401
|
Büttner M. The monosaccharide transporter(-like) gene family inArabidopsis. FEBS Lett 2007; 581:2318-24. [PMID: 17379213 DOI: 10.1016/j.febslet.2007.03.016] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 03/06/2007] [Accepted: 03/07/2007] [Indexed: 10/23/2022]
Abstract
The availability of complete plant genomes has greatly influenced the identification and analysis of phylogenetically related gene clusters. In Arabidopsis, this has revealed the existence of a monosaccharide transporter(-like) gene family with 53 members, which play a role in long-distance sugar partitioning or sub-cellular sugar distribution and catalyze the transport of hexoses, but also polyols and in one case also pentoses and tetroses. An update on the currently available information on these Arabidopsis monosaccharide transporters, on their sub-cellular localization and physiological function will be given.
Collapse
Affiliation(s)
- Michael Büttner
- Molekulare Pflanzenphysiologie, Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany.
| |
Collapse
|
402
|
Sanmartín M, Ordóñez A, Sohn EJ, Robert S, Sánchez-Serrano JJ, Surpin MA, Raikhel NV, Rojo E. Divergent functions of VTI12 and VTI11 in trafficking to storage and lytic vacuoles in Arabidopsis. Proc Natl Acad Sci U S A 2007; 104:3645-50. [PMID: 17360696 PMCID: PMC1805581 DOI: 10.1073/pnas.0611147104] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The protein storage vacuole (PSV) is a plant-specific organelle that accumulates reserve proteins, one of the main agricultural products obtained from crops. Despite the importance of this process, the cellular machinery required for transport and accumulation of storage proteins remains largely unknown. Interfering with transport to PSVs has been shown to result in secretion of cargo. Therefore, secretion of a suitable marker could be used as an assay to identify mutants in this pathway. CLV3, a negative regulator of shoot stem cell proliferation, is an extracellular ligand that is rendered inactive when targeted to vacuoles. We devised an assay where trafficking mutants secrete engineered vacuolar CLV3 and show reduced meristems, a phenotype easily detected by visual inspection of plants. We tested this scheme in plants expressing VAC2, a fusion of CLV3 to the vacuolar sorting signal from the storage protein barley lectin. In this way, we determined that trafficking of VAC2 requires the SNARE VTI12 but not its close homologue, the conditionally redundant VTI11 protein. Furthermore, a vti12 mutant is specifically altered in transport of storage proteins, whereas a vti11 mutant is affected in transport of a lytic vacuole marker. These results demonstrate the specialization of VTI12 and VTI11 in mediating trafficking to storage and lytic vacuoles, respectively. Moreover, they validate the VAC2 secretion assay as a simple method to isolate genes that mediate trafficking to the PSV.
Collapse
Affiliation(s)
- Maite Sanmartín
- *Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain
| | - Angel Ordóñez
- *Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain
| | - Eun Ju Sohn
- Institute for Integrative Genome Biology, Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, 2109 Batchelor Hall, Riverside, CA 92521
| | - Stephanie Robert
- Institute for Integrative Genome Biology, Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, 2109 Batchelor Hall, Riverside, CA 92521
| | - José Juán Sánchez-Serrano
- *Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain
| | - Marci A. Surpin
- Institute for Integrative Genome Biology, Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, 2109 Batchelor Hall, Riverside, CA 92521
| | - Natasha V. Raikhel
- Institute for Integrative Genome Biology, Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, 2109 Batchelor Hall, Riverside, CA 92521
- To whom correspondence may be addressed. E-mail: natasha.raikhel@ucr or
| | - Enrique Rojo
- *Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain
- Departamento de Biotecnología, Instituto Nacional de Investigaciones Agrarias, E-28040 Madrid, Spain; and
- To whom correspondence may be addressed. E-mail: natasha.raikhel@ucr or
| |
Collapse
|
403
|
Neuhaus HE. Transport of primary metabolites across the plant vacuolar membrane. FEBS Lett 2007; 581:2223-6. [PMID: 17307167 DOI: 10.1016/j.febslet.2007.02.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 02/02/2007] [Accepted: 02/03/2007] [Indexed: 11/29/2022]
Abstract
Mesophyll cells and most types of storage cells harbor large central vacuoles representing the main cellular store for sugars and other primary metabolites like carboxylic- or and amino acids. The general biochemical characteristics of sugar transport across the vacuolar membrane are already known since a couple of years but only recently the first tonoplast sugar carriers have been identified on the molecular level. A candidate sucrose carrier has been identified in a proteomic approach. In Arabidopsis, the tonoplast monosaccharide transporters (TMT) represent a small protein family comprising only three members, which reside in the vacuolar membrane. Two of three tmt genes are induced upon cold, drought or salt stress and tmt knock out mutants exhibit altered monosaccharide levels upon cold induction. These observations indicate that TMT proteins represent the first examples of tonoplast sugar carriers involved in the cellular response upon osmotic stress stimuli.
Collapse
Affiliation(s)
- H Ekkehard Neuhaus
- Pflanzenphysiologie, Technische Universitat Kaiserslautern, Postfach 3049, D-67653 Kaiserslautern, Germany.
| |
Collapse
|
404
|
Chang IF. Mass spectrometry-based proteomic analysis of the epitope-tag affinity purified protein complexes in eukaryotes. Proteomics 2007; 6:6158-66. [PMID: 17072909 DOI: 10.1002/pmic.200600225] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In recent years, MS has been widely used to study protein complex in eukaryotes. The identification of interacting proteins of a particular target protein may help defining protein-protein interaction and proteins of unknown functions. To isolate protein complexes, high-speed ultracentrifugation, sucrose density-gradient centrifugation, and coimmunoprecipitation have been widely used. However, the probability of getting nonspecific binding is comparatively high. Alternatively, by use of one- or two-step (tandem affinity purification) epitope-tag affinity purification, protein complexes can be isolated by affinity or immunoaffinity columns. These epitope-tags include protein A, hexahistidine (His), c-Myc, hemaglutinin (HA), calmodulin-binding protein, FLAG, maltose-binding protein, Strep, etc. The isolated protein complex can then be subjected to protease (i.e., trypsin) digestion followed by an MS analysis for protein identification. An example, the epitope-tag purification of the Arabidopsis cytosolic ribosomes, is addressed in this article to show the success of the application. Several representative protein complexes in eukaryotes been isolated and characterized by use of this approach are listed. In this review, the comparison among different tag systems, validation of interacting relationship, and choices of MS analysis method are addressed. The successful rate, advantages, limitations, and challenges of the epitope-tag purification are also discussed.
Collapse
Affiliation(s)
- Ing-Feng Chang
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
405
|
Ohnishi M, Mimura T, Tsujimura T, Mitsuhashi N, Washitani-Nemoto S, Maeshima M, Martinoia E. Inorganic phosphate uptake in intact vacuoles isolated from suspension-cultured cells of Catharanthus roseus (L.) G. Don under varying Pi status. PLANTA 2007; 225:711-8. [PMID: 16955272 DOI: 10.1007/s00425-006-0379-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2006] [Accepted: 08/07/2006] [Indexed: 05/11/2023]
Abstract
Inorganic phosphate (Pi) uptake across the vacuolar membrane of intact vacuoles isolated from Catharanthus roseus suspension-cultured cells was measured. Under low Pi status, Pi uptake into the vacuole was strongly activated compared to high Pi status. Since Pi uptake across the vacuolar membrane is correlated with H+ pumping, we examined the dependency of H+ pumping on plant Pi status. Both H+ pumping and the activities of the vacuolar H+-pumps, the V-type H+-ATPase and the H+-PPase were enhanced under low Pi status. Despite this increase in H+ pumping, Western blot analysis showed no distinct increase in the amount of proton pump proteins. Possible mechanisms for the activation of Pi uptake into the vacuole under low Pi status are discussed.
Collapse
Affiliation(s)
- Miwa Ohnishi
- Department of Biology, Faculty of Science, Kobe University, Rokkodai 1-1, Nada, Kobe 678-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
406
|
Abstract
Urea is a soil nitrogen form available to plant roots and a secondary nitrogen metabolite liberated in plant cells. Based on growth complementation of yeast mutants and "in-silico analysis", two plant families have been identified and partially characterized that mediate membrane transport of urea in heterologous expression systems. AtDUR3 is a single Arabidopsis gene belonging to the sodium solute symporter family that cotransports urea with protons at high affinity, while members of the tonoplast intrinsic protein (TIP) subfamily of aquaporins transport urea in a channel-like manner. The following review summarizes current knowledge on the membrane localization, energetization and regulation of these two types of urea transporters and discusses their possible physiological roles in planta.
Collapse
Affiliation(s)
- S Kojima
- Institut für Pflanzenernährung (330), Universität Hohenheim, Fruwirthstrasse 20, 70599, Stuttgart, Germany
| | | | | |
Collapse
|
407
|
Kojima S, Bohner A, von Wirén N. Molecular Mechanisms of Urea Transport in Plants. J Membr Biol 2007; 212:83-91. [PMID: 17264988 DOI: 10.1007/s00232-006-0868-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2006] [Indexed: 11/25/2022]
Abstract
Urea is a soil nitrogen form available to plant roots and a secondary nitrogen metabolite liberated in plant cells. Based on growth complementation of yeast mutants and "in-silico analysis", two plant families have been identified and partially characterized that mediate membrane transport of urea in heterologous expression systems. AtDUR3 is a single Arabidopsis gene belonging to the sodium solute symporter family that cotransports urea with protons at high affinity, while members of the tonoplast intrinsic protein (TIP) subfamily of aquaporins transport urea in a channel-like manner. The following review summarizes current knowledge on the membrane localization, energetization and regulation of these two types of urea transporters and discusses their possible physiological roles in planta.
Collapse
Affiliation(s)
- S Kojima
- Institut für Pflanzenernährung (330), Universität Hohenheim, Fruwirthstrasse 20, 70599, Stuttgart, Germany
| | | | | |
Collapse
|
408
|
Yoneda A, Kutsuna N, Higaki T, Oda Y, Sano T, Hasezawa S. Recent progress in living cell imaging of plant cytoskeleton and vacuole using fluorescent-protein transgenic lines and three-dimensional imaging. PROTOPLASMA 2007; 230:129-39. [PMID: 17458628 DOI: 10.1007/s00709-006-0237-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 03/17/2006] [Indexed: 05/15/2023]
Abstract
In higher-plant cells, microtubules, actin microfilaments, and vacuoles play important roles in a variety of cellular events, including cell division, morphogenesis, and cell differentiation. These intracellular structures undergo dynamic changes in their shapes and functions during cell division and differentiation, and to analyse these sequential structural changes, the vital labelling technique, using the green-fluorescent protein or other fluorescent proteins, has commonly been used to follow the localisation and translocation of specific proteins. To visualise microtubules, actin filaments, and vacuoles, several strategies are available for selecting the appropriate fluorescent-protein fusion partner: microtubule-binding proteins, tubulin, and plus-end-tracking proteins are most suitable for microtubule labelling; the actin binding domain of mouse talin and plant fimbrin for actin microfilament visualisation; and the tonoplast-intrinsic proteins and syntaxin-related proteins for vacuolar imaging. In addition, three-dimensional reconstruction methods are indispensable for localising the widely distributed organelles within the cell. The maximum intensity projection method is suitable for cytoskeletal structures, while contour-based surface modelling possesses many advantages for vacuolar membranes. In this article, we summarise the recent progress in living cell imaging of the plant cytoskeleton and vacuoles using various fusions with green-fluorescent proteins and three-dimensional imaging techniques.
Collapse
Affiliation(s)
- A Yoneda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
409
|
Becker B. Function and evolution of the vacuolar compartment in green algae and land plants (Viridiplantae). INTERNATIONAL REVIEW OF CYTOLOGY 2007; 264:1-24. [PMID: 17964920 DOI: 10.1016/s0074-7696(07)64001-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plant vacuoles perform several different functions and are essential for the plant cell. The large central vacuoles of mature plant cells provide structural support, and they serve other functions, such as protein degradation and turnover, waste disposal, storage of metabolites, and cell growth. A unique feature of the plant vacuolar system is the presence of different types of vacuoles within the same cell. The current knowledge about the vacuolar compartments in plants and green algae is summarized and a hypothesis is presented to explain the origin of multiple types of vacuoles in plants.
Collapse
Affiliation(s)
- Burkhard Becker
- Botanical Institute, University of Cologne, 50931 Köln, Germany
| |
Collapse
|
410
|
Cho YH, Yoo SD, Sheen J. Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 2006; 127:579-89. [PMID: 17081979 DOI: 10.1016/j.cell.2006.09.028] [Citation(s) in RCA: 310] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 07/18/2006] [Accepted: 09/01/2006] [Indexed: 10/24/2022]
Abstract
Arabidopsis hexokinase1 (HXK1) is a glucose sensor that integrates nutrient and hormone signals to govern gene expression and plant growth in response to environmental cues. How the metabolic enzyme mediates glucose signaling remains a mystery. By coupling proteomic and binary-interaction screens, we discover two nuclear-specific HXK1 unconventional partners: the vacuolar H(+)-ATPase B1 (VHA-B1) and the 19S regulatory particle of proteasome subunit (RPT5B). Remarkably, vha-B1 and rpt5b mutants uniquely share a broad spectrum of glucose response defects with the HXK1 mutant gin2 (glucose-insensitive2). Genetic and chromatin immunoprecipitation analyses suggest that the nuclear HXK1 forms a glucose signaling complex core with VHA-B1 and RPT5B that directly modulates specific target gene transcription independent of glucose metabolism. The findings support a model in which conserved metabolic enzymes and proteins of well-established activities may perform previously unrecognized nuclear functions.
Collapse
Affiliation(s)
- Young-Hee Cho
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
411
|
Jaquinod M, Villiers F, Kieffer-Jaquinod S, Hugouvieux V, Bruley C, Garin J, Bourguignon J. A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol Cell Proteomics 2006; 6:394-412. [PMID: 17151019 PMCID: PMC2391258 DOI: 10.1074/mcp.m600250-mcp200] [Citation(s) in RCA: 253] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
To better understand the mechanisms governing cellular traffic, storage of various metabolites, and their ultimate degradation, Arabidopsis thaliana vacuole proteomes were established. To this aim, a procedure was developed to prepare highly purified vacuoles from protoplasts isolated from Arabidopsis cell cultures using Ficoll density gradients. Based on the specific activity of the vacuolar marker alpha-mannosidase, the enrichment factor of the vacuoles was estimated at approximately 42-fold with an average yield of 2.1%. Absence of significant contamination by other cellular compartments was validated by Western blot using antibodies raised against specific markers of chloroplasts, mitochondria, plasma membrane, and endoplasmic reticulum. Based on these results, vacuole preparations showed the necessary degree of purity for proteomics study. Therefore, a proteomics approach was developed to identify the protein components present in both the membrane and soluble fractions of the Arabidopsis cell vacuoles. This approach includes the following: (i) a mild oxidation step leading to the transformation of cysteine residues into cysteic acid and methionine to methionine sulfoxide, (ii) an in-solution proteolytic digestion of very hydrophobic proteins, and (iii) a prefractionation of proteins by short migration by SDS-PAGE followed by analysis by liquid chromatography coupled to tandem mass spectrometry. This procedure allowed the identification of more than 650 proteins, two-thirds of which copurify with the membrane hydrophobic fraction and one-third of which copurifies with the soluble fraction. Among the 416 proteins identified from the membrane fraction, 195 were considered integral membrane proteins based on the presence of one or more predicted transmembrane domains, and 110 transporters and related proteins were identified (91 putative transporters and 19 proteins related to the V-ATPase pump). With regard to function, about 20% of the proteins identified were known previously to be associated with vacuolar activities. The proteins identified are involved in ion and metabolite transport (26%), stress response (9%), signal transduction (7%), and metabolism (6%) or have been described to be involved in typical vacuolar activities, such as protein and sugar hydrolysis. The subcellular localization of several putative vacuolar proteins was confirmed by transient expression of green fluorescent protein fusion constructs.
Collapse
Affiliation(s)
- Michel Jaquinod
- Développement de la protéomique comme outil d'investigation fonctionelle et d'annotation des génomes
INSERM : ERM0201CEA17, rue des Martyrs 38054 Grenoble Cedex,FR
- * Correspondence should be adressed to: Michel Jaquinod
| | - Florent Villiers
- LPCV, Laboratoire de physiologie cellulaire végétale
CNRS : UMR5168INRA : UR1200CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble Ibat. C2
17 Rue des martyrs
38054 GRENOBLE CEDEX 9,FR
| | - Sylvie Kieffer-Jaquinod
- Développement de la protéomique comme outil d'investigation fonctionelle et d'annotation des génomes
INSERM : ERM0201CEA17, rue des Martyrs 38054 Grenoble Cedex,FR
| | - Véronique Hugouvieux
- LPCV, Laboratoire de physiologie cellulaire végétale
CNRS : UMR5168INRA : UR1200CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble Ibat. C2
17 Rue des martyrs
38054 GRENOBLE CEDEX 9,FR
| | - Christophe Bruley
- Développement de la protéomique comme outil d'investigation fonctionelle et d'annotation des génomes
INSERM : ERM0201CEA17, rue des Martyrs 38054 Grenoble Cedex,FR
| | - Jérôme Garin
- Développement de la protéomique comme outil d'investigation fonctionelle et d'annotation des génomes
INSERM : ERM0201CEA17, rue des Martyrs 38054 Grenoble Cedex,FR
| | - Jacques Bourguignon
- LPCV, Laboratoire de physiologie cellulaire végétale
CNRS : UMR5168INRA : UR1200CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble Ibat. C2
17 Rue des martyrs
38054 GRENOBLE CEDEX 9,FR
- * Correspondence should be adressed to: Jacques Bourguignon
| |
Collapse
|
412
|
Wormit A, Trentmann O, Feifer I, Lohr C, Tjaden J, Meyer S, Schmidt U, Martinoia E, Neuhaus HE. Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. THE PLANT CELL 2006; 18:3476-90. [PMID: 17158605 PMCID: PMC1785410 DOI: 10.1105/tpc.106.047290] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 10/18/2006] [Accepted: 11/03/2006] [Indexed: 05/12/2023]
Abstract
The tonoplast monosaccharide transporter (TMT) family comprises three isoforms in Arabidopsis thaliana, and TMT-green fluorescent protein fusion proteins are targeted to the vacuolar membrane. TMT promoter-beta-glucuronidase plants revealed that the TONOPLAST MONOSACCHARIDE TRANSPORTER1 (TMT1) and TMT2 genes exhibit a tissue- and cell type-specific expression pattern, whereas TMT3 is only weakly expressed. TMT1 and TMT2 expression is induced by drought, salt, and cold treatments and by sugar. During cold adaptation, tmt knockout lines accumulated less glucose and fructose compared with wild-type plants, whereas no differences were observed for sucrose. Cold adaptation of wild-type plants substantially promoted glucose uptake into isolated leaf mesophyll vacuoles. Glucose uptake into isolated vacuoles was inhibited by NH(4)(+), fructose, and phlorizin, indicating that transport is energy-dependent and that both glucose and fructose were taken up by the same carrier. Glucose import into vacuoles from two cold-induced tmt1 knockout lines or from triple knockout plants was substantially lower than into corresponding wild-type vacuoles. Monosaccharide feeding into leaf discs revealed the strongest response to sugar in tmt1 knockout lines compared with wild-type plants, suggesting that TMT1 is required for cytosolic glucose homeostasis. Our results indicate that TMT1 is involved in vacuolar monosaccharide transport and plays a major role during stress responses.
Collapse
Affiliation(s)
- Alexandra Wormit
- Pflanzenphysiologie, Technische Universität Kaiserslautern, D-67653 Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
413
|
Ito J, Heazlewood JL, Millar AH. Analysis of the Soluble ATP-Binding Proteome of Plant Mitochondria Identifies New Proteins and Nucleotide Triphosphate Interactions within the Matrix. J Proteome Res 2006; 5:3459-69. [PMID: 17137349 DOI: 10.1021/pr060403j] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interactions of ATP inside plant mitochondria were investigated by identifying the soluble nucleotide binding proteome captured using immobilized ATP. Selected proteins were separated by 1D SDS-PAGE and 2D IEF-SDS-PAGE and identified by ESI-Q-TOF MS/MS. A range of highly enriched proteins were identified from the mitochondrial proteome, including 14-3-3 proteins and RNA binding proteins, as well as proteins known to contain nucleotide binding domains and/or to be inhibited or stimulated by ATP.
Collapse
Affiliation(s)
- Jun Ito
- ARC Centre of Excellence in Plant Energy Biology and School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, M316, Crawley 6009, WA, Australia
| | | | | |
Collapse
|
414
|
Leshem Y, Melamed-Book N, Cagnac O, Ronen G, Nishri Y, Solomon M, Cohen G, Levine A. Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance. Proc Natl Acad Sci U S A 2006; 103:18008-13. [PMID: 17101982 PMCID: PMC1693863 DOI: 10.1073/pnas.0604421103] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Indexed: 12/20/2022] Open
Abstract
Intracellular vesicle trafficking performs essential functions in eukaryotic cells, such as membrane trafficking and delivery of molecules to their destinations. A major endocytotic route in plants is vesicle trafficking to the vacuole that plays an important role in plant salt tolerance. The final step in this pathway is mediated by the AtVAMP7C family of vesicle soluble N-ethylmaleimide-sensitive factor attachment protein receptors (v-SNAREs) that carry out the vesicle fusion with the tonoplast. Exposure to high-salt conditions causes immediate ionic and osmotic stresses, followed by production of reactive oxygen species. Here, we show that the reactive oxygen species are produced intracellularly, in endosomes that were targeted to the central vacuole. Suppression of the AtVAMP7C genes expression by antisense AtVAMP711 gene or in mutants of this family inhibited fusion of H2O2-containing vesicles with the tonoplast, which resulted in formation of H2O2-containing megavesicles that remained in the cytoplasm. The antisense and mutant plants exhibited improved vacuolar functions, such as maintenance of DeltapH, reduced release of calcium from the vacuole, and greatly improved plant salt tolerance. The antisense plants exhibited increased calcium-dependent protein kinase activity upon salt stress. Improved vacuolar ATPase activity during oxidative stress also was observed in a yeast system, in a DeltaVamp7 knockout strain. Interestingly, a microarray-based analysis of the AtVAMP7C genes showed a strong down-regulation of most genes in wild-type roots during salt stress, suggesting an evolutionary molecular adaptation of the vacuolar trafficking.
Collapse
Affiliation(s)
| | | | - Olivier Cagnac
- Department of Plant Sciences, University of California, Davis, CA 95616; and
| | - Gil Ronen
- Evogene Ltd., P.O. Box 2100, Rehovot 76121, Israel
| | - Yossi Nishri
- *Department of Plant and Environmental Sciences, and
| | - Mazal Solomon
- *Department of Plant and Environmental Sciences, and
| | - Gil Cohen
- Racah Institute of Physics, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
| | - Alex Levine
- *Department of Plant and Environmental Sciences, and
| |
Collapse
|
415
|
Shigaki T, Rees I, Nakhleh L, Hirschi KD. Identification of three distinct phylogenetic groups of CAX cation/proton antiporters. J Mol Evol 2006; 63:815-25. [PMID: 17086450 DOI: 10.1007/s00239-006-0048-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2006] [Accepted: 07/21/2006] [Indexed: 11/26/2022]
Abstract
Ca(2+)/cation antiporter (CaCA) proteins are integral membrane proteins that transport Ca(2+) or other cations using the H(+) or Na(+) gradient generated by primary transporters. The CAX (for CAtion eXchanger) family is one of the five families that make up the CaCA superfamily. CAX genes have been found in bacteria, Dictyostelium, fungi, plants, and lower vertebrates, but only a small number of CAXs have been functionally characterized. In this study, we explored the diversity of CAXs and their phylogenetic relationships. The results demonstrate that there are three major types of CAXs: type I (CAXs similar to Arabidopsis thaliana CAX1, found in plants, fungi, and bacteria), type II (CAXs with a long N-terminus hydrophilic region, found in fungi, Dictyostelium, and lower vertebrates), and type III (CAXs similar to Escherichia coli ChaA, found in bacteria). Some CAXs were found to have secondary structures that are different from the canonical six transmembrane (TM) domains-acidic motif-five TM domain structure. Our phylogenetic tree indicated no evidence to support the cyanobacterial origin of plant CAXs or the classification of Arabidopsis exchangers CAX7 to CAX11. For the first time, these results clearly define the CAX exchanger family and its subtypes in phylogenetic terms. The surprising diversity of CAXs demonstrates their potential range of biochemical properties and physiologic relevance.
Collapse
Affiliation(s)
- T Shigaki
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Room 9016, CNRC, 1100 Bates Street, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
416
|
Veljanovski V, Vanderbeld B, Knowles VL, Snedden WA, Plaxton WC. Biochemical and molecular characterization of AtPAP26, a vacuolar purple acid phosphatase up-regulated in phosphate-deprived Arabidopsis suspension cells and seedlings. PLANT PHYSIOLOGY 2006; 142:1282-93. [PMID: 16963519 PMCID: PMC1630754 DOI: 10.1104/pp.106.087171] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 09/06/2006] [Indexed: 05/11/2023]
Abstract
A vacuolar acid phosphatase (APase) that accumulates during phosphate (Pi) starvation of Arabidopsis (Arabidopsis thaliana) suspension cells was purified to homogeneity. The final preparation is a purple APase (PAP), as it exhibited a pink color in solution (A(max) = 520 nm). It exists as a 100-kD homodimer composed of 55-kD glycosylated subunits that cross-reacted with an anti-(tomato intracellular PAP)-IgG. BLAST analysis of its 23-amino acid N-terminal sequence revealed that this PAP is encoded by At5g34850 (AtPAP26; one of 29 PAP genes in Arabidopsis) and that a 30-amino acid signal peptide is cleaved from the AtPAP26 preprotein during its translocation into the vacuole. AtPAP26 displays much stronger sequence similarity to orthologs from other plants than to other Arabidopsis PAPs. AtPAP26 exhibited optimal activity at pH 5.6 and broad substrate selectivity. The 5-fold increase in APase activity that occurred in Pi-deprived cells was paralleled by a similar increase in the amount of a 55-kD anti-(tomato PAP or AtPAP26)-IgG immunoreactive polypeptide and a >30-fold reduction in intracellular free Pi concentration. Semiquantitative reverse transcription-PCR indicated that Pi-sufficient, Pi-starved, and Pi-resupplied cells contain similar amounts of AtPAP26 transcripts. Thus, transcriptional controls appear to exert little influence on AtPAP26 levels, relative to translational and/or proteolytic controls. APase activity and AtPAP26 protein levels were also up-regulated in shoots and roots of Pi-deprived Arabidopsis seedlings. We hypothesize that AtPAP26 recycles Pi from intracellular P metabolites in Pi-starved Arabidopsis. As AtPAP26 also exhibited alkaline peroxidase activity, a potential additional role in the metabolism of reactive oxygen species is discussed.
Collapse
Affiliation(s)
- Vasko Veljanovski
- Department of Biology , Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
417
|
Rossignol M, Peltier JB, Mock HP, Matros A, Maldonado AM, Jorrín JV. Plant proteome analysis: A 2004–2006 update. Proteomics 2006; 6:5529-48. [PMID: 16991197 DOI: 10.1002/pmic.200600260] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since the appearance of the review entitled "Plant Proteome Analysis" in Proteomics in February 2004 (Cánovas, F. M., Dumas-Gaudot, E., Recorbert, G., Jorrín, J. et al., Proteomics 2004, 4, 285-298), about 200 original articles focusing on plant proteomics have been published. Although this represents less than 1% of the global proteomics output during this period, it nevertheless reflects an increase in activity over the period 1999-2004. These papers concern the proteome of at least 35 plant species but have concentrated mainly on thale cress (Arabidopsis thaliana) and rice (Oryza sativa). The scientific objectives have ranged from a proteomic analysis of organs, tissues, cell suspensions, or subcellular fractions to the study of plant development and response to various stresses. A number of contributions have covered PTMs and protein interactions. The dominant analytical platform has been 2-DE coupled to MS, but "second generation" techniques such as DIGE, multidimensional protein identification technology, isotope-coded affinity tags, and stable isotope labeling by amino acids in cell culture have begun to make an impact. This review aims to provide an update of the contribution of proteomics to plant biology during the period 2004-2006, and is divided into six sections: introduction, subcellular proteomes, plant development, responses to biotic and abiotic stresses, PTMs, and protein interactions. The conclusions summarize a view of the major pitfalls and challenges of plant proteomics.
Collapse
|
418
|
Abstract
With the avalanche of genomic information and improvements in analytical technology, proteomics is becoming increasingly important for the study of many different aspects of plant functions. Since proteins serve as important components of major signaling and biochemical pathways, studies at protein levels are essential to reveal molecular mechanisms underlying plant growth, development, and interactions with the environment. The plant proteome is highly complex and dynamic. Although great strides need to be taken towards the ultimate goal of characterizing all the proteins in a proteome, current technologies have provided immense opportunities for high-throughput proteomic studies that have gone beyond simple protein identification to analyzing various functional aspects, such as quantification, PTM, subcellular localization, and protein-protein interactions. In this review of plant proteomics, advances in protein fractionation, separation, and MS will be outlined. Focus will be on recent development in functional analysis of plant proteins, which paves the way towards the comprehensive integration with transcriptomics, metabolomics, and other large scale "-omics" into systems biology.
Collapse
Affiliation(s)
- Sixue Chen
- Department of Botany and Genetics Institute, University of Florida, Gainesville, FL 32611-8526, USA.
| | | |
Collapse
|
419
|
Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K. Members of the Arabidopsis AtTPK/KCO family form homomeric vacuolar channels in planta. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:296-306. [PMID: 16984403 DOI: 10.1111/j.1365-313x.2006.02868.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Arabidopsis thaliana K+ channel family of AtTPK/KCO proteins consists of six members including a 'single-pore' (Kir-type) and five 'tandem-pore' channels. AtTPK4 is currently the only ion channel of this family for which a function has been demonstrated in planta. The protein is located at the plasma membrane forming a voltage-independent K+ channel that is blocked by extracellular calcium ions. In contrast, AtTPK1 is a tonoplast-localized protein, that establishes a K+-selective, voltage-independent ion channel activated by cytosolic calcium when expressed in a heterologous system, i.e. yeast. Here, we provide evidence that other AtTPK/KCO channel subunits, i.e. AtTPK2, AtTPK3, AtTPK5 and AtKCO3, are also targeted to the vacuolar membrane, opening the possibility that they interact at the target membrane to form heteromeric ion channels. However, when testing the cellular expression patterns of AtTPK/KCO genes we observed distinct expression domains that overlap in only a few tissues of the Arabidopsis plant, making it unlikely that different channel subunits interact to form heteromeric channels. This conclusion was substantiated by in planta expression of combinations of selected tonoplast AtTPK/KCO proteins. Fluorescence resonance energy transfer assays indicate that protein interaction occurs between identical channel subunits (most efficiently between AtTPK1 or AtKCO3) but not between different channel subunits. The finding could be confirmed by bimolecular fluorescence complementation assays. We conclude that tonoplast-located AtTPK/KCO subunits form homomeric ion channels in vivo.
Collapse
Affiliation(s)
- Camilla Voelker
- Universität Potsdam, Institut für Biochemie und Biologie, Karl-Liebknecht-Str. 24-25, Haus 20, D-14476 Golm, Germany
| | | | | | | |
Collapse
|
420
|
Hedrich R, Marten I. 30-year progress of membrane transport in plants. PLANTA 2006; 224:725-39. [PMID: 16835760 DOI: 10.1007/s00425-006-0341-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 03/18/2006] [Indexed: 05/10/2023]
Abstract
In the past 30 years enormous progress was made in plant membrane biology and transport physiology, a fact reflected in the appearance of textbooks. The first book dedicated to 'Membrane Transport in Plants' was published on the occasion of the 'International Workshop on Membrane Transport in Plants' held at the Nuclear Research Center, Jülich, Germany [Zimmermann and Dainty (eds) 1974] and was followed in 1976 by a related volume 'Transport in plants II' in the 'Encyclopedia of plant physiology' [Lüttge and Pitman (eds) 1976]. A broad spectrum of topics including thermodynamics of transport processes, water relations, primary reactions of photosynthesis, as well as more conventional aspects of membrane transport was presented. The aim of the editors of the first book was to bring advanced thermodynamical concepts to the attention of biologists and to show physical chemists and biophysicist what the more complex biological systems were like. To bundle known data on membrane transport in plants and relevant fields for mutual understanding, interdisciplinary research and clarification of problems were considered highly important for further progress in this scientific area of plant physiology. The present review will critically evaluate the progress in research in membrane transport in plants that was achieved during the past. How did 'Membrane Transport in Plants' progress within the 30 years between the publication of the first book about this topic (Zimmermann and Dainty 1974), a recent one with the same title (Blatt 2004), and today?
Collapse
Affiliation(s)
- Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Bioscience, University of Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany.
| | | |
Collapse
|
421
|
Schmidt M, Gessner G, Luff M, Heiland I, Wagner V, Kaminski M, Geimer S, Eitzinger N, Reissenweber T, Voytsekh O, Fiedler M, Mittag M, Kreimer G. Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. THE PLANT CELL 2006; 18:1908-30. [PMID: 16798888 PMCID: PMC1533972 DOI: 10.1105/tpc.106.041749] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Flagellate green algae have developed a visual system, the eyespot apparatus, which allows the cell to phototax. To further understand the molecular organization of the eyespot apparatus and the phototactic movement that is controlled by light and the circadian clock, a detailed understanding of all components of the eyespot apparatus is needed. We developed a procedure to purify the eyespot apparatus from the green model alga Chlamydomonas reinhardtii. Its proteomic analysis resulted in the identification of 202 different proteins with at least two different peptides (984 in total). These data provide new insights into structural components of the eyespot apparatus, photoreceptors, retina(l)-related proteins, members of putative signaling pathways for phototaxis and chemotaxis, and metabolic pathways within an algal visual system. In addition, we have performed a functional analysis of one of the identified putative components of the phototactic signaling pathway, casein kinase 1 (CK1). CK1 is also present in the flagella and thus is a promising candidate for controlling behavioral responses to light. We demonstrate that silencing CK1 by RNA interference reduces its level in both flagella and eyespot. In addition, we show that silencing of CK1 results in severe disturbances in hatching, flagellum formation, and circadian control of phototaxis.
Collapse
Affiliation(s)
- Melanie Schmidt
- Institute of Biology, Friedrich-Alexander-University, D-91058 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
422
|
Grotz N, Guerinot ML. Molecular aspects of Cu, Fe and Zn homeostasis in plants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:595-608. [PMID: 16857279 DOI: 10.1016/j.bbamcr.2006.05.014] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 05/16/2006] [Accepted: 05/20/2006] [Indexed: 01/02/2023]
Abstract
Proper metal transport and homeostasis are critical for the growth and development of plants. In order to potentially fortify plants pre-harvest with essential metals in aid of human nutrition, we must understand not only how metals enter the plant but also how metals are then delivered to the edible portions of the plant such as the seed. In this review, we focus on three metals required by both plants and humans: Cu, Fe and Zn. In particular, we present the current understanding of the molecular mechanisms of Cu, Fe and Zn transport, including aspects of uptake, distribution, chelation and/or sequestration.
Collapse
Affiliation(s)
- Natasha Grotz
- Dartmouth College, Biological Sciences, 304 Gilman, Hanover, NH 03755, USA
| | | |
Collapse
|
423
|
Higaki T, Kutsuna N, Okubo E, Sano T, Hasezawa S. Actin microfilaments regulate vacuolar structures and dynamics: dual observation of actin microfilaments and vacuolar membrane in living tobacco BY-2 Cells. PLANT & CELL PHYSIOLOGY 2006; 47:839-52. [PMID: 16672254 DOI: 10.1093/pcp/pcj056] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Actin microfilaments (MFs) participate in many fundamental processes in plant growth and development. Here, we report the co-localization of the actin MF and vacuolar membrane (VM), as visualized by vital VM staining with FM4-64 in living tobacco BY-2 cells stably expressing green fluorescent protein (GFP)-fimbrin (BY-GF11). The MFs were intensively localized on the VM surface and at the periphery of the cytoplasmic strands rather than at their center. The co-localization of MFs and VMs was confirmed by the observation made using transient expression of red fluorescent protein (RFP)-fimbrin in tobacco BY-2 cells stably expressing GFP-AtVam3p (BY-GV7) and BY-2 cells stably expressing gamma-tonoplast intrinsic protein (gamma-TIP)-GFP fusion protein (BY-GG). Time-lapse imaging revealed dynamic movement of MF structures which was parallel to that of cytoplasmic strands. Disruption of MF structures disorganized cytoplasmic strand structures and produced small spherical vacuoles in the VM-accumulating region. Three-dimensional reconstructions of the vacuolar structures revealed a disconnection of these small spherical vacuoles from the large vacuoles. Real-time observations and quantitative image analyses demonstrated rapid movements of MFs and VMs near the cell cortex, which were inhibited by the general myosin ATPase inhibitor, 2,3-butanedion monoxime (BDM). Moreover, both bistheonellide A (BA) and BDM treatment inhibited the reorganization of the cytoplasmic strands and the migration of daughter cell nuclei at early G1 phase, suggesting a requirement for the acto-myosin system for vacuolar morphogenesis during cell cycle progression. These results suggest that MFs support the vacuolar structures and that the acto-myosin system plays an essential role in vacuolar morphogenesis.
Collapse
Affiliation(s)
- Takumi Higaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8562 Japan
| | | | | | | | | |
Collapse
|
424
|
Tuomainen MH, Nunan N, Lehesranta SJ, Tervahauta AI, Hassinen VH, Schat H, Koistinen KM, Auriola S, McNicol J, Kärenlampi SO. Multivariate analysis of protein profiles of metal hyperaccumulatorThlaspi caerulescens accessions. Proteomics 2006; 6:3696-706. [PMID: 16691554 DOI: 10.1002/pmic.200501357] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thlaspi caerulescens is increasingly acknowledged as one of the best models for studying metal hyperaccumulation in plants. In order to study the mechanisms underlying metal hyperaccumulation, we used proteomic profiling to identify differences in protein intensities among three T. caerulescens accessions with pronounced differences in tolerance, uptake and root to shoot translocation of Zn and Cd. Proteins were separated using two-dimensional electrophoresis and stained with SYPRO Orange. Intensity values and quality scores were obtained for each spot by using PDQuest software. Principal component analysis was used to test the separation of the protein profiles of the three plant accessions at various metal exposures, and to detect groups of proteins responsible for the differences. Spot sets representing individual proteins were analysed with the analysis of variance and non-parametric Kruskal-Wallis test. Clearest differences were seen among the Thlaspi accessions, while the effects of metal exposures were less pronounced. The 48 tentatively identified spots represent core metabolic functions (e.g. photosynthesis, nitrogen assimilation, carbohydrate metabolism) as well as putative signalling and regulatory functions. The possible roles of some of the proteins in heavy metal accumulation and tolerance are discussed.
Collapse
|
425
|
Ishimizu T, Hashimoto C, Kajihara R, Hase S. A Retaining Endo-β-Mannosidase from a Dicot Plant, Cabbage. ACTA ACUST UNITED AC 2006; 139:1035-43. [PMID: 16788054 DOI: 10.1093/jb/mvj116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An endo-beta-mannosidase [EC 3.2.1.152, glycoside hydrolase family 2], which hydrolyzes the Manbeta1-4GlcNAc linkage of N-glycans in an endo-manner, has been found in plant tissues [Ishimizu, T., Sasaki, A., Okutani, S., Maeda, M., Yamagishi, M., and Hase, S. (2004) J. Biol. Chem. 279, 38555-38562]. So far, this glycosidase has been purified only from a monocot plant, a lily. Here, an endo-beta-mannosidase was purified from a dicot plant, cabbage (Brassica oleracea), and characterized. The cabbage endo-beta-mannosidase consists of four polypeptides. These four polypeptides are encoded by a single gene, whose nucleotide sequence is homologous to those of the lily and Arabidopsis endo-beta-mannosidase genes. 1H NMR analysis of the stereochemistry of the hydrolysis of pyridylaminated (PA) Manalpha1-6Manbeta1-4GlcNAcbeta1-4GlcNAc showed that the cabbage endo-beta-mannosidase is a retaining glycoside hydrolase, as are other glycoside hydrolase family 2 enzymes. The enzymatic characteristics, including substrate specificity, of the cabbage enzyme are very similar to those of the lily enzyme. These endo-beta-mannosidases specifically act on Man(n)Manalpha1-6Manbeta1-4GlcNAcbeta1-4GlcNAc-PA (n = 0 to 2). These results suggest that the endo-beta-mannosidase is present in at least the angiosperms, and has common roles, such as the degradation of N-glycans.
Collapse
Affiliation(s)
- Takeshi Ishimizu
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka 560-0043
| | | | | | | |
Collapse
|
426
|
Endler A, Meyer S, Schelbert S, Schneider T, Weschke W, Peters SW, Keller F, Baginsky S, Martinoia E, Schmidt UG. Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach. PLANT PHYSIOLOGY 2006; 141:196-207. [PMID: 16581873 PMCID: PMC1459324 DOI: 10.1104/pp.106.079533] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The vacuole is the main cellular storage pool, where sucrose (Suc) accumulates to high concentrations. While a limited number of vacuolar membrane proteins, such as V-type H(+)-ATPases and H(+)-pyrophosphatases, are well characterized, the majority of vacuolar transporters are still unidentified, among them the transporter(s) responsible for vacuolar Suc uptake and release. In search of novel tonoplast transporters, we used a proteomic approach, analyzing the tonoplast fraction of highly purified mesophyll vacuoles of the crop plant barley (Hordeum vulgare). We identified 101 proteins, including 88 vacuolar and putative vacuolar proteins. The Suc transporter (SUT) HvSUT2 was discovered among the 40 vacuolar proteins, which were previously not reported in Arabidopsis (Arabidopsis thaliana) vacuolar proteomic studies. To confirm the tonoplast localization of this Suc transporter, we constructed and expressed green fluorescent protein (GFP) fusion proteins with HvSUT2 and its closest Arabidopsis homolog, AtSUT4. Transient expression of HvSUT2-GFP and AtSUT4-GFP in Arabidopsis leaves and onion (Allium cepa) epidermal cells resulted in green fluorescence at the tonoplast, indicating that these Suc transporters are indeed located at the vacuolar membrane. Using a microcapillary, we selected mesophyll protoplasts from a leaf protoplast preparation and demonstrated unequivocally that, in contrast to the companion cell-specific AtSUC2, HvSUT2 and AtSUT4 are expressed in mesophyll protoplasts, suggesting that HvSUT2 and AtSUT4 are involved in transport and vacuolar storage of photosynthetically derived Suc.
Collapse
Affiliation(s)
- Anne Endler
- University of Zurich, Institute of Plant Biology, CH-8008 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
427
|
Passardi F, Tognolli M, De Meyer M, Penel C, Dunand C. Two cell wall associated peroxidases from Arabidopsis influence root elongation. PLANTA 2006; 223:965-74. [PMID: 16284776 DOI: 10.1007/s00425-005-0153-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 09/19/2005] [Indexed: 05/05/2023]
Abstract
Two class III peroxidases from Arabidopsis, AtPrx33 and Atprx34, have been studied in this paper. Their encoding genes are mainly expressed in roots; AtPrx33 transcripts were also found in leaves and stems. Light activates the expression of both genes in seedlings. Transformed seedlings producing AtPrx33-GFP or AtPrx34-GFP fusion proteins under the control of the CaMV 35S promoter exhibit fluorescence in the cell walls of roots, showing that the two peroxidases are localized in the apoplast, which is in line with their affinity for the Ca(2+)-pectate structure. The role they can play in cell wall was investigated using (1) insertion mutants that have suppressed or reduced expression of AtPrx33 or AtPrx34 genes, respectively, (2) a double mutant with no AtPrx33 and a reduced level of Atprx34 transcripts, (3) a mutant overexpressing AtPrx34 under the control of the CaMV 35S promoter. The major phenotypic consequences of these genetic manipulations were observed on the variation of the length of seedling roots. Seedlings lacking AtPrx33 transcripts have shorter roots than the wild-type controls and roots are still shorter in the double mutant. Seedlings overexpressing AtPrx34 exhibit significantly longer roots. These modifications of root length are accompanied by corresponding changes of cell length. The results suggest that AtPrx33 and Atprx34, two highly homologous Arabidopsis peroxidases, are involved in the reactions that promote cell elongation and that this occurs most likely within cell walls.
Collapse
Affiliation(s)
- Filippo Passardi
- Laboratory of Plant Physiology, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
428
|
Ytterberg AJ, Peltier JB, van Wijk KJ. Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. PLANT PHYSIOLOGY 2006; 140:984-97. [PMID: 16461379 PMCID: PMC1400577 DOI: 10.1104/pp.105.076083] [Citation(s) in RCA: 340] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plastoglobules (PGs) are oval or tubular lipid-rich structures present in all plastid types, but their specific functions are unclear. PGs contain quinones, alpha-tocopherol, and lipids and, in chromoplasts, carotenoids as well. It is not known whether PGs contain any enzymes or regulatory proteins. Here, we determined the proteome of PGs from chloroplasts of stressed and unstressed leaves of Arabidopsis (Arabidopsis thaliana) as well as from pepper (Capsicum annuum) fruit chromoplasts using mass spectrometry. Together, this showed that the proteome of chloroplast PGs consists of seven fibrillins, providing a protein coat and preventing coalescence of the PGs, and an additional 25 proteins likely involved in metabolism of isoprenoid-derived molecules (quinines and tocochromanols), lipids, and carotenoid cleavage. Four unknown ABC1 kinases were identified, possibly involved in regulation of quinone monooxygenases. Most proteins have not been observed earlier but have predicted N-terminal chloroplast transit peptides and lack transmembrane domains, consistent with localization in the PG lipid monolayer particles. Quantitative differences in PG composition in response to high light stress and degreening were determined by differential stable-isotope labeling using formaldehyde. More than 20 proteins were identified in the PG proteome of pepper chromoplasts, including four enzymes of carotenoid biosynthesis and several homologs of proteins observed in the chloroplast PGs. Our data strongly suggest that PGs in chloroplasts form a functional metabolic link between the inner envelope and thylakoid membranes and play a role in breakdown of carotenoids and oxidative stress defense, whereas PGs in chromoplasts are also an active site for carotenoid conversions.
Collapse
Affiliation(s)
- A Jimmy Ytterberg
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
429
|
Glinski M, Weckwerth W. The role of mass spectrometry in plant systems biology. MASS SPECTROMETRY REVIEWS 2006; 25:173-214. [PMID: 16284938 DOI: 10.1002/mas.20063] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Large-scale analyses of proteins and metabolites are intimately bound to advancements in MS technologies. The aim of these non-targeted "omic" technologies is to extend our understanding beyond the analysis of only parts of the system. Here, metabolomics and proteomics emerged in parallel with the development of novel mass analyzers and hyphenated techniques such as gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF-MS) and multidimensional liquid chromatography coupled to mass spectrometry (LC-MS). The analysis of (i) proteins (ii) phosphoproteins, and (iii) metabolites is discussed in the context of plant physiology and environment and with a focus on novel method developments. Recently published studies measuring dynamic (quantitative) behavior at these levels are summarized; for these works, the completely sequenced plants Arabidopsis thaliana and Oryza sativa (rice) have been the primary models of choice. Particular emphasis is given to key physiological processes such as metabolism, development, stress, and defense. Moreover, attempts to combine spatial, tissue-specific resolution with systematic profiling are described. Finally, we summarize the initial steps to characterize the molecular plant phenotype as a corollary of environment and genotype.
Collapse
Affiliation(s)
- Mirko Glinski
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
430
|
Fujiwara M, Umemura K, Kawasaki T, Shimamoto K. Proteomics of Rac GTPase signaling reveals its predominant role in elicitor-induced defense response of cultured rice cells. PLANT PHYSIOLOGY 2006; 140:734-45. [PMID: 16384895 PMCID: PMC1361339 DOI: 10.1104/pp.105.068395] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2005] [Revised: 11/09/2005] [Accepted: 11/09/2005] [Indexed: 05/05/2023]
Abstract
We have previously shown that a human small GTPase Rac homolog, OsRac1, from rice (Oryza sativa) induces cascades of defense responses in rice plants and cultured cells. Sphingolipid elicitors (SEs) have been similarly shown to activate defense responses in rice. Therefore, to systematically analyze proteins whose expression levels are altered by OsRac1 and/or SE treatment, we performed a differential display analysis of proteins by the use of two-dimensional gel electrophoresis and mass spectrometry. A total of 271 proteins whose expression levels were altered by constitutively active (CA)-OsRac1 or SE were identified. Interestingly, of 100 proteins that were up-regulated by a SE, 87 were also induced by CA-OsRac1, suggesting that OsRac1 plays a pivotal role in defense responses induced by SE in cultured rice cells. In addition, CA-OsRac1 induces the expression of 119 proteins. Many proteins, such as pathogenesis-related proteins, SGT1, and prohibitin, which are known to be involved in the defense response, were found among these proteins. Proteins involved in redox regulation, chaperones such as heat shock proteins, BiP, and chaperonin 60, proteases and protease inhibitors, cytoskeletal proteins, subunits of proteasomes, and enzymes involved in the phenylpropanoid and ethylene biosynthesis pathways were found to be induced by CA-OsRac1 or SE. Results of our proteomic analysis revealed that OsRac1 is able to induce many proteins in various signaling and metabolic pathways and plays a predominant role in the defense response in cultured rice cells.
Collapse
Affiliation(s)
- Masayuki Fujiwara
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | | | | | | |
Collapse
|
431
|
Agrawal GK, Rakwal R. Rice proteomics: a cornerstone for cereal food crop proteomes. MASS SPECTROMETRY REVIEWS 2006; 25:1-53. [PMID: 15957154 DOI: 10.1002/mas.20056] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Proteomics-a systematic study of proteins present in a cell, tissue, organ, or organism at a particular moment during the life cycle-that began with classical two-dimensional electrophoresis and its advancement during the 1990s, has been revolutionized by a series of tremendous technological developments in mass spectrometry (MS), a core technology. Proteomics is exerting its influence on biological function of genes and genomes in the era (21st century) of functional genomics, and for this reason yeast, bacterial, and mammalian systems are the best examples. Although plant proteomics is still in its infancy, evolving proteomic technologies and the availability of the genome sequences of Arabidopsis thaliana (L.) Heyhn, and rice (Oryza sativa L.), model dicotyledoneous and monocotyledoneous (monocot) species, respectively, are propelling it towards new heights, as evidenced by the rapid spurt in worldwide plant proteome research. Rice, with an immense socio-economic impact on human civilization, is a representative model of cereal food crops, and we consider it as a cornerstone for functional genomics of cereal plants. In this review, we look at the history and the current state of monocot proteomes, including barley, maize, and wheat, with a central focus on rice, which has the most extensive proteomic coverage to date. On one side, we highlight advances in technologies that have generated enormous amount of interest in plant proteomics, and the other side summarizes the achievements made towards establishing proteomes during plant growth & development and challenge to environmental factors, including disease, and for studying genetic relationships. In light of what we have learned from the proteomic journey in rice and other monocots, we finally reveal and assess their impact in our continuous strive towards completion of their full proteomes.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Agricultural Biotechnology and Biochemistry (RLABB), Kathmandu, Nepal.
| | | |
Collapse
|
432
|
Okamoto T. Transport of Proteases to the Vacuole: ER Export Bypassing Golgi? PLANT CELL MONOGRAPHS 2006. [DOI: 10.1007/7089_055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
433
|
Otegui MS, Verbrugghe KJ, Skop AR. Midbodies and phragmoplasts: analogous structures involved in cytokinesis. Trends Cell Biol 2005; 15:404-13. [PMID: 16009554 PMCID: PMC3677513 DOI: 10.1016/j.tcb.2005.06.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 06/09/2005] [Accepted: 06/24/2005] [Indexed: 12/21/2022]
Abstract
Cytokinesis is an event common to all organisms that involves the precise coordination of independent pathways involved in cell-cycle regulation and microtubule, membrane, actin and organelle dynamics. In animal cells, the spindle midzone/midbody with associated endo-membrane system are required for late cytokinesis events, including furrow ingression and scission. In plants, cytokinesis is mediated by the phragmoplast, an array of microtubules, actin filaments and associated molecules that act as a framework for the future cell wall. In this article (which is part of the Cytokinesis series), we discuss recent studies that highlight the increasing number of similarities in the components and function of the spindle midzone/midbody in animals and the phragmoplast in plants, suggesting that they might be analogous structures.
Collapse
Affiliation(s)
- Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
434
|
Lanquar V, Lelièvre F, Bolte S, Hamès C, Alcon C, Neumann D, Vansuyt G, Curie C, Schröder A, Krämer U, Barbier-Brygoo H, Thomine S. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 2005; 24:4041-51. [PMID: 16270029 PMCID: PMC1356305 DOI: 10.1038/sj.emboj.7600864] [Citation(s) in RCA: 401] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 10/11/2005] [Indexed: 11/09/2022] Open
Abstract
Iron (Fe) is necessary for all living cells, but its bioavailability is often limited. Fe deficiency limits agriculture in many areas and affects over a billion human beings worldwide. In mammals, NRAMP2/DMT1/DCT1 was identified as a major pathway for Fe acquisition and recycling. In plants, AtNRAMP3 and AtNRAMP4 are induced under Fe deficiency. The similitude of AtNRAMP3 and AtNRAMP4 expression patterns and their common targeting to the vacuole, together with the lack of obvious phenotype in nramp3-1 and nramp4-1 single knockout mutants, suggested a functional redundancy. Indeed, the germination of nramp3 nramp4 double mutants is arrested under low Fe nutrition and fully rescued by high Fe supply. Mutant seeds have wild type Fe content, but fail to retrieve Fe from the vacuolar globoids. Our work thus identifies for the first time the vacuole as an essential compartment for Fe storage in seeds. Our data indicate that mobilization of vacuolar Fe stores by AtNRAMP3 and AtNRAMP4 is crucial to support Arabidopsis early development until efficient systems for Fe acquisition from the soil take over.
Collapse
Affiliation(s)
- Viviane Lanquar
- Institut des Sciences du Végétal, CNRS, Gif-sur-Yvette, France
| | | | - Susanne Bolte
- Plate-forme d'Imagerie et Biologie Cellulaire, IFR 87 ‘La Plante et son Environnement'/CNRS, Gif-sur-Yvette, France
| | - Cécile Hamès
- Institut des Sciences du Végétal, CNRS, Gif-sur-Yvette, France
| | - Carine Alcon
- Institut des Sciences du Végétal, CNRS, Gif-sur-Yvette, France
| | - Dieter Neumann
- Leibnitz Institute for Plant Biochemistry, Weinberg, Halle/Saale, Germany
| | - Gérard Vansuyt
- Biochimie et Physiologie Moléculaire des Plantes, CNRS (UMR5004)/INRA/AgroM/Université Montpellier 2, Montpellier, France
| | - Catherine Curie
- Biochimie et Physiologie Moléculaire des Plantes, CNRS (UMR5004)/INRA/AgroM/Université Montpellier 2, Montpellier, France
| | - Astrid Schröder
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
| | - Ute Krämer
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
| | | | - Sebastien Thomine
- Institut des Sciences du Végétal, CNRS, Gif-sur-Yvette, France
- Institut des Sciences du Végétal, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France. Tel.: +33 1 69 82 37 93; Fax: +33 1 69 82 37 68; E-mail:
| |
Collapse
|
435
|
Sunderasan E, Bahari A, Arif SAM, Zainal Z, Hamilton RG, Yeang HY. Molecular cloning and immunoglobulin E reactivity of a natural rubber latex lecithinase homologue, the major allergenic component of Hev b 4. Clin Exp Allergy 2005; 35:1490-5. [PMID: 16297147 DOI: 10.1111/j.1365-2222.2005.02371.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Hev b 4 is an allergenic natural rubber latex (NRL) protein complex that is reactive in skin prick tests and in vitro immunoassays. On SDS-polyacrylamide gel electrophoresis (SDS-PAGE), Hev b 4 is discerned predominantly at 53-55 kDa together with a 57 kDa minor component previously identified as a cyanogenic glucosidase. Of the 13 NRL allergens recognized by the International Union of Immunological Societies, the 53-55 kDa Hev b 4 major protein is the only candidate that lacks complete cDNA and protein sequence information. OBJECTIVE We sought to clone the transcript encoding the Hev b 4 major protein, and characterize the native protein and its recombinant form in relation to IgE binding. METHODS The 5'/3' rapid amplification of cDNA ends method was employed to obtain the complete cDNA of the Hev b 4 major protein. A recombinant form of the protein was over-expressed in Escherichia coli. The native Hev b 4 major protein was deglycosylated by trifluoromethane sulphonic acid. Western immunoblots of the native, deglycosylated and recombinant proteins were performed using both polyclonal antibodies and sera from latex-allergic patients. RESULTS The cDNA encoding the Hev b 4 major protein was cloned. Its open reading frame matched lecithinases in the conserved domain database and contained 10 predicted glycosylation sites. Detection of glycans on the Hev b 4 lecithinase homologue confirmed it to be a glycoprotein. The deglycosylated lecithinase homologue was discerned at 40 kDa on SDS-PAGE, this being comparable to the 38.53 kDa mass predicted by its cDNA. Deglycosylation of the lecithinase homologue resulted in the loss of IgE recognition, although reactivity to polyclonal rabbit anti-Hev b 4 was retained. IgE from latex-allergic patients also failed to recognize the non-glycosylated E. coli recombinant lecithinase homologue. CONCLUSION The IgE epitopes of the Hev b 4 lecithinase homologue reside mainly in its carbohydrate moiety, which also account for the discrepancy between the observed molecular weight of the protein and the value calculated from its cDNA.
Collapse
Affiliation(s)
- E Sunderasan
- Biotechnology and Strategic Research Unit, Malaysian Rubber Board, Kuala Lumpur, Malaysia.
| | | | | | | | | | | |
Collapse
|
436
|
Gao XQ, Li CG, Wei PC, Zhang XY, Chen J, Wang XC. The dynamic changes of tonoplasts in guard cells are important for stomatal movement in Vicia faba. PLANT PHYSIOLOGY 2005; 139:1207-16. [PMID: 16244153 PMCID: PMC1283759 DOI: 10.1104/pp.105.067520] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 08/26/2005] [Accepted: 08/26/2005] [Indexed: 05/04/2023]
Abstract
Stomatal movement is important for plants to exchange gas with environment. The regulation of stomatal movement allows optimizing photosynthesis and transpiration. Changes in vacuolar volume in guard cells are known to participate in this regulation. However, little has been known about the mechanism underlying the regulation of rapid changes in guard cell vacuolar volume. Here, we report that dynamic changes in the complex vacuolar membrane system play a role in the rapid changes of vacuolar volume in Vicia faba guard cells. The guard cells contained a great number of small vacuoles and various vacuolar membrane structures when stomata closed. The small vacuoles and complex membrane systems fused with each other or with the bigger vacuoles to generate large vacuoles during stomatal opening. Conversely, the large vacuoles split into smaller vacuoles and generated many complex membrane structures in the closing stomata. Vacuole fusion inhibitor, (2s,3s)-trans-epoxy-succinyl-l-leucylamido-3-methylbutane ethyl ester, inhibited stomatal opening significantly. Furthermore, an Arabidopsis (Arabidopsis thaliana) mutation of the SGR3 gene, which has a defect in vacuolar fusion, also led to retardation of stomatal opening. All these results suggest that the dynamic changes of the tonoplast are essential for enhancing stomatal movement.
Collapse
Affiliation(s)
- Xin-Qi Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, People's Republic of China
| | | | | | | | | | | |
Collapse
|
437
|
Naqvi SMS, Harper A, Carter C, Ren G, Guirgis A, York WS, Thornburg RW. Nectarin IV, a potent endoglucanase inhibitor secreted into the nectar of ornamental tobacco plants. Isolation, cloning, and characterization. PLANT PHYSIOLOGY 2005; 139:1389-400. [PMID: 16244157 PMCID: PMC1283774 DOI: 10.1104/pp.105.065227] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 08/15/2005] [Accepted: 09/12/2005] [Indexed: 05/05/2023]
Abstract
We have isolated and characterized the Nectarin IV (NEC4) protein that accumulates in the nectar of ornamental tobacco plants (Nicotiana langsdorffii x Nicotiana sanderae var LxS8). This 60-kD protein has a blocked N terminus. Three tryptic peptides of the protein were isolated and sequenced using tandem mass spectroscopy. These unique peptides were found to be similar to the xyloglucan-specific fungal endoglucanase inhibitor protein (XEGIP) precursor in tomato (Lycopersicon esculentum) and its homolog in potato (Solanum tuberosum). A pair of oligonucleotide primers was designed based on the potato and tomato sequences that were used to clone a 1,018-bp internal piece of nec4 cDNA from a stage 6 nectary cDNA library. The remaining portions of the cDNA were subsequently captured by 5' and 3' rapid amplification of cDNA ends. Complete sequencing of the nec4 cDNA demonstrated that it belonged to a large family of homologous proteins from a wide variety of angiosperms. Related proteins include foliage proteins and seed storage proteins. Based upon conserved identity with the wheat (Triticum aestivum) xylanase inhibitor TAXI-1, we were able to develop a protein model that showed that NEC4 contains additional amino acid loops that are not found in TAXI-1 and that glycosylation sites are surface exposed. Both these loops and sites of glycosylation are on the opposite face of the NEC4 molecule from the site that interacts with fungal hemicellulases, as indicated by homology to TAXI-I. NEC4 also contains a region homologous to the TAXI-1 knottin domain; however, a deletion in this domain restructures the disulfide bridges of this domain, resulting in a pseudoknottin domain. Inhibition assays were performed to determine whether purified NEC4 was able to inhibit fungal endoglucanases and xylanases. These studies showed that NEC4 was a very effective inhibitor of a family GH12 xyloglucan-specific endoglucanase with a K(i) of 0.35 nm. However, no inhibitory activity was observed against other family GH10 or GH11 xylanases. The patterns of expression of the NEC4 protein indicate that, while expressed in nectar at anthesis, it is most strongly expressed in the nectary gland after fertilization, indicating that inhibition of fungal cell wall-degrading enzymes may be more important after fertilization than before.
Collapse
Affiliation(s)
- S M Saqlan Naqvi
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IW 50011, USA
| | | | | | | | | | | | | |
Collapse
|
438
|
Reduction in vacuolar volume in the tapetal cells coincides with conclusion of the tetrad stage in Arabidopsis thaliana. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/s00497-005-0010-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
439
|
Abstract
Plant vacuoles have multiple functions: they can act both as digestive organelles and as receptacles for storage proteins. Different types of vacuoles can coexist in the same cell, which adds complexity to the process of targeting to these compartments. A fuller understanding of this process is of evident value when endeavouring to exploit the plant secretory pathway for heterologous protein production. Positive sorting signals are required in order to sort proteins to vacuoles, and these have been split into three groups: ctVSS [C-terminal VSS (vacuolar sorting signals)], ssVSS (sequence-specific VSS) and physical structure VSS. The current working model posits that soluble proteins are delivered from the Golgi apparatus to the lytic vacuoles in clathrin-coated vesicles by virtue of their ssVSS, or to the storage vacuole [PSV (protein-storage vacuole)] in dense vesicles in a manner dependent on ctVSS or physical structure VSS. Although targeting to LV appears to be receptor-mediated, no such receptor has been identified for the recruitment of proteins to the PSV. We have studied the vacuolar targeting of two castor bean (Ricinus communis L.) storage proteins, proricin and pro 2 S albumin, in their native endosperm and in the heterologous system of tobacco protoplasts. We have found that both these proteins contain bona fide ssVSS and bind to sorting receptors in vitro in a similarly sequence-specific manner. The apparent similarities to lytic VSS and possible implications with respect to the working model for transport to storage vacuoles are discussed.
Collapse
|
440
|
Heazlewood JL, Tonti-Filippini J, Verboom RE, Millar AH. Combining experimental and predicted datasets for determination of the subcellular location of proteins in Arabidopsis. PLANT PHYSIOLOGY 2005; 139:598-609. [PMID: 16219920 PMCID: PMC1255979 DOI: 10.1104/pp.105.065532] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 08/03/2005] [Accepted: 08/08/2005] [Indexed: 05/04/2023]
Abstract
Substantial experimental datasets defining the subcellular location of Arabidopsis (Arabidopsis thaliana) proteins have been reported in the literature in the form of organelle proteomes built from mass spectrometry data (approximately 2,500 proteins). Subcellular location for specific proteins has also been published based on imaging of chimeric fluorescent fusion proteins in intact cells (approximately 900 proteins). Further, the more diverse history of biochemical determination of subcellular location is stored in the entries of the Swiss-Prot database for the products of many Arabidopsis genes (approximately 1,800 proteins). Combined with the range of bioinformatic targeting prediction tools and comparative genomic analysis, these experimental datasets provide a powerful basis for defining the final location of proteins within the wide variety of subcellular structures present inside Arabidopsis cells. We have analyzed these published experimental and prediction data to answer a range of substantial questions facing researchers about the veracity of these approaches to determining protein location and their interrelatedness. We have merged these data to form the subcellular location database for Arabidopsis proteins (SUBA), providing an integrated understanding of protein location, encompassing the plastid, mitochondrion, peroxisome, nucleus, plasma membrane, endoplasmic reticulum, vacuole, Golgi, cytoskeleton structures, and cytosol (www.suba.bcs.uwa.edu.au). This includes data on more than 4,400 nonredundant Arabidopsis protein sequences. We also provide researchers with an online resource that may be used to query protein sets or protein families and determine whether predicted or experimental location data exist; to analyze the nature of contamination between published proteome sets; and/or for building theoretical subcellular proteomes in Arabidopsis using the latest experimental data.
Collapse
Affiliation(s)
- Joshua L Heazlewood
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley
| | | | | | | |
Collapse
|
441
|
|
442
|
Roelfsema MRG, Hedrich R. In the light of stomatal opening: new insights into 'the Watergate'. THE NEW PHYTOLOGIST 2005; 167:665-91. [PMID: 16101906 DOI: 10.1111/j.1469-8137.2005.01460.x] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Stomata can be regarded as hydraulically driven valves in the leaf surface, which open to allow CO2 uptake and close to prevent excessive loss of water. Movement of these 'Watergates' is regulated by environmental conditions, such as light, CO2 and humidity. Guard cells can sense environmental conditions and function as motor cells within the stomatal complex. Stomatal movement results from the transport of K+ salts across the guard cell membranes. In this review, we discuss the biophysical principles and mechanisms of stomatal movement and relate these to ion transport at the plasma membrane and vacuolar membrane. Studies with isolated guard cells, combined with recordings on single guard cells in intact plants, revealed that light stimulates stomatal opening via blue light-specific and photosynthetic-active radiation-dependent pathways. In addition, guard cells sense changes in air humidity and the water status of distant tissues via the stress hormone abscisic acid (ABA). Guard cells thus provide an excellent system to study cross-talk, as multiple signaling pathways induce both short- and long-term responses in these sensory cells.
Collapse
Affiliation(s)
- M Rob G Roelfsema
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | | |
Collapse
|
443
|
Orsomando G, de la Garza RD, Green BJ, Peng M, Rea PA, Ryan TJ, Gregory JF, Hanson AD. Plant gamma-glutamyl hydrolases and folate polyglutamates: characterization, compartmentation, and co-occurrence in vacuoles. J Biol Chem 2005; 280:28877-84. [PMID: 15961386 DOI: 10.1074/jbc.m504306200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
gamma-Glutamyl hydrolase (GGH, EC 3.4.19.9) catalyzes removal of the polyglutamyl tail from folyl and p-aminobenzoyl polyglutamates. Plants typically have one or a few GGH genes; Arabidopsis has three, tandemly arranged on chromosome 1, which encode proteins with predicted secretory pathway signal peptides. Two representative Arabidopsis GGH proteins, AtGGH1 and AtGGH2 (the At1g78660 and At1g78680 gene products, respectively) were expressed in truncated form in Escherichia coli and purified. Both enzymes were active as dimers, had low K(m) values (0.5-2 microm) for folyl and p-aminobenzoyl pentaglutamates, and acted as endopeptidases. However, despite 80% sequence identity, they differed in that AtGGH1 cleaved pentaglutamates, mainly to di- and triglutamates, whereas AtGGH2 yielded mainly monoglutamates. Analysis of subcellular fractions of pea leaves and red beet roots established that GGH activity is confined to the vacuole and that this activity, if not so sequestered, would deglutamylate all cellular folylpolyglutamates within minutes. Purified pea leaf vacuoles contained an average of 20% of the total cellular folate compared with approximately 50 and approximately 10%, respectively, in mitochondria and chloroplasts. The main vacuolar folate was 5-methyltetrahydrofolate, of which 51% was polyglutamylated. In contrast, the principal mitochondrial and chloroplastic forms were 5-formyl- and 5,10-methenyltetrahydrofolate polyglutamates, respectively. In beet roots, 16-60% of the folate was vacuolar and was again mainly 5-methyltetrahydrofolate, of which 76% was polyglutamylated. These data point to a hitherto unsuspected role for vacuoles in folate storage. Furthermore, the paradoxical co-occurrence of GGH and folylpolyglutamates in vacuoles implies that the polyglutamates are somehow protected from GGH attack.
Collapse
Affiliation(s)
- Giuseppe Orsomando
- Horticultural Sciences and Food Science Department, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | | | | | |
Collapse
|
444
|
Cheng NH, Pittman JK, Shigaki T, Lachmansingh J, LeClere S, Lahner B, Salt DE, Hirschi KD. Functional association of Arabidopsis CAX1 and CAX3 is required for normal growth and ion homeostasis. PLANT PHYSIOLOGY 2005; 138:2048-60. [PMID: 16055687 PMCID: PMC1183394 DOI: 10.1104/pp.105.061218] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cation levels within the cytosol are coordinated by a network of transporters. Here, we examine the functional roles of calcium exchanger 1 (CAX1), a vacuolar H+/Ca2+ transporter, and the closely related transporter CAX3. We demonstrate that like CAX1, CAX3 is also localized to the tonoplast. We show that CAX1 is predominately expressed in leaves, while CAX3 is highly expressed in roots. Previously, using a yeast assay, we demonstrated that an N-terminal truncation of CAX1 functions as an H+/Ca2+ transporter. Here, we use the same yeast assay to show that full-length CAX1 and full-length CAX3 can partially, but not fully, suppress the Ca2+ hypersensitive yeast phenotype and coexpression of full-length CAX1 and CAX3 conferred phenotypes not produced when either transporter was expressed individually. In planta, CAX3 null alleles were modestly sensitive to exogenous Ca2+ and also displayed a 22% reduction in vacuolar H+-ATPase activity. cax1/cax3 double mutants displayed a severe reduction in growth, including leaf tip and flower necrosis and pronounced sensitivity to exogenous Ca2+ and other ions. These growth defects were partially suppressed by addition of exogenous Mg2+. The double mutant displayed a 42% decrease in vacuolar H+/Ca2+ transport, and a 47% decrease in H+-ATPase activity. While the ionome of cax1 and cax3 lines were modestly perturbed, the cax1/cax3 lines displayed increased PO4(3-), Mn2+, and Zn2+ and decreased Ca2+ and Mg2+ in shoot tissue. These findings suggest synergistic function of CAX1 and CAX3 in plant growth and nutrient acquisition.
Collapse
Affiliation(s)
- Ning-Hui Cheng
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
445
|
Holtum JAM, Smith JAC, Neuhaus HE. Intracellular transport and pathways of carbon flow in plants with crassulacean acid metabolism. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:429-449. [PMID: 32689145 DOI: 10.1071/fp04189] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2004] [Accepted: 02/22/2005] [Indexed: 06/11/2023]
Abstract
The massive daily reciprocal transfer of carbon between acids and carbohydrates that is unique to crassulacean acid metabolism (CAM) involves extensive and regulated transport of metabolites between chloroplasts, vacuoles, the cytosol and mitochondria. In this review of the CAM pathways of carbon flow and intracellular transport, we highlight what is known and what has been postulated. For three of the four CAM pathway variants currently known (malic enzyme- or PEP carboxykinase-type decarboxylase, and starch- or soluble sugar-type carbohydrate storage), the mechanisms of intracellular transport are still hypothetical and have yet to be demonstrated experimentally. Even in malic enzyme starch-storing species such as Kalanchoë daigremontiana Hamet et Perr. and Mesembryanthemum crystallinum L., the best-described variants of plants with the second-most common mode of photosynthetic carbon metabolism known, no tonoplast or mitochondrial transporter has been functionally described at a molecular level.
Collapse
Affiliation(s)
- Joseph A M Holtum
- School of Tropical Biology, James Cook University, Townsville, Qld 4811, Australia
| | - J Andrew C Smith
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - H Ekkehard Neuhaus
- Universität Kaiserslautern, Pflanzenphysiologie, Erwin Schrödinger-Strasse, D-67653 Kaiserslautern, Germany
| |
Collapse
|
446
|
Peck SC. Update on proteomics in Arabidopsis. Where do we go from here? PLANT PHYSIOLOGY 2005; 138:591-9. [PMID: 15955923 PMCID: PMC1150380 DOI: 10.1104/pp.105.060285] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 02/26/2005] [Accepted: 02/28/2005] [Indexed: 05/03/2023]
Affiliation(s)
- Scott C Peck
- Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
447
|
Ottow EA, Polle A, Brosché M, Kangasjärvi J, Dibrov P, Zörb C, Teichmann T. Molecular characterization of PeNhaD1: the first member of the NhaD Na+/H+ antiporter family of plant origin. PLANT MOLECULAR BIOLOGY 2005; 58:75-88. [PMID: 16028118 DOI: 10.1007/s11103-005-4525-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 03/24/2005] [Indexed: 05/03/2023]
Abstract
PeNhaD1 encodes a putative Na+/H+ antiporter from the salt-resistant tree Populus euphratica. It is the first characterization of a member of the NhaD type ion transporter family of plant origin. Homology searches revealed its close relation to functionally characterized microbial Na+/H+ antiporters VpNhaD and VcNhaD. Na+/H+ antiporters have proven to play a key role in salt resistance, both in plants and bacteria. Under salt stress transcript levels of PeNhaD1 were maintained only in the salt-resistant P. euphratica, but collapsed in Populus x canescens, a salt-sensitive species. To address the function of PeNhaD1, complementation studies with the salt-sensitive Escherichia coli EP432 mutant strain, lacking activity of the two Na+/H+ antiporters EcNhaA and EcNhaB were carried out. PeNhaD1 was able to restore growth of EP432 under stress imposed by up to 400 mM NaCl demonstrating its protective function. Growth rates of EP432 were always highest at pH 5.5 while growth was suppressed under salt stress at pH 7.0 and pH 8.0 suggesting that the antiporter activity is strongly pH dependent. Element analyses of EP432 cells complemented with PeNhaD1 growing under salt stress showed that salt resistance was correlated with a significant reduction in sodium accumulation. These results suggest that PeNhaD1 might play a role in the salt resistance of P. euphratica.
Collapse
Affiliation(s)
- Eric A Ottow
- Institut für Forstbotanik, Georg-August-Universität Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
448
|
Chang IF, Szick-Miranda K, Pan S, Bailey-Serres J. Proteomic characterization of evolutionarily conserved and variable proteins of Arabidopsis cytosolic ribosomes. PLANT PHYSIOLOGY 2005; 137:848-62. [PMID: 15734919 PMCID: PMC1065386 DOI: 10.1104/pp.104.053637] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 11/16/2004] [Accepted: 11/23/2004] [Indexed: 05/18/2023]
Abstract
Analysis of 80S ribosomes of Arabidopsis (Arabidopsis thaliana) by use of high-speed centrifugation, sucrose gradient fractionation, one- and two-dimensional gel electrophoresis, liquid chromatography purification, and mass spectrometry (matrix-assisted laser desorption/ionization time-of-flight and electrospray ionization) identified 74 ribosomal proteins (r-proteins), of which 73 are orthologs of rat r-proteins and one is the plant-specific r-protein P3. Thirty small (40S) subunit and 44 large (60S) subunit r-proteins were confirmed. In addition, an ortholog of the mammalian receptor for activated protein kinase C, a tryptophan-aspartic acid-domain repeat protein, was found to be associated with the 40S subunit and polysomes. Based on the prediction that each r-protein is present in a single copy, the mass of the Arabidopsis 80S ribosome was estimated as 3.2 MD (1,159 kD 40S; 2,010 kD 60S), with the 4 single-copy rRNAs (18S, 26S, 5.8S, and 5S) contributing 53% of the mass. Despite strong evolutionary conservation in r-protein composition among eukaryotes, Arabidopsis 80S ribosomes are variable in composition due to distinctions in mass or charge of approximately 25% of the r-proteins. This is a consequence of amino acid sequence divergence within r-protein gene families and posttranslational modification of individual r-proteins (e.g. amino-terminal acetylation, phosphorylation). For example, distinct types of r-proteins S15a and P2 accumulate in ribosomes due to evolutionarily divergence of r-protein genes. Ribosome variation is also due to amino acid sequence divergence and differential phosphorylation of the carboxy terminus of r-protein S6. The role of ribosome heterogeneity in differential mRNA translation is discussed.
Collapse
Affiliation(s)
- Ing-Feng Chang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124, USA.
| | | | | | | |
Collapse
|
449
|
Niihama M, Uemura T, Saito C, Nakano A, Sato MH, Tasaka M, Morita MT. Conversion of Functional Specificity in Qb-SNARE VTI1 Homologues of Arabidopsis. Curr Biol 2005; 15:555-60. [PMID: 15797025 DOI: 10.1016/j.cub.2005.02.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 01/19/2005] [Accepted: 01/20/2005] [Indexed: 11/26/2022]
Abstract
In higher multicellular eukaryotes, highly specialized membrane structures or membrane trafficking events are required for supporting various physiological functions. SNAREs (soluble NSF attachment protein receptors) play an important role in specific membrane fusions. These protein receptors are assigned to subgroubs (Qa-, Qb-, Qc-, and R-SNARE) according to their specific SNARE structural motif. A specific set of Qa-, Qb-, and Qc-SNAREs, located on the target membrane, interact with R-SNARE on the vesicle to form a tight complex, leading to membrane fusion. The zig-1 mutant of Arabidopsis lacking Qb-SNARE VTI11 shows little shoot gravitropism and abnormal stem morphology. VTI11 and its homolog VTI12 exhibit partially overlapping but distinct intracellular localization and have different biological functions in plants. Little is known about how SNAREs are targeted to specific organelles, even though their functions and specific localization are closely linked. Here, we report that a novel mutation in VTI12 (zip1) was found as a dominant suppressor of zig-1. The zip1 mutation gave VTI12 the ability to function as VTI11 by changing both the specificity of SNARE complex formation and its intracellular localization. One amino acid substitution drastically altered VTI12, allowing it to suppress abnormalities of higher order physiological functions such as gravitropism and morphology. The zip1 mutation may be an indication of the flexibility in plant cell function afforded by gene duplication, particularly among the VTI11 genes and their recently diverged orthologs.
Collapse
Affiliation(s)
- Mitsuru Niihama
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | | | |
Collapse
|
450
|
Peiter E, Maathuis FJM, Mills LN, Knight H, Pelloux J, Hetherington AM, Sanders D. The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 2005; 434:404-8. [PMID: 15772667 DOI: 10.1038/nature03381] [Citation(s) in RCA: 355] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Accepted: 01/20/2005] [Indexed: 11/09/2022]
Abstract
Cytosolic free calcium ([Ca2+]cyt) is a ubiquitous signalling component in plant cells. Numerous stimuli trigger sustained or transient elevations of [Ca2+]cyt that evoke downstream stimulus-specific responses. Generation of [Ca2+]cyt signals is effected through stimulus-induced opening of Ca2+-permeable ion channels that catalyse a flux of Ca2+ into the cytosol from extracellular or intracellular stores. Many classes of Ca2+ current have been characterized electrophysiologically in plant membranes. However, the identity of the ion channels that underlie these currents has until now remained obscure. Here we show that the TPC1 ('two-pore channel 1') gene of Arabidopsis thaliana encodes a class of Ca2+-dependent Ca2+-release channel that is known from numerous electrophysiological studies as the slow vacuolar channel. Slow vacuolar channels are ubiquitous in plant vacuoles, where they form the dominant conductance at micromolar [Ca2+]cyt. We show that a tpc1 knockout mutant lacks functional slow vacuolar channel activity and is defective in both abscisic acid-induced repression of germination and in the response of stomata to extracellular calcium. These studies unequivocally demonstrate a critical role of intracellular Ca2+-release channels in the physiological processes of plants.
Collapse
Affiliation(s)
- Edgar Peiter
- Biology Department, Area 9, University of York, PO Box 373, York YO10 5YW, UK
| | | | | | | | | | | | | |
Collapse
|