401
|
Unraveling the molecular mechanisms and the potential chemopreventive/therapeutic properties of natural compounds in melanoma. Semin Cancer Biol 2019; 59:266-282. [PMID: 31233829 DOI: 10.1016/j.semcancer.2019.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Melanoma is the most fatal form of skin cancer. Current therapeutic approaches include surgical resection, chemotherapy, targeted therapy and immunotherapy. However, these treatment strategies are associated with development of drug resistance and severe side effects. In recent years, natural compounds have also been extensively studied for their anti-melanoma effects, including tumor growth inhibition, apoptosis induction, angiogenesis and metastasis suppression and cancer stem cell elimination. Moreover, a considerable number of studies reported the synergistic activity of phytochemicals and standard anti-melanoma agents, as well as the enhanced effectiveness of their synthetic derivatives and novel formulations. However, clinical data confirming these promising effects in patients are still scanty. This review emphasizes the anti-tumor mechanisms and potential application of the most studied natural products for melanoma prevention and treatment.
Collapse
|
402
|
Thipe VC, Panjtan Amiri K, Bloebaum P, Raphael Karikachery A, Khoobchandani M, Katti KK, Jurisson SS, Katti KV. Development of resveratrol-conjugated gold nanoparticles: interrelationship of increased resveratrol corona on anti-tumor efficacy against breast, pancreatic and prostate cancers. Int J Nanomedicine 2019; 14:4413-4428. [PMID: 31417252 PMCID: PMC6592052 DOI: 10.2147/ijn.s204443] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/17/2019] [Indexed: 01/05/2023] Open
Abstract
Background: As part of our continuing quest to enhance the efficacy of bioactive phytochemicals in cancer therapy, we report an innovative green nanotechnology approach toward the use of resveratrol for the production of biocompatible resveratrol-conjugated gold nanoparticles (Res-AuNPs). Our overarching aim is to exploit the inherent pro-apoptotic properties of gold nanoparticles (AuNPs) through synergistic anti-tumor characteristics of resveratrol, with the aim of developing a new class of green nanotechnology-based phytochemical-embedded AuNPs for applications in oncology. Method: Resveratrol was used to reduce Au3+ to Au0 for the synthesis of Res-AuNPs at room temperature and gum arabic (GA) was used to further encapsulate the nanoparticulate surface to increase the overall stability of the AuNPs. This comprehensive study involves the synthesis, full characterization and in vitro stability of Res-AuNPs in various biological media for their ultimate applications as anti-cancer agents against human breast (MDAMB-231), pancreatic (PANC-1) and prostate (PC-3) cancers. Results: This strategy to systematically increase the corona of resveratrol on AuNPs, in order to gain insights into the interrelationship of the phytochemical corona on the overall anti-tumor activities of Res-AuNPs, proved successful. The increased resveratrol corona on Res-AuNPs showed superior anti-cancer effects, attributed to an optimal cellular uptake after 24-hour incubation, while GA provided a protein matrix support for enhanced trans-resveratrol loading onto the surface of the AuNPs. Conclusion: The approach described in this study harnesses the benefits of nutraceuticals and nanoparticles toward the development of Res-AuNPs. We provide compelling evidence that the increased corona of resveratrol on AuNPs enhances the bioavailability of resveratrol so that therapeutically active species can be optimally available in vivo for applications in cancer therapy.
Collapse
Affiliation(s)
- Velaphi C Thipe
- Department of Chemistry, University of Missouri, Columbia, MO 65201, USA.,Institute of Green Nanotechnology, University of Missouri, Columbia, MO 65211, USA
| | | | - Pierce Bloebaum
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO 65211, USA.,Department of Physics and Astronomy
| | - Alice Raphael Karikachery
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO 65211, USA.,Department of Radiology
| | - Menka Khoobchandani
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO 65211, USA.,Department of Radiology
| | - Kavita K Katti
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO 65211, USA.,Department of Radiology
| | - Silvia S Jurisson
- Department of Chemistry, University of Missouri, Columbia, MO 65201, USA.,University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, USA
| | - Kattesh V Katti
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO 65211, USA.,Department of Physics and Astronomy.,Department of Radiology.,University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
403
|
Li QS, Li Y, Deora GS, Ruan BF. Derivatives and Analogues of Resveratrol: Recent Advances in Structural Modification. Mini Rev Med Chem 2019; 19:809-825. [DOI: 10.2174/1389557519666190128093840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/05/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
Abstract
Resveratrol is a non-flavonoid polyphenol containing a terpenoid backbone. It has been intensively studied because of its various promising biological properties, such as anticancer, antioxidant, antibacterial, neuroprotective and anti-inflammatory activities. However, the medicinal application of resveratrol is constrained by its poor bioavailability and stability. In the past decade, more attention has been focused on making resveratrol derivatives to improve its pharmacological activities and pharmacokinetics. This review covers the literature published over the past 15 years on synthetic analogues of resveratrol. The emphasis is on the chemistry of new compounds and relevant biological activities along with structure-activity relationship. This review aims to provide a scientific and reliable basis for the development of resveratrol-based clinical drugs.
Collapse
Affiliation(s)
- Qing-Shan Li
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yao Li
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Girdhar Singh Deora
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Ban-Feng Ruan
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
404
|
Oracz J, Nebesny E, Zyzelewicz D, Budryn G, Luzak B. Bioavailability and metabolism of selected cocoa bioactive compounds: A comprehensive review. Crit Rev Food Sci Nutr 2019; 60:1947-1985. [PMID: 31124371 DOI: 10.1080/10408398.2019.1619160] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cocoa beans and their co-products are a rich source of beneficial compounds for health promotion, including polyphenols and methylxanthines. Knowledge of bioavailability and in vivo bioactivity of these phytochemicals is crucial to understand their role and function in human health. Therefore, many studies concerning bioavailability and bioactivity of cocoa bioactive compound have been done in both in vivo animal models and in humans. This critical review comprehensively summarizes the existing knowledge about the bioavailability and the major metabolic pathways of selected cocoa bioactive compounds (i.e. monomeric flavan-3-ols, procyanidins, anthocyanins, flavonols, phenolic acids, N-phenylpropenoyl-L-amino acids, stilbenes, and methylxanthines). The compiled results indicated that many of these compounds undergo extensive metabolism prior to absorption. Different factors have been suggested to influence the bioavailability of polyphenols and methylxanthines among them the role of gut microbiota, structure of these compounds, food matrix and occurrence of other substances were the most often considered. Aforementioned factors decided about the site where these bioactive compounds are digested and absorbed from the alimentary tract, as well as the pathway by which they are metabolized. These factors also determine of the type of transport through the intestine barrier (passive, involving specific enzymes or mediated by specific transporters) and their metabolic path and profile.
Collapse
Affiliation(s)
- Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Ewa Nebesny
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Dorota Zyzelewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Grazyna Budryn
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Boguslawa Luzak
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
405
|
Aghamiri S, Jafarpour A, Zandsalimi F, Aghemiri M, Shoja M. Effect of resveratrol on the radiosensitivity of 5‐FU in human breast cancer MCF‐7 cells. J Cell Biochem 2019; 120:15671-15677. [DOI: 10.1002/jcb.28836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Shahin Aghamiri
- Student research committee, Department of medical biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Ali Jafarpour
- Students' Scientific Research Center, Virology Division, Department of Pathobiology, School of Public Health Tehran University of Medical Sciences Tehran Iran
| | - Farshid Zandsalimi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies University of Tehran Tehran Iran
| | - Mehran Aghemiri
- Department of Medical Informatics Tarbiat Modares University Tehran Iran
| | - Mohsen Shoja
- Faculty of Paramedicine Semnan University of Medical Sciences Semnan Iran
| |
Collapse
|
406
|
Liu J, Nie S, Gao M, Jiang Y, Wan Y, Ma X, Zhou S, Cheng W. Identification of EPHX2 and RMI2 as two novel key genes in cervical squamous cell carcinoma by an integrated bioinformatic analysis. J Cell Physiol 2019; 234:21260-21273. [PMID: 31041817 DOI: 10.1002/jcp.28731] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Abstract
Cervical cancer is the fourth most common malignancy in women worldwide and cervical squamous cell carcinoma (CESC) is the most common histological type of cervical cancer. The dysregulation of genes plays a significant role in cancer. In the present study, we screened out differentially expressed genes (DEGs) of CESC in the GSE63514 data set from the Gene Expression Omnibus database. An integrated bioinformatics analysis was used to select hub genes, as well as to investigate their related prognostic signature, functional annotation, methylation mechanism, and candidate molecular drugs. As a result, a total of 1907 DEGs were identified (944 were upregulated and 963 were downregulated). In the protein-protein interaction network, three hub modules and 30 hub genes were identified. And two hub modules and 116 hub genes were screened out from four CESC-related modules by the weighted gene coexpression network analysis. The gene ontology term enrichment analysis and Kyoto encyclopedia of genes and genomes pathway analysis were performed to better understand functions and pathways. Genes with a significant prognostic value were found by prognostic signature analysis. And there were five genes (EPHX2, CHAF1B, KIAA1524, CDC45, and RMI2) identified as significant CESC-associated genes after expression validation and survival analysis. Among them, EPHX2 and RMI2 were noted as two novel key genes for the CESC-associated methylation and expression. In addition, four candidate small molecule drugs for CESC (camptothecin, resveratrol, vorinostat, and trichostatin A) were defined. Further studies are required to explore these significant CESC-associated genes for their potentiality in diagnosis, prognosis, and targeted therapy.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sipei Nie
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mei Gao
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoling Ma
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shulin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
407
|
Talebi M, Bahar Aghdam S, Azimi A, Mohammadi H, Karimi Yonjali S, Asariha M, Zadi Heydarabad M. Regulatory Effect of Resveratrol and Prednisolone on MDR1
Protein Expression in Acute Lymphoblastic Leukemia Cell
Line (CCRF-CEM). Asian Pac J Cancer Prev 2019; 20:1171-1176. [PMID: 31030491 PMCID: PMC6948888 DOI: 10.31557/apjcp.2019.20.4.1171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objective: Chemotherapy is the most widely recognized technique to regard leukemia and also different sorts of human tumors. In any case, tranquilize protection has stayed as the primary test against the adequacy of medications. Besides, having different unfriendly impacts, chemotherapy drugs are getting to be traded by characteristic modalities for growth treatment. In such manner, natural segments, for example, resveratrol and prednisolone have been recognized to sharpen the leukemic cells to modified cell demise through an arrangement of complex procedures. In this investigation, we have analyzed effect of 15, 50 and 100μM of resveratrol and 700μM of prednisolone on the human multidrug protection quality 1 (MDR1) as a notable marker for cell sedate protection. We assessed the impact of resveratrol and prednisolone on MDR1 protein expression in the CCRF-CEM cell line as an agent for intense lymphoblastic leukemia. The investigation was planned to clear up whether. Materials and methods: CCRF-CEM cells linage get under drug treatment with use of resveratrol and prednisolone. Western blot use at 24 and 48 hours with different doses of resveratrol and prednisolone to analysis of MDR1 expression changes. Results: Effect of 15, 50, and 100 micro molar of resveratrol and 700 micro molars of prednisolone on CCRF-CEM cells led to the MDR1 decrease. Western blot use for evaluation of MDR1 protein expression changes. Conclusion: In the present study, we observed that resveratrol and prednisolone, with a dose-dependent effect, can reduce the expression of the MDR1 protein. This reduction of expression demonstrates that resveratrol and prednisolone can overcome to drug resistance created by MDR1.
Collapse
Affiliation(s)
- Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Bahar Aghdam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ako Azimi
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Hamed Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Maryam Asariha
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Milad Zadi Heydarabad
- Medicinal Plants Research Center, Yasuj University of Medical sciences, Yasuj, Iran.
| |
Collapse
|
408
|
Cho KH, Jeong BY, Park CG, Lee HY. The YB-1/EZH2/amphiregulin signaling axis mediates LPA-induced breast cancer cell invasion. Arch Pharm Res 2019; 42:519-530. [PMID: 31004257 DOI: 10.1007/s12272-019-01149-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/25/2019] [Indexed: 12/30/2022]
Abstract
Lysophosphatidic acid (LPA) has been known to induce epithelial-mesenchymal transition (EMT) to stimulate cancer cell invasion, and resveratrol (3,5,4'-trans-trihydroxystilbene; REV) suppresses the invasion and metastasis of various cancers. The current study aimed to identify the underlying mechanism by which LPA aggravates breast cancer cell invasion and the reversal of this phenomenon. Immunoblotting and quantitative RT-PCR analysis revealed that LPA induces amphiregulin (AREG) expression. Silencing of Y-box binding protein 1 (YB-1) or enhancer of zeste homolog 2 (EZH2) expression efficiently inhibited LPA-induced AREG expression. In addition, transfection of the cells with YB-1 siRNA abrogated LPA-induced EZH2 and AREG expression, leading to attenuation of breast cancer cell invasion. Furthermore, we observed that both REV and 5-fluorouracil (5-Fu) significantly reduce LPA-induced YB-1 phosphorylation and subsequent breast cancer invasion. Importantly, combined treatment of REV with 5-Fu showed more significant inhibition of LPA-induced breast cancer invasion compared to single treatment. Therefore, our data demonstrate that the YB-1/EZH2 signaling axis mediates LPA-induced AREG expression and breast cancer cell invasion and its inhibition by REV and 5-Fu, providing potential therapeutic targets and inhibition of breast cancer.
Collapse
Affiliation(s)
- Kyung Hwa Cho
- Department of Pharmacology, College of Medicine, Konyang University, Myunggok Medical Building, 158 Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Bo Young Jeong
- Department of Pharmacology, College of Medicine, Konyang University, Myunggok Medical Building, 158 Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Chang Gyo Park
- Department of Pharmacology, College of Medicine, Konyang University, Myunggok Medical Building, 158 Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea.
| | - Hoi Young Lee
- Department of Pharmacology, College of Medicine, Konyang University, Myunggok Medical Building, 158 Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea.
| |
Collapse
|
409
|
Ma Z, Fan Y, Wu Y, Kebebe D, Zhang B, Lu P, Pi J, Liu Z. Traditional Chinese medicine-combination therapies utilizing nanotechnology-based targeted delivery systems: a new strategy for antitumor treatment. Int J Nanomedicine 2019; 14:2029-2053. [PMID: 30962686 PMCID: PMC6435121 DOI: 10.2147/ijn.s197889] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer is a major public health problem, and is now the world’s leading cause of death. Traditional Chinese medicine (TCM)-combination therapy is a new treatment approach and a vital therapeutic strategy for cancer, as it exhibits promising antitumor potential. Nano-targeted drug-delivery systems have remarkable advantages and allow the development of TCM-combination therapies by systematically controlling drug release and delivering drugs to solid tumors. In this review, the anticancer activity of TCM compounds is introduced. The combined use of TCM for antitumor treatment is analyzed and summarized. These combination therapies, using a single nanocarrier system, namely codelivery, are analyzed, issues that require attention are determined, and future perspectives are identified. We carried out a systematic review of >280 studies published in PubMed since 1985 (no patents involved), in order to provide a few basic considerations in terms of the design principles and management of targeted nanotechnology-based TCM-combination therapies.
Collapse
Affiliation(s)
- Zhe Ma
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Yuqi Fan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yumei Wu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Dereje Kebebe
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Bing Zhang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Peng Lu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Jiaxin Pi
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Zhidong Liu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| |
Collapse
|
410
|
Progress to Improve Oral Bioavailability and Beneficial Effects of Resveratrol. Int J Mol Sci 2019; 20:ijms20061381. [PMID: 30893846 PMCID: PMC6471659 DOI: 10.3390/ijms20061381] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Resveratrol (3,5,4'-trihydroxystilbene; RSV) is a natural nonflavonoid polyphenol present in many species of plants, particularly in grapes, blueberries, and peanuts. Several in vitro and in vivo studies have shown that in addition to antioxidant, anti-inflammatory, cardioprotective and neuroprotective actions, it exhibits antitumor properties. In mammalian models, RSV is extensively metabolized and rapidly eliminated and therefore it shows a poor bioavailability, in spite it of its lipophilic nature. During the past decade, in order to improve RSV low aqueous solubility, absorption, membrane transport, and its poor bioavailability, various methodological approaches and different synthetic derivatives have been developed. In this review, we will describe the strategies used to improve pharmacokinetic characteristics and then beneficial effects of RSV. These methodological approaches include RSV nanoencapsulation in lipid nanocarriers or liposomes, nanoemulsions, micelles, insertion into polymeric particles, solid dispersions, and nanocrystals. Moreover, the biological results obtained on several synthetic derivatives containing different substituents, such as methoxylic, hydroxylic groups, or halogens on the RSV aromatic rings, will be described. Results reported in the literature are encouraging but require additional in vivo studies, to support clinical applications.
Collapse
|
411
|
Resveratrol Enhances Apoptotic and Oxidant Effects of Paclitaxel through TRPM2 Channel Activation in DBTRG Glioblastoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4619865. [PMID: 30984336 PMCID: PMC6431513 DOI: 10.1155/2019/4619865] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/25/2018] [Accepted: 01/03/2019] [Indexed: 01/06/2023]
Abstract
Numerous studies have reported a strong association between increased production of reactive oxygen species (ROS) and the pathobiology of several diseases, and cancer in particular. Therefore, manipulation of cellular oxidative stress levels represents an important therapeutic target. Recently, resveratrol (RESV), a naturally occurring phytochemical, has been shown to sensitize several cell lines to the anticancer effects of other chemotherapeutic agents, including paclitaxel (PAX). However, the molecular mechanisms of action of RESV through oxidative sensitive TRPM2 channel activation remain unclear. The aim of this study was to evaluate the effect of combination therapy of RESV and PAX on activation of TRPM2 in DBTRG glioblastoma cells. DBTRG cells were divided into four treatment groups: control, RESV (50 μM), PAX (50 μM), and PAX + RESV for 24 hours. Our data shows that markers for apoptosis, mitochondrial membrane depolarization and mitochondrial function, intracellular steady-state ROS levels, caspase 3 activity, TRPM2 current density, and Ca2+ florescence intensity were significantly increased in DBTRG cells following treatment with PAX and RESV, respectively, although cell viability was also decreased by these treatments. These biochemical markers were further increased to favor the anticancer effects of PAX in DBTRG cells in combination with RESV. The PAX and RESV-mediated increase in current density and Ca2+ florescence intensity was decreased with a TRPM2 blocker. This suggests that for this combination therapy to have a substantial effect on apoptosis and cell viability, the TRPM2 channel must be stimulated.
Collapse
|
412
|
Steroid Receptor Signallings as Targets for Resveratrol Actions in Breast and Prostate Cancer. Int J Mol Sci 2019; 20:ijms20051087. [PMID: 30832393 PMCID: PMC6429419 DOI: 10.3390/ijms20051087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/28/2022] Open
Abstract
Extensive research over the past 25 years in hormone-dependent cancers, such as breast cancer and prostate cancer, has identified the molecular mechanisms driven by steroid receptors, elucidating the interplay between genomic and non-genomic steroid receptors mechanism of action. Altogether, these mechanisms create the specific gene expression programs that contribute to endocrine therapy resistance and cancer progression. These findings, on the bidirectional molecular crosstalk between steroid and growth factor receptors pathways in endocrine resistance, suggest the use of multi-target inhibitors together with endocrine therapies, for treating resistant disease. In this review we will discuss the novel understanding on the chemopreventive and anti-cancer activities of Resveratrol (3,5,4′-trihydroxy-stilbene) (RSV), a phytoalexin found in grapes acting on a plethora of targets. We will highlight Resveratrol effect on steroid receptors signalling and its potential use in the treatment of hormone-dependent cancer. Understanding the molecular mechanisms by which the bioactive compound influences cancer cell behaviour, by interfering with steroid receptors functional activity, will help to advance the design of combination strategies to increase the rate of complete and durable clinical response in patients.
Collapse
|
413
|
Minkiewicz P, Turło M, Iwaniak A, Darewicz M. Free Accessible Databases as a Source of Information about Food Components and Other Compounds with Anticancer Activity⁻Brief Review. Molecules 2019; 24:E789. [PMID: 30813234 PMCID: PMC6412331 DOI: 10.3390/molecules24040789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/26/2022] Open
Abstract
Diet is considered to be a significant factor in cancer prevention and therapy. Many food components reveal anticancer activity. The increasing number of experiments concerning the anticancer potential of chemical compounds, including food components, is a challenge for data searching. Specialized databases provide an opportunity to overcome this problem. Data concerning the anticancer activity of chemical compounds may be found in general databases of chemical compounds and databases of drugs, including specialized resources concerning anticancer compounds, databases of food components, and databases of individual groups of compounds, such as polyphenols or peptides. This brief review summarizes the state of knowledge of chemical databases containing information concerning natural anticancer compounds (e.g., from food). Additionally, the information about text- and structure-based search options and links between particular internet resources is provided in this paper. Examples of the application of databases in food and nutrition sciences are also presented with special attention to compounds that are interesting from the point of view of dietary cancer prevention. Simple examples of potential database search possibilities are also discussed.
Collapse
Affiliation(s)
- Piotr Minkiewicz
- University of Warmia and Mazury in Olsztyn, Chair of Food Biochemistry, Plac Cieszyński 1, 10-726 Olsztyn-Kortowo, Poland.
| | - Marta Turło
- University of Warmia and Mazury in Olsztyn, Chair of Food Biochemistry, Plac Cieszyński 1, 10-726 Olsztyn-Kortowo, Poland.
| | - Anna Iwaniak
- University of Warmia and Mazury in Olsztyn, Chair of Food Biochemistry, Plac Cieszyński 1, 10-726 Olsztyn-Kortowo, Poland.
| | - Małgorzata Darewicz
- University of Warmia and Mazury in Olsztyn, Chair of Food Biochemistry, Plac Cieszyński 1, 10-726 Olsztyn-Kortowo, Poland.
| |
Collapse
|
414
|
Therapeutic Approaches of Resveratrol on Endometriosis via Anti-Inflammatory and Anti-Angiogenic Pathways. Molecules 2019; 24:molecules24040667. [PMID: 30781885 PMCID: PMC6413140 DOI: 10.3390/molecules24040667] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022] Open
Abstract
Endometriosis represents a severe gynecological pathology, defined by implantation of endometrial glands and stroma outside the uterine cavity. This pathology affects almost 15% of women during reproductive age and has a wide range of consequences. In affected women, infertility has a 30% rate of prevalence and endometriosis implants increase the risk of ovarian cancer. Despite long periods of studies and investigations, the etiology and pathogenesis of this disease still remain not fully understood. Initially, endometriosis was related to retrograde menstruation, but new theories have been launched, suggesting that chronic inflammation can influence the development of endometriosis because inflammatory mediators have been identified elevated in patients with endometriosis, specifically in the peritoneal fluid. The importance of dietary phytochemicals and their effect on different inflammatory diseases have been highlighted, and nowadays more and more studies are focused on the analysis of nutraceuticals. Resveratrol is a phytoestrogen, a natural polyphenolic compound with antiproliferative and anti-inflammatory actions, found in many dietary sources such as grapes, wine, peanuts, soy, berries, and stilbenes. Resveratrol possesses a significant anti-inflammatory effect via inhibition of prostaglandin synthesis and it has been proved that resveratrol can exhibit apoptosis-inducing activities. From the studies reviewed in this paper, it is clear that the anti-inflammatory effect of this natural compound can contribute to the prevention of endometriosis, this phenolic compound now being considered a new innovative drug in the prevention and treatment of this disease.
Collapse
|
415
|
Antitumor Effect of Various Phytochemicals on Diverse Types of Thyroid Cancers. Nutrients 2019; 11:nu11010125. [PMID: 30634497 PMCID: PMC6356543 DOI: 10.3390/nu11010125] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/24/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022] Open
Abstract
Thyroid cancers developed from the tissues of the thyroid gland are classified into papillary (PTC), follicular (FTC), medullary (MTC), and anaplastic thyroid cancer (ATC). Although thyroid cancers have been generally known as mild forms of cancer, undifferentiated MTC and ATC have a more unfavorable prognosis than differentiated PTC and FTC because they are more aggressive and early metastatic. A variety of therapies such as surgery, radiotherapy, and chemotherapy have been currently used to treat thyroid cancer, but they still have limitations including drug resistance or unfavorable side effects. Phytochemicals are plant-derived chemicals having various physiological activities that are expected to be effective in cancer treatment. In this review, anticancer efficacy of phytochemicals, such as resveratrol, genistein, curcumin, and other substances in each type of thyroid cancer was introduced with their chemopreventive mechanisms. English articles related with thyroid cancer and anti-thyroid cancer of phytochemicals were searched from PubMed and Google Scholar. This article mainly focused on in vitro or animal studies on phytochemicals with anti-thyroid cancer activity. These various phytochemicals have been shown to induce apoptosis in all types of thyroid cancer cells, inhibit cell proliferation and invasion, and to be helpful in enhancing the effect of radioiodine therapy that is a typical therapy to thyroid cancer. These results suggest that thyroid cancer can be more effectively treated by the combinations of phytochemicals and the existing therapies or substances.
Collapse
|
416
|
Natural products hybrids: 3,5,4′-Trimethoxystilbene-5,6,7-trimethoxyflavone chimeric analogs as potential cytotoxic agents against diverse human cancer cells. Eur J Med Chem 2019; 161:559-580. [DOI: 10.1016/j.ejmech.2018.10.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 12/12/2022]
|
417
|
Effect of Natural Compounds on NK Cell Activation. J Immunol Res 2018; 2018:4868417. [PMID: 30671486 PMCID: PMC6323526 DOI: 10.1155/2018/4868417] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system that survey the body for stressed and abnormal cells. The integration of signals that they receive through various inhibitory and activating cell surface receptors controls their activation and ability to kill target cells and produce cytokines. In this manner, phenotypically and functionally distinct subsets of NK cells help protect against microbial infections and cancer and shape the adaptive immune response. NK cells can use two different mechanisms to kill their targets, either by cytotoxic granule exocytosis or by induction of death receptor-mediated apoptosis. Death ligands belong to the tumor necrosis factor (TNF) family of ligands. Upon release in close proximity to a cell slated for killing, perforin forms pores in the cell membrane of the target cell through which granzymes and associated molecules can enter and induce apoptosis. NK cells are also involved in antibody-dependent cellular toxicity via the CD16 receptor. In addition to target recognition, NK cells can be also activated by treatment with multiple compounds with stimulatory properties. Apart from interleukins, which belong to the best characterized group of NK cell-stimulating compounds, vitamins and constituents extracted from plants also display the ability to activate NK cells. The current review characterizes several groups of NK cell-activating compounds: vitamins belonging to classes A, B, C, D, and E, polysaccharides, lectins, and a number of phytochemicals used in cancer research, exhibiting stimulatory properties when applied to NK cells. Although in most cases the exact mechanism of action is not known, constituents described in this review seem to be promising candidates for NK cell-stimulating drugs.
Collapse
|
418
|
Manilkara zapota (L.) P. Royen leaf water extract triggered apoptosis and activated caspase-dependent pathway in HT-29 human colorectal cancer cell line. Biomed Pharmacother 2018; 110:748-757. [PMID: 30554113 DOI: 10.1016/j.biopha.2018.12.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 01/08/2023] Open
Abstract
Manilkara zapota (L.) P. Royen (Family: Sapotaceae), commonly called as sapodilla, has been applied as traditional folk medicine for diarrhea and pulmonary infections. Conventional therapy in colorectal cancer is not likely effective due to undesirable outcomes. The anti-colon cancer properties of Manilkara zapota leaf water extract have yet to be investigated thus far. Therefore, our present study aimed to evaluate the ability to induce apoptosis and the underlying mechanisms of Manilkara zapota leaf water extract against human colorectal cancer (HT-29) cells. The cytotoxicity of Manilkara zapota leaf water extract was screened in different cancer cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) analyses. The morphological changes in HT-29 cell lines after exposure to Manilkara zapota leaf water extract were viewed under fluorescence and inverted light microscope. The apoptotic cell was measured by Annexin V-propidium iodide staining. The caspase-3 and -8 activities were assessed by colorimetric assay. Overall analyses revealed that treatment with Manilkara zapota leaf water extract for 72 h can inhibit the viability of HT-29 cells. Incubation with Manilkara zapota leaf water extract for 24, 48, and 72 h significantly increased (p < 0.05) the total apoptotic cells compared to the control. Treatment with 21, 42, and 84 μg/mL of Manilkara zapota leaf water extract for 72 h triggered both caspase-3 and -8 activities in a concentration-dependent pattern. We also found that the catalase level in the two treatment groups (21 and 42 μg/mL) was significantly elevated after 24 h incubation. Incubation with Manilkara zapota leaf water extract for 72 h triggered the transcriptional elevation of the adenomatous polyposis coli (APC), glycogen synthase kinase 3β (GSK3β), AXIN1, and casein kinase 1 (CK1). The β-catenin mRNA levels were reduced accordingly when the concentration of the Manilkara zapota leaf water extract was increased. Our results suggested that Manilkara zapota leaf water extract offer great potential against colorectal cancer through modulation of Wnt/β-catenin signaling pathway, caspase-dependent pathway, and antioxidant enzyme.
Collapse
|
419
|
Andrade S, Ramalho MJ, Pereira MDC, Loureiro JA. Resveratrol Brain Delivery for Neurological Disorders Prevention and Treatment. Front Pharmacol 2018; 9:1261. [PMID: 30524273 PMCID: PMC6262174 DOI: 10.3389/fphar.2018.01261] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Resveratrol (RES) is a natural polyphenolic non-flavonoid compound present in grapes, mulberries, peanuts, rhubarb and in several other plants. Numerous health effects have been related with its intake, such as anti-carcinogenic, anti-inflammatory and brain protective effects. The neuroprotective effects of RES in neurological diseases, such as Alzheimer's (AD) and Parkinson's (PD) diseases, are related to the protection of neurons against oxidative damage and toxicity, and to the prevention of apoptotic neuronal death. In brain cancer, RES induces cell apoptotic death and inhibits angiogenesis and tumor invasion. Despite its great potential as therapeutic agent for the treatment of several diseases, RES exhibits some limitations. It has poor water solubility and it is chemically instable, being degraded by isomerization once exposed to high temperatures, pH changes, UV light, or certain types of enzymes. Thus, RES has low bioavailability, limiting its biological and pharmacological benefits. To overcome these limitations, RES can be delivered by nanocarriers. This field of nanomedicine studies how the drug administration, pharmacokinetics, and pharmacodynamics are affected by the use of nanosized materials. The role of nanotechnology, in the prevention and treatment of neurological diseases, arises from the necessity to mask the physicochemical properties of therapeutic drugs to prolong the half-life and to be able to cross the blood-brain barrier (BBB). This can be achieved by encapsulating the drug in a nanoparticle (NP), which can be made of different kinds of materials. An increasing trend to encapsulate and direct RES to the brain has been observed. RES has been encapsulated in many different types of nanosystems, as liposomes, lipid and polymeric NPs. Furthermore, some of these nanocarriers have been modified with targeting molecules able to recognize the brain areas. Then, this article aims to overview the RES benefits and limitations in the treatment of neurological diseases, as the different nanotechnology strategies to overcome these limitations.
Collapse
Affiliation(s)
| | | | | | - Joana A. Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
| |
Collapse
|
420
|
de Lima RMT, Dos Reis AC, de Menezes AAPM, Santos JVDO, Filho JWGDO, Ferreira JRDO, de Alencar MVOB, da Mata AMOF, Khan IN, Islam A, Uddin SJ, Ali ES, Islam MT, Tripathi S, Mishra SK, Mubarak MS, Melo-Cavalcante AADC. Protective and therapeutic potential of ginger (Zingiber officinale) extract and [6]-gingerol in cancer: A comprehensive review. Phytother Res 2018; 32:1885-1907. [PMID: 30009484 DOI: 10.1002/ptr.6134] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 12/21/2022]
Abstract
Natural dietary agents have attracted considerable attention due to their role in promoting health and reducing the risk of diseases including cancer. Ginger, one of the most ancient known spices, contains bioactive compounds with several health benefits. [6]-Gingerol constitutes the most pharmacologically active among such compounds. The aim of the present work was to review the literature pertaining to the use of ginger extract and [6]-gingerol against tumorigenic and oxidative and inflammatory processes associated with cancer, along with the underlying mechanisms of action involved in signaling pathways. This will shed some light on the protective or therapeutic role of ginger derivatives in oxidative and inflammatory regulations during metabolic disturbance and on the antiproliferative and anticancer properties. Data collected from experimental (in vitro or in vivo) and clinical studies discussed in this review indicate that ginger extract and [6]-gingerol exert their action through important mediators and pathways of cell signaling, including Bax/Bcl2, p38/MAPK, Nrf2, p65/NF-κB, TNF-α, ERK1/2, SAPK/JNK, ROS/NF-κB/COX-2, caspases-3, -9, and p53. This suggests that ginger derivatives, in the form of an extract or isolated compounds, exhibit relevant antiproliferative, antitumor, invasive, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Rosália Maria Tôrres de Lima
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Antonielly Campinho Dos Reis
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Ag-Anne Pereira Melo de Menezes
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - José Victor de Oliveira Santos
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - José Williams Gomes de Oliveira Filho
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - José Roberto de Oliveira Ferreira
- Laboratory of Experimental Cancerology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Marcus Vinícius Oliveira Barros de Alencar
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Ana Maria Oliveira Ferreira da Mata
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Ishaq N Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Amirul Islam
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, Bangladesh
| | - Eunüs S Ali
- Gaco Pharmaceuticals and Research Laboratory, Dhaka-1000, Bangladesh; College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Swati Tripathi
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory, School of Biological Sciences (Zoology), Dr. Harisingh Gour Central University, Sagar, India
| | | | - Ana Amélia de Carvalho Melo-Cavalcante
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
421
|
Sova M, Saso L. Design and development of Nrf2 modulators for cancer chemoprevention and therapy: a review. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3181-3197. [PMID: 30288023 PMCID: PMC6161735 DOI: 10.2147/dddt.s172612] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A major cell defense mechanism against oxidative and xenobiotic stress is mediated by the Nrf2/Keap1 signaling pathway. The Nrf2/Keap1 pathway regulates gene expression of many cytoprotective and detoxifying enzymes, thus playing a pivotal role in maintaining redox cellular homeostasis. Many diseases including cancer have been closely related to impaired Nrf2 activity. Targeting Nrf2 and modulating its activity represents a novel modern strategy for cancer chemoprevention and therapy. In this review, different design strategies used for the development of Nrf2 modulators are described in detail. Moreover, the main focus is on important and recently developed Nrf2 activators and inhibitors, their in vitro and in vivo studies, and their potential use as chemopreventive agents and/or cancer therapeutics.
Collapse
Affiliation(s)
- Matej Sova
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia,
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy
| |
Collapse
|
422
|
Elshaer M, Chen Y, Wang XJ, Tang X. Resveratrol: An overview of its anti-cancer mechanisms. Life Sci 2018; 207:340-349. [DOI: 10.1016/j.lfs.2018.06.028] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
|
423
|
Lee SR, Jin H, Kim WT, Kim WJ, Kim SZ, Leem SH, Kim SM. Tristetraprolin activation by resveratrol inhibits the proliferation and metastasis of colorectal cancer cells. Int J Oncol 2018; 53:1269-1278. [PMID: 29956753 DOI: 10.3892/ijo.2018.4453] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Resveratrol (RSV) is a polyphenolic compound that naturally occurs in grapes, peanuts and berries. Considerable research has been conducted to determine the benefits of RSV against various human cancer types. Tristetraprolin (TTP) is an AU-rich element-binding protein that regulates mRNA stability and has decreased expression in human cancer. The present study investigated the biological effect of RSV on TTP gene regulation in colon cancer cells. RSV inhibited the proliferation and invasion/metastasis of HCT116 and SNU81 colon cancer cells. Furthermore, RSV induced a dose-dependent increase in TTP expression in HCT116 and SNU81 cells. The microarray experiment revealed that RSV significantly increased TTP expression by downregulating E2F transcription factor 1 (E2F1), a downstream target gene of TTP and regulated genes associated with inflammation, cell proliferation, cell death, angiogenesis and metastasis. Although TTP silencing inhibited TTP mRNA expression, the expression was subsequently restored by RSV. Small interfering RNA-induced TTP inhibition attenuated the effects of RSV on cell growth. In addition, RSV induced the mRNA-decaying activity of TTP and inhibited the relative luciferase activity of baculoviral IAP repeat containing 3 (cIAP2), large tumor suppressor kinase 2 (LATS2), E2F1, and lin‑28 homolog A (Lin28) in HCT116 and SNU81 cells. Therefore, RSV enhanced the inhibitory activity of TTP in HCT116 and SNU81 cells by negatively regulating cIAP2, E2F1, LATS2, and Lin28 expression. In conclusion, RSV suppressed the proliferation and invasion/metastasis of colon cancer cells by activating TTP.
Collapse
Affiliation(s)
- Se-Ra Lee
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea
| | - Hua Jin
- Department of Physiology, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Won-Tae Kim
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea
| | - Won-Jung Kim
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea
| | - Sung Zoo Kim
- Department of Physiology, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Sun-Hee Leem
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea
| | - Soo Mi Kim
- Department of Physiology, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| |
Collapse
|
424
|
Beneficial Effects of Concentrated Growth Factors and Resveratrol on Human Osteoblasts In Vitro Treated with Bisphosphonates. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4597321. [PMID: 29862271 PMCID: PMC5976957 DOI: 10.1155/2018/4597321] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/19/2018] [Accepted: 04/05/2018] [Indexed: 12/20/2022]
Abstract
Bisphosphonates are primary pharmacological agents against osteoclast-mediated bone loss and widely used in the clinical practice for prevention and treatment of a variety of skeletal conditions, such as low bone density and osteogenesis imperfecta, and pathologies, such as osteoporosis, malignancies metastatic to bone, Paget disease of bone, multiple myeloma, and hypercalcemia of malignancy. However, long-term bisphosphonate treatment is associated with pathologic conditions including osteonecrosis of the jaw, named BRONJ, which impaired bone regeneration process. Clinical management of BRONJ is controversy and one recent approach is the use of platelet concentrates, such as Concentrated Growth Factors, alone or together with biomaterials or antioxidants molecules, such as resveratrol. The aim of the present study was to investigate the in vitro effects of Concentrated Growth Factors and/or resveratrol on the proliferation and differentiation of human osteoblasts, treated or not with bisphosphonates. Human osteoblasts were stimulated for 3 days in complete medium and for 21 days in mineralization medium. At the end of the experimental period, the in vitro effect on osteoblast proliferation and differentiation was evaluated using different techniques such as MTT, ELISA for the quantification/detection of osteoprotegerin and bone morphogenetic protein-2, immunohistochemistry for sirtuin 1 and collagen type I, and the Alizarin Red S staining for the rate of mineralization. Results obtained showed that Concentrated Growth Factors and/or resveratrol significantly increased osteoblast proliferation and differentiation and that the cotreatment with Concentrated Growth Factors and resveratrol had a protective role on osteoblasts treated with bisphosphonates. In conclusion, these data suggest that this approach could be promised in the clinical management of BRONJ.
Collapse
|
425
|
Cao W, Zhang J, Wang G, Lu J, Wang T, Chen X. Reducing-Autophagy Derived Mitochondrial Dysfunction during Resveratrol Promotes Fibroblast-Like Synovial Cell Apoptosis. Anat Rec (Hoboken) 2018; 301:1179-1188. [PMID: 29461680 DOI: 10.1002/ar.23798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022]
Abstract
In rheumatoid arthritis patients, the fibroblast-like synovial cells (FLS) growth is not controlled normally, but is similar to the tumor cells proliferation in histology. Our previous studies have shown that resveratrol inhibits the proliferation of FLS and promotes FLS apoptosis. However, the molecular mechanisms involved in resveratrol-induced FLS apoptosis have not been determined yet. Here, we showed that the FLS cell viability (following pretreatment with 5 µM H2 O2 for 24 hr) exhibited better proliferation performance than at other concentrations via the CCK-8 assay. The cell apoptotic rate increased with the increasing concentration of resveratrol (0, 40, 80, 160, 320 μM), as detected by TdT-mediated dUTP nick-end labeling (TUNEL) staining and western blotting. Furthermore, the expression level of autophagy-related proteins (LC3A/B, ATG-5) decreased with the increased concentration of resveratrol, as determined by immunofluorescence and western blot analysis. We also showed that resveratrol induced FLS mitochondrial morphology change. Moreover, mitochondrial function detection showed that the mitochondrial membrane potential was lost with the increased concentration of resveratrol as examined by the JC-1 assay. The production of ATP in cells was positively and negatively correlated with the resveratrol concentration. Simultaneously, the intracellular calcium release and calcium influx decreased gradually with the increase in resveratrol concentration. Therefore, we proposed that resveratrol can reduce the level of autophagy in FLS. The decrease in the autophagy level can lead to the accumulation of reactive oxygen species, which may result in mitochondrial dysfunction and promotion of FLS apoptosis. Anat Rec, 301:1179-1188, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wei Cao
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Junqiang Zhang
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Gaoyuan Wang
- Department of Orthopaedic, the First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Jinsen Lu
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Taorong Wang
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Xiaoyu Chen
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
426
|
Lv J, Sharma A, Zhang T, Wu Y, Ding X. Pharmacological Review on Asiatic Acid and Its Derivatives: A Potential Compound. SLAS Technol 2018; 23:111-127. [PMID: 29361877 DOI: 10.1177/2472630317751840] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural triterpenes represent a group of pharmacologically active and structurally diverse organic compounds. The focus on these phytochemicals has been enormous in the past few years, worldwide. Asiatic acid (AA), a naturally occurring pentacyclic triterpenoid, is found mainly in the traditional medicinal herb Centella asiatica. Triterpenoid saponins, which are the primary constituents of C. asiatica, are commonly believed to be responsible for their extensive therapeutic actions. Published research work has described the molecular mechanisms underlying the various biological activities of AA and its derivatives, which vary for each chronic disease. However, a compilation of the various pharmacological properties of AA has not yet been done. Herein, we describe in detail the pharmacological properties of AA and its derivatives that inhibit multiple pathways of intracellular signaling molecules and transcription factors that are involved in the various stages of chronic diseases. Furthermore, the pharmacological activities of AA were compared with two natural compounds: curcumin and resveratrol. This review summarizes the research on AA and its derivatives and helps to provide future directions in the area of drug development.
Collapse
Affiliation(s)
- Junwei Lv
- 1 School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Alok Sharma
- 1 School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Zhang
- 1 School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchen Wu
- 1 School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xianting Ding
- 1 School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
427
|
Osmani RA, Kulkarni P, Manjunatha S, Gowda V, Hani U, Vaghela R, Bhosale R. Cyclodextrin Nanosponges in Drug Delivery and Nanotherapeutics. ENVIRONMENTAL NANOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-76090-2_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
428
|
Rauf A, Imran M, Suleria HAR, Ahmad B, Peters DG, Mubarak MS. A comprehensive review of the health perspectives of resveratrol. Food Funct 2017; 8:4284-4305. [PMID: 29044265 DOI: 10.1039/c7fo01300k] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many natural products present in our diet, including flavonoids, can prevent the progression of cancer and other diseases. Resveratrol, a natural polyphenol present in various fruits and vegetables, plays an important role as a therapeutic and chemopreventive agent used in the treatment of various illnesses. It exhibits effects against different types of cancer through different pathways. It additionally exerts antidiabetic, anti-inflammatory, and anti-oxidant effects in a variety of cell types. Furthermore, the cardiovascular protective capacities of resveratrol are associated with multiple molecular targets and may lead to the development of novel therapeutic strategies for atherosclerosis, ischemia/reperfusion, metabolic syndrome, and heart failure. Accordingly, this article presents an overview of recent developments in the use of resveratrol for the prevention and treatment of different diseases along with various mechanisms. In addition, the present review summarizes the most recent literature pertaining to resveratrol as a chemotherapeutic agent against multiple diseases and provides an assessment of the potential of this natural compound as a complementary or alternative medicine.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan.
| | | | | | | | | | | |
Collapse
|
429
|
Yousef M, Vlachogiannis IA, Tsiani E. Effects of Resveratrol against Lung Cancer: In Vitro and In Vivo Studies. Nutrients 2017; 9:nu9111231. [PMID: 29125563 PMCID: PMC5707703 DOI: 10.3390/nu9111231] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/04/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022] Open
Abstract
Uncontrolled cell growth and resistance to apoptosis characterize cancer cells. These two main features are initiated in cancer cells through mutations in key signaling molecules, which regulate pathways that are directly involved in controlling cell proliferation and apoptosis. Resveratrol (RSV), a naturally occurring plant polyphenol, has been shown to have biological effects counteracting different diseases. It has been found to provide cardio-protective, neuro-protective, immuno-modulatory, and anti-cancer health benefits. RSV has been found to inhibit cancer cell proliferation, induce cell cycle arrest and apoptosis, and these anticancer effects may be due to its ability to modulate signaling molecules involved in these processes. The present review summarizes the existing in vitro and in vivo studies on resveratrol and its anti-lung cancer properties.
Collapse
Affiliation(s)
- Michael Yousef
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
| | | | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
430
|
Catanzaro E, Calcabrini C, Turrini E, Sestili P, Fimognari C. Nrf2: a potential therapeutic target for naturally occurring anticancer drugs? Expert Opin Ther Targets 2017; 21:781-793. [PMID: 28675319 DOI: 10.1080/14728222.2017.1351549] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Nuclear factor (erythroid-derived-2)-like 2 is one of the most efficient cytoprotective rheostats against exogenous or endogenous oxidative insults. At present, the modulation of the Nrf2 pathway represents an interesting and highly explored strategy in the oncological area. Area covered: In this review, we present and discuss the different modulation of the Nrf2 pathway by some natural compounds with a well demonstrated anticancer activity, and critically analyze the challenges associated with the development of an Nrf2-based anticancer strategy. Expert opinion: Many natural compounds with a well-defined anticancer activity are able to modulate this pathway. Both Nrf2 inducers and inhibitors can be useful as anticancer strategy. However, since Nrf2 modulates many networks potentially involved in the detoxification process of anticancer drugs, its activation in cancer cells could lead to chemoresistance. The switch between a beneficial or detrimental role of Nrf2 in cancer cells essentially depends on the tight control of its activity, the specific conditions of tumor microenvironment, and cell type. In line with the paucity of clear data related to the mechanisms underpinning the role of Nrf2 in cancer development and chemoresistance, discovery and development of Nrf2-based strategies is one of the most critical and challenging assignments for fighting cancers.
Collapse
Affiliation(s)
- Elena Catanzaro
- a Department for Life Quality Studies , Alma Mater Studiorum-University of Bologna , Rimini , Italy
| | - Cinzia Calcabrini
- a Department for Life Quality Studies , Alma Mater Studiorum-University of Bologna , Rimini , Italy
| | - Eleonora Turrini
- a Department for Life Quality Studies , Alma Mater Studiorum-University of Bologna , Rimini , Italy
| | - Piero Sestili
- b Department of Biomolecular Sciences , University of Urbino Carlo Bo , Urbino , Italy
| | - Carmela Fimognari
- a Department for Life Quality Studies , Alma Mater Studiorum-University of Bologna , Rimini , Italy
| |
Collapse
|