401
|
Carlsson P, Burendahl S, Nilsson L. Unbinding of retinoic acid from the retinoic acid receptor by random expulsion molecular dynamics. Biophys J 2006; 91:3151-61. [PMID: 16891362 PMCID: PMC1614488 DOI: 10.1529/biophysj.106.082917] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unbinding pathways of retinoic acid (RA) bound to retinoic acid receptor (RAR) have been explored by the random expulsion molecular dynamics (REMD) method. Our results show that RA may exit the binding site of RAR through flexible regions close to the H1-H3 loop and beta-sheets, without displacing H12 from its agonist position. This result may explain kinetic differences between agonist and antagonist ligands observed for other nuclear receptors. The extended and flexible structure of RA initiated a methodological study in a simplified two-dimensional model system. The REMD force should in general be distributed to all atoms of the ligand to obtain the most unbiased results, but for a ligand which is tightly bound in the binding pocket through a strong electrostatic interaction, application of the REMD force on a single atom is preferred.
Collapse
Affiliation(s)
- Peter Carlsson
- Department of Biosciences and Nutrition, Karolinska Institutet, and Karo Bio AB, Novum, SE-141 57 Huddinge, Sweden
| | | | | |
Collapse
|
402
|
Liang Y, Kristinsson HG. Influence of pH-Induced Unfolding and Refolding of Egg Albumen on Its Foaming Properties. J Food Sci 2006. [DOI: 10.1111/j.1365-2621.2005.tb07129.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
403
|
Verkhivker GM. Imprint of evolutionary conservation and protein structure variation on the binding function of protein tyrosine kinases. Bioinformatics 2006; 22:1846-54. [PMID: 16720585 DOI: 10.1093/bioinformatics/btl199] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
MOTIVATION According to the models of divergent molecular evolution, the evolvability of new protein function may depend on the induction of new phenotypic traits by a small number of mutations of the binding site residues. Evolutionary relationships between protein kinases are often employed to infer inhibitor binding profiles from sequence analysis. However, protein kinases binding profiles may display inhibitor selectivity within a given kinase subfamily, while exhibiting cross-activity between kinases that are phylogenetically remote from the prime target. The emerging insights into kinase function and evolution combined with a rapidly growing number of publically available crystal structures of protein kinases complexes have motivated structural bioinformatics analysis of sequence-structure relationships in determining the binding function of protein tyrosine kinases. RESULTS In silico profiling of Imatinib mesylate and PD-173955 kinase inhibitors with protein tyrosine kinases is conducted on kinome scale by using evolutionary analysis and fingerprinting inhibitor-protein interactions with the panel of all publically available protein tyrosine kinases crystal structures. We have found that sequence plasticity of the binding site residues alone may not be sufficient to enable protein tyrosine kinases to readily evolve novel binding activities with inhibitors. While evolutionary signal derived solely from the tyrosine kinase sequence conservation can not be readily translated into the ligand binding phenotype, the proposed structural bioinformatics analysis can discriminate a functionally relevant kinase binding signal from a simple phylogenetic relationship. The results of this work reveal that protein conformational diversity is intimately linked with sequence plasticity of the binding site residues in achieving functional adaptability of protein kinases towards specific drug binding. This study offers a plausible molecular rationale to the experimental binding profiles of the studied kinase inhibitors and provides a theoretical basis for constructing functionally relevant kinase binding trees.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Department of Pharmacology, University of California San Diego 9500 Gilman Drive, La Jolla, CA 92093-0392, USA.
| |
Collapse
|
404
|
Gullingsrud J, Kim C, Taylor SS, McCammon JA. Dynamic binding of PKA regulatory subunit RI alpha. Structure 2006; 14:141-9. [PMID: 16407073 DOI: 10.1016/j.str.2005.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 09/26/2005] [Accepted: 09/26/2005] [Indexed: 11/24/2022]
Abstract
Recent crystal structures have revealed that regulatory subunit RIalpha of PKA undergoes a dramatic conformational change upon complex formation with the catalytic subunit. Molecular dynamics studies were initiated to elucidate the contributions of intrinsic conformational flexibility and interactions with the catalytic subunit in formation and stabilization of the complex. Simulations of a single RIalpha nucleotide binding domain (NBD), missing cAMP, showed that its C helix spontaneously occupies two distinct conformations: either packed against the nucleotide binding domain as in its cAMP bound structure, or extended into an intermediate form resembling that of the holoenzyme structure. C helix extension was not seen in a simulation of either RIalpha NBD. In a model complex containing both NBDs and the catalytic subunit, well-conserved residues at the interface between the NBDs in the cAMP bound form were found to stabilize the complex through contacts with the catalytic subunit. The model structure is consistent with available experimental data.
Collapse
Affiliation(s)
- Justin Gullingsrud
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, USA.
| | | | | | | |
Collapse
|
405
|
Kurakin A. Self-organization versus Watchmaker: Molecular motors and protein translocation. Biosystems 2006; 84:15-23. [PMID: 16384632 DOI: 10.1016/j.biosystems.2005.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 08/13/2005] [Accepted: 09/28/2005] [Indexed: 11/30/2022]
Abstract
Generation of directional movement at the molecular scale is a phenomenon crucial for biological organization and dynamics. It is traditionally described in mechanistic terms, in consistency with the conventional machine-like image of the cell. The designated and highly specialized protein machines and molecular motors are presumed to bring about most of cellular motion. A review of experimental data suggests, however, that uncritical adherence to mechanistic interpretations may limit the ability of researchers to comprehend and model biology. Specifically, this article illustrates that the interpretation of molecular motors and protein translocation in terms of stochasticity and self-organization appears to provide a more adequate and fruitful conceptual framework for understanding of biological organization at the molecular scale.
Collapse
Affiliation(s)
- Alexei Kurakin
- Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945, USA.
| |
Collapse
|
406
|
Grünberg R, Nilges M, Leckner J. Flexibility and Conformational Entropy in Protein-Protein Binding. Structure 2006; 14:683-93. [PMID: 16615910 DOI: 10.1016/j.str.2006.01.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/05/2006] [Accepted: 01/06/2006] [Indexed: 11/16/2022]
Abstract
To better understand the interplay between protein-protein binding and protein dynamics, we analyzed molecular dynamics simulations of 17 protein-protein complexes and their unbound components. Complex formation does not restrict the conformational freedom of the partner proteins as a whole, but, rather, it leads to a redistribution of dynamics. We calculate the change in conformational entropy for seven complexes with quasiharmonic analysis. We see significant loss, but also increased or unchanged conformational entropy. Where comparison is possible, the results are consistent with experimental data. However, stringent error estimates based on multiple independent simulations reveal large uncertainties that are usually overlooked. We observe substantial gains of pseudo entropy in individual partner proteins, and we observe that all complexes retain residual stabilizing intermolecular motions. Consequently, protein flexibility has an important influence on the thermodynamics of binding and may disfavor as well as favor association. These results support a recently proposed unified model for flexible protein-protein association.
Collapse
Affiliation(s)
- Raik Grünberg
- Unité de Bioinformatique Structurale, CNRS URA 2185, Institut Pasteur, 25-28 rue du docteur Roux, F-75015 Paris, France
| | | | | |
Collapse
|
407
|
Koga N, Takada S. Folding-based molecular simulations reveal mechanisms of the rotary motor F1-ATPase. Proc Natl Acad Sci U S A 2006; 103:5367-72. [PMID: 16567655 PMCID: PMC1459361 DOI: 10.1073/pnas.0509642103] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biomolecular machines fulfill their function through large conformational changes that typically occur on the millisecond time scale or longer. Conventional atomistic simulations can only reach microseconds at the moment. Here, extending the minimalist model developed for protein folding, we propose the "switching Gō model" and use it to simulate the rotary motion of ATP-driven molecular motor F(1)-ATPase. The simulation recovers the unidirectional 120 degrees rotation of the gamma-subunit, the rotor. The rotation was induced solely by steric repulsion from the alpha(3)beta(3) subunits, the stator, which undergoes conformation changes during ATP hydrolysis. In silico alanine mutagenesis further elucidated which residues play specific roles in the rotation. Finally, regarding the mechanochemical coupling scheme, we found that the tri-site model does not lead to successful rotation but that the always-bi-site model produces approximately 30 degrees and approximately 90 degrees substeps, perfectly in accord with experiments. In the always-bi-site model, the number of sites occupied by nucleotides is always two during the hydrolysis cycle. This study opens up an avenue of simulating functional dynamics of huge biomolecules that occur on the millisecond time scales involving large-amplitude conformational change.
Collapse
Affiliation(s)
- Nobuyasu Koga
- *Graduate School of Science and Technology, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan; and
| | - Shoji Takada
- *Graduate School of Science and Technology, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan; and
- Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Rokkodai, Nada, Kobe 657-8501, Japan
- To whom correspondence should be sent at the * address. E-mail:
| |
Collapse
|
408
|
Li H, Li J, Wong L. Discovering motif pairs at interaction sites from protein sequences on a proteome-wide scale. Bioinformatics 2006; 22:989-96. [PMID: 16446278 DOI: 10.1093/bioinformatics/btl020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Protein-protein interaction, mediated by protein interaction sites, is intrinsic to many functional processes in the cell. In this paper, we propose a novel method to discover patterns in protein interaction sites. We observed from protein interaction networks that there exist a kind of significant substructures called interacting protein group pairs, which exhibit an all-versus-all interaction between the two protein-sets in such a pair. The full-interaction between the pair indicates a common interaction mechanism shared by the proteins in the pair, which can be referred as an interaction type. Motif pairs at the interaction sites of the protein group pairs can be used to represent such interaction type, with each motif derived from the sequences of a protein group by standard motif discovery algorithms. The systematic discovery of all pairs of interacting protein groups from large protein interaction networks is a computationally challenging problem. By a careful and sophisticated problem transformation, the problem is solved using efficient algorithms for mining frequent patterns, a problem extensively studied in data mining. RESULTS We found 5349 pairs of interacting protein groups from a yeast interaction dataset. The expected value of sequence identity within the groups is only 7.48%, indicating non-homology within these protein groups. We derived 5343 motif pairs from these group pairs, represented in the form of blocks. Comparing our motifs with domains in the BLOCKS and PRINTS databases, we found that our blocks could be mapped to an average of 3.08 correlated blocks in these two databases. The mapped blocks occur 4221 out of total 6794 domains (protein groups) in these two databases. Comparing our motif pairs with iPfam consisting of 3045 interacting domain pairs derived from PDB, we found 47 matches occurring in 105 distinct PDB complexes. Comparing with another putative domain interaction database InterDom, we found 203 matches. AVAILABILITY http://research.i2r.a-star.edu.sg/BindingMotifPairs/resources. SUPPLEMENTARY INFORMATION http://research.i2r.a-star.edu.sg/BindingMotifPairs and Bioinformatics online.
Collapse
Affiliation(s)
- Haiquan Li
- Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613, Singapore
| | | | | |
Collapse
|
409
|
Alonso H, Bliznyuk AA, Gready JE. Combining docking and molecular dynamic simulations in drug design. Med Res Rev 2006; 26:531-68. [PMID: 16758486 DOI: 10.1002/med.20067] [Citation(s) in RCA: 473] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A rational approach is needed to maximize the chances of finding new drugs, and to exploit the opportunities of potential new drug targets emerging from genomic and proteomic initiatives, and from the large libraries of small compounds now readily available through combinatorial chemistry. Despite a shaky early history, computer-aided drug design techniques can now be effective in reducing costs and speeding up drug discovery. This happy outcome results from development of more accurate and reliable algorithms, use of more thoughtfully planned strategies to apply them, and greatly increased computer power to allow studies with the necessary reliability to be performed. Our review focuses on applications and protocols, with the main emphasis on critical analysis of recent studies where docking calculations and molecular dynamics (MD) simulations were combined to dock small molecules into protein receptors. We highlight successes to demonstrate what is possible now, but also point out drawbacks and future directions. The review is structured to lead the reader from the simpler to more compute-intensive methods. Thus, while inexpensive and fast docking algorithms can be used to scan large compound libraries and reduce their size, more accurate but expensive MD simulations can be applied when a few selected ligand candidates remain. MD simulations can be used: during the preparation of the protein receptor before docking, to optimize its structure and account for protein flexibility; for the refinement of docked complexes, to include solvent effects and account for induced fit; to calculate binding free energies, to provide an accurate ranking of the potential ligands; and in the latest developments, during the docking process itself to find the binding site and correctly dock the ligand a priori.
Collapse
Affiliation(s)
- Hernán Alonso
- Computational Proteomics Group, John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia
| | | | | |
Collapse
|
410
|
Yu GX, Park BH, Chandramohan P, Munavalli R, Geist A, Samatova NF. In silico discovery of enzyme-substrate specificity-determining residue clusters. J Mol Biol 2005; 352:1105-17. [PMID: 16140329 DOI: 10.1016/j.jmb.2005.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 08/10/2005] [Indexed: 11/24/2022]
Abstract
The binding between an enzyme and its substrate is highly specific, despite the fact that many different enzymes show significant sequence and structure similarity. There must be, then, substrate specificity-determining residues that enable different enzymes to recognize their unique substrates. We reason that a coordinated, not independent, action of both conserved and non-conserved residues determine enzymatic activity and specificity. Here, we present a surface patch ranking (SPR) method for in silico discovery of substrate specificity-determining residue clusters by exploring both sequence conservation and correlated mutations. As case studies we apply SPR to several highly homologous enzymatic protein pairs, such as guanylyl versus adenylyl cyclases, lactate versus malate dehydrogenases, and trypsin versus chymotrypsin. Without using experimental data, we predict several single and multi-residue clusters that are consistent with previous mutagenesis experimental results. Most single-residue clusters are directly involved in enzyme-substrate interactions, whereas multi-residue clusters are vital for domain-domain and regulator-enzyme interactions, indicating their complementary role in specificity determination. These results demonstrate that SPR may help the selection of target residues for mutagenesis experiments and, thus, focus rational drug design, protein engineering, and functional annotation to the relevant regions of a protein.
Collapse
Affiliation(s)
- Gong-Xin Yu
- Computational Biology Institute, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | | | | | | | | | | |
Collapse
|
411
|
Abstract
Allostery involves coupling of conformational changes between two widely separated binding sites. The common view holds that allosteric proteins are symmetric oligomers, with each subunit existing in "at least" two conformational states with a different affinity for ligands. Recent observations such as the allosteric behavior of myoglobin, a classical example of a nonallosteric protein, call into question the existing allosteric dogma. Here we argue that all (nonfibrous) proteins are potentially allosteric. Allostery is a consequence of re-distributions of protein conformational ensembles. In a nonallosteric protein, the binding site shape may not show a concerted second-site change and enzyme kinetics may not reflect an allosteric transition. Nevertheless, appropriate ligands, point mutations, or external conditions may facilitate a population shift, leading a presumably nonallosteric protein to behave allosterically. In principle, practically any potential drug binding to the protein surface can alter the conformational redistribution. The question is its effectiveness in the redistribution of the ensemble, affecting the protein binding sites and its function. Here, we review experimental observations validating this view of protein allostery.
Collapse
Affiliation(s)
- K Gunasekaran
- Basic Research Program, SAIC-Frederick, Inc., Laboratory of Experimental and Computational Biology, National Cancer Institute-Frederick, Bldg 469, Rm 151, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
412
|
Endres D, Miyahara M, Moisant P, Zlotnick A. A reaction landscape identifies the intermediates critical for self-assembly of virus capsids and other polyhedral structures. Protein Sci 2005; 14:1518-25. [PMID: 15930000 PMCID: PMC2253392 DOI: 10.1110/ps.041314405] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The capsids of spherical viruses may contain from tens to hundreds of copies of the capsid protein(s). Despite their complexity, these particles assemble rapidly and with high fidelity. Subunit and capsid represent unique end states. However, the number of intermediate states in these reactions can be enormous-a situation analogous to the protein folding problem. Approaches to accurately model capsid assembly are still in their infancy. In this paper, we describe a sail-shaped reaction landscape, defined by the number of subunits in each species, the predicted prevalence of each species, and species stability. Prevalence can be calculated from the probability of synthesis of a given intermediate and correlates well with the appearance of intermediates in kinetics simulations. In these landscapes, we find that only those intermediates along the leading edge make a significant contribution to assembly. Although the total number of intermediates grows exponentially with capsid size, the number of leading-edge intermediates grows at a much slower rate. This result suggests that only a minute fraction of intermediates needs to be considered when describing capsid assembly.
Collapse
Affiliation(s)
- Dan Endres
- Department of Mathematics and Statistics, University of Central Oklahoma, Edmond 73034, USA
| | | | | | | |
Collapse
|
413
|
Celej MS, Dassie SA, Freire E, Bianconi ML, Fidelio GD. Ligand-induced thermostability in proteins: thermodynamic analysis of ANS-albumin interaction. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1750:122-33. [PMID: 15972267 DOI: 10.1016/j.bbapap.2005.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 05/03/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
A comparative thermodynamic study of the interaction of anilinonaphthalene sulfonate (ANS) derivatives with bovine serum albumin (BSA) was performed by using differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC). The chemically related ligands, 1,8-ANS and 2,6-ANS, present a similar affinity for BSA with different binding energetics. The analysis of the binding driving forces suggests that not only hydrophobic effect but also electrostatic interactions are relevant, even though they have been extensively used as probes for non-polar domains in proteins. Ligand association leads to an increase in protein thermostability, indicating that both dyes interact mainly with native BSA. ITC data show that 1,8-ANS and 2,6-ANS have a moderate affinity for BSA, with an association constant of around 1-9x10(5) M(-1) for the high-affinity site. Ligand binding is disfavoured by conformational entropy. The theoretical model used to simulate DSC data satisfactorily reproduces experimental thermograms, validating this approach as one which provides new insights into the interaction between one or more ligands with a protein. By comparison with 1,8-ANS, 2,6-ANS appears as a more "inert" probe to assess processes which involve conformational changes in proteins.
Collapse
Affiliation(s)
- M Soledad Celej
- Departamento de Química Biológica-CIQUIBIC, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
414
|
Abstract
Various types of large-amplitude molecular deformation are ubiquitously involved in the functions of biological macromolecules, especially supramolecular complexes. They can be very effectively analyzed by normal mode analysis with well-established procedures. However, despite its enormous success in numerous applications, certain issues related to the applications of normal mode analysis require further discussion. In this review, the author addresses some common issues so as to raise the awareness of the usefulness and limitations of the method in the general community of structural biology.
Collapse
Affiliation(s)
- Jianpeng Ma
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| |
Collapse
|
415
|
Nevo R, Brumfeld V, Kapon R, Hinterdorfer P, Reich Z. Direct measurement of protein energy landscape roughness. EMBO Rep 2005; 6:482-6. [PMID: 15864299 PMCID: PMC1299309 DOI: 10.1038/sj.embor.7400403] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 02/23/2005] [Accepted: 03/24/2005] [Indexed: 11/09/2022] Open
Abstract
The energy landscape of proteins is thought to have an intricate, corrugated structure. Such roughness should have important consequences on the folding and binding kinetics of proteins, as well as on their equilibrium fluctuations. So far, no direct measurement of protein energy landscape roughness has been made. Here, we combined a recent theory with single-molecule dynamic force spectroscopy experiments to extract the overall energy scale of roughness epsilon for a complex consisting of the small GTPase Ran and the nuclear transport receptor importin-beta. The results gave epsilon > 5k(B)T, indicating a bumpy energy surface, which is consistent with the ability of importin-beta to accommodate multiple conformations and to interact with different, structurally distinct ligands.
Collapse
Affiliation(s)
- Reinat Nevo
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vlad Brumfeld
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ruti Kapon
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Peter Hinterdorfer
- Institute for Biophysics, University of Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Ziv Reich
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
- Tel: +972 8 934 2982; Fax: +972 8 934 6010; E-mail:
| |
Collapse
|
416
|
Ariga K, Nakanishi T, Hill JP, Terasaka Y, Sakai D, Kikuchi JI. Effect of guest capture modes on molecular recognition by a dynamic cavity array at the air-water interface: soft vs. tight and fast vs. slow. SOFT MATTER 2005; 1:132-137. [PMID: 32646084 DOI: 10.1039/b501945a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dynamic aspects of molecular recognition at the air-water interface have been investigated using a monolayer of a steroid cyclophane SC(OH) which consists of the rigid 1,6,20,25-tetraaza[6.1.6.1]paracyclophane ring, connected to four steroid moieties (cholic acid) through flexible -lysine spacers. An aqueous fluorescent guest (TNS) can be reversibly captured by SC(OH) with a variation in the accompanying fluorescence emission upon compression and expansion of the SC(OH) monolayer. Tight capture, by compression of the monolayer to a high surface pressure, efficiently enhances fluorescence intensity because of suppression of formation of the non-emissive state. On the other hand, rapid motion of the reversible cavity formation by a high rate of compression and expansion of the monolayer results in better reproducibility in the fluorescence change than that obtained under a slower motion, which can be explained by the suppression of unfavorable structural relaxation within the monolayer structures. This result has connotations for the development of novel molecular devices and machines that operate through mechanically driven molecular recognition.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Supermolecules Group, Advanced Materials Laboratory, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
| | - Takashi Nakanishi
- Supermolecules Group, Advanced Materials Laboratory, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
| | - Jonathan P Hill
- International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Yukiko Terasaka
- Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Daisuke Sakai
- Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Jun-Ichi Kikuchi
- Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| |
Collapse
|
417
|
|
418
|
Grünberg R, Leckner J, Nilges M. Complementarity of structure ensembles in protein-protein binding. Structure 2005; 12:2125-36. [PMID: 15576027 DOI: 10.1016/j.str.2004.09.014] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 09/10/2004] [Accepted: 09/23/2004] [Indexed: 11/23/2022]
Abstract
Protein-protein association is often accompanied by changes in receptor and ligand structure. This interplay between protein flexibility and protein-protein recognition is currently the largest obstacle both to our understanding of and to the reliable prediction of protein complexes. We performed two sets of molecular dynamics simulations for the unbound receptor and ligand structures of 17 protein complexes and applied shape-driven rigid body docking to all combinations of representative snapshots. The crossdocking of structure ensembles increased the likelihood of finding near-native solutions. The free ensembles appeared to contain multiple complementary conformations. These were in general not related to the bound structure. We suggest that protein-protein binding follows a three-step mechanism of diffusion, free conformer selection, and refolding. This model combines previously conflicting ideas and is in better agreement with the current data on interaction forces, time scales, and kinetics.
Collapse
Affiliation(s)
- Raik Grünberg
- Unité de Bioinformatique Structurale, Institut Pasteur, 75015 Paris, France
| | | | | |
Collapse
|
419
|
Bernauer J, Poupon A, Azé J, Janin J. A docking analysis of the statistical physics of protein–protein recognition. Phys Biol 2005; 2:S17-23. [PMID: 16204845 DOI: 10.1088/1478-3975/2/2/s02] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We describe protein-protein recognition within the frame of the random energy model of statistical physics. We simulate, by docking the component proteins, the process of association of two proteins that form a complex. We obtain the energy spectrum of a set of protein-protein complexes of known three-dimensional structure by performing docking in random orientations and scoring the models thus generated. We use a coarse protein representation where each amino acid residue is replaced by its Voronoï cell, and derive a scoring function by applying the evolutionary learning program ROGER to a set of parameters measured on that representation. Taking the scores of the docking models to be interaction energies, we obtain energy spectra for the complexes and fit them to a Gaussian distribution, from which we derive physical parameters such as a glass transition temperature and a specificity transition temperature.
Collapse
Affiliation(s)
- Julie Bernauer
- Yeast Structural Genomics Laboratory, IBBMC UMR CNRS 8619, Bâtiment 430, Université Paris-Sud, 91405-Orsay, France
| | | | | | | |
Collapse
|
420
|
Liu HL, Hsu JP. Recent developments in structural proteomics for protein structure determination. Proteomics 2005; 5:2056-68. [PMID: 15846841 DOI: 10.1002/pmic.200401104] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The major challenges in structural proteomics include identifying all the proteins on the genome-wide scale, determining their structure-function relationships, and outlining the precise three-dimensional structures of the proteins. Protein structures are typically determined by experimental approaches such as X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. However, the knowledge of three-dimensional space by these techniques is still limited. Thus, computational methods such as comparative and de novo approaches and molecular dynamic simulations are intensively used as alternative tools to predict the three-dimensional structures and dynamic behavior of proteins. This review summarizes recent developments in structural proteomics for protein structure determination; including instrumental methods such as X-ray crystallography and NMR spectroscopy, and computational methods such as comparative and de novo structure prediction and molecular dynamics simulations.
Collapse
Affiliation(s)
- Hsuan-Liang Liu
- Department of Chemical Engineering, National Taipei University of Technology, Taiwan.
| | | |
Collapse
|
421
|
Nevo R, Brumfeld V, Elbaum M, Hinterdorfer P, Reich Z. Direct discrimination between models of protein activation by single-molecule force measurements. Biophys J 2005; 87:2630-4. [PMID: 15454457 PMCID: PMC1304681 DOI: 10.1529/biophysj.104.041889] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The limitations imposed on the analyses of complex chemical and biological systems by ensemble averaging can be overcome by single-molecule experiments. Here, we used a single-molecule technique to discriminate between two generally accepted mechanisms of a key biological process--the activation of proteins by molecular effectors. The two mechanisms, namely induced-fit and population-shift, are normally difficult to discriminate by ensemble approaches. As a model, we focused on the interaction between the nuclear transport effector, RanBP1, and two related complexes consisting of the nuclear import receptor, importin beta, and the GDP- or GppNHp-bound forms of the small GTPase, Ran. We found that recognition by the effector proceeds through either an induced-fit or a population-shift mechanism, depending on the substrate, and that the two mechanisms can be differentiated by the data.
Collapse
Affiliation(s)
- Reinat Nevo
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
422
|
Carlacci L, Millard CB, Olson MA. Conformational energy landscape of the acyl pocket loop in acetylcholinesterase: a Monte Carlo-generalized Born model study. Biophys Chem 2005; 111:143-57. [PMID: 15381312 DOI: 10.1016/j.bpc.2004.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/14/2004] [Accepted: 05/17/2004] [Indexed: 10/26/2022]
Abstract
The X-ray crystal structure of the reaction product of acetylcholinesterase (AChE) with the inhibitor diisopropylphosphorofluoridate (DFP) showed significant structural displacement in a loop segment of residues 287-290. To understand this conformational selection, a Monte Carlo (MC) simulation study was performed of the energy landscape for the loop segment. A computational strategy was applied by using a combined simulated annealing and room temperature Metropolis sampling approach with solvent polarization modeled by a generalized Born (GB) approximation. Results from thermal annealing reveal a landscape topology of broader basin opening and greater distribution of energies for the displaced loop conformation, while the ensemble average of conformations at 298 K favored a shift in populations toward the native by a free-energy difference in good agreement with the estimated experimental value. Residue motions along a reaction profile of loop conformational reorganization are proposed where Arg-289 is critical in determining electrostatic effects of solvent interaction versus Coulombic charging.
Collapse
Affiliation(s)
- Louis Carlacci
- Army High Performance Computing Research Center, Network Computing Services, Inc., 1425 Porter Street, Frederick, MD 21702, USA
| | | | | |
Collapse
|
423
|
Carlsson P, Koehler KF, Nilsson L. Glucocorticoid receptor point mutation V571M facilitates coactivator and ligand binding by structural rearrangement and stabilization. Mol Endocrinol 2005; 19:1960-77. [PMID: 15774500 DOI: 10.1210/me.2004-0203] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Two-point mutations in the human glucocorticoid receptor have been studied by computer simulations to rationalize experimental data, where mutants comprising the V571M substitution improve both transcriptional activity and affinity for aldosterone despite large distances between the mutated residue and the coactivator-binding surface and ligand-binding pocket, respectively. Our molecular dynamics simulations show that the V571M mutation modifies the coactivator-binding site defined by helices 3, 4, and 12, and that specific structural rearrangement of the coactivator-binding site correlates well with transactivation data. A similar reorganization of the coactivator-binding cleft is observed in crystallographic structures of the estrogen receptor in the presence of coactivator peptide, compared with structures without peptide, indicating that induced fit for coactivator binding is a general phenomenon for nuclear receptors. These results suggest that the V571M substitution facilitates recruitment of coactivator protein by promotion of a conformational substate reducing the energetic penalty for the induced fit of the receptor-coactivator complex. Furthermore, our simulations of V571M mutants showed reduced fluctuations of residues lining the ligand-binding pocket. This indicates that a reduction of the entropic cost for ligand binding may explain the increased affinity of V571M mutants for certain ligands.
Collapse
Affiliation(s)
- Peter Carlsson
- Department of Structural Biology, Karo Bio AB, Novum, S-141 57 Huddinge, Sweden.
| | | | | |
Collapse
|
424
|
Helmreich EJM. Structural flexibility of small GTPases. Can it explain their functional versatility? Biol Chem 2005; 385:1121-36. [PMID: 15653425 DOI: 10.1515/bc.2004.146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multiple interactions with many different partners are responsible for the amazing functional versatility of proteins, especially those participating in cellular regulation. The structural properties that could facilitate multiple interactions are examined for small GTPases. The role of cellular constraints, compartmentation and scaffolds on protein-protein interactions is considered.
Collapse
Affiliation(s)
- Ernst J M Helmreich
- The Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
425
|
Levy Y, Cho SS, Onuchic JN, Wolynes PG. A Survey of Flexible Protein Binding Mechanisms and their Transition States Using Native Topology Based Energy Landscapes. J Mol Biol 2005; 346:1121-45. [PMID: 15701522 DOI: 10.1016/j.jmb.2004.12.021] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 12/03/2004] [Accepted: 12/09/2004] [Indexed: 11/16/2022]
Abstract
Many cellular functions rely on interactions between protein pairs and higher oligomers. We have recently shown that binding mechanisms are robust and owing to the minimal frustration principle, just as for protein folding, are governed primarily by the protein's native topology, which is characterized by the network of non-covalent residue-residue interactions. The detailed binding mechanisms of nine dimers, a trimer, and a tetramer, each involving different degrees of flexibility and plasticity during assembly, are surveyed here using a model that is based solely on the protein topology, having a perfectly funneled energy landscape. The importance of flexibility in binding reactions is manifested by the fly-casting effect, which is diminished in magnitude when protein flexibility is removed. Many of the grosser and finer structural aspects of the various binding mechanisms (including binding of pre-folded monomers, binding of intrinsically unfolded monomers, and binding by domain-swapping) predicted by the native topology based landscape model are consistent with the mechanisms found in the laboratory. An asymmetric binding mechanism is often observed for the formation of the symmetric homodimers where one monomer is more structured at the binding transition state and serves as a template for the folding of the other monomer. Phi values were calculated to show how the structure of the binding transition state ensemble would be manifested in protein engineering studies. For most systems, the simulated Phi values are reasonably correlated with the available experimental values. This agreement suggests that the overall binding mechanism and the nature of the binding transition state ensemble can be understood from the network of interactions that stabilize the native fold. The Phi values for the formation of an antibody-antigen complex indicate a possible role for solvation of the interface in biomolecular association of large rigid proteins.
Collapse
Affiliation(s)
- Yaakov Levy
- Center for Theoretical Biological Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | | | |
Collapse
|
426
|
Ikeguchi M, Ueno J, Sato M, Kidera A. Protein structural change upon ligand binding: linear response theory. PHYSICAL REVIEW LETTERS 2005; 94:078102. [PMID: 15783858 DOI: 10.1103/physrevlett.94.078102] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Indexed: 05/24/2023]
Abstract
A simple formula based on linear response theory is proposed to explain and predict the structural change of proteins upon ligand binding. By regarding ligand binding as an external perturbation, the structural change as a response is described by atomic fluctuations in the ligand-free form and the protein-ligand interactions. The results for three protein systems of various sizes are consistent with the observations in the crystal structures, confirming the validity of the linear relationship between the equilibrium fluctuations and the structural change upon ligand binding.
Collapse
Affiliation(s)
- Mitsunori Ikeguchi
- Graduate School of Integrated Science, Yokohama City University, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
427
|
Stroh JG, Loulakis P, Lanzetti AJ, Xie J. LC-mass spectrometry analysis of N- and C-terminal boundary sequences of polypeptide fragments by limited proteolysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:38-45. [PMID: 15653362 DOI: 10.1016/j.jasms.2004.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 08/31/2004] [Accepted: 08/31/2004] [Indexed: 05/24/2023]
Abstract
Limited proteolysis is an important and widely used method for analyzing the tertiary structure and determining the domain boundaries of proteins. Here we describe a novel method for determining the N- and C-terminal boundary amino acid sequences of products derived from limited proteolysis using semi-specific and/or non-specific enzymes, with mass spectrometry as the only analytical tool. The core of this method is founded on the recognition that cleavage of proteins with non-specific proteases is not random, but patterned. Based on this recognition, we have the ability to determine the sequence of each proteolytic fragment by extracting a common association between data sets containing multiple potential sequences derived from two or more different mass spectral molecular weight measurements. Proteolytic product sequences derived from specific and non-specific enzymes can be accurately determined without resorting to the conventional time-consuming and laborious methods of SDS-PAGE and N-terminal sequencing analysis. Because of the sensitivity of mass spectrometry, multiple transient proteolysis intermediates can also be identified and analyzed by this method, which allows the ability to monitor the progression of proteolysis and thereby gain insight into protein structures.
Collapse
Affiliation(s)
- Justin G Stroh
- PGRD-Groton Laboratories, Pfizer Inc., Groton, Connecticut 06340, USA.
| | | | | | | |
Collapse
|
428
|
Verkhivker GM. Computational analysis of ligand binding dynamics at the intermolecular hot spots with the aid of simulated tempering and binding free energy calculations. J Mol Graph Model 2004; 22:335-48. [PMID: 15099830 DOI: 10.1016/j.jmgm.2003.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Equilibrium binding dynamics is studied for a panel of benzimidazole-containing compounds at the remodeled interface between human growth hormone (hGH) and the extracellular domain of its receptor (hGHbp), engineered by mutating to glycine hot spot residues T175 from the hormone and W104 from the receptor. Binding energetics is predicted in a good agreement with the experimental data for a panel of these small molecules that complement the engineered defect and restore the binding affinity of the wild-type hGH-hGHbp complex. The results of simulated tempering ligand dynamics at the protein-protein interface reveals a diversity of ligand binding modes that is consistent with the structural orientation of the benzimidazole ring which closely mimics the position of the mutated W104 hot spot residue in the wild-type hGH-hGHbp complex. This structural positioning of the benzimidazole core motif is shown to be a critical feature of the low-energy ligand conformations binding in the engineered cavity. The binding free energy analysis provides a plausible rationale behind the experimental dissociation constants and suggests a key role of ligand-protein van der Waals interactions in restoring binding affinity.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Pfizer Global Research and Development, La Jolla Laboratories, 10777 Science Center Drive, San Diego, CA 92121-1111, USA.
| |
Collapse
|
429
|
Barzilai A, Kumar S, Wolfson H, Nussinov R. Potential folding-function interrelationship in proteins. Proteins 2004; 56:635-49. [PMID: 15281117 DOI: 10.1002/prot.20132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The possibility is addressed that protein folding and function may be related via regions that are critical for both folding and function. This approach is based on the building blocks folding model that describes protein folding as binding events of conformationally fluctuating building blocks. Within these, we identify building block fragments that are critical for achieving the native fold. A library of such critical building blocks (CBBs) is constructed. Then, it is asked whether the functionally important residues fall in these CBB fragments. We find that for over two-thirds of the proteins in our library with available functional information, the catalytic or binding site residues lie within the CBB regions. From the evolutionary standpoint, a folding-function relationship is advantageous, since the need to guard against mutations is limited to one region. Furthermore, conformationally similar CBBs are found in globally unrelated proteins with different functions. Hence, substituting CBBs may lead to designed proteins with altered functions. We further find that the CBBs in our library are conformationally unstable.
Collapse
Affiliation(s)
- Adi Barzilai
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
430
|
|
431
|
Shatsky M, Nussinov R, Wolfson HJ. FlexProt: alignment of flexible protein structures without a predefinition of hinge regions. J Comput Biol 2004; 11:83-106. [PMID: 15072690 DOI: 10.1089/106652704773416902] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
FlexProt is a novel technique for the alignment of flexible proteins. Unlike all previous algorithms designed to solve the problem of structural comparisons allowing hinge-bending motions, FlexProt does not require an a priori knowledge of the location of the hinge(s). FlexProt carries out the flexible alignment, superimposing the matching rigid subpart pairs, and detects the flexible hinge regions simultaneously. A large number of methods are available to handle rigid structural alignment. However, proteins are flexible molecules, which may appear in different conformations. Hence, protein structural analysis requires algorithms that can deal with molecular flexibility. Here, we present a method addressing specifically a flexible protein alignment task. First, the method efficiently detects maximal congruent rigid fragments in both molecules. Transforming the task into a graph theoretic problem, our method proceeds to calculate the optimal arrangement of previously detected maximal congruent rigid fragments. The fragment arrangement does not violate the protein sequence order. A clustering procedure is performed on fragment-pairs which have the same 3-D rigid transformation regardless of insertions and deletions (such as loops and turns) which separate them. Although the theoretical worst case complexity of the algorithm is O(n(6)), in practice FlexProt is highly efficient. It performs a structural comparison of a pair of proteins 300 amino acids long in about seven seconds on a standard desktop PC (400 MHz Pentium II processor with 256MB internal memory). We have performed extensive experiments with the algorithm. An assortment of these results is presented here. FlexProt can be accessed via WWW at bioinfo3d.cs.tau.ac.il/FlexProt/.
Collapse
Affiliation(s)
- Maxim Shatsky
- School of Computer Science, Beverly and Raymond Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
432
|
|
433
|
Atilgan AR, Akan P, Baysal C. Small-world communication of residues and significance for protein dynamics. Biophys J 2004; 86:85-91. [PMID: 14695252 PMCID: PMC1303839 DOI: 10.1016/s0006-3495(04)74086-2] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It is not merely the position of residues that is critically important for a protein's function and stability, but also their interactions. We illustrate, by using a network construction on a set of 595 nonhomologous proteins, that regular packing is preserved in short-range interactions, but short average path lengths are achieved through some long-range contacts. Thus, lying between the two extremes of regularity and randomness, residues in folded proteins are distributed according to a "small-world" topology. Using this topology, we show that the core residues have the same local packing arrangements irrespective of protein size. Furthermore, we find that the average shortest path lengths are highly correlated with residue fluctuations, providing a link between the spatial arrangement of the residues and protein dynamics.
Collapse
Affiliation(s)
- Ali Rana Atilgan
- School of Engineering, Bogazici University, Bebek 34342, Istanbul, Turkey
| | | | | |
Collapse
|
434
|
Liu D, Windsor WT, Wyss DF. Double-stranded DNA-induced localized unfolding of HCV NS3 helicase subdomain 2. Protein Sci 2004; 12:2757-67. [PMID: 14627736 PMCID: PMC2366984 DOI: 10.1110/ps.03280803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The NS3 helicase of the hepatitis C virus (HCV) unwinds double-stranded (ds) nucleic acid (NA) in an NTP-dependent fashion. Mechanistic details of this process are, however, largely unknown for the HCV helicase. We have studied the binding of dsDNA to an engineered version of subdomain 2 of the HCV helicase (d(2Delta)NS3h) by NMR and circular dichroism. Binding of dsDNA to d(2Delta)NS3h induces a local unfolding of helix (alpha(3)), which includes residues of conserved helicase motif VI (Q(460)RxxRxxR(467)), and strands (beta(1) and beta(8)) from the central beta-sheet. This also occurs upon lowering the pH (4.4) and introducing an R461A point mutation, which disrupt salt bridges with Asp 412 and Asp 427 in the protein structure. NMR studies on d(2Delta)NS3h in the partially unfolded state at low pH map the dsDNA binding site to residues previously shown to be involved in single-stranded DNA binding. Sequence alignment and structural comparison suggest that these Arg-Asp interactions are highly conserved in SF2 DEx(D/H) proteins. Thus, modulation of these interactions by dsNA may allow SF2 helicases to switch between conformations required for helicase function.
Collapse
Affiliation(s)
- Dingjiang Liu
- Department of Structural Chemistry, Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA
| | | | | |
Collapse
|
435
|
Schubert P, Pfleiderer K, Hillen W. Tet repressor residues indirectly recognizing anhydrotetracycline. ACTA ACUST UNITED AC 2004; 271:2144-52. [PMID: 15153105 DOI: 10.1111/j.1432-1033.2004.04130.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Two tetracycline repressor (TetR) sequence variants sharing 63% identical amino acids were investigated in terms of their recognition specificity for tetracycline and anhydrotetracycline. Thermodynamic complex stabilities determined by urea-dependent unfolding reveal that tetracycline stabilizes both variants to a similar extent but that anhydrotetracycline discriminates between them significantly. Isofunctional TetR hybrid proteins of these sequence variants were constructed and their denaturation profiles identified residues 57 and 61 as the complex stability determinant. Association kinetics reveal different recognition of these TetR variants by anhydrotetracycline, but the binding constants indicate similar stabilization. The identified residues connect to an internal water network, which suggests that the discrepancy in the observed thermodynamics may be caused by an entropy effect. Exchange of these interacting residues between the two TetR variants appears to influence the flexibility of this water organization, demonstrating the importance of buried, structural water molecules for ligand recognition and protein function. Therefore, this structural module seems to be a key requisite for the plasticity of the multiple ligand binding protein TetR.
Collapse
Affiliation(s)
- Peter Schubert
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik, Friedrich-Alexander-Universität Erlangen-Nurnberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | | | | |
Collapse
|
436
|
Affiliation(s)
- Luciano Brocchieri
- Department of Mathematics, Stanford University, 450 Serra Mall, Building 380, Stanford, CA 94305-2125, USA.
| |
Collapse
|
437
|
Georlette D, Blaise V, Collins T, D'Amico S, Gratia E, Hoyoux A, Marx JC, Sonan G, Feller G, Gerday C. Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 2004; 28:25-42. [PMID: 14975528 DOI: 10.1016/j.femsre.2003.07.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2003] [Revised: 07/17/2003] [Accepted: 07/28/2003] [Indexed: 11/21/2022] Open
Abstract
In the last few years, increased attention has been focused on a class of organisms called psychrophiles. These organisms, hosts of permanently cold habitats, often display metabolic fluxes more or less comparable to those exhibited by mesophilic organisms at moderate temperatures. Psychrophiles have evolved by producing, among other peculiarities, "cold-adapted" enzymes which have the properties to cope with the reduction of chemical reaction rates induced by low temperatures. Thermal compensation in these enzymes is reached, in most cases, through a high catalytic efficiency associated, however, with a low thermal stability. Thanks to recent advances provided by X-ray crystallography, structure modelling, protein engineering and biophysical studies, the adaptation strategies are beginning to be understood. The emerging picture suggests that psychrophilic enzymes are characterized by an improved flexibility of the structural components involved in the catalytic cycle, whereas other protein regions, if not implicated in catalysis, may be even more rigid than their mesophilic counterparts. Due to their attractive properties, i.e., a high specific activity and a low thermal stability, these enzymes constitute a tremendous potential for fundamental research and biotechnological applications.
Collapse
Affiliation(s)
- D Georlette
- Laboratory of Biochemistry, Institute of Chemistry B6, University of Liège, Liège B-4000, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
438
|
Merlino A, Vitagliano L, Sica F, Zagari A, Mazzarella L. Population shift vs induced fit: The case of bovine seminal ribonuclease swapping dimer. Biopolymers 2004; 73:689-95. [PMID: 15048772 DOI: 10.1002/bip.20016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bovine seminal ribonuclease (BS-RNase) is a unique member of the pancreatic-like ribonuclease superfamily. This enzyme exists as two conformational isomers with distinctive biological properties. The structure of the major isomer is characterized by the swapping of the N-terminal segment (MxM BS-RNase). In this article, the crystal structures of the ligand-free MxM BS-RNase and its complex with 2'-deoxycitidylyl(3',5')-2'-deoxyadenosine derived from isomorphous crystals have been refined. Interestingly, the comparison between this novel ligand-free form and the previously published sulfate-bound structure reveals significant differences. In particular, the ligand-free MxM BS-RNase is closer to the structure of MxM BS-RNase productive complexes than to the sulfate-bound form. These results reveal that MxM BS-RNase presents a remarkable flexibility, despite the structural constraints of the interchain disulfide bridges and the swapping of the N-terminal helices. These findings have important implications to the ligand binding mechanism of MxM BS-RNase. Indeed, a population shift rather than a substrate-induced conformational transition may occur in the MxM BS-RNase ligand binding process.
Collapse
Affiliation(s)
- Antonello Merlino
- Dipartimento di Chimica, Università degli Studi di Napoli Federico II, Via Cynthia, 80126 Napoli, Italy
| | | | | | | | | |
Collapse
|
439
|
Hoyoux A, Blaise V, Collins T, D'Amico S, Gratia E, Huston AL, Marx JC, Sonan G, Zeng Y, Feller G, Gerday C. Extreme catalysts from low-temperature environments. J Biosci Bioeng 2004; 98:317-30. [PMID: 16233714 DOI: 10.1016/s1389-1723(04)00290-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 08/23/2004] [Indexed: 11/19/2022]
Abstract
Cold-loving or psychrophilic organisms are widely distributed in nature as a large part of the earth's surface is at temperatures around 0 degrees C. To maintain metabolic rates and to prosper in cold environments, these extremophilic organisms have developed a vast array of adaptations. One main adaptive strategy developed in order to cope with the reduction of chemical reaction rates induced by low temperatures is the synthesis of cold-adapted or psychrophilic enzymes. These enzymes are characterized by a high catalytic activity at low temperatures associated with a low thermal stability. A study of protein adaptation strategies suggests that the high activity of psychrophilic enzymes could be achieved by the destabilization of the active site, allowing the catalytic center to be more flexible at low temperatures, whereas other protein regions may be destabilized or as rigid as their mesophilic counterparts. Due to these particular properties, psychrophilic enzymes offer a high potential not only for fundamental research but also for biotechnological applications.
Collapse
Affiliation(s)
- Anne Hoyoux
- Laboratory of Biochemistry, Institute of Chemistry B6, University of Liège, Sart-Tilman, Liege B-4000, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
440
|
Gunasekaran K, Ma B, Nussinov R. Triggering loops and enzyme function: identification of loops that trigger and modulate movements. J Mol Biol 2003; 332:143-59. [PMID: 12946353 DOI: 10.1016/s0022-2836(03)00893-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzyme function often involves a conformational change. There is a general agreement that loops play a vital role in correctly positioning the catalytically important residues. Nevertheless, predicting the functional loops and most importantly their role in enzyme function remains a difficult task. A major reason for this difficulty is that loops that undergo conformational change are frequently not well conserved in their primary sequence. beta1,4-Galactosyltransferase is one such enzyme. There, the amino acid sequence of a long loop that undergoes a large conformational change upon substrate binding is not well conserved. Our molecular dynamics simulations show that the large conformational change in the long loop is brought about by a second, interacting loop. Interestingly, while the structural change of the second loop is much smaller than that of the long loop, its sequence (particularly glycine residues) is highly conserved. We further examine the generality of the proposition that there are loops that trigger movements but nevertheless show little or no structural changes in crystals. We focus on two other enzymes, enolase and lipase. We chose these enzymes, since they too undergo conformational change upon ligand binding, however, they have different folds and different functions. Through multiple sets of simulations we show that the conformational change of the functional loop(s) is brought about through communication of flexibility by triggering loops that have several glycine residues. We further propose that similar to the conservation of common favorable fold types and structural motifs, evolution has also conserved common "skillful" mechanisms. Mechanisms may be conserved across different folds, sequences and functions, with adaptation to specific enzymatic roles.
Collapse
Affiliation(s)
- K Gunasekaran
- Basic Research Program, SAIC-Frederick Inc., Laboratory of Experimental and Computational Biology, NCI-Frederick, Bldg. 469 Rm. 151, Frederick, MD 21702, USA
| | | | | |
Collapse
|
441
|
Farooq A, Zeng L, Yan KS, Ravichandran KS, Zhou MM. Coupling of folding and binding in the PTB domain of the signaling protein Shc. Structure 2003; 11:905-13. [PMID: 12906822 DOI: 10.1016/s0969-2126(03)00134-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The notion that certain proteins lack intrinsic globular structure under physiological conditions and that the attainment of fully folded structure only occurs upon the binding of target molecules has been recently gaining popularity. We report here the solution structure of the PTB domain of the signaling protein Shc in the free form. Comparison of this structure with that of the complex form, obtained previously with a phosphopeptide ligand, reveals that the Shc PTB domain is structurally disordered in the free form, particularly around the regions constituting the peptide binding pocket. The binding of the ligand appears to reorganize this pocket through local folding events triggering a conformational switch between the free and the complex forms.
Collapse
Affiliation(s)
- Amjad Farooq
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
442
|
Nevo R, Stroh C, Kienberger F, Kaftan D, Brumfeld V, Elbaum M, Reich Z, Hinterdorfer P. A molecular switch between alternative conformational states in the complex of Ran and importin beta1. Nat Struct Mol Biol 2003; 10:553-7. [PMID: 12808444 DOI: 10.1038/nsb940] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Accepted: 05/21/2003] [Indexed: 11/09/2022]
Abstract
Several million macromolecules are exchanged each minute between the nucleus and cytoplasm by receptor-mediated transport. Most of this traffic is controlled by the small GTPase Ran, which regulates assembly and disassembly of the receptor-cargo complexes in the appropriate cellular compartment. Here we applied dynamic force spectroscopy to study the interaction of Ran with the nuclear import receptor importin beta1 (impbeta) at the single-molecule level. We found that the complex alternates between two distinct conformational states of different adhesion strength. The application of an external mechanical force shifts equilibrium toward one of these states by decreasing the height of the interstate activation energy barrier. The other state can be stabilized by a functional Ran mutant that increases this barrier. These results support a model whereby functional control of Ran-impbeta is achieved by a population shift between pre-existing alternative conformations.
Collapse
Affiliation(s)
- Reinat Nevo
- Department of Biological Chemistry, the Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
443
|
Celej MS, Montich GG, Fidelio GD. Protein stability induced by ligand binding correlates with changes in protein flexibility. Protein Sci 2003; 12:1496-506. [PMID: 12824495 PMCID: PMC2323922 DOI: 10.1110/ps.0240003] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The interaction between ligands and proteins usually induces changes in protein thermal stability with modifications in the midpoint denaturation temperature, enthalpy of unfolding, and heat capacity. These modifications are due to the coupling of unfolding with binding equilibrium. Furthermore, they can be attained by changes in protein structure and conformational flexibility induced by ligand interaction. To study these effects we have used bovine serum albumin (BSA) interacting with three different anilinonaphthalene sulfonate derivatives (ANS). These ligands have different effects on protein stability, conformation, and dynamics. Protein stability was studied by differential scanning calorimetry and fluorescence spectroscopy, whereas conformational changes were detected by circular dichroism and infrared spectroscopy including kinetics of hydrogen/deuterium exchange. The order of calorimetric midpoint of denaturation was: 1,8-ANS-BSA > 2,6-ANS-BSA > free BSA >> (nondetected) bis-ANS-BSA. Both 1,8-ANS and 2,6-ANS did not substantially modify the secondary structure of BSA, whereas bis-ANS induced a distorted alpha-helix conformation with an increase of disordered structure. Protein flexibility followed the order: 1,8-ANS-BSA < 2,6-ANS-BSA < free BSA << bis-ANS-BSA, indicating a clear correlation between stability and conformational flexibility. The structure induced by an excess of bis-ANS to BSA is compatible with a molten globule-like state. Within the context of the binding landscape model, we have distinguished five conformers (identified by subscript): BSA(1,8-ANS), BSA(2,6-ANS), BSA(free), BSA(bis-ANS), and BSA(unfolded) among the large number of possible states of the conformational dynamic ensemble. The relative population of each distinguishable conformer depends on the type and concentration of ligand and the temperature of the system.
Collapse
Affiliation(s)
- María Soledad Celej
- Centro de Investigaciones en Química Biológica de Córdoba—CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Guillermo G. Montich
- Centro de Investigaciones en Química Biológica de Córdoba—CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Gerardo D. Fidelio
- Centro de Investigaciones en Química Biológica de Córdoba—CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, 5000 Córdoba, Argentina
| |
Collapse
|
444
|
van Huystee RB, Sun Y, Lige B. A retrospective look at the cationic peanut peroxidase structure. Crit Rev Biotechnol 2003; 22:335-54. [PMID: 12487424 DOI: 10.1080/07388550290789540] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The cationic peanut peroxidase has been studied in detail, not only with regard to its peptide structure, but also to the sites and role of the three moieties linked to it. Peanut peroxidase lends itself well to a close examination as a potential example for other plant peroxidase studies. It was the first plant peroxidase for which a 3-D structure was derived from crystals, with the glycans intact. Subsequent analysis of peroxidases structures from other plants have not shown great differences to that of the peanut peroxidase. As the period of proteomics follows on the era of genomics, the study of glycans has been brought back into focus. With the potential use of peroxidase as a polymerization agent for industry, there are some aspects of the overall structure that should be kept in mind for successful use of this enzyme. A variety of techniques are now available to assay for these structures/moieties and their roles. Peanut peroxidase data are reviewed in that light, as well as defining some true terms for isozymes. Because a high return of the enzyme in a pure form has been obtained from cultured cells in suspension culture, a brief review of this is also offered.
Collapse
Affiliation(s)
- Robert B van Huystee
- Department of Plant Sciences, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| | | | | |
Collapse
|
445
|
Koerner C, Guan T, Gerace L, Cingolani G. Synergy of silent and hot spot mutations in importin beta reveals a dynamic mechanism for recognition of a nuclear localization signal. J Biol Chem 2003; 278:16216-21. [PMID: 12594203 DOI: 10.1074/jbc.m301137200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular recognition of the importin beta-binding (IBB) domain of importin alpha by importin beta is critical for the nuclear import of protein cargoes containing a classical nuclear localization signal. We have studied the function of four conserved tryptophans of importin beta (Trp-342, Trp-430, Trp-472, and Trp-864) located at the binding interface with the IBB domain by systematic alanine substitution mutagenesis. We found that Trp-864 is a mutational hot spot that significantly affects IBB-binding and import activity, whereas residues Trp-342, Trp-430, and Trp-472 are mutationally silent when analyzed individually. Interestingly, the combination of the hot spot at residue Trp-864 with mutations in the other three tryptophans gives rise to a striking synergy that diminishes IBB domain binding by up to approximately 1000-fold and, in turn, abolishes import activity. We propose that importin beta uses the tryptophans to select and stabilize a helical conformation of the IBB domain, which, in turn, conveys specific, high affinity binding.
Collapse
Affiliation(s)
- Carolin Koerner
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
446
|
Salazar C, Höfer T. Allosteric regulation of the transcription factor NFAT1 by multiple phosphorylation sites: a mathematical analysis. J Mol Biol 2003; 327:31-45. [PMID: 12614606 DOI: 10.1016/s0022-2836(03)00085-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
NFAT transcription factors are activated through dephosphorylation by the phosphatase calcineurin. Experimental data show that 13 conserved phosphorylation sites conspire to control the transition between an inactive and an active conformation. We propose a quantitative model of the underlying molecular mechanisms that may generally apply to highly phosphorylated proteins. Mathematical analysis shows that multiple phosphorylation sites result in a threshold for protein activation. Its sharpness increases with the number of sites, thus providing a rationale for the involvement of the large number of serine residues in NFAT activation. The model predicts that nuclear kinases exert a larger control on the activation threshold than cytoplasmic kinases, and that the NFAT activation kinetics can discriminate between input signals of different amplitude.
Collapse
Affiliation(s)
- Carlos Salazar
- Theoretische Biophysik, Institut für Biologie, Humboldt-Universität Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | | |
Collapse
|
447
|
D'Amico S, Marx JC, Gerday C, Feller G. Activity-stability relationships in extremophilic enzymes. J Biol Chem 2003; 278:7891-6. [PMID: 12511577 DOI: 10.1074/jbc.m212508200] [Citation(s) in RCA: 327] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Psychrophilic, mesophilic, and thermophilic alpha-amylases have been studied as regards their conformational stability, heat inactivation, irreversible unfolding, activation parameters of the reaction, properties of the enzyme in complex with a transition state analog, and structural permeability. These data allowed us to propose an energy landscape for a family of extremophilic enzymes based on the folding funnel model, integrating the main differences in conformational energy, cooperativity of protein unfolding, and temperature dependence of the activity. In particular, the shape of the funnel bottom, which depicts the stability of the native state ensemble, also accounts for the thermodynamic parameters of activation that characterize these extremophilic enzymes, therefore providing a rational basis for stability-activity relationships in protein adaptation to extreme temperatures.
Collapse
Affiliation(s)
- Salvino D'Amico
- Laboratory of Biochemistry, University of Liège, Institute of Chemistry B6, B-4000 Liège-Sart Tilman, Belgium
| | | | | | | |
Collapse
|
448
|
Ceruso MA, Grottesi A, Di Nola A. Dynamic effects of mutations within two loops of cytochrome c551 from Pseudomonas aeruginosa. Proteins 2003; 50:222-9. [PMID: 12486716 DOI: 10.1002/prot.10269] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this work, we investigated the structural and dynamic consequences of two substitutions, P58A and G36P, located in two different solvent-exposed loops of cytochrome c551. The results show that both mutations affect regions that are distant from the site of mutation. Here, the two loops appear to be dynamically coupled to each other, because the substitution at one site affects the structure and the dynamics of the other site. However, the substitutions at Gly-36 and Pro-58 presented substantial differences, which were related to the mechanical (rigidity and deformability) properties of the site surrounding the mutation. Although the P58A mutant conserved a significant dynamic similarity to the wild-type protein as the immediate surroundings of position 58 became more rigid, the G36P mutant, which had deformed its flexible surroundings, presented a dynamic behavior that was markedly different from that of the wild-type protein. These results suggest that perturbation of sterically isolated and flexible regions, such as solvent-exposed loops, can have strong dynamic consequences on the protein as a whole, raising the possibility that these effects could in turn affect the stability or the function of the protein.
Collapse
|
449
|
Merlino A, Vitagliano L, Ceruso MA, Di Nola A, Mazzarella L. Global and local motions in ribonuclease A: a molecular dynamics study. Biopolymers 2002; 65:274-83. [PMID: 12382288 DOI: 10.1002/bip.10225] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The understanding of protein dynamics is one of the major goals of structural biology. A direct link between protein dynamics and function has been provided by x-ray studies performed on ribonuclease A (RNase A) (B. F. Rasmussen et al., Nature, 1992, Vol. 357, pp. 423-424; L. Vitagliano et al., Proteins: Structure, Function, and Genetics, 2002, Vol. 46, pp. 97-104). Here we report a 3 ns molecular dynamics simulation of RNase A in water aimed at characterizing the dynamical behavior of the enzyme. The analysis of local and global motions provides interesting insight on the dynamics/function relationship of RNase A. In agreement with previous crystallographic reports, the present study confirms that the RNase A active site is constituted by rigid (His12, Asn44, Thr45) and flexible (Lys41, Asp83, His119, Asp121) residues. The analysis of the global motions, performed using essential dynamics, shows that the two beta-sheet regions of RNase A move coherently in opposite directions, thus modifying solvent accessibility of the active site, and that the mixed alpha/3(10)-helix (residues 50-60) behaves as a mechanical hinge during the breathing motion of the protein. These data demonstrate that this motion, essential for RNase A substrate binding and release, is an intrinsic dynamical property of the ligand-free enzyme.
Collapse
Affiliation(s)
- Antonello Merlino
- Dipartimento di Chimica, Università degli Studi di Napoli Federico II, Via Cinthia, 80125 Napoli, Italy
| | | | | | | | | |
Collapse
|
450
|
Guidry JJ, Wittung-Stafshede P. Low stability for monomeric human chaperonin protein 10: interprotein interactions contribute majority of oligomer stability. Arch Biochem Biophys 2002; 405:280-2. [PMID: 12220543 DOI: 10.1016/s0003-9861(02)00406-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Jesse J Guidry
- Department of Chemistry, Tulane University, 6832 St. Charles Avenue, New Orleans, LA 70118-5698, USA
| | | |
Collapse
|