401
|
Penfield S, King J. Towards a systems biology approach to understanding seed dormancy and germination. Proc Biol Sci 2009; 276:3561-9. [PMID: 19605392 DOI: 10.1098/rspb.2009.0592] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Seed germination is the first adaptive decision in the development of many land plants. Advances in genetics and molecular physiology have taught us much about the control of germination using the model plant Arabidopsis thaliana. Here we review the current state of the art with an emphasis on mechanistic considerations and explore the potential impact of a systems biology approach to the problem.
Collapse
Affiliation(s)
- Steven Penfield
- Department of Biology, Centre for Novel Agricultural Products, University of York, PO Box 373, York YO10 5YW, UK.
| | | |
Collapse
|
402
|
Modification of plant hormone levels and signaling as a tool in plant biotechnology. Biotechnol J 2009; 4:1293-304. [DOI: 10.1002/biot.200800286] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
403
|
Piskurewicz U, Turecková V, Lacombe E, Lopez-Molina L. Far-red light inhibits germination through DELLA-dependent stimulation of ABA synthesis and ABI3 activity. EMBO J 2009; 28:2259-71. [PMID: 19556968 DOI: 10.1038/emboj.2009.170] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 05/27/2009] [Indexed: 11/09/2022] Open
Abstract
Under the canopy, far-red (FR) light represses seed germination by inactivating phytochrome photoreceptors. This elicits a decrease in gibberellins (GA) levels and an increase in abscisic acid (ABA) levels. GA promotes germination by enhancing the proteasome-mediated destruction of DELLA repressors. ABA prevents germination by stimulating the expression of ABI repressors. How phytochromes elicit changes in hormone levels or how GA- and ABA-dependent signals are coordinated to repress germination remains poorly understood. We show that repression of germination by FR light involves stabilized DELLA factors GAI, RGA and RGL2 that stimulate endogenous ABA synthesis. In turn, ABA blocks germination through the transcription factor ABI3. The role of PIL5, a basic helix-loop-helix transcription factor stimulating GAI and RGA expression, is significant, provided GA synthesis is high enough; otherwise, high GAI and RGA protein levels persist to block germination. Under white light, GAI and RGA driven by the RGL2 promoter can substitute for RGL2 to promote ABA synthesis and repress germination, consistent with the recent findings with RGL2. The three DELLA factors inhibit testa rupture whereas ABI3 blocks endosperm rupture.
Collapse
Affiliation(s)
- Urszula Piskurewicz
- Département de Biologie Végétale, Université de Genève, Genève 4, Switzerland
| | | | | | | |
Collapse
|
404
|
Maymon I, Greenboim-Wainberg Y, Sagiv S, Kieber JJ, Moshelion M, Olszewski N, Weiss D. Cytosolic activity of SPINDLY implies the existence of a DELLA-independent gibberellin-response pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:979-88. [PMID: 19228341 DOI: 10.1111/j.1365-313x.2009.03840.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Specific plant developmental processes are modulated by cross-talk between gibberellin (GA)- and cytokinin-response pathways. Coordination of the two pathways involves the O-linked N-acetylglucosamine transferase SPINDLY (SPY) that suppresses GA signaling and promotes cytokinin responses in Arabidopsis. Although SPY is a nucleocytoplasmic protein, its site of action and targets are unknown. Several studies have suggested that SPY acts in the nucleus, where it modifies nuclear components such as the DELLA proteins to regulate signaling networks. Using chimeric GFP-SPY fused to a nuclear-export signal or to a glucocorticoid receptor, we show that cytosolic SPY promotes cytokinin responses and suppresses GA signaling. In contrast, nuclear-localized GFP-SPY failed to complement the spy mutation. To examine whether modulation of cytokinin activity by GA and spy is mediated by the nuclear DELLA proteins, cytokinin responses were studied in double and quadruple della mutants lacking the activities of REPRESSOR OF GA1-3 (RGA) and GA-INSENSITIVE (GAI) or RGA, GAI, RGA Like1 (RGL1) and RGL2. Unlike spy, the della mutants were cytokinin-sensitive. Moreover, when GA was applied to a cytokinin-treated quadruple della mutant it was able to suppress various cytokinin responses. These results suggest that cytosolic SPY and GA regulate cytokinin responses via a DELLA-independent pathway(s).
Collapse
Affiliation(s)
- Inbar Maymon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
405
|
Abstract
Diseased plants often display phenotypes consistent with hormone perturbations. We review recent data that have revealed roles in plant-microbe interactions for cellular components and signaling molecules that previously were associated only with hormone signaling. A better understanding of cross-talk between hormonal and defense signaling pathways should reveal new potential targets for microbial effectors that attenuate host resistance mechanisms.
Collapse
Affiliation(s)
- Murray R Grant
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | | |
Collapse
|
406
|
Schoonheim PJ, Costa Pereira DDA, De Boer AH. Dual role for 14-3-3 proteins and ABF transcription factors in gibberellic acid and abscisic acid signalling in barley (Hordeum vulgare) aleurone cells. PLANT, CELL & ENVIRONMENT 2009; 32:439-47. [PMID: 19143991 DOI: 10.1111/j.1365-3040.2009.01932.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The balance of gibberellins [gibberellic acid (GA)] and abscisic acid (ABA) is a determining factor during transition of embryogenesis and seed germination. Recently, we showed that 14-3-3 proteins are important in ABA signalling in barley aleurone cells. Using 14-3-3 RNAi constructs in the barley aleurone transient expression system, we demonstrate here that silencing of each 14-3-3 isoform suppresses GA induction of the alpha-amylase gene. 14-3-3 Proteins interact with ABA-responsive element (ABRE) binding factors HvABF1, 2 and 3, and here we show that these transcription factors also interact with the ABA-responsive kinase PKABA1, a kinase that mediates cross-talk between the GA and ABA pathway. ABF1 and ABF2 have a function in both signalling pathways as: (1) ectopic expression of wild-type ABF1 and mutant ABF2, lacking the 14-3-3 interaction domain, transactivates the ABA inducible HVA1 gene; and (2) GA induction of the alpha-amylase gene is repressed by ectopic expression of wild-type ABF1 and 2. Mutant ABF1 and 2 were still effective repressors of GA signalling. In summary, our data provide evidence that 14-3-3 proteins and members of the ABF transcription factor family have a regulatory function in the GA pathway and suggest that PKABA1 and ABF transcription factors are cross-talk intermediates in ABA and GA signalling.
Collapse
Affiliation(s)
- Peter J Schoonheim
- Vrije Universiteit Amsterdam, Faculty Earth and Life Sciences, Department of Structural Biology, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | | | | |
Collapse
|
407
|
Harberd NP, Belfield E, Yasumura Y. The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an "inhibitor of an inhibitor" enables flexible response to fluctuating environments. THE PLANT CELL 2009; 21:1328-39. [PMID: 19470587 PMCID: PMC2700538 DOI: 10.1105/tpc.109.066969] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 04/30/2009] [Accepted: 05/03/2009] [Indexed: 05/18/2023]
Abstract
The phytohormone gibberellin (GA) has long been known to regulate the growth, development, and life cycle progression of flowering plants. However, the molecular GA-GID1-DELLA mechanism that enables plants to respond to GA has only recently been discovered. In addition, studies published in the last few years have highlighted previously unsuspected roles for the GA-GID1-DELLA mechanism in regulating growth response to environmental variables. Here, we review these advances within a general plant biology context and speculate on the answers to some remaining questions. We also discuss the hypothesis that the GA-GID1-DELLA mechanism enables flowering plants to maintain transient growth arrest, giving them the flexibility to survive periods of adversity.
Collapse
Affiliation(s)
- Nicholas P Harberd
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom.
| | | | | |
Collapse
|
408
|
Zhang ZL, Shin M, Zou X, Huang J, Ho THD, Shen QJ. A negative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signaling in aleurone cells. PLANT MOLECULAR BIOLOGY 2009; 70:139-51. [PMID: 19199048 DOI: 10.1007/s11103-009-9463-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 01/19/2009] [Indexed: 05/05/2023]
Abstract
Abscisic acid (ABA) and gibberellins (GAs) control several developmental processes including seed maturation, dormancy, and germination. The antagonism of these two hormones is well-documented. However, recent data from transcription profiling studies indicate that they can function as agonists in regulating the expression of many genes although the underlying mechanism is unclear. Here we report a rice WRKY gene, OsWRKY24, which encodes a protein that functions as a negative regulator of both GA and ABA signaling. Overexpression of OsWRKY24 via particle bombardment-mediated transient expression in aleurone cells represses the expression of two reporter constructs: the beta-glucuronidase gene driven by the GA-inducible Amy32b alpha-amylase promoter (Amy32b-GUS) and the ABA-inducible HVA22 promoter (HVA22-GUS). OsWRKY24 is unlikely a general repressor because it has little effect on the expression of the luciferase reporter gene driven by a constitutive ubiquitin promoter (UBI-Luciferase). As to the GA signaling, OsWRKY24 differs from OsWRKY51 and -71, two negative regulators specifically function in the GA signaling pathway, in several ways. First, OsWRKY24 contains two WRKY domains while OsWRKY51 and -71 have only one; both WRKY domains are essential for the full repressing activity of OsWRKY24. Second, binding of OsWRKY24 to the Amy32b promoter appears to involve sequences in addition to the TGAC cores of the W-boxes. Third, unlike OsWRKY71, OsWRKY24 is stable upon GA treatment. Together, these data demonstrate that OsWRKY24 is a novel type of transcriptional repressor that inhibits both GA and ABA signaling.
Collapse
Affiliation(s)
- Zhong-Lin Zhang
- School of Life Sciences, University of Nevada, M/S 4004, 4505 Maryland Parkway, Las Vegas, NV 89154, USA
| | | | | | | | | | | |
Collapse
|
409
|
Zhang S, Yang C, Peng J, Sun S, Wang X. GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2009; 69:745-59. [PMID: 19190987 DOI: 10.1007/s11103-009-9452-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 01/02/2009] [Indexed: 05/08/2023]
Abstract
Flowering is a critical event in the life cycle of plants and is regulated by a combination of endogenous controls and environmental cues. In the present work, we provide clear genetic evidence that GASA5, a GASA family gene in Arabidopsis (Arabidopsis thaliana), is involved in controlling flowering time and stem growth. GASA5 expression was present in all tissues of Arabidopsis plants, as detected by RT-PCR, and robust GUS staining was observed in the shoot apex of 8-day-old seedlings and inflorescence meristems during reproductive development. Phenotypic analysis showed that a GASA5 null mutant (gasa5-1) flowered earlier than wild type with a faster stem growth rate under both long-day (LD) and short-day (SD) photoperiods. In contrast, transgenic plants overexpressing GASA5 demonstrated delayed flowering, with a slower stem growth rate compared to wild-type plants. However, neither the GASA5 null mutants nor the GASA5 overexpressing plants revealed obvious differences in flowering time upon treatment with gibberellic acid (GA(3)), indicating that GASA5 is involved in gibberellin (GA)-promoted flowering. GAI (GA INSENSITIVE), one of the five DELLAs in Arabidopsis, was more highly expressed in GASA5-overexpressing plants, but it was lower in gasa5-1. Further transcript profiling analysis suggested that GASA5 delayed flowering by enhancing FLOWERING LOCUS C (FLC) expression and repressing the expression of key flowering-time genes, FLOWERING LOCUS T (FT) and LEAFY (LFY). Our results suggest that GASA5 is a negative regulator of GA-induced flowering and stem growth.
Collapse
Affiliation(s)
- Shengchun Zhang
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, Guangdong, People's Republic of China
| | | | | | | | | |
Collapse
|
410
|
Weston DE, Reid JB, Ross JJ. Auxin regulation of gibberellin biosynthesis in the roots of pea (Pisum sativum). FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:362-369. [PMID: 32688653 DOI: 10.1071/fp08301] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 02/06/2009] [Indexed: 06/11/2023]
Abstract
Auxin promotes GA biosynthesis in the aboveground parts of plants. However, it has not been demonstrated previously that this interaction occurs in roots. To understand the interactions between auxin and GAs in these organs, we treated wild-type pea (Pisum sativum L.) roots with the inhibitors of auxin action, p-chlorophenoxyisobutyric acid (PCIB) and yokonolide B (YkB), and with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). These compounds generally downregulated GA synthesis genes and upregulated GA deactivation genes, and reduced the level of the bioactive GA1. These effects indicate that in pea roots, auxin at normal endogenous levels stimulates GA biosynthesis. We show also that supra-optimal levels of exogenous auxin reduce the endogenous level of bioactive GA in roots, although the effect appears too small to account for the strong growth-inhibitory effect of high auxin levels.
Collapse
Affiliation(s)
- Diana E Weston
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - James B Reid
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - John J Ross
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
411
|
Leymarie J, Benech-Arnold RL, Farrant JM, Corbineau F. Thermodormancy and ABA metabolism in barley grains. PLANT SIGNALING & BEHAVIOR 2009; 4:205-7. [PMID: 19721750 PMCID: PMC2652529 DOI: 10.4161/psb.4.3.7797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 05/06/2023]
Abstract
Incubation of barley primary dormant grains at 30°C, a temperature at which they cannot germinate results in a reinforcement of their sensitivity to temperature, and in particular in a loss of their ability to germinate at 15–20°C. Incubation of the grains at 30°C in the presence of GA3 (1 mM) or of isolated embryos prevents this induction of secondary dormancy. In such a condition, embryo ABA content was lower than that measured in embryos of seeds incubated at 30°C on water. Expression of genes involved in ABA metabolism (HvABA8′OH1, HvNCED1 and HvNCED2) was studied in isolated embryos incubated on water and in the presence of GA3 (1 mM). Expression of HvABA8′OH1, HvNCED1 and HvNCED2 was discussed in relation with ABA content and germination ability at 30°C.
Collapse
|
412
|
Seo M, Nambara E, Choi G, Yamaguchi S. Interaction of light and hormone signals in germinating seeds. PLANT MOLECULAR BIOLOGY 2009; 69:463-72. [PMID: 19031046 DOI: 10.1007/s11103-008-9429-y] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 11/04/2008] [Indexed: 05/22/2023]
Abstract
Seed germination is regulated by several environmental factors, such as moisture, oxygen, temperature, light, and nutrients. Light is a critical regulator of seed germination in small-seeded plants, including Arabidopsis and lettuce. Phytochromes, a class of photoreceptors, play a major role in perceiving light to induce seed germination. Classical physiological studies have long suggested the involvement of gibberellin (GA) and abscisic acid (ABA) in the phytochrome-mediated germination response. Recent studies have demonstrated that phytochromes modulate endogenous levels of GA and ABA, as well as GA responsiveness. Several key components that link the perception of light and the modulation of hormone levels and responsiveness have been identified. Complex regulatory loops between light, GA and ABA signaling pathways have been uncovered.
Collapse
Affiliation(s)
- Mitsunori Seo
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | |
Collapse
|
413
|
Hytönen T, Elomaa P, Moritz T, Junttila O. Gibberellin mediates daylength-controlled differentiation of vegetative meristems in strawberry (Fragaria x ananassa Duch). BMC PLANT BIOLOGY 2009; 9:18. [PMID: 19210764 PMCID: PMC2653492 DOI: 10.1186/1471-2229-9-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 02/11/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Differentiation of long and short shoots is an important developmental trait in several species of the Rosaceae family. However, the physiological mechanisms controlling this differentiation are largely unknown. We have studied the role of gibberellin (GA) in regulation of shoot differentiation in strawberry (Fragaria x ananassa Duch.) cv. Korona. In strawberry, differentiation of axillary buds to runners (long shoot) or to crown branches (short shoot) is promoted by long-day and short-day conditions, respectively. Formation of crown branches is a prerequisite for satisfactory flowering because inflorescences are formed from the apical meristems of the crown. RESULTS We found that both prohexadione-calcium and short photoperiod inhibited runner initiation and consequently led to induction of crown branching. In both cases, this correlated with a similar decline in GA1 level. Exogenous GA3 completely reversed the effect of prohexadione-calcium in a long photoperiod, but was only marginally effective in short-day grown plants. However, transfer of GA3-treated plants from short days to long days restored the normal runner formation. This did not occur in plants that were not treated with GA3. We also studied GA signalling homeostasis and found that the expression levels of several GA biosynthetic, signalling and target genes were similarly affected by prohexadione-calcium and short photoperiod in runner tips and axillary buds, respectively. CONCLUSION GA is needed for runner initiation in strawberry, and the inhibition of GA biosynthesis leads to the formation of crown branches. Our findings of similar changes in GA levels and in GA signalling homeostasis after prohexadione-calcium and short-day treatments, and photoperiod-dependent responsiveness of the axillary buds to GA indicate that GA plays a role also in the photoperiod-regulated differentiation of axillary buds. We propose that tightly regulated GA activity may control induction of cell division in subapical tissues of axillary buds, being one of the signals determining bud fate.
Collapse
Affiliation(s)
- Timo Hytönen
- Department of Applied Biology, PO Box 27, FI-00014 University of Helsinki, Helsinki, Finland
- Viikki Graduate School in Biosciences, PO Box 56, FI-00014 University of Helsinki, Helsinki, Finland
| | - Paula Elomaa
- Department of Applied Biology, PO Box 27, FI-00014 University of Helsinki, Helsinki, Finland
| | - Thomas Moritz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umeå, Sweden
| | - Olavi Junttila
- Faculty of Science, Department of Biology, Dramsveien 201, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
414
|
Wang L, Wang Z, Xu Y, Joo SH, Kim SK, Xue Z, Xu Z, Wang Z, Chong K. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:498-510. [PMID: 18980660 DOI: 10.1111/j.1365-313x.2008.03707.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Gibberellins (GAs) and brassinosteroids (BRs), two growth-promoting phytohormones, regulate many common physiological processes. Their interactions at the molecular level remain unclear. Here, we demonstrate that OsGSR1, a member of the GAST (GA-stimulated transcript) gene family, is induced by GA and repressed by BR. RNA interference (RNAi) transgenic rice plants with reduced OsGSR1 expression show phenotypes similar to plants deficient in BR, including short primary roots, erect leaves and reduced fertility. The OsGSR1 RNAi transgenic rice shows a reduced level of endogenous BR, and the dwarf phenotype could be rescued by the application of brassinolide. The yeast two-hybrid assay revealed that OsGSR1 interacts with DIM/DWF1, an enzyme that catalyzes the conversion from 24-methylenecholesterol to campesterol in BR biosynthesis. These results suggest that OsGSR1 activates BR synthesis by directly regulating a BR biosynthetic enzyme at the post-translational level. Furthermore, OsGSR1 RNAi plants show a reduced sensitivity to GA treatment, an increased expression of the GA biosynthetic gene OsGA20ox2, which is feedback inhibited by GA signaling, and an elevated level of endogenous GA: together, these suggest that OsGSR1 is a positive regulator of GA signaling. These results demonstrate that OsGSR1 plays important roles in both BR and GA pathways, and also mediates an interaction between the two signaling pathways.
Collapse
Affiliation(s)
- Li Wang
- Research Center for Molecular & Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | | | |
Collapse
|
415
|
Achard P, Genschik P. Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1085-92. [PMID: 19043067 DOI: 10.1093/jxb/ern301] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bioactive gibberellins (GAs) are tetracyclic diterpenoid plant hormones that promote important processes of plant growth and development, such as seed germination, growth through elongation, and floral transition. Thus, mutant plants that are affected in GA biosynthesis or signalling exhibit altered seed germination and, at the adult stage, are dwarf and dark green and also show delayed flowering. The components of the GA metabolism and signalling pathways are reviewed here and recent findings regarding the regulation and possible mode of action of DELLA proteins are discussed.
Collapse
Affiliation(s)
- P Achard
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université Louis Pasteur, F-67084 Strasbourg, France
| | | |
Collapse
|
416
|
Mutasa-Göttgens E, Hedden P. Gibberellin as a factor in floral regulatory networks. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1979-89. [PMID: 19264752 DOI: 10.1093/jxb/erp040] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Gibberellins (GAs) function not only to promote the growth of plant organs, but also to induce phase transitions during development. Their involvement in flower initiation in long-day (LD) and biennial plants is well established and there is growing insight into the mechanisms by which floral induction is achieved. The extent to which GAs mediate the photoperiodic stimulus to flowering in LD plants is, with a few exceptions, less clear. Despite evidence for photoperiod-enhanced GA biosynthesis in leaves of many LD plants, through up-regulation of GA 20-oxidase gene expression, a function for GAs as transmitted signals from leaves to apices in response to LD has been demonstrated only in Lolium species. In Arabidopsis thaliana, as one of four quantitative floral pathways, GA signalling has a relatively minor influence on flowering time in LD, while in SD, in the absence of the photoperiod flowering pathway, the GA pathway assumes a major role and becomes obligatory. Gibberellins promote flowering in Arabidopsis through the activation of genes encoding the floral integrators SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), LEAFY (LFY), and FLOWERING LOCUS T (FT) in the inflorescence and floral meristems, and in leaves, respectively. Although GA signalling is not required for floral organ specification, it is essential for the normal growth and development of these organs. The sites of GA production and action within flowers, and the signalling pathways involved are beginning to be revealed.
Collapse
Affiliation(s)
- Effie Mutasa-Göttgens
- Broom's Barn Research Centre, Rothamsted Research Department of Applied Crop Science, Higham, Bury St Edmunds, Suffolk IP28 6NP, UK
| | | |
Collapse
|
417
|
Abstract
Seed dormancy allows seeds to overcome periods that are unfavourable for seedling established and is therefore important for plant ecology and agriculture. Several processes are known to be involved in the induction of dormancy and in the switch from the dormant to the germinating state. The role of plant hormones, the different tissues and genes involved, including newly identified genes in dormancy and germination are described in this chapter, as well as the use transcriptome, proteome and metabolome analyses to study these mechanistically not well understood processes.
Collapse
Affiliation(s)
- Leónie Bentsink
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Maarten Koornneef
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- Laboratory of Genetics, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
| |
Collapse
|
418
|
Murase K, Hirano Y, Sun TP, Hakoshima T. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 2008; 456:459-63. [PMID: 19037309 DOI: 10.1038/nature07519] [Citation(s) in RCA: 455] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 10/02/2008] [Indexed: 12/26/2022]
Abstract
Gibberellins control a range of growth and developmental processes in higher plants and have been widely used in the agricultural industry. By binding to a nuclear receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1), gibberellins regulate gene expression by promoting degradation of the transcriptional regulator DELLA proteins, including GIBBERELLIN INSENSITIVE (GAI). The precise manner in which GID1 discriminates and becomes activated by bioactive gibberellins for specific binding to DELLA proteins remains unclear. Here we present the crystal structure of a ternary complex of Arabidopsis thaliana GID1A, a bioactive gibberellin and the amino-terminal DELLA domain of GAI. In this complex, GID1A occludes gibberellin in a deep binding pocket covered by its N-terminal helical switch region, which in turn interacts with the DELLA domain containing DELLA, VHYNP and LExLE motifs. Our results establish a structural model of a plant hormone receptor that is distinct from the mechanism of the hormone perception and effector recognition of the known auxin receptors.
Collapse
Affiliation(s)
- Kohji Murase
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | |
Collapse
|
419
|
Abstract
This review covers recent advances in gibberellin (GA) signaling. GA signaling is now understood to hinge on DELLA proteins. DELLAs negatively regulate GA response by activating the promoters of several genes including Xerico, which upregulates the abscisic acid pathway which is antagonistic to GA. DELLAs also promote transcription of the GA receptor, GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and indirectly regulate GA biosynthesis genes enhancing GA responsiveness and feedback control. A structural analysis of GID1 provides a model for understanding GA signaling. GA binds within a pocket of GID1, changes GID1 conformation and increases the affinity of GID1 for DELLA proteins. GA/GID1/DELLA has increased affinity for an F-Box protein and DELLAs are subsequently degraded via the proteasome. Therefore, GA induces growth through degradation of the DELLAs. The binding of DELLA proteins to three of the PHYTOCHROME INTERACTING FACTOR (PIF) proteins integrates light and GA signaling pathways. This binding prevents PIFs 3, 4, and 5 from functioning as positive transcriptional regulators of growth in the dark. Since PIFs are degraded in light, these PIFs can only function in the combined absence of light and presence of GA. New analyses suggest that GA signaling evolved at the same time or just after the plant vascular system and before plants acquired the capacity for seed reproduction. An analysis of sequences cloned from Physcomitrella suggests that GID1 and DELLAs were the first to evolve but did not initially interact. The more recently diverging spike moss Selaginella has all the genes required for GA biosynthesis and signaling, but the role of GA response in Selaginella physiology remains a mystery.
Collapse
Affiliation(s)
- Lynn M Hartweck
- Department of Plant Biology, 250 Biological Sciences Center, 1445 Gortner Ave, St Paul, MN 55108, USA.
| |
Collapse
|
420
|
Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K. The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:613-26. [PMID: 18643985 DOI: 10.1111/j.1365-313x.2008.03627.x] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
High-salinity stress affects plant growth and development. We have previously reported that overexpression of the salinity-responsive DWARF AND DELAYED FLOWERING 1 (DDF1) gene, encoding an AP2 transcription factor of the DREB1/CBF subfamily, causes dwarfism mainly by levels of reducing bioactive gibberellin (GA) in transgenic Arabidopsis. Here, we found that the GA 2-oxidase 7 gene (GA2ox7), which encodes a C20-GA deactivation enzyme, is strongly upregulated in DDF1-overexpressing transgenic plants. A loss-of-function mutation of GA2ox7 (ga2ox7-2) suppressed the dwarf phenotype of DDF1-overexpressing plants, indicating that their GA deficiency is due to overexpression of GA2ox7. Transient overexpression of DDF1 activated the promoter of GA2ox7 in Arabidopsis leaves. A gel shift assay showed that DDF1 binds DRE-like motifs (GCCGAC and ATCGAC) in the GA2ox7 promoter. In Arabidopsis under high-salinity stress, six GA2ox genes, including GA2ox7, were upregulated. Furthermore, the ga2ox7-2 mutant was less growth retarded than wild-type Col under high-salinity stress. These results demonstrate that, under salinity stress, Arabidopsis plants actively reduce endogenous GA levels via the induction of GA 2-oxidase, with the result that growth is repressed for stress adaptation.
Collapse
Affiliation(s)
- Hiroshi Magome
- Research Institute for Biological Sciences, 7549-1 Yoshikawa, Kibi-chuo, Okayama 716-1241, Japan.
| | | | | | | | | |
Collapse
|
421
|
Fode B, Siemsen T, Thurow C, Weigel R, Gatz C. The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress-inducible promoters. THE PLANT CELL 2008; 20:3122-35. [PMID: 18984675 PMCID: PMC2613660 DOI: 10.1105/tpc.108.058974] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 10/10/2008] [Accepted: 10/24/2008] [Indexed: 05/17/2023]
Abstract
The plant signaling molecule salicylic acid (SA) and/or xenobiotic chemicals like the auxin mimic 2,4-D induce transcriptional activation of defense- and stress-related genes that contain activation sequence-1 (as-1)-like cis-elements in their promoters. as-1-like sequences are recognized by basic/leucine zipper transcription factors of the TGA family. Expression of genes related to the SA-dependent defense program systemic acquired resistance requires the TGA-interacting protein NPR1. However, a number of as-1-containing promoters can be activated independently from NPR1. Here, we report the identification of Arabidopsis thaliana SCARECROW-like 14 (SCL14), a member of the GRAS family of regulatory proteins, as a TGA-interacting protein that is required for the activation of TGA-dependent but NPR1-independent SA- and 2,4-D-inducible promoters. Chromatin immunoprecipitation experiments revealed that class II TGA factors TGA2, TGA5, and/or TGA6 are needed to recruit SCL14 to promoters of selected SCL14 target genes identified by whole-genome transcript profiling experiments. The coding regions and the expression profiles of the SCL14-dependent genes imply that they might be involved in the detoxification of xenobiotics and possibly endogenous harmful metabolites. Consistently, plants ectopically expressing SCL14 showed increased tolerance to toxic doses of the chemicals isonicotinic acid and 2,4,6-triiodobenzoic acid, whereas the scl14 and the tga2 tga5 tga6 mutants were more susceptible. Hence, the TGA/SCL14 complex seems to be involved in the activation of a general broad-spectrum detoxification network upon challenge of plants with xenobiotics.
Collapse
Affiliation(s)
- Benjamin Fode
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, D-37073 Göttingen, Germany
| | | | | | | | | |
Collapse
|
422
|
Jasinski S, Tattersall A, Piazza P, Hay A, Martinez-Garcia JF, Schmitz G, Theres K, McCormick S, Tsiantis M. PROCERA encodes a DELLA protein that mediates control of dissected leaf form in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:603-12. [PMID: 18643984 DOI: 10.1111/j.1365-313x.2008.03628.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Leaves of seed plants can be described as simple, where the leaf blade is entire, or dissected, where the blade is divided into distinct leaflets. Mechanisms that define leaflet number and position are poorly understood and their elucidation presents an attractive opportunity to understand mechanisms controlling organ shape in plants. In tomato (Solanum lycopersicum), a plant with dissected leaves, KNOTTED1-like homeodomain proteins (KNOX) are positive regulators of leaflet formation. Conversely, the hormone gibberellin (GA) can antagonise the effects of KNOX overexpression and reduce leaflet number, suggesting that GA may be a negative regulator of leaflet formation. However, when and how GA acts on leaf development is unknown. The reduced leaflet number phenotype of the tomato mutant procera (pro) mimics that of plants to which GA has been applied during leaf development, suggesting that PRO may define a GA signalling component required to promote leaflet formation. Here we show that PRO encodes a DELLA-type growth repressor that probably mediates GA-reversible growth restraint. We demonstrate that PRO is required to promote leaflet initiation during early stages of growth of leaf primordia and conversely that reduced GA biosynthesis increases the capability of the tomato leaf to produce leaflets in response to elevated KNOX activity. We propose that, in tomato, DELLA activity regulates leaflet number by defining the correct timing for leaflet initiation.
Collapse
Affiliation(s)
- Sophie Jasinski
- Plant Sciences Department, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
423
|
Van Leene J, Witters E, Inzé D, De Jaeger G. Boosting tandem affinity purification of plant protein complexes. TRENDS IN PLANT SCIENCE 2008; 13:517-20. [PMID: 18771946 DOI: 10.1016/j.tplants.2008.08.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 05/05/2023]
Abstract
Protein-interaction mapping based on the tandem affinity purification (TAP) approach has been successfully established for several systems, such as yeast and mammalian cells. However, relatively few protein complex purifications have been reported for plants. Here, we highlight solutions for the pitfalls and propose a major breakthrough in the quest for a better TAP tag in plants.
Collapse
Affiliation(s)
- Jelle Van Leene
- Department of Plant Systems Biology, Flanders Institute for Biotechnology and Department of Molecular Genetics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | | | | | | |
Collapse
|
424
|
Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L. The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. THE PLANT CELL 2008; 20:2729-45. [PMID: 18941053 PMCID: PMC2590721 DOI: 10.1105/tpc.108.061515] [Citation(s) in RCA: 315] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 09/19/2008] [Accepted: 10/06/2008] [Indexed: 05/18/2023]
Abstract
Seed germination is antagonistically controlled by the phytohormones gibberellic acid (GA) and abscisic acid (ABA). GA promotes seed germination by enhancing the proteasome-mediated destruction of RGL2 (for RGA-LIKE2), a key DELLA factor repressing germination. By contrast, ABA blocks germination by inducing ABI5 (for ABA-INSENSITIVE5), a basic domain/leucine zipper transcription factor repressing germination. Decreased GA synthesis leads to an increase in endogenous ABA levels through a stabilized RGL2, a process that may involve XERICO, a RING-H2 zinc finger factor promoting ABA synthesis. In turn, increased endogenous ABA synthesis is necessary to elevate not only ABI5 RNA and protein levels but also, critically, those of RGL2. Increased ABI5 protein is ultimately responsible for preventing seed germination when GA levels are reduced. However, overexpression of ABI5 was not sufficient to repress germination, as ABI5 activity requires phosphorylation. The endogenous ABI5 phosphorylation and inhibition of germination could be recapitulated by the addition of a SnRK2 protein kinase to the ABI5 overexpression line. In sleepy1 mutant seeds, RGL2 overaccumulates; germination of these seeds can occur under conditions that produce low ABI5 expression. These data support the notion that ABI5 acts as the final common repressor of germination in response to changes in ABA and GA levels.
Collapse
Affiliation(s)
- Urszula Piskurewicz
- Université de Genève, Département de Biologie Végétale, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
425
|
Argyris J, Dahal P, Hayashi E, Still DW, Bradford KJ. Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic Acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. PLANT PHYSIOLOGY 2008; 148:926-47. [PMID: 18753282 PMCID: PMC2556833 DOI: 10.1104/pp.108.125807] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 08/25/2008] [Indexed: 05/19/2023]
Abstract
Lettuce (Lactuca sativa 'Salinas') seeds fail to germinate when imbibed at temperatures above 25 degrees C to 30 degrees C (termed thermoinhibition). However, seeds of an accession of Lactuca serriola (UC96US23) do not exhibit thermoinhibition up to 37 degrees C in the light. Comparative genetics, physiology, and gene expression were analyzed in these genotypes to determine the mechanisms governing the regulation of seed germination by temperature. Germination of the two genotypes was differentially sensitive to abscisic acid (ABA) and gibberellin (GA) at elevated temperatures. Quantitative trait loci associated with these phenotypes colocated with a major quantitative trait locus (Htg6.1) from UC96US23 conferring germination thermotolerance. ABA contents were elevated in Salinas seeds that exhibited thermoinhibition, consistent with the ability of fluridone (an ABA biosynthesis inhibitor) to improve germination at high temperatures. Expression of many genes involved in ABA, GA, and ethylene biosynthesis, metabolism, and response was differentially affected by high temperature and light in the two genotypes. In general, ABA-related genes were more highly expressed when germination was inhibited, and GA- and ethylene-related genes were more highly expressed when germination was permitted. In particular, LsNCED4, a gene encoding an enzyme in the ABA biosynthetic pathway, was up-regulated by high temperature only in Salinas seeds and also colocated with Htg6.1. The temperature sensitivity of expression of LsNCED4 may determine the upper temperature limit for lettuce seed germination and may indirectly influence other regulatory pathways via interconnected effects of increased ABA biosynthesis.
Collapse
Affiliation(s)
- Jason Argyris
- Department of Plant Sciences, University of California, Davis, CA 95616-8780, USA
| | | | | | | | | |
Collapse
|
426
|
Abstract
Plant growth and development require the integration of a variety of environmental and endogenous signals that, together with the intrinsic genetic program, determine plant form. Central to this process are several growth regulators known as plant hormones or phytohormones. Despite decades of study, only recently have receptors for several of these hormones been identified, revealing novel mechanisms for perceiving chemical signals and providing plant biologists with a much clearer picture of hormonal control of growth and development.
Collapse
Affiliation(s)
- Angela K Spartz
- Department of Plant Biology, University of Minnesota-Twin Cities, St Paul, MN 55108, USA
| | | |
Collapse
|
427
|
Aleman L, Kitamura J, Abdel-mageed H, Lee J, Sun Y, Nakajima M, Ueguchi-Tanaka M, Matsuoka M, Allen RD. Functional analysis of cotton orthologs of GA signal transduction factors GID1 and SLR1. PLANT MOLECULAR BIOLOGY 2008; 68:1-16. [PMID: 18506581 DOI: 10.1007/s11103-008-9347-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 05/08/2008] [Indexed: 05/19/2023]
Abstract
Gibberellic acid (GA) is both necessary and sufficient to promote fiber elongation in cultured fertilized ovules of the upland cotton variety Coker 312. This is likely due to the temporal and spatial regulation of GA biosynthesis, perception, and subsequent signal transduction that leads to alterations in gene expression and morphology. Our results indicate that the initiation of fiber elongation by the application of GA to cultured ovules corresponds with increased expression of genes that encode xyloglucan endotransglycosylase/hydrolase (XTH) and expansin (EXP) that are involved in promoting cell elongation. To gain a better understanding of the GA signaling components in cotton, that lead to such changes in gene expression, two GA receptor genes (GhGID1a and GhGID1b) and two DELLA protein genes (GhSLR1a and GhSLR1b) that are orthologous to the rice GA receptor (GID1) and the rice DELLA gene (SLR1), respectively, were characterized. Similar to the GA biosynthetic genes, expression of GhGID1a and GhGID1b is under the negative regulation by GA while GA positively regulates GhSLR1a. Recombinant GST-GhGID1s showed GA-binding activity in vitro that was augmented in the presence of GhSLR1a, GhSLR1b, or rice SLR1, indicating complex formation between the receptors and repressor proteins. This was further supported by the GA-dependent interaction of these proteins in yeast cells. Ectopic expression of the GhGID1a in the rice gid1-3 mutant plants rescued the GA-insensitive dwarf phenotype, which demonstrates that it is a functional GA receptor. Furthermore, ectopic expression of GhSLR1b in wild type Arabidopsis led to reduced growth and upregulated expression of DELLA-responsive genes.
Collapse
Affiliation(s)
- Lorenzo Aleman
- Department of Plant and Soil Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
428
|
Ueguchi-Tanaka M, Hirano K, Hasegawa Y, Kitano H, Matsuoka M. Release of the repressive activity of rice DELLA protein SLR1 by gibberellin does not require SLR1 degradation in the gid2 mutant. THE PLANT CELL 2008; 20:2437-46. [PMID: 18827181 PMCID: PMC2570727 DOI: 10.1105/tpc.108.061648] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 08/17/2008] [Accepted: 09/11/2008] [Indexed: 05/20/2023]
Abstract
The rice (Oryza sativa) DELLA protein SLR1 acts as a repressor of gibberellin (GA) signaling. GA perception by GID1 causes SLR1 protein degradation involving the F-box protein GID2; this triggers GA-associated responses such as shoot elongation and seed germination. In GA-insensitive and GA biosynthesis mutants, SLENDER RICE1 (SLR1) accumulates to high levels, and the severity of dwarfism is usually correlated with the level of SLR1 accumulation. An exception is the GA-insensitive F-box mutant gid2, which shows milder dwarfism than mutants such as gid1 and cps even though it accumulates higher levels of SLR1. The level of SLR1 protein in gid2 was decreased by loss of GID1 function or treatment with a GA biosynthesis inhibitor, and dwarfism was enhanced. Conversely, overproduction of GID1 or treatment with GA(3) increased the SLR1 level in gid2 and reduced dwarfism. These results indicate that derepression of SLR1 repressive activity can be accomplished by GA and GID1 alone and does not require F-box (GID2) function. Evidence for GA signaling without GID2 was also provided by the expression behavior of GA-regulated genes such as GA-20oxidase1, GID1, and SLR1 in the gid2 mutant. Based on these observations, we propose a model for the release of GA suppression that does not require DELLA protein degradation.
Collapse
|
429
|
Ariizumi T, Murase K, Sun TP, Steber CM. Proteolysis-independent downregulation of DELLA repression in Arabidopsis by the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1. THE PLANT CELL 2008; 20:2447-59. [PMID: 18827182 PMCID: PMC2570730 DOI: 10.1105/tpc.108.058487] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 07/24/2008] [Accepted: 09/11/2008] [Indexed: 05/19/2023]
Abstract
This article presents evidence that DELLA repression of gibberellin (GA) signaling is relieved both by proteolysis-dependent and -independent pathways in Arabidopsis thaliana. DELLA proteins are negative regulators of GA responses, including seed germination, stem elongation, and fertility. GA stimulates GA responses by causing DELLA repressor degradation via the ubiquitin-proteasome pathway. DELLA degradation requires GA biosynthesis, three functionally redundant GA receptors GIBBERELLIN INSENSITIVE DWARF1 (GID1a, b, and c), and the SLEEPY1 (SLY1) F-box subunit of an SCF E3 ubiquitin ligase. The sly1 mutants accumulate more DELLA proteins but display less severe dwarf and germination phenotypes than the GA biosynthesis mutant ga1-3 or the gid1abc triple mutant. Interestingly, GID1 overexpression rescued the sly1 dwarf and infertility phenotypes without decreasing the accumulation of the DELLA protein REPRESSOR OF ga1-3. GID1 rescue of sly1 mutants was dependent on the level of GID1 protein, GA, and the presence of a functional DELLA motif. Since DELLA shows increasing interaction with GID1 with increasing GA levels, it appears that GA-bound GID1 can block DELLA repressor activity by direct protein-protein interaction with the DELLA domain. Thus, a SLY1-independent mechanism for GA signaling may function without DELLA degradation.
Collapse
Affiliation(s)
- Tohru Ariizumi
- Department of Crop and Soil Science, Washington State University, Pullman, Washington 99164-6420, USA
| | | | | | | |
Collapse
|
430
|
Zou X, Neuman D, Shen QJ. Interactions of two transcriptional repressors and two transcriptional activators in modulating gibberellin signaling in aleurone cells. PLANT PHYSIOLOGY 2008; 148:176-86. [PMID: 18621977 PMCID: PMC2528090 DOI: 10.1104/pp.108.123653] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 06/18/2008] [Indexed: 05/19/2023]
Abstract
Gibberellins (GAs) regulate many aspects of plant development, such as germination, growth, and flowering. The barley (Hordeum vulgare) Amy32b alpha-amylase promoter contains at least five cis-acting elements that govern its GA-induced expression. Our previous studies indicate that a barley WRKY gene, HvWRKY38, and its rice (Oryza sativa) ortholog, OsWRKY71, block GA-induced expression of Amy32b-GUS. In this work, we investigated the functional and physical interactions of HvWRKY38 with another repressor and two activators in barley. HvWRKY38 blocks the inductive activities of SAD (a DOF protein) and HvGAMYB (a R2R3 MYB protein) when either of these proteins is present individually. However, SAD and HvGAMYB together overcome the inhibitory effect of HvWRKY38. Yet, the combination of HvWRKY38 and BPBF (another DOF protein) almost diminishes the synergistic effect of SAD and HvGAMYB transcriptional activators. Electrophoretic mobility shift assays indicate that HvWRKY38 blocks the GA-induced expression of Amy32b by interfering with the binding of HvGAMYB to the cis-acting elements in the alpha-amylase promoter. The physical interaction of HvWRKY38 and BPBF repressors is demonstrated via bimolecular fluorescence complementation assays. These data suggest that the expression of Amy32b is modulated by protein complexes that contain either activators (e.g. HvGAMYB and SAD) or repressors (e.g. HvWRKY38 and BPBF). The relative amounts of the repressor or activator complexes binding to the Amy32b promoter regulate its expression level in barley aleurone cells.
Collapse
Affiliation(s)
- Xiaolu Zou
- School of Life Sciences, University of Nevada, Las Vegas, Nevada 89154, USA
| | | | | |
Collapse
|
431
|
Mutasa-Gottgens E, Qi A, Mathews A, Thomas S, Phillips A, Hedden P. Modification of gibberellin signalling (metabolism & signal transduction) in sugar beet: analysis of potential targets for crop improvement. Transgenic Res 2008; 18:301-8. [PMID: 18696248 DOI: 10.1007/s11248-008-9211-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 07/28/2008] [Indexed: 11/28/2022]
Abstract
Sugar beet, Beta vulgaris spp. vulgaris is a biennial long day plant with an obligate requirement for vernalization (prolonged exposure to low temperature). As a spring crop in temperate European climates, it is vulnerable to vernalization-induced premature bolting and flowering, resulting in reduced crop yield and quality. Gibberellins (GAs) play important roles in key physiological processes including stem elongation (bolting) and flowering and are, therefore, potential targets for controlling reproductive growth in sugar beet. We show that the BvGA20ox gene, which encodes an enzyme necessary for GA biosynthesis, was transcriptionally activated in apices of sugar beet plants after vernalization and that GA metabolism can be manipulated to delay bolting in vernalized plants. We demonstrate that down-regulation of GA responses by transformation with the Arabidopsis thaliana gai gene (which represses GA signalling), under its own promoter (pgai::gai) or deactivation of GA by over-expression of the Phaseolus coccineus (bean) GA2ox1 gene, which inactivates GA, increased the required post vernalization thermal time (an accurate and stable measure of physiological time), to bolt by approximately 300 degrees Cd. This resulted in agronomically significant bolting time delays of approximately 2 weeks and 3 weeks in the pgai::gai and 35S::PcGA2ox1 plants, respectively. Our data represent the first transgenic sugar beet model to (1) show that GA signalling can be used to improve crops by manipulation of the transition to reproductive growth; and (2) provide evidence that GA is required for seed set in sugar beet.
Collapse
|
432
|
Novák O, Hauserová E, Amakorová P, Dolezal K, Strnad M. Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. PHYTOCHEMISTRY 2008; 69:2214-24. [PMID: 18561963 DOI: 10.1016/j.phytochem.2008.04.022] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 04/28/2008] [Accepted: 04/29/2008] [Indexed: 05/21/2023]
Abstract
We have developed a simple, high-throughput batch immunoextraction (IAE) micropurification procedure for extracting a wide range of naturally occurring cytokinins (bases, ribosides, O- and N-glucosides, and nucleotides) from plant tissues in solutions that are compatible with ultra-performance liquid chromatography (UPLC), thereby facilitating sensitive subsequent analysis. The UPLC system was coupled to a tandem quadrupole mass spectrometer (MS/MS) equipped with an electrospray interface (ESI). Small (mg) amounts of tissues were purified by solid-phase extraction (SPE) followed by an immunoaffinity clean-up step and two fast chromatographic separations of most cytokinin metabolites (bases, ribosides, and 9-glucosides in the first, O-glucosides and nucleotides in the second). Using UPLC, the runs were up to 4-fold faster than in standard cytokinin analyses, and both retention times and injection volumes were less variable (RSDs, 0.15-0.3% and 1.0-5.5%, respectively). In multiple reaction monitoring (MRM) mode, the detection limit for most of the cytokinins analyzed was close to 1 fmol (5-25 fmol for O-glucosides and nucleotides) and the linear range spanned at least five orders of magnitude. The extraction and purification method was optimized using poplar (Populusxcanadensis Moench, cv Robusta) leaf samples, and the analytical accuracy was further validated using IAE-purified 10-day-old Arabidopsis thaliana plants spiked with 1 and 10 pmol of cytokinin derivatives. This approach can be used for rapid, sensitive qualitative and/or quantitative analysis of more than 50 natural cytokinins in minute amounts of plant tissues with high performance, robustness, and accuracy.
Collapse
Affiliation(s)
- Ondrej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany ASCR, Slechtitelů 11, CZ-78371 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
433
|
Ross JJ, Reid JB, Murfet IC, Weston DE. The slender phenotype of pea is deficient in DELLA proteins. PLANT SIGNALING & BEHAVIOR 2008; 3:590-592. [PMID: 19704807 PMCID: PMC2634506 DOI: 10.4161/psb.3.8.6224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 05/02/2008] [Indexed: 05/28/2023]
Abstract
The recent cloning of the pea genes LA and CRY has historical implications, since the combined effect of null mutations in these genes is the elongated, gibberellin-insensitive "slender" phenotype, which gave rise to the theory that gibberellins (GAs) are inhibitors of inhibitors of growth. Interestingly, the duplication event that produced the second gene (LA or CRY) appears to have occurred more than 100 mya, and yet the two genes have retained essentially similar functions. They both encode DELLA proteins, which inhibit growth while at the same time promoting the synthesis of the growth-promoting hormone, gibberellin (GA). This duality of function is discussed in the context of recent suggestions that DELLAs integrate multiple hormone signals, rather than just the GA signal. We also present new data showing that LA and CRY play a major role in regulating fruit growth.
Collapse
Affiliation(s)
- John J Ross
- School of Plant Science; University of Tasmania; Hobart; Tasmania; Australia
| | | | | | | |
Collapse
|
434
|
Transcriptional factor interaction: a central step in DELLA function. Curr Opin Genet Dev 2008; 18:295-303. [DOI: 10.1016/j.gde.2008.05.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 05/26/2008] [Accepted: 05/29/2008] [Indexed: 01/20/2023]
|
435
|
Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. THE PLANT CELL 2008; 20:2117-29. [PMID: 18757556 PMCID: PMC2553604 DOI: 10.1105/tpc.108.058941] [Citation(s) in RCA: 474] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 08/01/2008] [Accepted: 08/09/2008] [Indexed: 05/17/2023]
Abstract
Plants have evolved robust mechanisms to respond and adapt to unfavorable environmental conditions, such as low temperature. The C-repeat/drought-responsive element binding factor CBF1/DREB1b gene encodes a transcriptional activator transiently induced by cold that controls the expression of a set of genes responding to low temperature (the CBF regulon). Constitutive expression of CBF1 confers freezing tolerance but also slows growth. Here, we propose that low temperature-induced CBF1 expression restrains growth at least in part by allowing the accumulation of DELLAs, a family of nuclear growth-repressing proteins, the degradation of which is stimulated by gibberellin (GA). We show that cold/CBF1 enhances the accumulation of a green fluorescent protein (GFP)-tagged DELLA protein (GFP-RGA) by reducing GA content through stimulating expression of GA-inactivating GA 2-oxidase genes. Accordingly, transgenic plants that constitutively express CBF1 accumulate less bioactive GA and as a consequence exhibit dwarfism and late flowering. Both phenotypes are suppressed when CBF1 is expressed in a line lacking two DELLA proteins, GA-INSENSITIVE and REPRESSOR OF GA1-3. In addition, we show that DELLAs contribute significantly to CBF1-induced cold acclimation and freezing tolerance by a mechanism that is distinct from the CBF regulon. We conclude that DELLAs are components of the CBF1-mediated cold stress response.
Collapse
Affiliation(s)
- Patrick Achard
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventioné avec l'Université Louis Pasteur, 67084 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
436
|
Hou X, Hu WW, Shen L, Lee LYC, Tao Z, Han JH, Yu H. Global identification of DELLA target genes during Arabidopsis flower development. PLANT PHYSIOLOGY 2008; 147:1126-42. [PMID: 18502975 PMCID: PMC2442519 DOI: 10.1104/pp.108.121301] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 05/20/2008] [Indexed: 05/19/2023]
Abstract
Gibberellin (GA) plays important roles in regulating many aspects of plant development. GA derepresses its signaling pathway by promoting the degradation of DELLA proteins, a family of nuclear growth repressors. Although the floral organ identity is established in flowers of the GA-deficient mutant ga1-3, the growth of all floral organs is severely retarded. In particular, abortive anther development in ga1-3 results in male sterility. Genetic analysis has revealed that various combinations of null mutants of DELLA proteins could gradually rescue floral organ defects in ga1-3 and that RGA is the most important DELLA protein involved in floral organ development. To elucidate the early molecular events controlled by RGA during flower development, we performed whole-genome microarray analysis to identify genes in response to the steroid-inducible activation of RGA in ga1-3 rgl2 rga 35S:RGA-GR. Although DELLA proteins were suggested as transcriptional repressors, similar numbers of genes were down-regulated or up-regulated by RGA during floral organ development. More than one-third of RGA down-regulated genes were specifically or predominantly expressed in stamens. A significant number of RGA-regulated genes are involved in phytohormone signaling or stress response. Further expression analysis through activation of RGA by steroid induction combined with cycloheximide identified eight genes as immediate targets of RGA. In situ hybridization and transgenic studies further showed that the expression pattern and function of several selected genes were consistent with the predictions from microarray analysis. These results suggest that DELLA regulation of floral organ development is modulated by multiple phytohormones and stress signaling pathways.
Collapse
Affiliation(s)
- Xingliang Hou
- Department of Biological Sciences, Faculty of Sciences , National University of Singapore, Singapore 117543
| | | | | | | | | | | | | |
Collapse
|
437
|
Hou X, Hu WW, Shen L, Lee LYC, Tao Z, Han JH, Yu H. Global identification of DELLA target genes during Arabidopsis flower development. PLANT PHYSIOLOGY 2008. [PMID: 18502975 DOI: 10.1104/pp.108.121301:pp.108.121301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Gibberellin (GA) plays important roles in regulating many aspects of plant development. GA derepresses its signaling pathway by promoting the degradation of DELLA proteins, a family of nuclear growth repressors. Although the floral organ identity is established in flowers of the GA-deficient mutant ga1-3, the growth of all floral organs is severely retarded. In particular, abortive anther development in ga1-3 results in male sterility. Genetic analysis has revealed that various combinations of null mutants of DELLA proteins could gradually rescue floral organ defects in ga1-3 and that RGA is the most important DELLA protein involved in floral organ development. To elucidate the early molecular events controlled by RGA during flower development, we performed whole-genome microarray analysis to identify genes in response to the steroid-inducible activation of RGA in ga1-3 rgl2 rga 35S:RGA-GR. Although DELLA proteins were suggested as transcriptional repressors, similar numbers of genes were down-regulated or up-regulated by RGA during floral organ development. More than one-third of RGA down-regulated genes were specifically or predominantly expressed in stamens. A significant number of RGA-regulated genes are involved in phytohormone signaling or stress response. Further expression analysis through activation of RGA by steroid induction combined with cycloheximide identified eight genes as immediate targets of RGA. In situ hybridization and transgenic studies further showed that the expression pattern and function of several selected genes were consistent with the predictions from microarray analysis. These results suggest that DELLA regulation of floral organ development is modulated by multiple phytohormones and stress signaling pathways.
Collapse
Affiliation(s)
- Xingliang Hou
- Department of Biological Sciences, Faculty of Sciences , National University of Singapore, Singapore 117543
| | | | | | | | | | | | | |
Collapse
|
438
|
Gao XH, Huang XZ, Xiao SL, Fu XD. Evolutionarily conserved DELLA-mediated gibberellin signaling in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:825-834. [PMID: 18713393 DOI: 10.1111/j.1744-7909.2008.00703.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Gibberellins (GAs) play important roles in many essential plant growth and development processes. A family of nuclear growth-repressing DELLA proteins is the key component in GA signaling. GA perception is mediated by GID1, and the key event of GA signaling is the degradation of DELLA proteins via the 26S proteasome pathway. DELLA proteins integrating other plant hormones signaling and environmental cue modulating plant growth and development have been revealed. GA turning on the de-DELLA-repressing system is conserved, and independently establishes step-by-step recruitment of GA-stimulated GID1-DELLA interaction and DELLA growth-repression functions during land plant evolution. These discoveries open new prospects for the understanding of GA action and DELLA-mediated signaling in plants.
Collapse
Affiliation(s)
- Xiu-Hua Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, National Center for Plant Gene Research, Beijing 100101, China
| | | | | | | |
Collapse
|
439
|
Weston DE, Elliott RC, Lester DR, Rameau C, Reid JB, Murfet IC, Ross JJ. The Pea DELLA proteins LA and CRY are important regulators of gibberellin synthesis and root growth. PLANT PHYSIOLOGY 2008; 147:199-205. [PMID: 18375599 PMCID: PMC2330316 DOI: 10.1104/pp.108.115808] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 03/26/2008] [Indexed: 05/19/2023]
Abstract
The theory that bioactive gibberellins (GAs) act as inhibitors of inhibitors of plant growth was based originally on the slender pea (Pisum sativum) mutant (genotype la cry-s), but the molecular nature of this mutant has remained obscure. Here we show that the genes LA and CRY encode DELLA proteins, previously characterized in other species (Arabidopsis [Arabidopsis thaliana] and several grasses) as repressors of growth, which are destabilized by GAs. Mutations la and cry-s encode nonfunctional proteins, accounting for the fact that la cry-s plants are extremely elongated, or slender. We use the la and cry-s mutations to show that in roots, DELLA proteins effectively promote the expression of GA synthesis genes, as well as inhibit elongation. We show also that one of the DELLA-regulated genes is a second member of the pea GA 3-oxidase family, and that this gene appears to play a major role in pea roots.
Collapse
Affiliation(s)
- Diana E Weston
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | | | | | | | | | | |
Collapse
|
440
|
Abstract
Since the discovery of the physical interaction between phytochrome B and the basic helix-loop-helix (bHLH) transcription factor (TF) PIF3 a decade ago, plant phytochrome-signalling research has largely focused on understanding the mechanisms through which phytochromes and members of this bHLH family signal. This concerted effort has revealed how phytochrome and bHLH TF control gene expression and plant growth, and has assigned precise roles to a number of genes in the PIF3-like bHLH TF clade. This work has focused largely on cell autonomous signalling events; however, to synchronize plant growth and developmental events at the tissue and organ level, temporal and spatial signal integration is crucial. This review brings together current knowledge of phytochrome signalling through phytochrome-interacting factors (PIFs)/phytochrome-interacting factor-like (PILs), and it evaluates the current evidence for cross-tissue signal integration.
Collapse
Affiliation(s)
- Eve-Marie Josse
- Institute of Molecular Plant Sciences, Edinburgh University, Kings Buildings, Mayfield Road, Edinburgh, EH9 3 JR, UK
| | | | | |
Collapse
|
441
|
Kim DH, Yamaguchi S, Lim S, Oh E, Park J, Hanada A, Kamiya Y, Choi G. SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. THE PLANT CELL 2008; 20:1260-77. [PMID: 18487351 PMCID: PMC2438461 DOI: 10.1105/tpc.108.058859] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Light absorbed by seed phytochromes of Arabidopsis thaliana modulates abscisic acid (ABA) and gibberellic acid (GA) signaling pathways at least partly via PHYTOCHROME-INTERACTING FACTOR3-LIKE5 (PIL5), a phytochrome-interacting basic helix-loop-helix transcription factor. Here, we report a new mutant, somnus (som), that germinates in darkness, independently of various light regimens. SOM encodes a nucleus-localized CCCH-type zinc finger protein. The som mutant has lower levels of ABA and elevated levels of GA due to expressional changes in ABA and GA metabolic genes. Unlike PIL5, however, SOM does not regulate the expression of GA-INSENSITIVE and REPRESSOR OF GA1 (RGA/RGA1), two DELLA genes encoding GA negative signaling components. Our in vivo analysis shows that PIL5 activates the expression of SOM by binding directly to its promoter, suggesting that PIL5 regulates ABA and GA metabolic genes partly through SOM. In agreement with these results, we also observed that the reduced germination frequency of a PIL5 overexpression line is rescued by the som mutation and that this rescue is accompanied by expressional changes in ABA and GA metabolic genes. Taken together, our results indicate that SOM is a component in the phytochrome signal transduction pathway that regulates hormone metabolic genes downstream of PIL5 during seed germination.
Collapse
Affiliation(s)
- Dong Hwan Kim
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
442
|
Hirano K, Ueguchi-Tanaka M, Matsuoka M. GID1-mediated gibberellin signaling in plants. TRENDS IN PLANT SCIENCE 2008; 13:192-9. [PMID: 18337155 DOI: 10.1016/j.tplants.2008.02.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 01/22/2008] [Accepted: 02/04/2008] [Indexed: 05/19/2023]
Abstract
Gibberellin (GA) perception is mediated by GID1 (GA-INSENSITIVE DWARF1), a receptor that shows similarity to hormone-sensitive lipases. A key event in GA signaling is the degradation of DELLA proteins, which are negative regulators of GA response that interact with GID1 in a GA-dependent manner. This GID1-DELLA GA-perception system is conserved among vascular plants but is not found in the moss Physcomitrella patens. The identification of factors in GA signaling downstream of DELLA and the development of a new concept of DELLA function beyond its role as a repressor of GA signaling are important advances. DELLA proteins appear to have at least two other distinct roles: maintaining GA homeostasis and regulating cross-talk between GA and other plant hormones.
Collapse
Affiliation(s)
- Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
443
|
Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, Jikumaru Y, Hanada A, Aso Y, Ishiyama K, Tamura N, Iuchi S, Kobayashi M, Yamaguchi S, Kamiya Y, Nambara E, Kawakami N. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. PLANT PHYSIOLOGY 2008; 146:1368-85. [PMID: 18162586 PMCID: PMC2259091 DOI: 10.1104/pp.107.113738] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Suppression of seed germination at supraoptimal high temperature (thermoinhibiton) during summer is crucial for Arabidopsis (Arabidopsis thaliana) to establish vegetative and reproductive growth in appropriate seasons. Abscisic acid (ABA) and gibberellins (GAs) are well known to be involved in germination control, but it remains unknown how these hormone actions (metabolism and responsiveness) are altered at high temperature. Here, we show that ABA levels in imbibed seeds are elevated at high temperature and that this increase is correlated with up-regulation of the zeaxanthin epoxidase gene ABA1/ZEP and three 9-cis-epoxycarotenoid dioxygenase genes, NCED2, NCED5, and NCED9. Reverse-genetic studies show that NCED9 plays a major and NCED5 and NCED2 play relatively minor roles in high temperature-induced ABA synthesis and germination inhibition. We also show that bioactive GAs stay at low levels at high temperature, presumably through suppression of GA 20-oxidase genes, GA20ox1, GA20ox2, and GA20ox3, and GA 3-oxidase genes, GA3ox1 and GA3ox2. Thermoinhibition-tolerant germination of loss-of-function mutants of GA negative regulators, SPINDLY (SPY) and RGL2, suggests that repression of GA signaling is required for thermoinibition. Interestingly, ABA-deficient aba2-2 mutant seeds show significant expression of GA synthesis genes and repression of SPY expression even at high temperature. In addition, the thermoinhibition-resistant germination phenotype of aba2-1 seeds is suppressed by a GA biosynthesis inhibitor, paclobutrazol. We conclude that high temperature stimulates ABA synthesis and represses GA synthesis and signaling through the action of ABA in Arabidopsis seeds.
Collapse
Affiliation(s)
- Shigeo Toh
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
444
|
Sun TP. Gibberellin metabolism, perception and signaling pathways in Arabidopsis. THE ARABIDOPSIS BOOK 2008; 6:e0103. [PMID: 22303234 PMCID: PMC3243332 DOI: 10.1199/tab.0103] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Bioactive gibberellins (GAs) are diterpene phytohormones that modulate growth and development throughout the whole life cycle of the plant. Arabidopsis genes encoding most GA biosynthesis and catabolism enzymes, as well as GA receptors (GIBBERELLIN INSENSITIVE DWARF1, GID1) and early GA signaling components have been identified. Expression studies on the GA biosynthesis genes are beginning to reveal the potential sites of GA biosynthesis during plant development. Biochemical and genetic analyses demonstrate that GA de-represses its signaling pathway by binding to GID1s, which induce degradation of GA signaling repressors (DELLAs) via an ubiquitin-proteasome pathway. To modulate plant growth and development, the GA pathway is also regulated by endogenous signals (other hormones) and environmental cues (such as light, temperature and salt stress). In many cases, these internal and external cues directly affect GA metabolism and bioactive GA levels, and indirectly alter DELLA accumulation and GA responses. Importantly, direct negative interaction between DELLA and PIF3 and PIF4 (2 phytochrome interacting transcription factors) appears to integrate the effects of light and GA on hypocotyl elongation.
Collapse
Affiliation(s)
- Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC 27708
| |
Collapse
|
445
|
Molecular biology of gibberellins signaling in higher plants. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:191-221. [PMID: 18703407 DOI: 10.1016/s1937-6448(08)00806-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gibberellins (GAs), a large family of tetracyclic, diterpenoid plant hormones, play an important role in regulating diverse processes throughout plant development. In recent years, significant advances have been made in the isolation of GA signaling components and GA-responsive genes. All available data have indicated that DELLA proteins are an essential negative regulator in the GA signaling pathway and GA derepresses DELLA-mediated growth suppression by inducing degradation of DELLA proteins through the ubiquitin-26S proteasome proteolytic pathway. Identification of GID1, a gene encoding an unknown protein with similarity to hormone-sensitive lipases, has revealed that GID1 acts as a functional GA receptor with a reasonable binding affinity to biologically active GAs. Furthermore, the GID1 receptor interacts with DELLA proteins in a GA-dependent manner. These results suggest that formation of a GID1-GA-DELLA protein complex targets DELLA protein into the ubiquitin-26S proteasome pathway for degradation.
Collapse
|
446
|
Lee Y, Lee HS, Lee JS, Kim SK, Kim SH. Hormone- and light-regulated nucleocytoplasmic transport in plants: current status. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3229-45. [PMID: 18678754 DOI: 10.1093/jxb/ern200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The gene regulation mechanisms underlying hormone- and light-induced signal transduction in plants rely not only on post-translational modification and protein degradation, but also on selective inclusion and exclusion of proteins from the nucleus. For example, plant cells treated with light or hormones actively transport many signalling regulatory proteins, transcription factors, and even photoreceptors and hormone receptors into the nucleus, while actively excluding other proteins. The nuclear envelope (NE) is the physical and functional barrier that mediates this selective partitioning, and nuclear transport regulators transduce hormone- or light-initiated signalling pathways across the membrane to mediate nuclear activities. Recent reports revealed that mutating the proteins regulating nuclear transport through the pores, such as nucleoporins, alters the plant's response to a stimulus. In this review, recent works are introduced that have revealed the importance of regulated nucleocytoplasmic partitioning. These important findings deepen our understanding about how co-ordinated plant hormone and light signal transduction pathways facilitate communication between the cytoplasm and the nucleus. The roles of nucleoporin components within the nuclear pore complex (NPC) are also emphasized, as well as nuclear transport cargo, such as Ran/TC4 and its binding proteins (RanBPs), in this process. Recent findings concerning these proteins may provide a possible direction by which to characterize the regulatory potential of hormone- or light-triggered nuclear transport.
Collapse
Affiliation(s)
- Yew Lee
- Department of Biological Sciences, Yonsei University, 234 Heungup-Myun, Wonju-Si, 220-710, Korea
| | | | | | | | | |
Collapse
|
447
|
Abstract
Complex gene regulatory networks are composed of genes, noncoding RNAs, proteins, metabolites, and signaling components. The availability of genome-wide mutagenesis libraries; large-scale transcriptome, proteome, and metabalome data sets; and new high-throughput methods that uncover protein interactions underscores the need for mathematical modeling techniques that better enable scientists to synthesize these large amounts of information and to understand the properties of these biological systems. Systems biology approaches can allow researchers to move beyond a reductionist approach and to both integrate and comprehend the interactions of multiple components within these systems. Descriptive and mathematical models for gene regulatory networks can reveal emergent properties of these plant systems. This review highlights methods that researchers are using to obtain large-scale data sets, and examples of gene regulatory networks modeled with these data. Emergent properties revealed by the use of these network models and perspectives on the future of systems biology are discussed.
Collapse
Affiliation(s)
- Terri A. Long
- Department of Biology, Duke University, Durham, North Carolina 27708
- IGSP Center for Systems Biology, Duke University, Durham, North Carolina 27708
| | - Siobhan M. Brady
- Department of Biology, Duke University, Durham, North Carolina 27708
- IGSP Center for Systems Biology, Duke University, Durham, North Carolina 27708
| | - Philip N. Benfey
- Department of Biology, Duke University, Durham, North Carolina 27708
- IGSP Center for Systems Biology, Duke University, Durham, North Carolina 27708
| |
Collapse
|
448
|
Finkelstein R, Reeves W, Ariizumi T, Steber C. Molecular aspects of seed dormancy. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:387-415. [PMID: 18257711 DOI: 10.1146/annurev.arplant.59.032607.092740] [Citation(s) in RCA: 737] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Seed dormancy provides a mechanism for plants to delay germination until conditions are optimal for survival of the next generation. Dormancy release is regulated by a combination of environmental and endogenous signals with both synergistic and competing effects. Molecular studies of dormancy have correlated changes in transcriptomes, proteomes, and hormone levels with dormancy states ranging from deep primary or secondary dormancy to varying degrees of release. The balance of abscisic acid (ABA):gibberellin (GA) levels and sensitivity is a major, but not the sole, regulator of dormancy status. ABA promotes dormancy induction and maintenance, whereas GA promotes progression from release through germination; environmental signals regulate this balance by modifying the expression of biosynthetic and catabolic enzymes. Mediators of environmental and hormonal response include both positive and negative regulators, many of which are feedback-regulated to enhance or attenuate the response. The net result is a slightly heterogeneous response, thereby providing more temporal options for successful germination.
Collapse
Affiliation(s)
- Ruth Finkelstein
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106-9610, USA.
| | | | | | | |
Collapse
|