401
|
Bruns H, Crüsemann M, Letzel AC, Alanjary M, McInerney JO, Jensen PR, Schulz S, Moore BS, Ziemert N. Function-related replacement of bacterial siderophore pathways. ISME JOURNAL 2017; 12:320-329. [PMID: 28809850 PMCID: PMC5776446 DOI: 10.1038/ismej.2017.137] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/13/2017] [Accepted: 07/14/2017] [Indexed: 01/16/2023]
Abstract
Bacterial genomes are rife with orphan biosynthetic gene clusters (BGCs) associated with secondary metabolism of unrealized natural product molecules. Often up to a tenth of the genome is predicted to code for the biosynthesis of diverse metabolites with mostly unknown structures and functions. This phenomenal diversity of BGCs coupled with their high rates of horizontal transfer raise questions about whether they are really active and beneficial, whether they are neutral and confer no advantage, or whether they are carried in genomes because they are parasitic or addictive. We previously reported that Salinispora bacteria broadly use the desferrioxamine family of siderophores for iron acquisition. Herein we describe a new and unrelated group of peptidic siderophores called salinichelins from a restricted number of Salinispora strains in which the desferrioxamine biosynthesis genes have been lost. We have reconstructed the evolutionary history of these two different siderophore families and show that the acquisition and retention of the new salinichelin siderophores co-occurs with the loss of the more ancient desferrioxamine pathway. This identical event occurred at least three times independently during the evolution of the genus. We surmise that certain BGCs may be extraneous because of their functional redundancy and demonstrate that the relative evolutionary pace of natural pathway replacement shows high selective pressure against retention of functionally superfluous gene clusters.
Collapse
Affiliation(s)
- Hilke Bruns
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany.,Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Max Crüsemann
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Anne-Catrin Letzel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Mohammad Alanjary
- German Center for Infection Biology (DZIF), Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - James O McInerney
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, Health and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Nadine Ziemert
- German Center for Infection Biology (DZIF), Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| |
Collapse
|
402
|
Letzel AC, Li J, Amos GCA, Millán-Aguiñaga N, Ginigini J, Abdelmohsen UR, Gaudêncio SP, Ziemert N, Moore BS, Jensen PR. Genomic insights into specialized metabolism in the marine actinomycete Salinispora. Environ Microbiol 2017; 19:3660-3673. [PMID: 28752948 DOI: 10.1111/1462-2920.13867] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 11/28/2022]
Abstract
Comparative genomics is providing new opportunities to address the diversity and distributions of genes encoding the biosynthesis of specialized metabolites. An analysis of 119 genome sequences representing three closely related species of the marine actinomycete genus Salinispora reveals extraordinary biosynthetic diversity in the form of 176 distinct biosynthetic gene clusters (BGCs) of which only 24 have been linked to their products. Remarkably, more than half of the BGCs were observed in only one or two strains, suggesting they were acquired relatively recently in the evolutionary history of the genus. These acquired gene clusters are concentrated in specific genomic islands, which represent hot spots for BGC acquisition. While most BGCs are stable in terms of their chromosomal position, others migrated to different locations or were exchanged with unrelated gene clusters suggesting a plug and play type model of evolution that provides a mechanism to test the relative fitness effects of specialized metabolites. Transcriptome analyses were used to address the relationships between BGC abundance, chromosomal position and product discovery. The results indicate that recently acquired BGCs can be functional and that complex evolutionary processes shape the micro-diversity of specialized metabolism observed in closely related environmental bacteria.
Collapse
Affiliation(s)
- Anne-Catrin Letzel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Jing Li
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Gregory C A Amos
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Natalie Millán-Aguiñaga
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California 22800, Mexico
| | - Joape Ginigini
- Institute of Applied Sciences, Faculty of Science, Technology and Environment, University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Fiji
| | - Usama R Abdelmohsen
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Germany.,Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Susana P Gaudêncio
- Department of Chemistry, REQUIMTE, LAQV and UCIBIO, Faculty of Science and Technology, Universidade NOVA de Lisboa, Caparica 2529-516, Portugal
| | - Nadine Ziemert
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Interfaculty Institute of Microbiology and Infection Medicine Tuübingen, University of Tuübingen, Auf der Morgenstelle 28, Tuübingen 72076, Germany
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of 9500 Gilman Dr, La Jolla, CA 92093, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
403
|
Zachman-Brockmeyer TR, Thoden JB, Holden HM. The structure of RbmB from Streptomyces ribosidificus, an aminotransferase involved in the biosynthesis of ribostamycin. Protein Sci 2017; 26:1886-1892. [PMID: 28685903 DOI: 10.1002/pro.3221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/23/2017] [Accepted: 06/29/2017] [Indexed: 11/11/2022]
Abstract
Aminoglycoside antibiotics represent a classical group of antimicrobials first discovered in the 1940s. Due to their ototoxic and nephrotoxic side effects, they are typically only used against Gram negative bacteria which have become resistant to other therapeutics. One family of aminoglycosides includes such compounds as butirosin, ribostamycin, neomycin, and kanamycin, amongst others. The common theme in these antibiotics is that they are constructed around a chemically stable aminocyclitol unit referred to as 2-deoxystreptamine (2-DOS). Four enzymes are required for the in vivo production of 2-DOS. Here, we report the structure of RbmB from Streptomyces ribosidificus, which is a pyridoxal 5'-phosphate dependent enzyme that catalyzes two of the required steps in 2-DOS formation by functioning on distinct substrates. For this analysis, the structure of the external aldimine form of RbmB with 2-DOS was determined to 2.1 Å resolution. In addition, the structure of a similar enzyme, BtrR from Bacillus circulans, was also determined to 2.1 Å resolution in the same external aldimine form. These two structures represent the first detailed molecular descriptions of the active sites for those aminotransferases involved in 2-DOS production. Given the fact that the 2-DOS unit is widespread amongst aminoglycoside antibiotics, the data presented herein provide new molecular insight into the biosynthesis of these sugar-based drugs.
Collapse
Affiliation(s)
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
404
|
Draft Genome Sequence of Streptomyces sp. M1013, a Close Relative of Streptomyces ambofaciens and Streptomyces coelicolor. GENOME ANNOUNCEMENTS 2017; 5:5/29/e00643-17. [PMID: 28729266 PMCID: PMC5522933 DOI: 10.1128/genomea.00643-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the draft genome sequence of Streptomyces sp. M1013, a strain isolated from the Medicago arborea rhizosphere in Izmir, Turkey. An average nucleotide identity (ANI) analysis reveals that this strain belongs to the same species as Streptomyces canus ATCC12647 and is closely related to Streptomyces ambofaciens and Streptomyces coelicolor.
Collapse
|
405
|
Boruta T. Uncovering the repertoire of fungal secondary metabolites: From Fleming's laboratory to the International Space Station. Bioengineered 2017. [PMID: 28632991 PMCID: PMC5972916 DOI: 10.1080/21655979.2017.1341022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fungi produce a variety of secondary metabolites (SMs), low-molecular weight compounds associated with many potentially useful biologic activities. The examples of biotechnologically relevant fungal metabolites include penicillin, a β-lactam antibiotic, and lovastatin, a cholesterol-lowering drug. The discovery of pharmaceutical lead compounds within the microbial metabolic pools relies on the selection and biochemical characterization of promising strains. Not all SMs are produced under standard cultivation conditions, hence the uncovering of chemical potential of investigated strains often requires the use of induction strategies to awake the associated biosynthetic genes. Triggering the secondary metabolic pathways can be achieved through the variation of cultivation conditions and growth media composition. The alternative strategy is to use genetic engineering to activate the respective genomic segments, e.g. by the manipulation of regulators or chromatin-modifying enzymes. Recently, whole-genome sequencing of several fungi isolated from the Chernobyl accident area was reported by Singh et al. (Genome Announc 2017; 5:e01602–16). These strains were selected for exposure to microgravity at the International Space Station. Biochemical characterization of fungi cultivated under extreme conditions is likely to provide valuable insights into the adaptation mechanism associated with metabolism and, possibly, a catalog of novel molecules of potential pharmaceutical importance.
Collapse
Affiliation(s)
- Tomasz Boruta
- a Lodz University of Technology , Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering , Lodz , Poland
| |
Collapse
|
406
|
Aksenov AA, da Silva R, Knight R, Lopes NP, Dorrestein PC. Global chemical analysis of biology by mass spectrometry. Nat Rev Chem 2017. [DOI: 10.1038/s41570-017-0054] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
407
|
Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, Suarez Duran HG, de los Santos E, Kim HU, Nave M, Dickschat JS, Mitchell DA, Shelest E, Breitling R, Takano E, Lee SY, Weber T, Medema MH. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 2017; 45:W36-W41. [PMID: 28460038 PMCID: PMC5570095 DOI: 10.1093/nar/gkx319] [Citation(s) in RCA: 899] [Impact Index Per Article: 112.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023] Open
Abstract
Many antibiotics, chemotherapeutics, crop protection agents and food preservatives originate from molecules produced by bacteria, fungi or plants. In recent years, genome mining methodologies have been widely adopted to identify and characterize the biosynthetic gene clusters encoding the production of such compounds. Since 2011, the 'antibiotics and secondary metabolite analysis shell-antiSMASH' has assisted researchers in efficiently performing this, both as a web server and a standalone tool. Here, we present the thoroughly updated antiSMASH version 4, which adds several novel features, including prediction of gene cluster boundaries using the ClusterFinder method or the newly integrated CASSIS algorithm, improved substrate specificity prediction for non-ribosomal peptide synthetase adenylation domains based on the new SANDPUMA algorithm, improved predictions for terpene and ribosomally synthesized and post-translationally modified peptides cluster products, reporting of sequence similarity to proteins encoded in experimentally characterized gene clusters on a per-protein basis and a domain-level alignment tool for comparative analysis of trans-AT polyketide synthase assembly line architectures. Additionally, several usability features have been updated and improved. Together, these improvements make antiSMASH up-to-date with the latest developments in natural product research and will further facilitate computational genome mining for the discovery of novel bioactive molecules.
Collapse
Affiliation(s)
- Kai Blin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thomas Wolf
- Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knöll-Institute, 07745 Jena, Germany
| | - Marc G. Chevrette
- Laboratory of Genetics, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Xiaowen Lu
- Bioinformatics Group, Wageningen University, 6708PB Wageningen, Netherlands
| | | | - Satria A. Kautsar
- Bioinformatics Group, Wageningen University, 6708PB Wageningen, Netherlands
| | | | | | - Hyun Uk Kim
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Department of Chemical and Biomolecular Engineering & BioInformatics Research Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Mariana Nave
- Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ekaterina Shelest
- Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knöll-Institute, 07745 Jena, Germany
| | - Rainer Breitling
- Manchester Synthetic Biology Research Centre (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Eriko Takano
- Manchester Synthetic Biology Research Centre (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Sang Yup Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Department of Chemical and Biomolecular Engineering & BioInformatics Research Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Tilmann Weber
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Marnix H. Medema
- Bioinformatics Group, Wageningen University, 6708PB Wageningen, Netherlands
| |
Collapse
|
408
|
Kusserow K, Gulder TAM. Complete Genome Sequence of Actinomadura Parvosata Subsp. Kistnae, A Rich Source of Novel Natural Product (Bio-)Chemistry. J Genomics 2017; 5:75-76. [PMID: 28698739 PMCID: PMC5504828 DOI: 10.7150/jgen.19673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/14/2017] [Indexed: 01/06/2023] Open
Abstract
The soil dwelling actinomycete strain Actinomadura parvosata subsp. kistnae is the producer of the antiviral antibiotics kistamicin A and B. Genome sequencing and bioinformatic analysis revealed the presence of the kistamycin biosynthetic gene cluster responsible for the formation of these non-ribosomal peptides as well as an impressive number of yet uncharacterized biosynthetic pathways. This includes polyketide, ribosomal and non-ribosomal peptide and a large number of terpenoid biosynthetic loci encoding yet unknown natural products. The genomic data of this strain is thus a treasure trove for genome mining for novel functional metabolites and new biocatalysts.
Collapse
Affiliation(s)
| | - Tobias A. M. Gulder
- Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
409
|
Labradorins with Antibacterial Activity Produced by Pseudomonas sp. Molecules 2017; 22:molecules22071072. [PMID: 28654009 PMCID: PMC6151975 DOI: 10.3390/molecules22071072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/11/2017] [Accepted: 06/21/2017] [Indexed: 11/16/2022] Open
Abstract
The urgent need for new antibacterial drugs has led to renewed interest in microorganisms, which historically have been the main source of previously discovered antibiotics. The present study describes the discovery of two new antibacterial oxazolylindole type alkaloids, labradorins 5 (1) and 6 (2), which were isolated and characterized from two isolates of Pseudomonas sp., along with four previously known tryptophane derived alkaloids. The structures of 1 and 2 were determined by NMR spectroscopy and MS, and confirmed by synthesis. During bioassay-guided isolation using several human bacterial pathogens, 1 and 2 displayed activity towards Staphylococcus aureus and Acinetobacter baumannii. The minimal inhibitory concentrations (MIC) of compounds 1 and 2 against S. aureus were 12 μg·mL-1 and 50 μg·mL-1, respectively, whereas the MICs against A. baumannii were >50 μg·mL-1. The CC50 values of compound 1 towards a liver cell line (HEP-G2) and a T-cell line (MT4) were 30 μg·mL-1 and 20 μg·mL-1, respectively, and for compound 2 were >100 μg·mL-1 and 20 μg·mL-1, respectively. Due to the limited potency of compounds 1 and 2, along with their toxicity, the compounds do not warrant further development towards new antibiotics.
Collapse
|
410
|
Guo H, Benndorf R, Leichnitz D, Klassen JL, Vollmers J, Görls H, Steinacker M, Weigel C, Dahse HM, Kaster AK, de Beer ZW, Poulsen M, Beemelmanns C. Isolation, Biosynthesis and Chemical Modifications of Rubterolones A-F: Rare Tropolone Alkaloids from Actinomadura sp. 5-2. Chemistry 2017; 23:9338-9345. [PMID: 28463423 DOI: 10.1002/chem.201701005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Indexed: 12/15/2022]
Abstract
The discovery of six new, highly substituted tropolone alkaloids, rubterolones A-F, from Actinomadura sp. 5-2, isolated from the gut of the fungus-growing termite Macrotermes natalensis is reported. Rubterolones were identified by using fungus-bacteria challenge assays and a HRMS-based dereplication strategy, and characterised by NMR and HRMS analyses and by X-ray crystallography. Feeding experiments and subsequent chemical derivatisation led to a first library of rubterolone derivatives (A-L). Genome sequencing and comparative analyses revealed their putative biosynthetic pathway, which was supported by feeding experiments. This study highlights how gut microbes can present a prolific source of secondary metabolites.
Collapse
Affiliation(s)
- Huijuan Guo
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745, Jena, Germany
| | - René Benndorf
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745, Jena, Germany
| | - Daniel Leichnitz
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745, Jena, Germany
| | - Jonathan L Klassen
- Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT, 06269-3125, USA
| | - John Vollmers
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
| | - Matthias Steinacker
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745, Jena, Germany
| | - Christiane Weigel
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745, Jena, Germany
| | - Hans-Martin Dahse
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745, Jena, Germany
| | - Anne-Kristin Kaster
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Z Wilhelm de Beer
- Department of Microbiology and Plant Pathology, Forestry and Agriculture Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Michael Poulsen
- Centre for Social Evolution, University of Copenhagen, 2100, Copenhagen East, Denmark
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745, Jena, Germany
| |
Collapse
|
411
|
Ahmed MN, Reyna-González E, Schmid B, Wiebach V, Süssmuth RD, Dittmann E, Fewer DP. Phylogenomic Analysis of the Microviridin Biosynthetic Pathway Coupled with Targeted Chemo-Enzymatic Synthesis Yields Potent Protease Inhibitors. ACS Chem Biol 2017; 12:1538-1546. [PMID: 28406289 DOI: 10.1021/acschembio.7b00124] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Natural products and their semisynthetic derivatives are an important source of drugs for the pharmaceutical industry. Bacteria are prolific producers of natural products and encode a vast diversity of natural product biosynthetic gene clusters. However, much of this diversity is inaccessible to natural product discovery. Here, we use a combination of phylogenomic analysis of the microviridin biosynthetic pathway and chemo-enzymatic synthesis of bioinformatically predicted microviridins to yield new protease inhibitors. Phylogenomic analysis demonstrated that microviridin biosynthetic gene clusters occur across the bacterial domain and encode three distinct subtypes of precursor peptides. Our analysis shed light on the evolution of microviridin biosynthesis and enabled prioritization of their chemo-enzymatic production. Targeted one-pot synthesis of four microviridins encoded by the cyanobacterium Cyanothece sp. PCC 7822 identified a set of novel and potent serine protease inhibitors, the most active of which had an IC50 value of 21.5 nM. This study advances the genome mining techniques available for natural product discovery and obviates the need to culture bacteria.
Collapse
Affiliation(s)
- Muhammad N. Ahmed
- Microbiology
and Biotechnology Division, Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, Helsinki FIN-00014, Finland
| | - Emmanuel Reyna-González
- Institute
of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
| | - Bianca Schmid
- Institute
of Chemistry, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Vincent Wiebach
- Institute
of Chemistry, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Roderich D. Süssmuth
- Institute
of Chemistry, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Elke Dittmann
- Institute
of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
| | - David P. Fewer
- Microbiology
and Biotechnology Division, Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, Helsinki FIN-00014, Finland
| |
Collapse
|
412
|
Dhakal D, Pokhrel AR, Shrestha B, Sohng JK. Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds. Front Microbiol 2017; 8:1106. [PMID: 28663748 PMCID: PMC5471306 DOI: 10.3389/fmicb.2017.01106] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 05/31/2017] [Indexed: 12/28/2022] Open
Abstract
Actinobacteria are prolific producers of thousands of biologically active natural compounds with diverse activities. More than half of these bioactive compounds have been isolated from members belonging to actinobacteria. Recently, rare actinobacteria existing at different environmental settings such as high altitudes, volcanic areas, and marine environment have attracted attention. It has been speculated that physiological or biochemical pressures under such harsh environmental conditions can lead to the production of diversified natural compounds. Hence, marine environment has been focused for the discovery of novel natural products with biological potency. Many novel and promising bioactive compounds with versatile medicinal, industrial, or agricultural uses have been isolated and characterized. The natural compounds cannot be directly used as drug or other purposes, so they are structurally modified and diversified to ameliorate their biological or chemical properties. Versatile synthetic biological tools, metabolic engineering techniques, and chemical synthesis platform can be used to assist such structural modification. This review summarizes the latest studies on marine rare actinobacteria and their natural products with focus on recent approaches for structural and functional diversification of such microbial chemicals for attaining better applications.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Anaya Raj Pokhrel
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Biplav Shrestha
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University Asan-siSouth Korea
| |
Collapse
|
413
|
Wright GD. Opportunities for natural products in 21 st century antibiotic discovery. Nat Prod Rep 2017; 34:694-701. [PMID: 28569300 DOI: 10.1039/c7np00019g] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural products and their derivatives are mainstays of our antibiotic drugs, but they are increasingly in peril. The combination of widespread multidrug resistance in once susceptible bacterial pathogens, disenchantment with natural products as sources of new drugs, lack of success using synthetic compounds and target-based discovery methods, along with shifting economic and regulatory issues, conspire to move investment in research and development away from the antibiotics arena. The result is a growing crisis in antibiotic drug discovery that threatens modern medicine. 21st century natural product research is perfectly positioned to fill the antibiotic discovery gap and bring new drug candidates to the clinic. Innovations in genomics and techniques to explore new sources of antimicrobial chemical matter are revealing new chemistry. Increasing appreciation of the value of narrow-spectrum drugs and re-examination of once discarded chemical scaffolds coupled with synthetic biology methods to generate new compounds and improve yields offer new strategies to revitalize once moribund natural product programs. The increasing awareness that the combination of antibiotics with adjuvants, non-antibiotic compounds that overcome resistance and enhance drug activity, can rescue older chemical scaffolds, and concepts such as blocking pathogen virulence present orthogonal strategies to traditional antibiotics. In all these areas, natural products offer chemical matter, shaped by natural selection, that is privileged in this therapeutic area. Natural product research is poised to regain prominence in delivering new drugs to solve the antibiotic crisis.
Collapse
Affiliation(s)
- Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8N 4K1, Canada.
| |
Collapse
|
414
|
Kinnel RB, Esquenazi E, Leao T, Moss N, Mevers E, Pereira AR, Monroe EA, Korobeynikov A, Murray TF, Sherman D, Gerwick L, Dorrestein PC, Gerwick WH. A Maldiisotopic Approach to Discover Natural Products: Cryptomaldamide, a Hybrid Tripeptide from the Marine Cyanobacterium Moorea producens. JOURNAL OF NATURAL PRODUCTS 2017; 80:1514-1521. [PMID: 28448144 PMCID: PMC5748289 DOI: 10.1021/acs.jnatprod.7b00019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Genome sequencing of microorganisms has revealed a greatly increased capacity for natural products biosynthesis than was previously recognized from compound isolation efforts alone. Hence, new methods are needed for the discovery and description of this hidden secondary metabolite potential. Here we show that provision of heavy nitrogen 15N-nitrate to marine cyanobacterial cultures followed by single-filament MALDI analysis over a period of days was highly effective in identifying a new natural product with an exceptionally high nitrogen content. The compound, named cryptomaldamide, was subsequently isolated using MS to guide the purification process, and its structure determined by 2D NMR and other spectroscopic and chromatographic methods. Bioinformatic analysis of the draft genome sequence identified a 28.7 kB gene cluster that putatively encodes for cryptomaldamide biosynthesis. Notably, an amidinotransferase is proposed to initiate the biosynthetic process by transferring an amidino group from arginine to serine to produce the first residue to be incorporated by the hybrid NRPS-PKS pathway. The maldiisotopic approach presented here is thus demonstrated to provide an orthogonal method by which to discover novel chemical diversity from Nature.
Collapse
Affiliation(s)
- Robin B. Kinnel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA
- Department of Chemistry, Hamilton College, Clinton, NY, USA
| | | | - Tiago Leao
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA
| | - Nathan Moss
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA
| | - Emily Mevers
- Department of Chemistry and Biochemistry, University of California San Diego, USA
| | - Alban R. Pereira
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA
| | - Emily A. Monroe
- Department of Biology, William Paterson University of New Jersey, USA
| | - Anton Korobeynikov
- Faculty of Mathematics and Mechanics and Center for Algorithmic Biotechnology, Saint Petersburg State University, Russia
| | - Thomas F. Murray
- Creighton University, School of Medicine, Department of Pharmacology, Omaha, NE, 68178, USA
| | - David Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, USA
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, USA
| |
Collapse
|
415
|
|
416
|
Dhakal D, Sohng JK. Coalition of Biology and Chemistry for Ameliorating Antimicrobial Drug Discovery. Front Microbiol 2017; 8:734. [PMID: 28522993 PMCID: PMC5415603 DOI: 10.3389/fmicb.2017.00734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon UniversityAsan-si, South Korea
| |
Collapse
|
417
|
Abstract
Human-associated microorganisms have the potential to biosynthesize numerous secondary metabolites that may mediate important host-microbe and microbe-microbe interactions. However, there is currently a limited understanding of microbiome-derived natural products. A variety of complementary discovery approaches have begun to illuminate this microbial "dark matter," which will in turn allow detailed mechanistic studies of the effects of these molecules on microbiome and host. Herein, we review recent efforts to uncover microbiome-derived natural products, describe the key approaches that were used to identify and characterize these metabolites, discuss potential functional roles of these molecules, and highlight challenges related to this emerging research area.
Collapse
Affiliation(s)
- Matthew R Wilson
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Li Zha
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Emily P Balskus
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
418
|
Sato M, Dander JE, Sato C, Hung YS, Gao SS, Tang MC, Hang L, Winter JM, Garg NK, Watanabe K, Tang Y. Collaborative Biosynthesis of Maleimide- and Succinimide-Containing Natural Products by Fungal Polyketide Megasynthases. J Am Chem Soc 2017; 139:5317-5320. [PMID: 28365998 DOI: 10.1021/jacs.7b02432] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fungal polyketide synthases (PKSs) can function collaboratively to synthesize natural products of significant structural diversity. Here we present a new mode of collaboration between a highly reducing PKS (HRPKS) and a PKS-nonribosomal peptide synthetase (PKS-NRPS) in the synthesis of oxaleimides from the Penicillium species. The HRPKS is recruited in the synthesis of an olefin-containing free amino acid, which is activated and incorporated by the adenylation domain of the PKS-NRPS. The precisely positioned olefin from the unnatural amino acid is proposed to facilitate a scaffold rearrangement of the PKS-NRPS product to forge the maleimide and succinimide cores of oxaleimides.
Collapse
Affiliation(s)
- Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka , Shizuoka 422-8526, Japan
| | | | | | | | | | | | | | - Jaclyn M Winter
- Medicinal Chemistry Department, University of Utah , Salt Lake City, Utah 84112, United States
| | | | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka , Shizuoka 422-8526, Japan
| | | |
Collapse
|
419
|
Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species. Nat Microbiol 2017; 2:17044. [DOI: 10.1038/nmicrobiol.2017.44] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/02/2017] [Indexed: 12/22/2022]
|
420
|
Süssmuth RD, Mainz A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew Chem Int Ed Engl 2017; 56:3770-3821. [PMID: 28323366 DOI: 10.1002/anie.201609079] [Citation(s) in RCA: 607] [Impact Index Per Article: 75.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 01/05/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multienzyme machineries that assemble numerous peptides with large structural and functional diversity. These peptides include more than 20 marketed drugs, such as antibacterials (penicillin, vancomycin), antitumor compounds (bleomycin), and immunosuppressants (cyclosporine). Over the past few decades biochemical and structural biology studies have gained mechanistic insights into the highly complex assembly line of nonribosomal peptides. This Review provides state-of-the-art knowledge on the underlying mechanisms of NRPSs and the variety of their products along with detailed analysis of the challenges for future reprogrammed biosynthesis. Such a reprogramming of NRPSs would immediately spur chances to generate analogues of existing drugs or new compound libraries of otherwise nearly inaccessible compound structures.
Collapse
Affiliation(s)
- Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Andi Mainz
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
421
|
Süssmuth RD, Mainz A. Nicht-ribosomale Peptidsynthese - Prinzipien und Perspektiven. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609079] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roderich D. Süssmuth
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Andi Mainz
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| |
Collapse
|
422
|
Burgard C, Zaburannyi N, Nadmid S, Maier J, Jenke-Kodama H, Luxenburger E, Bernauer HS, Wenzel SC. Genomics-Guided Exploitation of Lipopeptide Diversity in Myxobacteria. ACS Chem Biol 2017; 12:779-786. [PMID: 28128551 DOI: 10.1021/acschembio.6b00953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analysis of 122 myxobacterial genome sequences suggested 16 strains as producers of the myxochromide lipopeptide family. Detailed sequence comparison of the respective mch biosynthetic gene clusters informed a genome-mining approach, ultimately leading to the discovery and chemical characterization of four novel myxochromide core types. The myxochromide megasynthetase is subject to evolutionary diversification, resulting in considerable structural diversity of biosynthesis products. The observed differences are due to the number, type, sequence, and configuration of the incorporated amino acids. The analysis revealed molecular details on how point mutations and recombination events led to structural diversity. It also gave insights into the evolutionary scenarios that have led to the emergence of mch clusters in different strains and genera of myxobacteria.
Collapse
Affiliation(s)
- Christian Burgard
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research and Pharmaceutical Biotechnology at Saarland
University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany
| | - Nestor Zaburannyi
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research and Pharmaceutical Biotechnology at Saarland
University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany
| | - Suvd Nadmid
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research and Pharmaceutical Biotechnology at Saarland
University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany
| | - Josef Maier
- IStLS − Information Services to Life Sciences, Härlestraße 24/1, 78727 Oberndorf am Neckar/Boll, Germany
| | - Holger Jenke-Kodama
- Microbiology
and Biochemistry of Secondary Metabolites Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Eva Luxenburger
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research and Pharmaceutical Biotechnology at Saarland
University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany
| | | | - Silke C. Wenzel
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research and Pharmaceutical Biotechnology at Saarland
University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
423
|
Zhang MM, Qiao Y, Ang EL, Zhao H. Using natural products for drug discovery: the impact of the genomics era. Expert Opin Drug Discov 2017; 12:475-487. [PMID: 28277838 DOI: 10.1080/17460441.2017.1303478] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Evolutionarily selected over billions of years for their interactions with biomolecules, natural products have been and continue to be a major source of pharmaceuticals. In the 1990s, pharmaceutical companies scaled down their natural product discovery programs in favor of synthetic chemical libraries due to major challenges such as high rediscovery rates, challenging isolation, and low production titers. Propelled by advances in DNA sequencing and synthetic biology technologies, insights into microbial secondary metabolism provided have inspired a number of strategies to address these challenges. Areas covered: This review highlights the importance of genomics and metagenomics in natural product discovery, and provides an overview of the technical and conceptual advances that offer unprecedented access to molecules encoded by biosynthetic gene clusters. Expert opinion: Genomics and metagenomics revealed nature's remarkable biosynthetic potential and her vast chemical inventory that we can now prioritize and systematically mine for novel chemical scaffolds with desirable bioactivities. Coupled with synthetic biology and genome engineering technologies, significant progress has been made in identifying and predicting the chemical output of biosynthetic gene clusters, as well as in optimizing cluster expression in native and heterologous host systems for the production of pharmaceutically relevant metabolites and their derivatives.
Collapse
Affiliation(s)
- Mingzi M Zhang
- a Metabolic Engineering Research Laboratory , Science and Engineering Institutes, Agency for Science, Technology and Research (A*STAR) , Singapore , Singapore
| | - Yuan Qiao
- a Metabolic Engineering Research Laboratory , Science and Engineering Institutes, Agency for Science, Technology and Research (A*STAR) , Singapore , Singapore
| | - Ee Lui Ang
- a Metabolic Engineering Research Laboratory , Science and Engineering Institutes, Agency for Science, Technology and Research (A*STAR) , Singapore , Singapore
| | - Huimin Zhao
- a Metabolic Engineering Research Laboratory , Science and Engineering Institutes, Agency for Science, Technology and Research (A*STAR) , Singapore , Singapore.,b Department of Chemical and Biomolecular Engineering , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| |
Collapse
|
424
|
Hetrick KJ, van der Donk WA. Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era. Curr Opin Chem Biol 2017; 38:36-44. [PMID: 28260651 DOI: 10.1016/j.cbpa.2017.02.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 01/08/2023]
Abstract
In the past 15 years, the cost of sequencing a genome has plummeted. Consequently, the number of sequenced bacterial genomes has exponentially increased, and methods for natural product discovery have evolved rapidly to take advantage of the wealth of genomic data. This review highlights applications of genome mining software to compare and organize large-scale data sets and methods for identifying unique biosynthetic pathways amongst the thousands of ribosomally synthesized and post-translationally modified peptide (RiPP) gene clusters. We also discuss a small number of the many RiPPs discovered in the years 2014-2016.
Collapse
Affiliation(s)
- Kenton J Hetrick
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61822, USA
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61822, USA.
| |
Collapse
|
425
|
Nielsen JC, Nielsen J. Development of fungal cell factories for the production of secondary metabolites: Linking genomics and metabolism. Synth Syst Biotechnol 2017; 2:5-12. [PMID: 29062956 PMCID: PMC5625732 DOI: 10.1016/j.synbio.2017.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/01/2022] Open
Abstract
The genomic era has revolutionized research on secondary metabolites and bioinformatics methods have in recent years revived the antibiotic discovery process after decades with only few new active molecules being identified. New computational tools are driven by genomics and metabolomics analysis, and enables rapid identification of novel secondary metabolites. To translate this increased discovery rate into industrial exploitation, it is necessary to integrate secondary metabolite pathways in the metabolic engineering process. In this review, we will describe the novel advances in discovery of secondary metabolites produced by filamentous fungi, highlight the utilization of genome-scale metabolic models (GEMs) in the design of fungal cell factories for the production of secondary metabolites and review strategies for optimizing secondary metabolite production through the construction of high yielding platform cell factories.
Collapse
Affiliation(s)
| | - Jens Nielsen
- Chalmers University of Technology, Kemivägen 10, Sweden
| |
Collapse
|
426
|
Phylogeny-guided (meta)genome mining approach for the targeted discovery of new microbial natural products. ACTA ACUST UNITED AC 2017; 44:285-293. [DOI: 10.1007/s10295-016-1874-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/12/2016] [Indexed: 10/20/2022]
Abstract
Abstract
Genomics-based methods are now commonplace in natural products research. A phylogeny-guided mining approach provides a means to quickly screen a large number of microbial genomes or metagenomes in search of new biosynthetic gene clusters of interest. In this approach, biosynthetic genes serve as molecular markers, and phylogenetic trees built with known and unknown marker gene sequences are used to quickly prioritize biosynthetic gene clusters for their metabolites characterization. An increase in the use of this approach has been observed for the last couple of years along with the emergence of low cost sequencing technologies. The aim of this review is to discuss the basic concept of a phylogeny-guided mining approach, and also to provide examples in which this approach was successfully applied to discover new natural products from microbial genomes and metagenomes. I believe that the phylogeny-guided mining approach will continue to play an important role in genomics-based natural products research.
Collapse
|
427
|
Boecker S, Süssmuth RD. Making the mute speak again. Environ Microbiol 2017; 19:423-425. [DOI: 10.1111/1462-2920.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Simon Boecker
- Institut für Chemie, Fachgebiet für Biologische Chemie; Technische Universität Berlin; Straße des 17. Juni 124 Berlin 10623 Germany
| | - Roderich D. Süssmuth
- Institut für Chemie, Fachgebiet für Biologische Chemie; Technische Universität Berlin; Straße des 17. Juni 124 Berlin 10623 Germany
| |
Collapse
|
428
|
Zhang J, Hughes RR, Saunders MA, Elshahawi SI, Ponomareva LV, Zhang Y, Winchester SR, Scott SA, Sunkara M, Morris AJ, Prendergast MA, Shaaban KA, Thorson JS. Identification of Neuroprotective Spoxazomicin and Oxachelin Glycosides via Chemoenzymatic Glycosyl-Scanning. JOURNAL OF NATURAL PRODUCTS 2017; 80:12-18. [PMID: 28029796 PMCID: PMC5337260 DOI: 10.1021/acs.jnatprod.6b00949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The assessment of glycosyl-scanning to expand the molecular and functional diversity of metabolites from the underground coal mine fire-associated Streptomyces sp. RM-14-6 is reported. Using the engineered glycosyltransferase OleD Loki and a 2-chloro-4-nitrophenylglycoside-based screen, six metabolites were identified as substrates of OleD Loki, from which 12 corresponding metabolite glycosides were produced and characterized. This study highlights the first application of the 2-chloro-4-nitrophenylglycoside-based screen toward an unbiased set of unique microbial natural products and the first reported application of the 2-chloro-4-nitrophenylglycoside-based transglycosylation reaction for the corresponding preparative synthesis of target glycosides. Bioactivity analysis (including antibacterial, antifungal, anticancer, and EtOH damage neuroprotection assays) revealed glycosylation to attenuate the neuroprotective potency of 4, while glycosylation of the structurally related inactive spoxazomicin C (3) remarkably invoked neuroprotective activity.
Collapse
Affiliation(s)
- Jianjun Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Ryan R. Hughes
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Meredith A. Saunders
- Department of Psychology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Sherif I. Elshahawi
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Larissa V. Ponomareva
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yinan Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Sydney R. Winchester
- Department of Psychology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Samantha A. Scott
- Department of Psychology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Manjula Sunkara
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Andrew J. Morris
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Mark A. Prendergast
- Department of Psychology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
429
|
Clomburg JM, Crumbley AM, Gonzalez R. Industrial biomanufacturing: The future of chemical production. Science 2017; 355:355/6320/aag0804. [DOI: 10.1126/science.aag0804] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/21/2016] [Indexed: 12/18/2022]
Abstract
The current model for industrial chemical manufacturing employs large-scale megafacilities that benefit from economies of unit scale. However, this strategy faces environmental, geographical, political, and economic challenges associated with energy and manufacturing demands. We review how exploiting biological processes for manufacturing (i.e., industrial biomanufacturing) addresses these concerns while also supporting and benefiting from economies of unit number. Key to this approach is the inherent small scale and capital efficiency of bioprocesses and the ability of engineered biocatalysts to produce designer products at high carbon and energy efficiency with adjustable output, at high selectivity, and under mild process conditions. The biological conversion of single-carbon compounds represents a test bed to establish this paradigm, enabling rapid, mobile, and widespread deployment, access to remote and distributed resources, and adaptation to new and changing markets.
Collapse
|
430
|
Covington BC, McLean JA, Bachmann BO. Comparative mass spectrometry-based metabolomics strategies for the investigation of microbial secondary metabolites. Nat Prod Rep 2017; 34:6-24. [PMID: 27604382 PMCID: PMC5214543 DOI: 10.1039/c6np00048g] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: 2000 to 2016The labor-intensive process of microbial natural product discovery is contingent upon identifying discrete secondary metabolites of interest within complex biological extracts, which contain inventories of all extractable small molecules produced by an organism or consortium. Historically, compound isolation prioritization has been driven by observed biological activity and/or relative metabolite abundance and followed by dereplication via accurate mass analysis. Decades of discovery using variants of these methods has generated the natural pharmacopeia but also contributes to recent high rediscovery rates. However, genomic sequencing reveals substantial untapped potential in previously mined organisms, and can provide useful prescience of potentially new secondary metabolites that ultimately enables isolation. Recently, advances in comparative metabolomics analyses have been coupled to secondary metabolic predictions to accelerate bioactivity and abundance-independent discovery work flows. In this review we will discuss the various analytical and computational techniques that enable MS-based metabolomic applications to natural product discovery and discuss the future prospects for comparative metabolomics in natural product discovery.
Collapse
Affiliation(s)
- Brett C Covington
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, TN 37235, USA.
| | - John A McLean
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, TN 37235, USA. and Center for Innovative Technology, Vanderbilt University, 5401 Stevenson Center, Nashville, TN 37235, USA
| | - Brian O Bachmann
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, TN 37235, USA.
| |
Collapse
|
431
|
Deng L, Wang R, Wang G, Liu M, Liao G, Liao Z, Chen M. Targeted isolation of sulfur-containing metabolites from Lsr2-deletion mutant strain of Streptomyces roseosporus. RSC Adv 2017. [DOI: 10.1039/c7ra06482a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UPLC-QTOF-MS/MS targeted isolation of novel sulfur-containing metabolites, pyrismycins A–F, from a Lsr2-deletion mutant strain of Streptomyces roseosporus.
Collapse
Affiliation(s)
- Lina Deng
- College of Pharmaceutical Sciences
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Southwest University
- Chongqing 400715
| | - Rui Wang
- College of Pharmaceutical Sciences
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Southwest University
- Chongqing 400715
| | - Guowei Wang
- College of Pharmaceutical Sciences
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Southwest University
- Chongqing 400715
| | - Mingxu Liu
- College of Pharmaceutical Sciences
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Southwest University
- Chongqing 400715
| | - Guojian Liao
- College of Pharmaceutical Sciences
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Southwest University
- Chongqing 400715
| | - Zhihua Liao
- School of Life Sciences
- Southwest University
- Chongqing 400715
- P. R. China
| | - Min Chen
- College of Pharmaceutical Sciences
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Southwest University
- Chongqing 400715
| |
Collapse
|
432
|
Newman DJ. Predominately Uncultured Microbes as Sources of Bioactive Agents. Front Microbiol 2016; 7:1832. [PMID: 27917159 PMCID: PMC5114300 DOI: 10.3389/fmicb.2016.01832] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/01/2016] [Indexed: 12/15/2022] Open
Abstract
In this short review, I am discussing the relatively recent awareness of the role of symbionts in plant, marine-invertebrates and fungal areas. It is now quite obvious that in marine-invertebrates, a majority of compounds found are from either as yet unculturable or poorly culturable microbes, and techniques involving “state of the art” genomic analyses and subsequent computerized analyses are required to investigate these interactions. In the plant kingdom evidence is amassing that endophytes (mainly fungal in nature) are heavily involved in secondary metabolite production and that mimicking the microbial interactions of fermentable microbes leads to involvement of previously unrecognized gene clusters (cryptic clusters is one name used), that when activated, produce previously unknown bioactive molecules.
Collapse
|
433
|
Biosynthetic Pathway Connects Cryptic Ribosomally Synthesized Posttranslationally Modified Peptide Genes with Pyrroloquinoline Alkaloids. Cell Chem Biol 2016; 23:1504-1514. [PMID: 27866908 DOI: 10.1016/j.chembiol.2016.10.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/09/2016] [Accepted: 10/20/2016] [Indexed: 12/11/2022]
Abstract
In an era where natural product biosynthetic gene clusters can be rapidly identified from sequenced genomes, it is unusual for the biosynthesis of an entire natural product class to remain unknown. Yet, the genetic determinates for pyrroloquinoline alkaloid biosynthesis have remained obscure despite their abundance and deceptive structural simplicity. In this work, we have identified the biosynthetic gene cluster for ammosamides A-C, pyrroloquinoline alkaloids from Streptomyces sp. CNR-698. Through direct cloning, heterologous expression and gene deletions we have validated the ammosamide biosynthetic gene cluster and demonstrated that these seemingly simple molecules are derived from a surprisingly complex set of biosynthetic genes that are also found in the biosynthesis of lymphostin, a structurally related pyrroloquinoline alkaloid from Salinispora and Streptomyces. Our results implicate a conserved set of genes driving pyrroloquinoline biosynthesis that consist of genes frequently associated with ribosomal peptide natural product biosynthesis, and whose exact biochemical role remains enigmatic.
Collapse
|
434
|
Blin K, Medema MH, Kottmann R, Lee SY, Weber T. The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters. Nucleic Acids Res 2016; 45:D555-D559. [PMID: 27924032 PMCID: PMC5210647 DOI: 10.1093/nar/gkw960] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/01/2016] [Accepted: 10/11/2016] [Indexed: 12/28/2022] Open
Abstract
Secondary metabolites produced by microorganisms are the main source of bioactive compounds that are in use as antimicrobial and anticancer drugs, fungicides, herbicides and pesticides. In the last decade, the increasing availability of microbial genomes has established genome mining as a very important method for the identification of their biosynthetic gene clusters (BGCs). One of the most popular tools for this task is antiSMASH. However, so far, antiSMASH is limited to de novo computing results for user-submitted genomes and only partially connects these with BGCs from other organisms. Therefore, we developed the antiSMASH database, a simple but highly useful new resource to browse antiSMASH-annotated BGCs in the currently 3907 bacterial genomes in the database and perform advanced search queries combining multiple search criteria. antiSMASH-DB is available at http://antismash-db.secondarymetabolites.org/.
Collapse
Affiliation(s)
- Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Renzo Kottmann
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark .,Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
435
|
Das G, Patra JK, Baek KH. Antibacterial Properties of Endophytic Bacteria Isolated from a Fern Species Equisetum arvense L. Against Foodborne Pathogenic Bacteria Staphylococcus aureus and Escherichia coli O157:H7. Foodborne Pathog Dis 2016; 14:50-58. [PMID: 27754712 DOI: 10.1089/fpd.2016.2192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Endophytic bacteria (EB) are a rich source of secondary metabolites with medicinal importance. In this study, EB were isolated from the bottle brush herb Equisetum arvense and identified based on 16S rRNA sequencing. Evaluation of its antibacterial potential was conducted using two common foodborne pathogenic bacteria, Staphylococcus aureus ATCC 12600 and Escherichia coli O157:H7 ATCC 43890. Out of 103 identified EB, three species, Streptomyces albolongus, Dermacoccus sp., and Mycobacterium sp., showed significant antibacterial activity against S. aureus with inhibition zones of 45.34 ± 0.15, 43.28 ± 0.19, and 22.98 ± 0.18 mm, respectively, whereas only two species, Streptomyces griseoaurantiacus (EAL196) and Paenibacillus sp. (EAS116), showed moderate antibacterial activity against E. coli O157:H7 with inhibition zones of 9.41 ± 0.29 and 10.44 ± 0.31 mm, respectively. Furthermore, ethyl acetate extract of S. albolongus, Mycobacterium sp., and Dermacoccus sp. showed antibacterial activity against S. aureus, with inhibition zones of 23.43 ± 0.21, 21.18 ± 0.22, and 19.72 ± 0.10 mm, respectively. The methanol extract of Dermacoccus sp. and Paenibacillus sp. showed antibacterial activity against S. aureus and E. coli O157:H7, with inhibition zones of 11.30 ± 0.17 and 10.01 ± 0.21 mm, respectively. Scanning electron microscopy indicated swollen and lysed cell membranes of pathogens treated with ethyl acetate extract. A possible reason might be, likely due to EB metabolites penetrating the bacterial cell membranes and affecting various metabolic functions resulting in lysis. To the best of our knowledge, this is the first study to report that EB from E. arvense can be used as a source of natural antibacterial compounds against foodborne pathogenic bacteria.
Collapse
Affiliation(s)
- Gitishree Das
- 1 Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul , Ilsandong-gu, Republic of Korea
| | - Jayanta Kumar Patra
- 1 Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul , Ilsandong-gu, Republic of Korea
| | - Kwang-Hyun Baek
- 2 Department of Biotechnology, Yeungnam University , Gyeongsan, Republic of Korea
| |
Collapse
|
436
|
Martinez OF, Agbale CM, Nomiyama F, Franco OL. Deciphering bioactive peptides and their action mechanisms through proteomics. Expert Rev Proteomics 2016; 13:1007-1016. [PMID: 27650042 DOI: 10.1080/14789450.2016.1238305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Bioactive peptides such as antimicrobial peptides (AMPs), ribosomally synthesized and post translationally modified peptides (RiPPs) and the non-ribosomal peptides (NRPs) have emerged with promising applications in medicine, agriculture and industry. However, their development has been limited by several difficulties making it necessary to search for novel discovery methods. In this context, proteomics has been considered a reliable tool. Areas covered: This review highlights recent developments in proteomic tools that facilitate the discovery of AMPs, RiPPs and NRPs as well as the elucidation of action mechanisms of AMPs and resistance mechanisms of pathogens to them. Expert commentary: Proteomic approaches have emerged as useful tools for the study of bioactive peptides, especially mass spectrometry-based peptidomics profiling, a promising strategy for AMP discovery. Furthermore, the rapidly expanding fields of genome mining and genome sequencing techniques, as well as mass spectrometry, have revolutionized the discovery of novel RiPPs and NRPs from complex biological samples.
Collapse
Affiliation(s)
- Osmel Fleitas Martinez
- a Pos-Graduação em Patologia olecular , Universidade de Brasilia , Brasilia-DF Brazil.,b Centro de Analises Proteomicas e Bioquimicas, Programa de Pos-Graduacao em Ciencias Genomicas e Biotecnologia , Universidade Catolica de Brasilia , Brasília , Brazil
| | - Caleb Mawuli Agbale
- c S-Inova Biotech, Programa de Pos-Graduacao em Biotecnologia , Universidade Catolica Dom Bosco , Campo Grande , Brazil.,d Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences , University of Cape Coast , Cape Coast , Ghana
| | - Fernanda Nomiyama
- b Centro de Analises Proteomicas e Bioquimicas, Programa de Pos-Graduacao em Ciencias Genomicas e Biotecnologia , Universidade Catolica de Brasilia , Brasília , Brazil
| | - Octávio Luiz Franco
- a Pos-Graduação em Patologia olecular , Universidade de Brasilia , Brasilia-DF Brazil.,b Centro de Analises Proteomicas e Bioquimicas, Programa de Pos-Graduacao em Ciencias Genomicas e Biotecnologia , Universidade Catolica de Brasilia , Brasília , Brazil.,c S-Inova Biotech, Programa de Pos-Graduacao em Biotecnologia , Universidade Catolica Dom Bosco , Campo Grande , Brazil
| |
Collapse
|
437
|
Jensen PR. Natural Products and the Gene Cluster Revolution. Trends Microbiol 2016; 24:968-977. [PMID: 27491886 DOI: 10.1016/j.tim.2016.07.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/29/2016] [Accepted: 07/19/2016] [Indexed: 11/24/2022]
Abstract
Genome sequencing has created unprecedented opportunities for natural-product discovery and new insight into the diversity and distributions of natural-product biosynthetic gene clusters (BGCs). These gene collectives are highly evolved for horizontal exchange, thus providing immediate opportunities to test the effects of small molecules on fitness. The marine actinomycete genus Salinispora maintains extraordinary levels of BGC diversity and has become a useful model for studies of secondary metabolism. Most Salinispora BGCs are observed infrequently, resulting in high population-level diversity while conforming to constraints associated with maximum genome size. Comparative genomics is providing a mechanism to assess secondary metabolism in the context of evolution and evidence that some products represent ecotype-defining traits while others appear selectively neutral.
Collapse
Affiliation(s)
- Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Center for Microbiome Innovation, Scripps Institution of Oceanography, University of California San Diego, San Diego, California, USA.
| |
Collapse
|
438
|
Wohlleben W, Mast Y, Stegmann E, Ziemert N. Antibiotic drug discovery. Microb Biotechnol 2016; 9:541-8. [PMID: 27470984 PMCID: PMC4993170 DOI: 10.1111/1751-7915.12388] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/08/2016] [Indexed: 01/25/2023] Open
Abstract
Due to the threat posed by the increase of highly resistant pathogenic bacteria, there is an urgent need for new antibiotics; all the more so since in the last 20 years, the approval for new antibacterial agents had decreased. The field of natural product discovery has undergone a tremendous development over the past few years. This has been the consequence of several new and revolutionizing drug discovery and development techniques, which is initiating a ‘New Age of Antibiotic Discovery’. In this review, we concentrate on the most significant discovery approaches during the last and present years and comment on the challenges facing the community in the coming years.
Collapse
Affiliation(s)
- Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany
| | - Yvonne Mast
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany
| | - Evi Stegmann
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany
| |
Collapse
|