role in both energetic metabolism and the maintenance of cellular homeostasis. Since mitochondria harbor their own genome, which encodes a limited number of proteins critical for oxidative phosphorylation and protein translation, their function and biogenesis strictly depend upon nuclear control. The yeast Saccharomyces cerevisiae has been a unique model for understanding mitochondrial DNA organization and inheritance as well as for deciphering the process of assembly of mitochondrial components. In the last three decades, yeast also provided a powerful tool for unveiling the communication network that coordinates the functions of the nucleus, the cytosol and mitochondria. This crosstalk regulates how cells respond to extra- and intracellular changes either to maintain cellular homeostasis or to activate cell death. This review is focused on the key pathways that mediate nucleus-cytosol-mitochondria communications through both transcriptional regulation and proteostatic signaling. We aim to highlight yeast that likely continues to serve as a productive model organism for mitochondrial research in the years to come.
Collapse
Affiliation(s)
- Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - Liam P Coyne
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
418
|
Mogilenko DA, Haas JT, L'homme L, Fleury S, Quemener S, Levavasseur M, Becquart C, Wartelle J, Bogomolova A, Pineau L, Molendi-Coste O, Lancel S, Dehondt H, Gheeraert C, Melchior A, Dewas C, Nikitin A, Pic S, Rabhi N, Annicotte JS, Oyadomari S, Velasco-Hernandez T, Cammenga J, Foretz M, Viollet B, Vukovic M, Villacreces A, Kranc K, Carmeliet P, Marot G, Boulter A, Tavernier S, Berod L, Longhi MP, Paget C, Janssens S, Staumont-Sallé D, Aksoy E, Staels B, Dombrowicz D. Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR. Cell 2019; 177:1201-1216.e19. [PMID: 31031005 DOI: 10.1016/j.cell.2019.03.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 01/27/2019] [Accepted: 03/08/2019] [Indexed: 01/22/2023]
Abstract
Innate immune responses are intricately linked with intracellular metabolism of myeloid cells. Toll-like receptor (TLR) stimulation shifts intracellular metabolism toward glycolysis, while anti-inflammatory signals depend on enhanced mitochondrial respiration. How exogenous metabolic signals affect the immune response is unknown. We demonstrate that TLR-dependent responses of dendritic cells (DCs) are exacerbated by a high-fatty-acid (FA) metabolic environment. FAs suppress the TLR-induced hexokinase activity and perturb tricarboxylic acid cycle metabolism. These metabolic changes enhance mitochondrial reactive oxygen species (mtROS) production and, in turn, the unfolded protein response (UPR), leading to a distinct transcriptomic signature with IL-23 as hallmark. Interestingly, chemical or genetic suppression of glycolysis was sufficient to induce this specific immune response. Conversely, reducing mtROS production or DC-specific deficiency in XBP1 attenuated IL-23 expression and skin inflammation in an IL-23-dependent model of psoriasis. Thus, fine-tuning of innate immunity depends on optimization of metabolic demands and minimization of mtROS-induced UPR.
Collapse
Affiliation(s)
- Denis A Mogilenko
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Joel T Haas
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Laurent L'homme
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Sébastien Fleury
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Sandrine Quemener
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Matthieu Levavasseur
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France; Department of Dermatology, CHU Lille, 59045 Lille, France
| | - Coralie Becquart
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France; Department of Dermatology, CHU Lille, 59045 Lille, France
| | - Julien Wartelle
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Alexandra Bogomolova
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Laurent Pineau
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Olivier Molendi-Coste
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Steve Lancel
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Hélène Dehondt
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Celine Gheeraert
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Aurelie Melchior
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Cédric Dewas
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Artemii Nikitin
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Samuel Pic
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Nabil Rabhi
- University of Lille, EGID, CNRS, CHU Lille, Institut Pasteur de Lille, UMR 8199, 59019 Lille, France
| | - Jean-Sébastien Annicotte
- University of Lille, EGID, CNRS, CHU Lille, Institut Pasteur de Lille, UMR 8199, 59019 Lille, France
| | - Seiichi Oyadomari
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Talia Velasco-Hernandez
- Department of Hematology, Institute for Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Jörg Cammenga
- Department of Hematology, Institute for Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Marc Foretz
- Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France
| | - Benoit Viollet
- Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France
| | - Milica Vukovic
- Centre for Haemato-Oncology, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Arnaud Villacreces
- Centre for Haemato-Oncology, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Kamil Kranc
- Centre for Haemato-Oncology, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, 3000 Belgium
| | - Guillemette Marot
- Université Lille, MODAL Team, Inria Lille-Nord Europe, 59650 Villeneuve-d'Ascq, France
| | - Alexis Boulter
- University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Simon Tavernier
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research and Department of Internal Medicine and Pediatrics, Ghent University, 9052 Ghent, Belgium
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Niedersachsen 30625, Germany
| | - Maria P Longhi
- William Harvey Research Institute, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Christophe Paget
- Université de Tours, INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, 37041 Tours, France
| | - Sophie Janssens
- ER Stress and Inflammation, VIB Center for Inflammation Research, and Department of Internal Medicine and Pediatrics, Ghent University, 9052 Ghent, Belgium
| | - Delphine Staumont-Sallé
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France; Department of Dermatology, CHU Lille, 59045 Lille, France
| | - Ezra Aksoy
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Bart Staels
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - David Dombrowicz
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France.
| |
Collapse
|
419
|
Holzer T, Probst K, Etich J, Auler M, Georgieva VS, Bluhm B, Frie C, Heilig J, Niehoff A, Nüchel J, Plomann M, Seeger JM, Kashkar H, Baris OR, Wiesner RJ, Brachvogel B. Respiratory chain inactivation links cartilage-mediated growth retardation to mitochondrial diseases. J Cell Biol 2019; 218:1853-1870. [PMID: 31085560 PMCID: PMC6548139 DOI: 10.1083/jcb.201809056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/12/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
Children with mitochondrial diseases often present with slow growth and short stature, but the underlying mechanism remains unclear. In this study, Holzer et al. provide in vivo evidence that mitochondrial respiratory chain dysfunction induces cartilage degeneration coincident with altered metabolism, impaired extracellular matrix formation, and cell death at the cartilage–bone junction. In childhood, skeletal growth is driven by transient expansion of cartilage in the growth plate. The common belief is that energy production in this hypoxic tissue mainly relies on anaerobic glycolysis and not on mitochondrial respiratory chain (RC) activity. However, children with mitochondrial diseases causing RC dysfunction often present with short stature, which indicates that RC activity may be essential for cartilage-mediated skeletal growth. To elucidate the role of the mitochondrial RC in cartilage growth and pathology, we generated mice with impaired RC function in cartilage. These mice develop normally until birth, but their later growth is retarded. A detailed molecular analysis revealed that metabolic signaling and extracellular matrix formation is disturbed and induces cell death at the cartilage–bone junction to cause a chondrodysplasia-like phenotype. Hence, the results demonstrate the overall importance of the metabolic switch from fetal glycolysis to postnatal RC activation in growth plate cartilage and explain why RC dysfunction can cause short stature in children with mitochondrial diseases.
Collapse
Affiliation(s)
- Tatjana Holzer
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Kristina Probst
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Julia Etich
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Markus Auler
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Veronika S Georgieva
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Björn Bluhm
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Christian Frie
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Juliane Heilig
- Institute of Biomechanics and Orthopedics, German Sport University Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, University of Cologne, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopedics, German Sport University Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, University of Cologne, Cologne, Germany
| | - Julian Nüchel
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Markus Plomann
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Jens M Seeger
- Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Olivier R Baris
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany .,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
420
|
Abstract
Aging is accompanied by a time-dependent progressive deterioration of multiple factors of the cellular system. The past several decades have witnessed major leaps in our understanding of the biological mechanisms of aging using dietary, genetic, pharmacological, and physical interventions. Metabolic processes, including nutrient sensing pathways and mitochondrial function, have emerged as prominent regulators of aging. Mitochondria have been considered to play a key role largely due to their production of reactive oxygen species (ROS), resulting in DNA damage that accumulates over time and ultimately causes cellular failure. This theory, known as the mitochondrial free radical theory of aging (MFRTA), was favored by the aging field, but increasing inconsistent evidence has led to criticism and rejection of this idea. However, MFRTA should not be hastily rejected in its entirety because we now understand that ROS is not simply an undesired toxic metabolic byproduct, but also an important signaling molecule that is vital to cellular fitness. Notably, mitochondrial function, a term traditionally referred to bioenergetics and apoptosis, has since expanded considerably. It encompasses numerous other key biological processes, including the following: (i) complex metabolic processes, (ii) intracellular and endocrine signaling/communication, and (iii) immunity/inflammation. Here, we will discuss shortcomings of previous concepts regarding mitochondria in aging and their emerging roles based on recent advances. We will also discuss how the mitochondrial genome integrates with major theories on the evolution of aging. [BMB Reports 2019; 52(1): 13-23].
Collapse
Affiliation(s)
- Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089; USC Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA; Biomedical Science, Graduate School, Ajou University, Suwon 16499, Korea
| |
Collapse
|
421
|
iTRAQ-Based Protein Profiling in CUMS Rats Provides Insights into Hippocampal Ribosome Lesion and Ras Protein Changes Underlying Synaptic Plasticity in Depression. Neural Plast 2019; 2019:7492306. [PMID: 31191638 PMCID: PMC6525853 DOI: 10.1155/2019/7492306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
Hippocampal atrophy is one of the key changes in the brain implicated in the biology of depression. However, the precise molecular mechanism remains poorly understood due to a lack of biomarkers. In this research, we used behavioral experiments to evaluate anxiety and anhedonia levels in depressed rats using chronic unpredictable mild stress (CUMS) modeling. We also used isobaric tag for relative and absolute quantitation (iTRAQ) to identify the differentially expressed hippocampal proteins between depressed and normal rats. Bioinformatics analyses were also performed for a better understanding. The results showed that CUMS rats had higher anxiety and anhedonia levels than control rats, along with hippocampal lesions. Through iTRAQ and bioinformatics analyses, we found that ribosome proteins were significantly downregulated and Ras proteins exhibited a mixed change in the hippocampus of depressed rats. These findings suggest that the expression of hippocampal ribosome lesions and Ras proteins is significantly different in depressed rats than in control rats, providing new insights into the neurobiology of depression.
Collapse
|
422
|
Boczek E, Gaglia G, Olshina M, Sarraf S. The first Autumn School on Proteostasis: from molecular mechanisms to organismal consequences. Cell Stress Chaperones 2019; 24:481-492. [PMID: 31073902 PMCID: PMC6527634 DOI: 10.1007/s12192-019-00998-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
The first Autumn School on Proteostasis was held at the Mediterranean Institute for Life Sciences (MedILS) in Split, Croatia, from November 12th-16th, 2018, bringing together 44 graduate students and postdoctoral fellows and 22 principal investigators from around the world. This meeting was geared towards providing students with an in-depth understanding of the field of proteostasis, with the aim of broadening their perspectives of the field. Session topics covered multiple aspects of cellular and organismal proteostasis, including fundamental principles, responses to heat shock, aging and disease, and protein folding, misfolding, and degradation. The structure of the meeting and the restricted number of participants afforded the students and postdocs the opportunity to interact with principal investigators to discuss not only their latest research, but also their career prospects and progression in a close, supportive environment.
Collapse
Affiliation(s)
- Edgar Boczek
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Giorgio Gaglia
- Brigham Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Maya Olshina
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shireen Sarraf
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
423
|
Mohammad K, Dakik P, Medkour Y, Mitrofanova D, Titorenko VI. Quiescence Entry, Maintenance, and Exit in Adult Stem Cells. Int J Mol Sci 2019; 20:ijms20092158. [PMID: 31052375 PMCID: PMC6539837 DOI: 10.3390/ijms20092158] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
Cells of unicellular and multicellular eukaryotes can respond to certain environmental cues by arresting the cell cycle and entering a reversible state of quiescence. Quiescent cells do not divide, but can re-enter the cell cycle and resume proliferation if exposed to some signals from the environment. Quiescent cells in mammals and humans include adult stem cells. These cells exhibit improved stress resistance and enhanced survival ability. In response to certain extrinsic signals, adult stem cells can self-renew by dividing asymmetrically. Such asymmetric divisions not only allow the maintenance of a population of quiescent cells, but also yield daughter progenitor cells. A multistep process of the controlled proliferation of these progenitor cells leads to the formation of one or more types of fully differentiated cells. An age-related decline in the ability of adult stem cells to balance quiescence maintenance and regulated proliferation has been implicated in many aging-associated diseases. In this review, we describe many traits shared by different types of quiescent adult stem cells. We discuss how these traits contribute to the quiescence, self-renewal, and proliferation of adult stem cells. We examine the cell-intrinsic mechanisms that allow establishing and sustaining the characteristic traits of adult stem cells, thereby regulating quiescence entry, maintenance, and exit.
Collapse
Affiliation(s)
- Karamat Mohammad
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Paméla Dakik
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Younes Medkour
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Darya Mitrofanova
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Vladimir I Titorenko
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
424
|
Zhang S, Macias-Garcia A, Ulirsch JC, Velazquez J, Butty VL, Levine SS, Sankaran VG, Chen JJ. HRI coordinates translation necessary for protein homeostasis and mitochondrial function in erythropoiesis. eLife 2019; 8:46976. [PMID: 31033440 PMCID: PMC6533081 DOI: 10.7554/elife.46976] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/26/2019] [Indexed: 12/05/2022] Open
Abstract
Iron and heme play central roles in the production of red blood cells, but the underlying mechanisms remain incompletely understood. Heme-regulated eIF2α kinase (HRI) controls translation by phosphorylating eIF2α. Here, we investigate the global impact of iron, heme, and HRI on protein translation in vivo in murine primary erythroblasts using ribosome profiling. We validate the known role of HRI-mediated translational stimulation of integratedstressresponse mRNAs during iron deficiency in vivo. Moreover, we find that the translation of mRNAs encoding cytosolic and mitochondrial ribosomal proteins is substantially repressed by HRI during iron deficiency, causing a decrease in cytosolic and mitochondrial protein synthesis. The absence of HRI during iron deficiency elicits a prominent cytoplasmic unfolded protein response and impairs mitochondrial respiration. Importantly, ATF4 target genes are activated during iron deficiency to maintain mitochondrial function and to enable erythroid differentiation. We further identify GRB10 as a previously unappreciated regulator of terminal erythropoiesis. Red blood cells use a molecule called hemoglobin to transport oxygen around the body. To make hemoglobin, cells require iron to build a component called heme. If an individual does not get enough iron in their diet, the body cannot produce enough red blood cells, or the cells lack hemoglobin. This condition is known as iron deficiency anemia, and it affects around one-third of the world’s population. Researchers did not know exactly how iron levels control red blood cell production, though several proteins had been identified to play important roles. Heme forms in the cell's mitochondria: the compartments in the cell that supply it with energy. When heme levels in a developing red blood cell are low, a protein called HRI reduces the production of many proteins, most importantly the proteins that make up hemoglobin. HRI also boosts the production of a protein called ATF4, which switches on a set of genes that help both the cell and its mitochondria to adapt to the lack of heme. In turn, HRI and ATF4 reduce the activity of a signaling pathway called mTORC1, which controls the production of proteins that help cells to grow and divide. To understand in more detail how iron and heme regulate the production of new red blood cells, Zhang et al. looked at immature red blood cells from the livers of developing mice. Some of the mice lacked the gene that produces HRI, and some experienced iron deficiency. Comparing gene activity in the different mice revealed that in the developing blood cells of iron-deficient mice, HRI largely reduces the rate of protein production in both the mitochondria and the wider cell. At the same time, the increased activity of ATF4 allows the mitochondria to carry on releasing energy and the cells to continue developing. Zhang et al. also found that a protein that inhibits the mTORC1 signaling pathway needs to be active for the new red blood cells to mature. Overall, the results suggest that drugs that activate HRI or block the activity of the mTORC1 pathway could help to treat anemia. The next step is to test the effects that such drugs have in anemic mice and cells from anemic people.
Collapse
Affiliation(s)
- Shuping Zhang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, United States
| | - Alejandra Macias-Garcia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, United States
| | - Jacob C Ulirsch
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, United States.,Program in Biological and Biomedical Sciences, Harvard University, Cambridge, United States
| | - Jason Velazquez
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, United States
| | - Vincent L Butty
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, United States
| | - Stuart S Levine
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, United States
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, United States
| | - Jane-Jane Chen
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
425
|
da Silva RR. Controlling proteolysis of Clp peptidase: a possible target for combating mitochondrial diseases. Int J Biochem Cell Biol 2019; 110:140-142. [PMID: 30885675 DOI: 10.1016/j.biocel.2019.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 01/09/2023]
Abstract
Some mechanisms of cellular stress, aging, and apoptosis are related to proteolysis. With respect to ClpP, little is known about the mechanical manner in which the substrate is hydrolyzed in and released from the degradation chamber. Furthermore, what would be the real influence of ClpP in mammalian UPRmt?
Collapse
Affiliation(s)
- Ronivaldo Rodrigues da Silva
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
426
|
Lynch MR, Tran MT, Ralto KM, Zsengeller ZK, Raman V, Bhasin SS, Sun N, Chen X, Brown D, Rovira II, Taguchi K, Brooks CR, Stillman IE, Bhasin MK, Finkel T, Parikh SM. TFEB-driven lysosomal biogenesis is pivotal for PGC1α-dependent renal stress resistance. JCI Insight 2019; 5:126749. [PMID: 30870143 PMCID: PMC6538327 DOI: 10.1172/jci.insight.126749] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Because injured mitochondria can accelerate cell death through the elaboration of oxidative free radicals and other mediators, it is striking that proliferator γ coactivator 1-α (PGC1α), a stimulator of increased mitochondrial abundance, protects stressed renal cells instead of potentiating injury. Here, we report that PGC1α’s induction of lysosomes via transcription factor EB (TFEB) may be pivotal for kidney protection. CRISPR and stable gene transfer showed that PGC1α-KO tubular cells were sensitized to the genotoxic stressor cisplatin, whereas Tg cells were protected. The biosensor mitochondrial-targeted Keima (mtKeima) unexpectedly revealed that cisplatin blunts mitophagy both in cells and mice. PGC1α and its downstream mediator NAD+ counteracted this effect. PGC1α did not consistently affect known autophagy pathways modulated by cisplatin. Instead RNA sequencing identified coordinated regulation of lysosomal biogenesis via TFEB. This effector pathway was sufficiently important that inhibition of TFEB or lysosomes unveiled a striking harmful effect of excess PGC1α in cells and conditional mice. These results uncover an unexpected effect of cisplatin on mitophagy and PGC1α’s reliance on lysosomes for kidney protection. Finally, the data illuminate TFEB as a potentially novel target for renal tubular stress resistance. PGC1α is renoprotective in the setting of platinum-based chemotherapy through the induction of mitophagy and lysosomal biogenesis via transcription factor EB.
Collapse
Affiliation(s)
- Matthew R Lynch
- Division of Nephrology.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Mei T Tran
- Division of Nephrology.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth M Ralto
- Division of Nephrology.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Zsuzsanna K Zsengeller
- Division of Nephrology.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Vinod Raman
- Division of Nephrology.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Swati S Bhasin
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Nuo Sun
- Center for Molecular Medicine, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Xiuying Chen
- Division of Nephrology.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Brown
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Ilsa I Rovira
- Center for Molecular Medicine, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Kensei Taguchi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Craig R Brooks
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Isaac E Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Manoj K Bhasin
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Toren Finkel
- Center for Molecular Medicine, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA.,Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Samir M Parikh
- Division of Nephrology.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
427
|
Senescent Hepatocytes in Decompensated Liver Show Reduced UPR MT and Its Key Player, CLPP, Attenuates Senescence In Vitro. Cell Mol Gastroenterol Hepatol 2019; 8:73-94. [PMID: 30878663 PMCID: PMC6520637 DOI: 10.1016/j.jcmgh.2019.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Non-dividing hepatocytes in end-stage liver disease indicates permanent growth arrest similar to senescence. Identifying senescence in vivo is often challenging and mechanisms inhibiting senescence are poorly understood. In lower organisms mitochondrial unfolded protein response (UPRMT) helps in increasing longevity; however, its role in senescence and liver disease is poorly understood. Aim of this study was to identify hepatocyte senescence and the role of UPRMT in cryptogenic cirrhosis. METHODS Doxorubicin was used to induce senescence in non-neoplastic hepatocytes (PH5CH8) and hepatoma cells (HepG2 and Huh7). Senescence-associated markers and unfolded protein response was evaluated by fluorescence microscopy, immunoblotting and gene expression. Explants/biopsies from normal, fibrosis, compensated and decompensated cirrhosis without any known etiology were examined for presence of senescence and UPRMT by immunohistochemistry and gene expression. RESULTS Accumulation of senescent hepatocytes in cryptogenic cirrhosis was associated with reduced proliferation, increased expression of γH2AX and p21, together with loss of LaminB1. Dysfunctional mitochondria and compromised UPRMT were key features of senescent hepatocytes both in vitro and also in decompensated cirrhosis. Intriguingly, compensated cirrhotic liver mounted strong UPRMT, with high levels of mitochondrial protease, CLPP. Overexpression of CLPP inhibited senescence in vitro, by reducing mitochondrial ROS and altering oxygen consumption. CONCLUSIONS Our results implicate a role of hepatocyte senescence in cryptogenic cirrhosis together with a crucial role of UPRMT in preventing hepatocyte senescence. A compromised UPRMT may shift the fate of cirrhotic liver toward decompensation by exaggerating hepatocyte senescence. Restoring CLPP levels at least in cell culture appears as a promising strategy in mitohormesis, thereby, preventing senescence and possibly improving hepatocyte function.
Collapse
|
428
|
Fu Z, Liu F, Liu C, Jin B, Jiang Y, Tang M, Qi X, Guo X. Mutant huntingtin inhibits the mitochondrial unfolded protein response by impairing ABCB10 mRNA stability. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1428-1435. [PMID: 30802639 DOI: 10.1016/j.bbadis.2019.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 12/21/2022]
Abstract
Numerous studies have shown that mitochondrial dysfunction contributes to consequential phenotypes of Huntington's disease (HD), a fatal and inherited neurodegenerative disease caused by the expanded CAG repeats in the N-terminus of the huntingtin (Htt) gene. To maintain proper function, mitochondria develop a dedicated protein quality control mechanism by activating a stress response termed the mitochondrial unfolded protein response (UPRmt). Defects in the UPRmt have been linked to aging and are also associated with neurodegenerative diseases. However, little is known about the role of the UPRmt in HD. In this study, we find that ABCB10, a mitochondrial transporter involved in the UPRmt pathway, is downregulated in HD mouse striatal cells, HD patient fibroblasts, and HD R6/2 mice. Deletion of ABCB10 causes increased mitochondrial reactive oxygen species (ROS) production and cell death, whereas overexpression of ABCB10 reduces these aberrant events. Moreover, the mitochondrial chaperone HSP60 and mitochondrial protease Clpp, two well-established markers of the UPRmt, are reduced in the in vitro ABCB10-deficienct HD models. CHOP, a key transcription factor of HSP60 and Clpp, is regulated by ABCB10 in HD mouse striatal cells. Furthermore, we find that mutant huntingtin (mtHtt) inhibits the mtUPR by impairing ABCB10 mRNA stability. These findings demonstrate a suppression of the UPRmt by mtHtt, suggesting that disturbance of mitochondrial protein quality control may contribute to the pathogenesis of HD.
Collapse
Affiliation(s)
- Zixing Fu
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Fang Liu
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin 541004, China
| | - Chunyue Liu
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Beifang Jin
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin 541004, China
| | - Yueqing Jiang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Center for Mitochondrial Disease, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Xing Guo
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| |
Collapse
|
429
|
Sasaki K, Komori R, Taniguchi M, Shimaoka A, Midori S, Yamamoto M, Okuda C, Tanaka R, Sakamoto M, Wakabayashi S, Yoshida H. PGSE Is a Novel Enhancer Regulating the Proteoglycan Pathway of the Mammalian Golgi Stress Response. Cell Struct Funct 2019; 44:1-19. [PMID: 30487368 PMCID: PMC11926408 DOI: 10.1247/csf.18031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Golgi stress response is a homeostatic mechanism that augments the functional capacity of the Golgi apparatus when Golgi function becomes insufficient (Golgi stress). Three response pathways of the Golgi stress response have been identified in mammalian cells, the TFE3, HSP47 and CREB3 pathways, which augment the capacity of specific Golgi functions such as N-glycosylation, anti-apoptotic activity and pro-apoptotic activity, respectively. On the contrary, glycosylation of proteoglycans (PGs) is another important function of the Golgi, although the response pathway upregulating expression of glycosylation enzymes for PGs in response to Golgi stress remains unknown. Here, we found that expression of glycosylation enzymes for PGs was induced upon insufficiency of PG glycosylation capacity in the Golgi (PG-Golgi stress), and that transcriptional induction of genes encoding glycosylation enzymes for PGs was independent of the known Golgi stress response pathways and ER stress response. Promoter analyses of genes encoding these glycosylation enzymes revealed the novel enhancer elements PGSE-A and PGSE-B (the consensus sequences are CCGGGGCGGGGCG and TTTTACAATTGGTC, respectively), which regulate their transcriptional induction upon PG-Golgi stress. From these observations, the response pathway we discovered is a novel Golgi stress response pathway, which we have named the PG pathway.Key words: Golgi stress, proteoglycan, ER stress, organelle zone, organelle autoregulation.
Collapse
Affiliation(s)
- Kanae Sasaki
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo
| | - Ryota Komori
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo
| | - Mai Taniguchi
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo
| | - Akie Shimaoka
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo
| | - Sachiko Midori
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo
| | - Mayu Yamamoto
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo
| | - Chiho Okuda
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo
| | - Ryuya Tanaka
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo
| | - Miyu Sakamoto
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo
| | - Sadao Wakabayashi
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo
| | - Hiderou Yoshida
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo
| |
Collapse
|
430
|
Sedlackova L, Korolchuk VI. Mitochondrial quality control as a key determinant of cell survival. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:575-587. [PMID: 30594496 DOI: 10.1016/j.bbamcr.2018.12.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/03/2018] [Accepted: 12/21/2018] [Indexed: 01/09/2023]
Abstract
Mitochondria are the energy producing dynamic double-membraned organelles essential for cellular and organismal survival. A multitude of intra- and extra-cellular signals involved in the regulation of energy metabolism and cell fate determination converge on mitochondria to promote or prevent cell survival by modulating mitochondrial function and structure. Mitochondrial fitness is maintained by mitophagy, a pathway of selective degradation of dysfunctional organelles. Mitophagy impairment and altered clearance results in increased levels of dysfunctional and structurally aberrant mitochondria, changes in energy production, loss of responsiveness to intra- and extra-cellular signals and ultimately cell death. The decline of mitochondrial function and homeostasis with age is reported to be central to age-related pathologies. Here we discuss the molecular mechanisms controlling mitochondrial dynamics, mitophagy and cell death signalling and how their perturbation may contribute to ageing and age-related illness.
Collapse
Affiliation(s)
- Lucia Sedlackova
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Viktor I Korolchuk
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
431
|
Gu YH, Bai JB, Chen XL, Wu WW, Liu XX, Tan XD. Healthy aging: A bibliometric analysis of the literature. Exp Gerontol 2018; 116:93-105. [PMID: 30590123 DOI: 10.1016/j.exger.2018.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022]
Abstract
Due to dramatic growth of the aging population worldwide, there has been an urgent call for a public health strategy to manage healthy aging, with the ultimate goal being advancement of aging research. Considerable progress has been made in uncovering the mystery of aging process using multidisciplinary methods. There is a growing consensus in the field that aging traits which were originally thought to be disparate are likely to be interconnected. Thus, emerging research is needed to incorporate current findings of aging by building multiscale network models. This study reported the network of healthy aging research using bibliometric approaches. Based on the results, aging of the brain and muscle is a primary research focus which is a critical part of the multiscale network regulating the aging process. Among aging-associated diseases, Alzheimer's disease and frailty are among the main research focuses, and emerging work has focused on developing diagnostic tools for these diseases. For research on anti-aging interventions, calorie restriction, physical activity, and anti-aging pharmacology are the main interventions, of which the underlying mechanisms have been comprehensively studied in animal models.
Collapse
Affiliation(s)
- Yao-Hua Gu
- Department of Occupational and Environmental Health, School of Health Sciences, Wuhan University, No. 115, Dong Hu Street, Wuhan, Hubei 430071, China.
| | - Jin-Bing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA.
| | - Xiao-Li Chen
- Department of Nursing, School of Health Sciences, Wuhan University, No. 115, Dong Hu Street, Wuhan, Hubei 430071, China
| | - Wen-Wen Wu
- Department of Occupational and Environmental Health, School of Health Sciences, Wuhan University, No. 115, Dong Hu Street, Wuhan, Hubei 430071, China
| | - Xiang-Xiang Liu
- Department of Occupational and Environmental Health, School of Health Sciences, Wuhan University, No. 115, Dong Hu Street, Wuhan, Hubei 430071, China
| | - Xiao-Dong Tan
- Department of Occupational and Environmental Health, School of Health Sciences, Wuhan University, No. 115, Dong Hu Street, Wuhan, Hubei 430071, China.
| |
Collapse
|
432
|
Xu Z, Fu T, Guo Q, Sun W, Gan Z. Mitochondrial quality orchestrates muscle-adipose dialog to alleviate dietary obesity. Pharmacol Res 2018; 141:176-180. [PMID: 30583080 DOI: 10.1016/j.phrs.2018.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 01/14/2023]
Abstract
Skeletal muscle fitness is vital for human health and disease and is determined by the capacity for burning fuel, mitochondrial ATP production, and contraction. High quality mitochondria in skeletal muscle are essential for maintaining energy homeostasis in response to a myriad of physiologic or pathophysiological stresses. A sophisticated mitochondrial quality control system including mitochondrial autophagy, dynamics, and proteolysis has been identified, which maintains their functional integrity. In this review, we discuss recent studies highlighting mitochondrial quality control mechanisms that govern systemic metabolism by skeletal muscles. Increasing evidence suggests that mitochondria can "communicate" with the nucleus and triggers adaptive genomic re-programming during stress response. We focus on participation of the mitochondrial quality control system in the regulation of mitochondrial communications that drive the muscle to adipose dialog and suggest that muscle-specific regulation of mitochondrial quality impacts systemic homeostasis.
Collapse
Affiliation(s)
- Zhisheng Xu
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Tingting Fu
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Qiqi Guo
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Wanping Sun
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Zhenji Gan
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing 210061, China.
| |
Collapse
|
433
|
|
434
|
Inactivation of Lon protease reveals a link between mitochondrial unfolded protein stress and mitochondrial translation inhibition. Cell Death Dis 2018; 9:1168. [PMID: 30518747 PMCID: PMC6281655 DOI: 10.1038/s41419-018-1213-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 12/31/2022]
Abstract
The mitochondrial Unfolded Protein Response (UPRmt) pathway confers protection from misfolded and aggregated proteins by activating factors that promote protein folding and degradation. Our recent work on Lon protease, a member of the mitochondrial ATPase Associated with diverse cellular Activities (AAA+) family of mitochondrial resident proteases, suggests that mitochondrial translational inhibition may also be a feature of the UPRmt pathway.
Collapse
|
435
|
Malsin ES, Kamp DW. The mitochondria in lung fibrosis: friend or foe? Transl Res 2018; 202:1-23. [PMID: 30036495 DOI: 10.1016/j.trsl.2018.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 02/07/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) and other forms of lung fibrosis are age-associated diseases with increased deposition of mesenchymal collagen that promotes respiratory malfunction and eventual death from respiratory failure. Our understanding of the pathobiology underlying pulmonary fibrosis is incomplete and current therapies available to slow or treat lung fibrosis are limited. Evidence reviewed herein demonstrates key involvement of mitochondrial dysfunction in diverse pulmonary cell populations, including alveolar epithelial cells (AEC), fibroblasts, and macrophages and/or immune cells that collectively advances the development of pulmonary fibrosis. The mitochondria have an important role in regulating whether fibrogenic stimuli results in the return of normal healthy function ("friend") or the development of pulmonary fibrosis ("foe"). In particular, we summarize the evidence suggesting that AEC mitochondrial dysfunction is important in mediating lung fibrosis signaling via mechanisms involving imbalances in the levels of reactive oxygen species, endoplasmic reticulum stress response, mitophagy, apoptosis and/or senescence, and inflammatory signaling. Further, we review the emerging evidence suggesting that dysfunctional mitochondria in AECs and other cell types play crucial roles in modulating nearly all aspects of the 9 hallmarks of aging in the context of pulmonary fibrosis as well as some novel molecular pathways that have recently been identified. Finally, we discuss the potential translational aspects of these studies as well as the key knowledge gaps necessary for better informing our understanding of the pathobiology of the mitochondria in mediating pulmonary fibrosis. We reason that targeting deficient mitochondria-derived pathways may provide innovative future treatment strategies that are urgently needed for lung fibrosis.
Collapse
Affiliation(s)
- Elizabeth S Malsin
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center and Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David W Kamp
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center and Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
436
|
Hahn A, Zuryn S. The Cellular Mitochondrial Genome Landscape in Disease. Trends Cell Biol 2018; 29:227-240. [PMID: 30509558 DOI: 10.1016/j.tcb.2018.11.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
Abstract
Mitochondrial genome (mitochondrial DNA, mtDNA) lesions that unbalance bioenergetic and oxidative outputs are an important cause of human disease. A major impediment in our understanding of the pathophysiology of mitochondrial disorders is the complexity with which mtDNA mutations are spatiotemporally distributed and managed within individual cells, tissues, and organs. Unlike the comparatively static nuclear genome, accumulating evidence highlights the variability, dynamism, and modifiability of the mtDNA nucleotide sequence between individual cells over time. In this review, we summarize and discuss the impact of mtDNA defects on disease within the context of a mosaic and shifting mutational landscape.
Collapse
Affiliation(s)
- Anne Hahn
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Australia
| | - Steven Zuryn
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Australia.
| |
Collapse
|
437
|
Dogan SA, Cerutti R, Benincá C, Brea-Calvo G, Jacobs HT, Zeviani M, Szibor M, Viscomi C. Perturbed Redox Signaling Exacerbates a Mitochondrial Myopathy. Cell Metab 2018; 28:764-775.e5. [PMID: 30122554 PMCID: PMC6224544 DOI: 10.1016/j.cmet.2018.07.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/18/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022]
Abstract
Alternative oxidases (AOXs) bypass respiratory complexes III and IV by transferring electrons from coenzyme Q directly to O2. They have therefore been proposed as a potential therapeutic tool for mitochondrial diseases. We crossed the severely myopathic skeletal muscle-specific COX15 knockout (KO) mouse with an AOX-transgenic mouse. Surprisingly, the double KO-AOX mutants had decreased lifespan and a substantial worsening of the myopathy compared with KO alone. Decreased ROS production in KO-AOX versus KO mice led to impaired AMPK/PGC-1α signaling and PAX7/MYOD-dependent muscle regeneration, blunting compensatory responses. Importantly, the antioxidant N-acetylcysteine had a similar effect, decreasing the lifespan of KO mice. Our findings have major implications for understanding pathogenic mechanisms in mitochondrial diseases and for the design of therapies, highlighting the benefits of ROS signaling and the potential hazards of antioxidant treatment.
Collapse
Affiliation(s)
- Sukru Anil Dogan
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Raffaele Cerutti
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Cristiane Benincá
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla 41013, Spain
| | - Howard Trevor Jacobs
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5, Helsinki 00790, Finland; Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Marten Szibor
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5, Helsinki 00790, Finland; Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpön katu 34, Tampere 33520, Finland.
| | - Carlo Viscomi
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
438
|
Singhanat K, Apaijai N, Chattipakorn SC, Chattipakorn N. Roles of melatonin and its receptors in cardiac ischemia-reperfusion injury. Cell Mol Life Sci 2018; 75:4125-4149. [PMID: 30105616 PMCID: PMC11105249 DOI: 10.1007/s00018-018-2905-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/23/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022]
Abstract
Acute myocardial infarction (AMI) has been an economic and health burden in most countries around the world. Reperfusion is a standard treatment for AMI as it can actively restore blood supply to the ischemic site. However, reperfusion itself can cause additional damage; a process known as cardiac ischemia/reperfusion (I/R) injury. Although several pharmacological interventions have been shown to reduce tissue damage during I/R injury, they usually have undesirable effects. Therefore, endogenous substances such as melatonin have become a field of active investigation. Melatonin is a hormone that is produced by the pineal gland, and it plays an important role in regulating many physiological functions in human body. Accumulated data from studies carried out in vitro, ex vivo, in vivo, and also from clinical studies have provided information regarding possible beneficial effects of melatonin on cardiac I/R such as attenuated cell death, and increased cell survival, leading to reduced infarct size and improved left-ventricular function. This review comprehensively discusses and summarizes those effects of melatonin on cardiac I/R. In addition, consistent and inconsistent reports regarding the effects of melatonin in cases of cardiac I/R together with gaps in surrounding knowledge such as the appropriate onset and duration of melatonin administration are presented and discussed. From this review, we hope to provide important information which could be used to warrant more clinical studies in the future to explore the clinical benefits of melatonin in AMI patients.
Collapse
Affiliation(s)
- Kodchanan Singhanat
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
439
|
Lon protease inactivation in Drosophila causes unfolded protein stress and inhibition of mitochondrial translation. Cell Death Discov 2018; 4:51. [PMID: 30374414 PMCID: PMC6197249 DOI: 10.1038/s41420-018-0110-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial dysfunction is a frequent participant in common diseases and a principal suspect in aging. To combat mitochondrial dysfunction, eukaryotes have evolved a large repertoire of quality control mechanisms. One such mechanism involves the selective degradation of damaged or misfolded mitochondrial proteins by mitochondrial resident proteases, including proteases of the ATPase Associated with diverse cellular Activities (AAA+) family. The importance of the AAA+ family of mitochondrial proteases is exemplified by the fact that mutations that impair their functions cause a variety of human diseases, yet our knowledge of the cellular responses to their inactivation is limited. To address this matter, we created and characterized flies with complete or partial inactivation of the Drosophila matrix-localized AAA+ protease Lon. We found that a Lon null allele confers early larval lethality and that severely reducing Lon expression using RNAi results in shortened lifespan, locomotor impairment, and respiratory defects specific to respiratory chain complexes that contain mitochondrially encoded subunits. The respiratory chain defects of Lon knockdown (LonKD) flies appeared to result from severely reduced translation of mitochondrially encoded genes. This translational defect was not a consequence of reduced mitochondrial transcription, as evidenced by the fact that mitochondrial transcripts were elevated in abundance in LonKD flies. Rather, the translational defect of LonKD flies appeared to be derived from sequestration of mitochondrially encoded transcripts in highly dense ribonucleoparticles. The translational defect of LonKD flies was also accompanied by a substantial increase in unfolded mitochondrial proteins. Together, our findings suggest that the accumulation of unfolded mitochondrial proteins triggers a stress response that culminates in the inhibition of mitochondrial translation. Our work provides a foundation to explore the underlying molecular mechanisms.
Collapse
|
440
|
Kwon S, Kim EJE, Lee SJV. Mitochondria-mediated defense mechanisms against pathogens in Caenorhabditis elegans. BMB Rep 2018; 51:274-279. [PMID: 29764564 PMCID: PMC6033066 DOI: 10.5483/bmbrep.2018.51.6.111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are crucial organelles that generate cellular energy and metabolites. Recent studies indicate that mitochondria also regulate immunity. In this review, we discuss key roles of mitochondria in immunity against pathogen infection and underlying mechanisms, focusing on discoveries using Caenorhabditis elegans. Various mitochondrial processes, including mitochondrial surveillance mechanisms, mitochondrial unfolded protein response (UPRmt), mitophagy, and reactive oxygen species (ROS) production, contribute to immune responses and resistance of C. elegans against pathogens. Biological processes of C. elegans are usually conserved across phyla. Thus, understanding the mechanisms of mitochondria-mediated defense responses in C. elegans may provide insights into similar mechanisms in complex organisms, including mammals.
Collapse
Affiliation(s)
- Sujeong Kwon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Eun Ji E Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seung-Jae V Lee
- Department of Life Sciences and Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
441
|
|
442
|
Abstract
Mitochondria contain their own genome that encodes for a small number of proteins, while the vast majority of mitochondrial proteins is produced on cytosolic ribosomes. The formation of respiratory chain complexes depends on the coordinated biogenesis of mitochondrially encoded and nuclear-encoded subunits. In this review, we describe pathways that adjust mitochondrial protein synthesis and import of nuclear-encoded subunits to the assembly of respiratory chain complexes. Furthermore, we outline how defects in protein import into mitochondria affect nuclear gene expression to maintain protein homeostasis under physiological and stress conditions.
Collapse
Affiliation(s)
- Chantal Priesnitz
- Institute of Biochemistry and Molecular Biology, Center for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Center for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
443
|
Zhao T, Hao Y, Kaplan JM. Axonal Mitochondria Modulate Neuropeptide Secretion Through the Hypoxic Stress Response in Caenorhabditis elegans. Genetics 2018; 210:275-285. [PMID: 30049781 PMCID: PMC6116974 DOI: 10.1534/genetics.118.301014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022] Open
Abstract
Neurons are highly dependent on mitochondrial function, and mitochondrial damage has been implicated in many neurological and neurodegenerative diseases. Here we show that axonal mitochondria are necessary for neuropeptide secretion in Caenorhabditis elegans and that oxidative phosphorylation, but not mitochondrial calcium uptake, is required for secretion. Oxidative phosphorylation produces cellular ATP, reactive oxygen species, and consumes oxygen. Disrupting any of these functions could inhibit neuropeptide secretion. We show that blocking mitochondria transport into axons or decreasing mitochondrial function inhibits neuropeptide secretion through activation of the hypoxia inducible factor HIF-1 Our results suggest that axonal mitochondria modulate neuropeptide secretion by regulating transcriptional responses induced by metabolic stress.
Collapse
Affiliation(s)
- Tongtong Zhao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Yingsong Hao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
444
|
Gorgoulis VG, Pefani D, Pateras IS, Trougakos IP. Integrating the DNA damage and protein stress responses during cancer development and treatment. J Pathol 2018; 246:12-40. [PMID: 29756349 PMCID: PMC6120562 DOI: 10.1002/path.5097] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/16/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
During evolution, cells have developed a wide spectrum of stress response modules to ensure homeostasis. The genome and proteome damage response pathways constitute the pillars of this interwoven 'defensive' network. Consequently, the deregulation of these pathways correlates with ageing and various pathophysiological states, including cancer. In the present review, we highlight: (1) the structure of the genome and proteome damage response pathways; (2) their functional crosstalk; and (3) the conditions under which they predispose to cancer. Within this context, we emphasize the role of oncogene-induced DNA damage as a driving force that shapes the cellular landscape for the emergence of the various hallmarks of cancer. We also discuss potential means to exploit key cancer-related alterations of the genome and proteome damage response pathways in order to develop novel efficient therapeutic modalities. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational and Kapodistrian University of AthensAthensGreece
- Biomedical Research Foundation of the Academy of AthensAthensGreece
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Dafni‐Eleftheria Pefani
- CRUK/MRC Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
445
|
Donovan EL, Lopes EBP, Batushansky A, Kinter M, Griffin TM. Independent effects of dietary fat and sucrose content on chondrocyte metabolism and osteoarthritis pathology in mice. Dis Model Mech 2018; 11:dmm.034827. [PMID: 30018076 PMCID: PMC6176996 DOI: 10.1242/dmm.034827] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Obesity is one of the most significant risk factors for knee osteoarthritis. However, therapeutic strategies to prevent or treat obesity-associated osteoarthritis are limited because of uncertainty about the etiology of disease, particularly with regard to metabolic factors. High-fat-diet-induced obese mice have become a widely used model for testing hypotheses about how obesity increases the risk of osteoarthritis, but progress has been limited by variation in disease severity, with some reports concluding that dietary treatment alone is insufficient to induce osteoarthritis in mice. We hypothesized that increased sucrose content of typical low-fat control diets contributes to osteoarthritis pathology and thus alters outcomes when evaluating the effects of a high-fat diet. We tested this hypothesis in male C57BL/6J mice by comparing the effects of purified diets that independently varied sucrose or fat content from 6 to 26 weeks of age. Outcomes included osteoarthritis pathology, serum metabolites, and cartilage gene and protein changes associated with cellular metabolism and stress-response pathways. We found that the relative content of sucrose versus cornstarch in low-fat iso-caloric purified diets caused substantial differences in serum metabolites, joint pathology, and cartilage metabolic and stress-response pathways, despite no differences in body mass or body fat. We also found that higher dietary fat increased fatty acid metabolic enzymes in cartilage. The findings indicate that the choice of control diets should be carefully considered in mouse osteoarthritis studies. Our study also indicates that altered cartilage metabolism might be a contributing factor to how diet and obesity increase the risk of osteoarthritis. Summary: The contribution of metabolic factors to obesity-associated knee osteoarthritis is uncertain. Here, we show how dietary fat and sucrose independently alter cartilage metabolic enzymes and osteoarthritis pathophysiology in mice.
Collapse
Affiliation(s)
- Elise L Donovan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK 73104, USA
| | - Erika Barboza Prado Lopes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK 73104, USA
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK 73104, USA
| | - Mike Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK 73104, USA.,Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK 73104, USA .,Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Department of Biochemistry and Molecular Biology and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
446
|
Polson ES, Kuchler VB, Abbosh C, Ross EM, Mathew RK, Beard HA, da Silva B, Holding AN, Ballereau S, Chuntharpursat-Bon E, Williams J, Griffiths HBS, Shao H, Patel A, Davies AJ, Droop A, Chumas P, Short SC, Lorger M, Gestwicki JE, Roberts LD, Bon RS, Allison SJ, Zhu S, Markowetz F, Wurdak H. KHS101 disrupts energy metabolism in human glioblastoma cells and reduces tumor growth in mice. Sci Transl Med 2018; 10:eaar2718. [PMID: 30111643 DOI: 10.1126/scitranslmed.aar2718] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/24/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022]
Abstract
Pharmacological inhibition of uncontrolled cell growth with small-molecule inhibitors is a potential strategy for treating glioblastoma multiforme (GBM), the most malignant primary brain cancer. We showed that the synthetic small-molecule KHS101 promoted tumor cell death in diverse GBM cell models, independent of their tumor subtype, and without affecting the viability of noncancerous brain cell lines. KHS101 exerted cytotoxic effects by disrupting the mitochondrial chaperone heat shock protein family D member 1 (HSPD1). In GBM cells, KHS101 promoted aggregation of proteins regulating mitochondrial integrity and energy metabolism. Mitochondrial bioenergetic capacity and glycolytic activity were selectively impaired in KHS101-treated GBM cells. In two intracranial patient-derived xenograft tumor models in mice, systemic administration of KHS101 reduced tumor growth and increased survival without discernible side effects. These findings suggest that targeting of HSPD1-dependent metabolic pathways might be an effective strategy for treating GBM.
Collapse
Affiliation(s)
- Euan S Polson
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | | | - Edith M Ross
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Ryan K Mathew
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Neurosurgery, Leeds General Infirmary, Leeds LS1 3EX, UK
| | - Hester A Beard
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | | | - Andrew N Holding
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Stephane Ballereau
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | | | - Hollie B S Griffiths
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Hao Shao
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Anjana Patel
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Adam J Davies
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Alastair Droop
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Paul Chumas
- Department of Neurosurgery, Leeds General Infirmary, Leeds LS1 3EX, UK
| | - Susan C Short
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Mihaela Lorger
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Lee D Roberts
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Robin S Bon
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Simon J Allison
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Shoutian Zhu
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, CA 92037, USA
| | - Florian Markowetz
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Heiko Wurdak
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
447
|
Gan Z, Fu T, Kelly DP, Vega RB. Skeletal muscle mitochondrial remodeling in exercise and diseases. Cell Res 2018; 28:969-980. [PMID: 30108290 DOI: 10.1038/s41422-018-0078-7] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle fitness and plasticity is an important determinant of human health and disease. Mitochondria are essential for maintaining skeletal muscle energy homeostasis by adaptive re-programming to meet the demands imposed by a myriad of physiologic or pathophysiological stresses. Skeletal muscle mitochondrial dysfunction has been implicated in the pathogenesis of many diseases, including muscular dystrophy, atrophy, type 2 diabetes, and aging-related sarcopenia. Notably, exercise counteracts the effects of many chronic diseases on skeletal muscle mitochondrial function. Recent studies have revealed a finely tuned regulatory network that orchestrates skeletal muscle mitochondrial biogenesis and function in response to exercise and in disease states. In addition, increasing evidence suggests that mitochondria also serve to "communicate" with the nucleus and mediate adaptive genomic re-programming. Here we review the current state of knowledge relevant to the dynamic remodeling of skeletal muscle mitochondria in response to exercise and in disease states.
Collapse
Affiliation(s)
- Zhenji Gan
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, 210061, Nanjing, China.
| | - Tingting Fu
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, 210061, Nanjing, China
| | - Daniel P Kelly
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Rick B Vega
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, 32804, USA.
| |
Collapse
|
448
|
Abstract
Mitochondria are sensitive to numerous environmental stresses, which can lead to activation of mitochondrial stress responses (MSRs). Of particular recent interest has been the mitochondrial unfolded protein response (UPRmt), activated to restore protein homeostasis (proteostasis) upon mitochondrial protein misfolding. Several axes of the UPRmt have been described, creating some confusion as to the nature of the different responses. While distinct molecularly, these different axes are likely mutually beneficial and activated in parallel. This review aims at describing and distinguishing the different mammalian MSR/UPRmt axes to define key processes and members and to examine the involvement of protein misfolding.
Collapse
Affiliation(s)
- Christian Münch
- Institute of Biochemistry II, Goethe University - Medical Faculty, University Hospital, Frankfurt am Main, Germany.
| |
Collapse
|
449
|
Hill S, Sataranatarajan K, Van Remmen H. Role of Signaling Molecules in Mitochondrial Stress Response. Front Genet 2018; 9:225. [PMID: 30042784 PMCID: PMC6048194 DOI: 10.3389/fgene.2018.00225] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 06/07/2018] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are established essential regulators of cellular function and metabolism. Mitochondria regulate redox homeostasis, maintain energy (ATP) production through oxidative phosphorylation, buffer calcium levels, and control cell death through apoptosis. In addition to these critical cell functions, recent evidence supports a signaling role for mitochondria. For example, studies over the past few years have established that peptides released from the mitochondria mediate stress responses such as the mitochondrial unfolded protein response (UPRMT) through signaling to the nucleus. Mitochondrial damage or danger associated molecular patterns (DAMPs) provide a link between mitochondria, inflammation and inflammatory disease processes. Additionally, a new class of peptides generated by the mitochondria affords protection against age-related diseases in mammals. In this short review, we highlight the role of mitochondrial signaling and regulation of cellular activities through the mitochondrial UPRMT that signals to the nucleus to affect homeostatic responses, DAMPs, and mitochondrial derived peptides.
Collapse
Affiliation(s)
- Shauna Hill
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Cell Systems & Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States.,Department of Pathology, University of Washington, Seattle, WA, United States
| | | | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Oklahoma City VA Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
450
|
Intracellular and Intercellular Signalling Mechanisms following DNA Damage Are Modulated By PINK1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1391387. [PMID: 30116473 PMCID: PMC6079383 DOI: 10.1155/2018/1391387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/04/2018] [Accepted: 05/20/2018] [Indexed: 02/06/2023]
Abstract
Impaired mitochondrial function and accumulation of DNA damage have been recognized as hallmarks of age-related diseases. Mitochondrial dysfunction initiates protective signalling mechanisms coordinated at nuclear level particularly by modulating transcription of stress signalling factors. In turn, cellular response to DNA lesions comprises a series of interconnected complex protective pathways, which require the energetic and metabolic support of the mitochondria. These are involved in intracellular as well as in extracellular signalling of damage. Here, we have initiated a study that addresses how mitochondria-nucleus communication may occur in conditions of combined mitochondrial dysfunction and genotoxic stress and what are the consequences of this interaction on the cell system. In this work, we used cells deficient for PINK1, a mitochondrial kinase involved in mitochondrial quality control whose loss of function leads to the accumulation of dysfunctional mitochondria, challenged with inducers of DNA damage, namely, ionizing radiation and the radiomimetic bleomycin. Combined stress at the level of mitochondria and the nucleus impairs both mitochondrial and nuclear functions. Our findings revealed exacerbated sensibility to genotoxic stress in PINK1-deficient cells. The same cells showed an impaired induction of bystander phenomena following stress insults. However, these cells responded adaptively when a challenge dose was applied subsequently to a low-dose treatment to the cells. The data demonstrates that PINK1 modulates intracellular and intercellular signalling pathways, particularly adaptive responses and transmission of bystander signalling, two facets of the cell-protective mechanisms against detrimental agents.
Collapse
|