401
|
Smith KD, Lipchock SV, Strobel SA. Structural and biochemical characterization of linear dinucleotide analogues bound to the c-di-GMP-I aptamer. Biochemistry 2011; 51:425-32. [PMID: 22148472 DOI: 10.1021/bi2016662] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cyclic dinucleotide c-di-GMP regulates lifestyle transitions in many bacteria, such as the change from a free motile state to a biofilm-forming community. Riboswitches that bind this second messenger are important downstream targets in this bacterial signaling pathway. The breakdown of c-di-GMP in the cell is accomplished enzymatically and results in the linear dinucleotide pGpG. The c-di-GMP-binding riboswitches must be able to discriminate between their cognate cyclic ligand and linear dinucleotides in order to be selective biological switches. It has been reported that the c-di-GMP-I riboswitch binds c-di-GMP 5 orders of magnitude better than the linear pGpG, but the cause of this large energetic difference in binding is unknown. Here we report binding data and crystal structures of several linear c-di-GMP analogues in complex with the c-di-GMP-I riboswitch. These data reveal the parameters for phosphate recognition and the structural basis of linear dinucleotide binding to the riboswitch. Additionally, the pH dependence of binding shows that exclusion of pGpG is not due to the additional negative charge on the ligand. These data reveal principles that, along with published work, will contribute to the design of c-di-GMP analogues with properties desirable for use as chemical tools and potential therapeutics.
Collapse
Affiliation(s)
- Kathryn D Smith
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8321, United States
| | | | | |
Collapse
|
402
|
Baker JL, Sudarsan N, Weinberg Z, Roth A, Stockbridge RB, Breaker RR. Widespread genetic switches and toxicity resistance proteins for fluoride. Science 2011; 335:233-235. [PMID: 22194412 DOI: 10.1126/science.1215063] [Citation(s) in RCA: 336] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Most riboswitches are metabolite-binding RNA structures located in bacterial messenger RNAs where they control gene expression. We have discovered a riboswitch class in many bacterial and archaeal species whose members are selectively triggered by fluoride but reject other small anions, including chloride. These fluoride riboswitches activate expression of genes that encode putative fluoride transporters, enzymes that are known to be inhibited by fluoride, and additional proteins of unknown function. Our findings indicate that most organisms are naturally exposed to toxic levels of fluoride and that many species use fluoride-sensing RNAs to control the expression of proteins that alleviate the deleterious effects of this anion.
Collapse
Affiliation(s)
- Jenny L Baker
- Department of Chemistry, Yale University, Box 208103, New Haven, CT 06520, USA
| | - Narasimhan Sudarsan
- Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520, USA
| | - Zasha Weinberg
- Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520, USA
| | - Adam Roth
- Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520, USA
| | - Randy B Stockbridge
- Department of Biochemistry and Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | - Ronald R Breaker
- Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, Box 208103, New Haven, CT 06520, USA
| |
Collapse
|
403
|
Output targets and transcriptional regulation by a cyclic dimeric GMP-responsive circuit in the Vibrio parahaemolyticus Scr network. J Bacteriol 2011; 194:914-24. [PMID: 22194449 DOI: 10.1128/jb.05807-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Vibrio parahaemolyticus Scr system modulates decisions pertinent to surface colonization by affecting the cellular level of cyclic dimeric GMP (c-di-GMP). In this work, we explore the scope and mechanism of this regulation. Transcriptome comparison of ΔscrABC and wild-type strains revealed expression differences with respect to ∼100 genes. Elevated c-di-GMP repressed genes in the surface-sensing regulon, including those encoding the lateral flagellar and type III secretion systems and N-acetylglucosamine-binding protein GpbA while inducing genes encoding other cell surface molecules and capsular polysaccharide. The transcription of a few regulatory genes was also affected, and the role of one was characterized. Mutations in cpsQ suppressed the sticky phenotype of scr mutants. cpsQ encodes one of four V. parahaemolyticus homologs in the CsgD/VpsT family, members of which have been implicated in c-di-GMP signaling. Here, we demonstrate that CpsQ is a c-di-GMP-binding protein. By using a combination of mutant and reporter analyses, CpsQ was found to be the direct, positive regulator of cpsA transcription. This c-di-GMP-responsive regulatory circuit could be reconstituted in Escherichia coli, where a low level of this nucleotide diminished the stability of CpsQ. The molecular interplay of additional known cps regulators was defined by establishing that CpsS, another CsgD family member, repressed cpsR, and the transcription factor CpsR activated cpsQ. Thus, we are developing a connectivity map of the Scr decision-making network with respect to its wiring and output strategies for colonizing surfaces and interaction with hosts; in doing so, we have isolated and reproduced a c-di-GMP-sensitive regulatory module in the circuit.
Collapse
|
404
|
Luo Y, Zhou J, Watt SK, Lee VT, Dayie TK, Sintim HO. Differential binding of 2'-biotinylated analogs of c-di-GMP with c-di-GMP riboswitches and binding proteins. MOLECULAR BIOSYSTEMS 2011; 8:772-8. [PMID: 22182995 DOI: 10.1039/c2mb05338a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
C-di-GMP has emerged as a signalling molecule that regulates a variety of processes in several bacteria; therefore there is interest in the development of biotinylated analogs for the identification of binding partners. No detailed study has been done to evaluate if biotinylated analogs of c-di-GMP are capable of binding to c-di-GMP receptors. Herein, we evaluate the binding of commercially available 2'-biotinylated c-di-GMP and phosphorothioate 2'-biotinylated c-di-GMP, prepared via a facile solid-phase synthesis, to several c-di-GMP receptors. Docking, using Autodock vina software, as well as experimental studies of these analogs, with c-di-GMP class I and II riboswitches and binding proteins, reveal that some, but not all, c-di-GMP receptors can tolerate the 2'-modification of c-di-GMP with biotin.
Collapse
Affiliation(s)
- Yiling Luo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
405
|
Düvel J, Bertinetti D, Möller S, Schwede F, Morr M, Wissing J, Radamm L, Zimmermann B, Genieser HG, Jänsch L, Herberg FW, Häussler S. A chemical proteomics approach to identify c-di-GMP binding proteins in Pseudomonas aeruginosa. J Microbiol Methods 2011; 88:229-36. [PMID: 22178430 DOI: 10.1016/j.mimet.2011.11.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 12/16/2022]
Abstract
In many bacteria, high levels of the ubiquitous second messenger c-di-GMP have been demonstrated to suppress motility and to promote the establishment of surface-adherent biofilm communities. While molecular mechanisms underlying the synthesis and degradation of c-di-GMP have been comprehensively characterized, little is known about how c-di-GMP mediates its regulatory effects. In this study, we have established a chemical proteomics approach to identify c-di-GMP interacting proteins in the opportunistic pathogen Pseudomonas aeruginosa. A functionalized c-di-GMP analog, 2'-aminohexylcarbamoyl-c-di-GMP (2'-AHC-c-di-GMP), was chemically synthesized and following its immobilization used to perform affinity pull down experiments. Enriched proteins were subsequently identified by high-resolution mass spectrometry. 2'-AHC-c-di-GMP was also employed in surface plasmon resonance studies to evaluate and quantify the interaction of c-di-GMP with its potential target molecules in vitro. The biochemical tools presented here may serve the identification of novel classes of c-di-GMP effectors and thus contribute to a better characterization and understanding of the complex c-di-GMP signaling network.
Collapse
Affiliation(s)
- Juliane Düvel
- Department of Cell Biology, Helmholtz Center for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
406
|
Afonin KA, Lin YP, Calkins ER, Jaeger L. Attenuation of loop-receptor interactions with pseudoknot formation. Nucleic Acids Res 2011; 40:2168-80. [PMID: 22080507 PMCID: PMC3300017 DOI: 10.1093/nar/gkr926] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
RNA tetraloops can recognize receptors to mediate long-range interactions in stable natural RNAs. In vitro selected GNRA tetraloop/receptor interactions are usually more ‘G/C-rich’ than their ‘A/U-rich’ natural counterparts. They are not as widespread in nature despite comparable biophysical and chemical properties. Moreover, while AA, AC and GU dinucleotide platforms occur in natural GAAA/11 nt receptors, the AA platform is somewhat preferred to the others. The apparent preference for ‘A/U-rich’ GNRA/receptor interactions in nature might stem from an evolutionary adaptation to avoid folding traps at the level of the larger molecular context. To provide evidences in favor of this hypothesis, several riboswitches based on natural and artificial GNRA receptors were investigated in vitro for their ability to prevent inter-molecular GNRA/receptor interactions by trapping the receptor sequence into an alternative intra-molecular pseudoknot. Extent of attenuation determined by native gel-shift assays and co-transcriptional assembly is correlated to the G/C content of the GNRA receptor. Our results shed light on the structural evolution of natural long-range interactions and provide design principles for RNA-based attenuator devices to be used in synthetic biology and RNA nanobiotechnology.
Collapse
Affiliation(s)
- Kirill A Afonin
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA
| | | | | | | |
Collapse
|
407
|
Fujita Y, Tanaka T, Furuta H, Ikawa Y. Functional roles of a tetraloop/receptor interacting module in a cyclic di-GMP riboswitch. J Biosci Bioeng 2011; 113:141-5. [PMID: 22074990 DOI: 10.1016/j.jbiosc.2011.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 09/26/2011] [Accepted: 10/07/2011] [Indexed: 12/27/2022]
Abstract
Riboswitches are a class of structural RNAs that regulate transcription and translation through specific recognition of small molecules. Riboswitches are attractive not only as drug targets for novel antibiotics but also as modular tools for controlling gene expression. Sequence comparison of a class of riboswitches that sense cyclic di-GMP (type-I c-di-GMP riboswitches) revealed that this type of riboswitch frequently shows a GAAA loop/receptor interaction between P1 and P3 elements. In the crystal structures of a type-I c-di-GMP riboswitch from Vibrio cholerae (the Vc2 riboswitch), the GNRA loop/receptor interaction assembled P2 and P3 stems to organize a ligand-binding pocket. In this study, the functional importance of the GAAA loop-receptor interaction in the Vc2 riboswitch was examined. A series of variant Vc2 riboswitches with mutations in the GAAA loop/receptor interaction were assayed for their switching abilities. In mutants with mutations in the P2 GAAA loop, expression of the reporter gene was reduced to approximately 40% - 60% of that in the wild-type. However, mutants in which the P3 receptor motif was substituted with base pairs were as active as the wild-type. These results suggested that the GAAA loop/receptor interaction does not simply establish the RNA 3D structure but docking of P2 GAAA loop reduces the flexibility of the GAAA receptor motif in the P3 element. This mechanism was supported by a variant riboswitch bearing a theophylline aptamer module in P3 the structural rigidity of which could be modulated by the small molecule theophylline.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | | | | | | |
Collapse
|
408
|
Prospects for riboswitch discovery and analysis. Mol Cell 2011; 43:867-79. [PMID: 21925376 DOI: 10.1016/j.molcel.2011.08.024] [Citation(s) in RCA: 385] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/15/2011] [Accepted: 08/22/2011] [Indexed: 11/23/2022]
Abstract
An expanding number of metabolite-binding riboswitch classes are being discovered in the noncoding portions of bacterial genomes. Findings over the last decade indicate that bacteria commonly use these RNA genetic elements as regulators of metabolic pathways and as mediators of changes in cell physiology. Some riboswitches are surprisingly complex, and they rival protein factors in their structural and functional sophistication. Each new riboswitch discovery expands our knowledge of the biochemical capabilities of RNA, and some give rise to new questions that require additional study to be addressed. Some of the greatest prospects for riboswitch research and some of the more interesting mysteries are discussed in this review.
Collapse
|
409
|
Chen AG, Sudarsan N, Breaker RR. Mechanism for gene control by a natural allosteric group I ribozyme. RNA (NEW YORK, N.Y.) 2011; 17:1967-72. [PMID: 21960486 PMCID: PMC3198590 DOI: 10.1261/rna.2757311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
An allosteric ribozyme consisting of a metabolite-sensing riboswitch and a group I self-splicing ribozyme was recently found in the pathogenic bacterium Clostridium difficile. The riboswitch senses the bacterial second messenger c-di-GMP, thereby controlling 5'-splice site choice by the downstream ribozyme. The proximity of this allosteric ribozyme to the open reading frame (ORF) for CD3246 suggests that coenzyme-mediated regulation of splicing controls expression of this putative virulence gene. In the presence of c-di-GMP, the allosteric ribozyme in the CD3246 precursor transcript generates a spliced transcript that retains the riboswitch aptamer. In the absence of c-di-GMP, the ribozyme mediates an alternative GTP attack that results in a truncated transcript (alternative GTP-attack product). Using reporter assays in Escherichia coli, we investigated the difference in gene expression between the spliced product and the alternative GTP-attack product. We provide evidence that CD3246 gene expression is activated if allosteric ribozyme splicing creates a ribosome binding site (RBS) for translation from a UUG start codon. In addition, biochemical and genetic analyses reveal that the riboswitch may further control CD3246 expression by revealing or occluding this newly formed RBS. Therefore, this architecture provides the riboswitch with a mechanism for extended regulation after splicing has occurred or as a backup mechanism for suppression of translation in the event of misregulated splicing.
Collapse
Affiliation(s)
- Andy G.Y. Chen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Narasimhan Sudarsan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Corresponding author.E-mail .
| |
Collapse
|
410
|
Abstract
The secondary messenger cyclic di-GMP coordinately regulates the transition between motility/sessility/virulence in bacterial populations and upon adaptation to novel habitats. Thereby, multiple independent regulatory circuits regulate a diversity of targets. This specific output response is surprising considering the diverse physiological processes regulated by this signalling molecule, which range from transcription to proteolysis and clearly demonstrates the presence of sophisticated developmental programmes in these so-called simple organisms.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
411
|
Kladwang W, VanLang CC, Cordero P, Das R. A two-dimensional mutate-and-map strategy for non-coding RNA structure. Nat Chem 2011; 3:954-62. [PMID: 22109276 PMCID: PMC3725140 DOI: 10.1038/nchem.1176] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 09/15/2011] [Indexed: 12/24/2022]
Abstract
Non-coding RNAs fold into precise base-pairing patterns to carry out critical roles in genetic regulation and protein synthesis, but determining RNA structure remains difficult. Here, we show that coupling systematic mutagenesis with high-throughput chemical mapping enables accurate base-pair inference of domains from ribosomal RNA, ribozymes and riboswitches. For a six-RNA benchmark that has challenged previous chemical/computational methods, this 'mutate-and-map' strategy gives secondary structures that are in agreement with crystallography (helix error rates, 2%), including a blind test on a double-glycine riboswitch. Through modelling of partially ordered states, the method enables the first test of an interdomain helix-swap hypothesis for ligand-binding cooperativity in a glycine riboswitch. Finally, the data report on tertiary contacts within non-coding RNAs, and coupling to the Rosetta/FARFAR algorithm gives nucleotide-resolution three-dimensional models (helix root-mean-squared deviation, 5.7 Å) of an adenine riboswitch. These results establish a promising two-dimensional chemical strategy for inferring the secondary and tertiary structures that underlie non-coding RNA behaviour.
Collapse
Affiliation(s)
- Wipapat Kladwang
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Christopher C. VanLang
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Pablo Cordero
- Program in Biomedical Informatics, Stanford University, Stanford, California 94305, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
- Program in Biomedical Informatics, Stanford University, Stanford, California 94305, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
412
|
Ho CL, Koh SL, Chuah MLC, Luo Z, Tan WJ, Low DKS, Liang ZX. Rational design of fluorescent biosensor for cyclic di-GMP. Chembiochem 2011; 12:2753-8. [PMID: 22021215 DOI: 10.1002/cbic.201100557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Indexed: 01/19/2023]
Abstract
Messenger bagged: The design of a fluorophore-labeled protein biosensor for the bacterial messenger cyclic di-GMP is described. The biosensor responds to c-di-GMP with sub-micromolar sensitivity in a real-time fashion. The biosensor can be used for enzyme assays for diguanylate cyclases and c-di-GMP phosphodiesterases as well as the high-throughput screening of inhibitors.
Collapse
Affiliation(s)
- Chun Loong Ho
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | | | | | | | | | | | | |
Collapse
|
413
|
Shanahan CA, Gaffney BL, Jones RA, Strobel SA. Differential analogue binding by two classes of c-di-GMP riboswitches. J Am Chem Soc 2011; 133:15578-92. [PMID: 21838307 PMCID: PMC3183120 DOI: 10.1021/ja204650q] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability of bacteria to adapt to a changing environment is essential for their survival. One mechanism bacteria have evolved to sense environmental cues and translate these signals into phenotypic changes uses the second messenger signaling molecule, cyclic diguanosine monophosphate (c-di-GMP). In addition to several classes of protein receptors, two classes of c-di-GMP-binding riboswitches (class I and class II) have been identified as downstream targets of the second messenger in this signaling pathway. The crystal structures of both riboswitch classes bound to c-di-GMP were previously reported. Here, we further investigate the mechanisms that RNA has evolved for recognition and binding of this second messenger. Using a series of c-di-GMP analogues, we probed the interactions made in the RNA-ligand complex for both classes of riboswitches to identify the most critical elements of c-di-GMP for binding. We found that the structural features of c-di-GMP required for binding differ between these two effectors and that the class II riboswitch is much less discriminatory in ligand binding than the class I riboswitch. These data suggest an explanation for the predicted preferential use of the class I motif over the class II motif in the c-di-GMP signaling pathway.
Collapse
Affiliation(s)
- Carly A Shanahan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | | | | |
Collapse
|
414
|
Moscoso JA, Mikkelsen H, Heeb S, Williams P, Filloux A. The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ Microbiol 2011; 13:3128-38. [PMID: 21955777 DOI: 10.1111/j.1462-2920.2011.02595.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Acute bacterial infections are associated with motility and cytotoxicity via the type III secretion system (T3SS), while chronic infections are linked to biofilm formation and reduced virulence. In Pseudomonas aeruginosa, the transition between motility and sessility involves regulatory networks including the RetS/GacS sensors, as well as the second messenger c-di-GMP. The RetS/GacS signalling cascade converges on small RNAs, RsmY and RsmZ, which control a range of functions via RsmA. A retS mutation induces biofilm formation, and high levels of c-di-GMP produce a similar response. In this study, we connect RetS and c-di-GMP pathways by showing that the retS mutant displays high levels of c-di-GMP. Furthermore, a retS mutation leads to repression of the T3SS, but also upregulates the type VI secretion system (T6SS), which is associated with chronic infections. Strikingly, production of the T3SS and T6SS can be switched by artificially modulating c-di-GMP levels. We show that the diguanylate cyclase WspR is specifically involved in the T3SS/T6SS switch and that RsmY and RsmZ are required for the c-di-GMP-dependent response. These results provide a firm link between the RetS/GacS and the c-di-GMP pathways, which coordinate bacterial lifestyles, as well as secretion systems that determine the infection strategy of P. aeruginosa.
Collapse
Affiliation(s)
- Joana A Moscoso
- Imperial College London, Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection, South Kensington Campus, Flowers Building, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
415
|
Liberman JA, Wedekind JE. Riboswitch structure in the ligand-free state. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:369-84. [PMID: 21957061 DOI: 10.1002/wrna.114] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Molecular investigations of riboswitches bound to small-molecule effectors have produced a wealth of information on how these molecules achieve high affinity and specificity for a target ligand. X-ray crystal structures have been determined for the ligand-free state for representatives of the preQ₁-I, S-adenosylmethionine I, lysine, and glycine aptamer classes. These structures in conjunction with complimentary techniques, such as in-line probing, NMR spectroscopy, Förster resonance energy transfer, small-angle scattering, and computational simulations, have demonstrated that riboswitches adopt multiple conformations in the absence of ligand. Despite a number of investigations that support ligand-dependent folding, mounting evidence suggests that free-state riboswitches interact with their effectors in the sub-populations of largely prefolded states as embodied by the principle of conformational selection, which has been documented extensively for protein-mediated ligand interactions. Fundamental riboswitch investigations of the bound and free states have advanced our understanding of RNA folding, ligand recognition, and how these factors culminate in communication between an aptamer and its expression platform. An understanding of these topics is essential to comprehend riboswitch gene regulation at the molecular level, which has already provided a basis to understand the mechanism of action of natural antimicrobials.
Collapse
Affiliation(s)
- Joseph A Liberman
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | |
Collapse
|
416
|
Pérez-Mendoza D, Coulthurst SJ, Sanjuán J, Salmond GPC. N-Acetylglucosamine-dependent biofilm formation in Pectobacterium atrosepticum is cryptic and activated by elevated c-di-GMP levels. MICROBIOLOGY-SGM 2011; 157:3340-3348. [PMID: 21948048 DOI: 10.1099/mic.0.050450-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The phytopathogenic bacterium Pectobacterium atrosepticum (Pba) strain SCRI1043 does not exhibit appreciable biofilm formation under standard laboratory conditions. Here we show that a biofilm-forming phenotype in this strain could be activated from a cryptic state by increasing intracellular levels of c-di-GMP, through overexpression of a constitutively active diguanylate cyclase (PleD*) from Caulobacter crescentus. Randomly obtained Pba transposon mutants defective in the pga operon, involved in synthesis and translocation of poly-β-1,6-N-acetyl-D-glucosamine (PGA), were all impaired in this biofilm formation. The presence of the PGA-degrading enzyme dispersin B in the growth media prevented biofilm formation by Pba overexpressing PleD*, further supporting the importance of PGA for biofilm formation by Pba. Importantly, a pga mutant exhibited a reduction in root binding to the host plant under conditions of high intracellular c-di-GMP levels. A modest but consistent increase in pga transcript levels was associated with high intracellular levels of c-di-GMP. Our results indicate tight control of PGA-dependent biofilm formation by c-di-GMP in Pba.
Collapse
Affiliation(s)
- Daniel Pérez-Mendoza
- Departamento de Microbiología del suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda 1, 18008 Granada, Spain.,Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Sarah J Coulthurst
- Division of Molecular Microbiology, University of Dundee, Dundee DD1 5EH, UK
| | - Juan Sanjuán
- Departamento de Microbiología del suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - George P C Salmond
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
417
|
Corrigan RM, Abbott JC, Burhenne H, Kaever V, Gründling A. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog 2011; 7:e1002217. [PMID: 21909268 PMCID: PMC3164647 DOI: 10.1371/journal.ppat.1002217] [Citation(s) in RCA: 357] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/08/2011] [Indexed: 01/20/2023] Open
Abstract
The cell wall is a vital and multi-functional part of bacterial cells. For Staphylococcus aureus, an important human bacterial pathogen, surface proteins and cell wall polymers are essential for adhesion, colonization and during the infection process. One such cell wall polymer, lipoteichoic acid (LTA), is crucial for normal bacterial growth and cell division. Upon depletion of this polymer bacteria increase in size and a misplacement of division septa and eventual cell lysis is observed. In this work, we describe the isolation and characterization of LTA-deficient S. aureus suppressor strains that regained the ability to grow almost normally in the absence of this cell wall polymer. Using a whole genome sequencing approach, compensatory mutations were identified and revealed that mutations within one gene, gdpP (GGDEF domain protein containing phosphodiesterase), allow both laboratory and clinical isolates of S. aureus to grow without LTA. It was determined that GdpP has phosphodiesterase activity in vitro and uses the cyclic dinucleotide c-di-AMP as a substrate. Furthermore, we show for the first time that c-di-AMP is produced in S. aureus presumably by the S. aureus DacA protein, which has diadenylate cyclase activity. We also demonstrate that GdpP functions in vivo as a c-di-AMP-specific phosphodiesterase, as intracellular c-di-AMP levels increase drastically in gdpP deletion strains and in an LTA-deficient suppressor strain. An increased amount of cross-linked peptidoglycan was observed in the gdpP mutant strain, a cell wall alteration that could help bacteria compensate for the lack of LTA. Lastly, microscopic analysis of wild-type and gdpP mutant strains revealed a 13–22% reduction in the cell size of bacteria with increased c-di-AMP levels. Taken together, these data suggest a function for this novel secondary messenger in controlling cell size of S. aureus and in helping bacteria to cope with extreme membrane and cell wall stress. Staphylococcus aureus is an important human pathogen that colonizes the nares and skin of both sick and healthy individuals and causes a variety of infections ranging from superficial skin to invasive infections. The ability of this bacterium to cause disease depends on many factors and is, in part, due to multi-functional cell surface structures. One such structure is lipoteichoic acid (LTA), which is crucial for bacterial growth. In this study we show that LTA is also important for growth of a clinically relevant community-acquired methicillin resistant S. aureus (CA-MRSA) strain and not only for laboratory strains as previously described. We set out to investigate if S. aureus can find a way to survive without LTA and identified strains that can grow and divide almost normally in its absence. Using a whole genome sequencing approach, we found that alterations in one gene, gdpP, allow these strains to grow in the absence of LTA. We show that this mutation causes an increase in the recently identified signaling molecule, c-di-AMP, within the cell. Therefore, with this study we provide information on one of the first functions of this novel secondary messenger, which is in helping bacteria to cope with extreme cell wall stress.
Collapse
Affiliation(s)
| | - James C. Abbott
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Heike Burhenne
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Volkhard Kaever
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Angelika Gründling
- Section of Microbiology, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
418
|
Kladwang W, VanLang CC, Cordero P, Das R. Understanding the errors of SHAPE-directed RNA structure modeling. Biochemistry 2011; 50:8049-56. [PMID: 21842868 DOI: 10.1021/bi200524n] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-nucleotide-resolution chemical mapping for structured RNA is being rapidly advanced by new chemistries, faster readouts, and coupling to computational algorithms. Recent tests have shown that selective 2'-hydroxyl acylation by primer extension (SHAPE) can give near-zero error rates (0-2%) in modeling the helices of RNA secondary structure. Here, we benchmark the method using six molecules for which crystallographic data are available: tRNA(phe) and 5S rRNA from Escherichia coli, the P4-P6 domain of the Tetrahymena group I ribozyme, and ligand-bound domains from riboswitches for adenine, cyclic di-GMP, and glycine. SHAPE-directed modeling of these highly structured RNAs gave an overall false negative rate (FNR) of 17% and a false discovery rate (FDR) of 21%, with at least one helix prediction error in five of the six cases. Extensive variations of data processing, normalization, and modeling parameters did not significantly mitigate modeling errors. Only one varation, filtering out data collected with deoxyinosine triphosphate during primer extension, gave a modest improvement (FNR = 12%, and FDR = 14%). The residual structure modeling errors are explained by the insufficient information content of these RNAs' SHAPE data, as evaluated by a nonparametric bootstrapping analysis. Beyond these benchmark cases, bootstrapping suggests a low level of confidence (<50%) in the majority of helices in a previously proposed SHAPE-directed model for the HIV-1 RNA genome. Thus, SHAPE-directed RNA modeling is not always unambiguous, and helix-by-helix confidence estimates, as described herein, may be critical for interpreting results from this powerful methodology.
Collapse
Affiliation(s)
- Wipapat Kladwang
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
419
|
Gardner DP, Ren P, Ozer S, Gutell RR. Statistical potentials for hairpin and internal loops improve the accuracy of the predicted RNA structure. J Mol Biol 2011; 413:473-83. [PMID: 21889515 DOI: 10.1016/j.jmb.2011.08.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 08/12/2011] [Accepted: 08/16/2011] [Indexed: 01/19/2023]
Abstract
RNA is directly associated with a growing number of functions within the cell. The accurate prediction of different RNA higher-order structures from their nucleic acid sequences will provide insight into their functions and molecular mechanics. We have been determining statistical potentials for a collection of structural elements that is larger than the number of structural elements determined with experimentally determined energy values. The experimentally derived free energies and the statistical potentials for canonical base-pair stacks are analogous, demonstrating that statistical potentials derived from comparative data can be used as an alternative energetic parameter. A new computational infrastructure-RNA Comparative Analysis Database (rCAD)-that utilizes a relational database was developed to manipulate and analyze very large sequence alignments and secondary-structure data sets. Using rCAD, we determined a richer set of energetic parameters for RNA fundamental structural elements including hairpin and internal loops. A new version of RNAfold was developed to utilize these statistical potentials. Overall, these new statistical potentials for hairpin and internal loops integrated into the new version of RNAfold demonstrated significant improvements in the prediction accuracy of RNA secondary structure.
Collapse
Affiliation(s)
- David P Gardner
- Center for Computational Biology and Bioinformatics, Section of Integrative Biology in the School of Biological Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
420
|
Brucella melitensis cyclic di-GMP phosphodiesterase BpdA controls expression of flagellar genes. J Bacteriol 2011; 193:5683-91. [PMID: 21856843 DOI: 10.1128/jb.00428-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Brucella melitensis encounters a variety of conditions and stimuli during its life cycle--including environmental growth, intracellular infection, and extracellular dissemination--which necessitates flexibility of bacterial signaling to promote virulence. Cyclic-di-GMP is a bacterial secondary signaling molecule that plays an important role in adaptation to changing environments and altering virulence in a number of bacteria. To investigate the role of cyclic-di-GMP in B. melitensis, all 11 predicted cyclic-di-GMP-metabolizing proteins were separately deleted and the effect on virulence was determined. Three of these cyclic-di-GMP-metabolizing proteins were found to alter virulence. Deletion of the bpdA and bpdB genes resulted in attenuation of virulence of the bacterium, while deletion of the cgsB gene produced a hypervirulent strain. In a Vibrio reporter system to monitor apparent alteration in levels of cyclic-di-GMP, both BpdA and BpdB displayed a phenotype consistent with cyclic-di-GMP-specific phosphodiesterases, while CgsB displayed a cyclic-di-GMP synthase phenotype. Further analysis found that deletion of bpdA resulted in a dramatic decrease in flagellar promoter activities, and a flagellar mutant showed similar phenotypes to the bpdA and bpdB mutant strains in mouse models of infection. These data indicate a potential role for regulation of flagella in Brucella melitensis via cyclic-di-GMP.
Collapse
|
421
|
Abstract
The c-di-GMP [bis-(3'-5')-cyclic dimeric guanosine monophosphate] riboswitch is a macromolecular target in the c-di-GMP second messenger signalling pathway. It regulates many genes related to c-di-GMP metabolism as well as genes involved in bacterial motility, virulence and biofilm formation. The riboswitch makes asymmetric contacts to the bases and phosphate backbone of this symmetric dinucleotide. The phylogenetics suggested and mutagenesis has confirmed that this is a flexible motif where variants can make alternative interactions with each of the guanine bases of c-di-GMP. A mutant riboswitch has been designed that can bind a related molecule, c-di-AMP, confirming the most important contacts made to the ligand. The binding kinetics reveal that this is a kinetically controlled riboswitch and mutations to the riboswitch lead to increases in the off-rate. This riboswitch is therefore flexible in sequence as well as kinetic properties.
Collapse
|
422
|
KOSTICK JESSICAL, SZKOTNICKI LEET, ROGERS ELIZABETHA, BOCCI PAOLA, RAFFAELLI NADIA, MARCONI RICHARDT. The diguanylate cyclase, Rrp1, regulates critical steps in the enzootic cycle of the Lyme disease spirochetes. Mol Microbiol 2011; 81:219-31. [PMID: 21542866 PMCID: PMC3124615 DOI: 10.1111/j.1365-2958.2011.07687.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rrp1 is the sole c-di-GMP-producing protein (diguanylate cyclase) of Borrelia burgdorferi. To test the hypothesis that Rrp1 regulates critical processes involved in the transmission of spirochetes between ticks and mammals, an rrp1 deletion mutant (B31-Δrrp1) and a strain that constitutively produces elevated levels of Rrp1 (B31-OV) were constructed. The strains were assessed for progression through the enzootic cycle using an Ixodes tick/C3H-HeJ mouse model and tick immersion feeding methods. B31-Δrrp1 infected mice as efficiently as wild type but had altered motility, decreased chemotactic responses to N-acetylglucosamine (NAG) and attenuated ability to disseminate or colonize distal organs. While this strain infected mice, it was not able to survive in ticks. In contrast, B31-OV displayed normal motility patterns and chemotactic responses but was non-infectious in mice. Using immersion feeding techniques, we demonstrate that B31-OV can establish a population in ticks and survive exposure to a natural bloodmeal. The results presented here indicate Rrp1, and by extension, c-di-GMP, are not strictly required for murine infection, but are required for the successful establishment of a productive population of B. burgdorferi in ticks. These analyses provide significant new insight into the genetic regulatory mechanisms of the Lyme disease spirochetes.
Collapse
Affiliation(s)
- JESSICA L. KOSTICK
- Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298-0678
| | - LEE T. SZKOTNICKI
- Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298-0678
| | - ELIZABETH A. ROGERS
- Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298-0678
| | - PAOLA BOCCI
- Department of Molecular Pathology and Innovative Therapies, Section of Biochemistry, Univesità Politecnica delle Marche, 60131 Ancona, Italy
| | - NADIA RAFFAELLI
- Department of Molecular Pathology and Innovative Therapies, Section of Biochemistry, Univesità Politecnica delle Marche, 60131 Ancona, Italy
| | - RICHARD T. MARCONI
- Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298-0678
- Center for the Study of Biological Complexity, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298-0678
| |
Collapse
|
423
|
He M, Ouyang Z, Troxell B, Xu H, Moh A, Piesman J, Norgard MV, Gomelsky M, Yang XF. Cyclic di-GMP is essential for the survival of the lyme disease spirochete in ticks. PLoS Pathog 2011; 7:e1002133. [PMID: 21738477 PMCID: PMC3128128 DOI: 10.1371/journal.ppat.1002133] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/18/2011] [Indexed: 11/19/2022] Open
Abstract
Cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that modulates many biological processes. Although its role in bacterial pathogenesis during mammalian infection has been documented, the role of c-di-GMP in a pathogen's life cycle within a vector host is less understood. The enzootic cycle of the Lyme disease pathogen Borrelia burgdorferi involves both a mammalian host and an Ixodes tick vector. The B. burgdorferi genome encodes a single copy of the diguanylate cyclase gene (rrp1), which is responsible for c-di-GMP synthesis. To determine the role of c-di-GMP in the life cycle of B. burgdorferi, an Rrp1-deficient B. burgdorferi strain was generated. The rrp1 mutant remains infectious in the mammalian host but cannot survive in the tick vector. Microarray analyses revealed that expression of a four-gene operon involved in glycerol transport and metabolism, bb0240-bb0243, was significantly downregulated by abrogation of Rrp1. In vitro, the rrp1 mutant is impaired in growth in the media containing glycerol as the carbon source (BSK-glycerol). To determine the contribution of the glycerol metabolic pathway to the rrp1 mutant phenotype, a glp mutant, in which the entire bb0240-bb0243 operon is not expressed, was generated. Similar to the rrp1 mutant, the glp mutant has a growth defect in BSK-glycerol medium. In vivo, the glp mutant is also infectious in mice but has reduced survival in ticks. Constitutive expression of the bb0240-bb0243 operon in the rrp1 mutant fully rescues the growth defect in BSK-glycerol medium and partially restores survival of the rrp1 mutant in ticks. Thus, c-di-GMP appears to govern a catabolic switch in B. burgdorferi and plays a vital role in the tick part of the spirochetal enzootic cycle. This work provides the first evidence that c-di-GMP is essential for a pathogen's survival in its vector host.
Collapse
Affiliation(s)
- Ming He
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Zhiming Ouyang
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, Unites States of America
| | - Bryan Troxell
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Haijun Xu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Akira Moh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Joseph Piesman
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Michael V. Norgard
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, Unites States of America
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
424
|
Spehr V, Warrass R, Höcherl K, Ilg T. Large-scale production of the immunomodulator c-di-GMP from GMP and ATP by an enzymatic cascade. Appl Biochem Biotechnol 2011; 165:761-75. [PMID: 21710212 DOI: 10.1007/s12010-011-9294-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 05/24/2011] [Indexed: 01/04/2023]
Abstract
(3'-5')-Cyclic diguanylate (c-di-GMP) is a bacterial second messenger with immunomodulatory activities in mice suggesting potential applications as a vaccine adjuvant and as a therapeutic agent. Clinical studies in larger animals or humans will require larger doses that are difficult and expensive to generate by currently available chemical or enzymatic synthesis and purification methods. Here we report the production of c-di-GMP at the multi-gram scale from the economical precursors guanosine monophosphate (GMP) and adenosine triphosphate by a "one-pot" three enzyme cascade consisting of GMP kinase, nucleoside diphosphate kinase, and a mutated form of diguanylate cyclase engineered to lack product inhibition. The c-di-GMP was purified to apparent homogeneity by a combination of anion exchange chromatography and solvent precipitation and was characterized by reversed phase high performance liquid chormatography and mass spectrometry, nuclear magnetic resonance spectroscopy, and further compositional analyses. The immunomodulatory activity of the c-di-GMP preparation was confirmed by its potentiating effect on the lipopolysaccharide-induced interleukin 1β, tumor necrosis factor α, and interleukin 6 messenger RNA expression in J774A.1 mouse macrophages.
Collapse
Affiliation(s)
- Volker Spehr
- Intervet Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | | | | | | |
Collapse
|
425
|
Mills E, Pultz IS, Kulasekara HD, Miller SI. The bacterial second messenger c-di-GMP: mechanisms of signalling. Cell Microbiol 2011; 13:1122-9. [PMID: 21707905 DOI: 10.1111/j.1462-5822.2011.01619.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclic-di-GMP (c-di-GMP) regulates many important bacterial processes. Freely diffusible intracellular c-di-GMP is determined by the action of metabolizing enzymes that allow integration of numerous input signals. c-di-GMP specifically regulates multiple cellular processes by binding to diverse target molecules. This review highlights important questions in research into the mechanisms of c-di-GMP signalling and its role in bacterial physiology.
Collapse
Affiliation(s)
- Erez Mills
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
426
|
Analysis of the HD-GYP domain cyclic dimeric GMP phosphodiesterase reveals a role in motility and the enzootic life cycle of Borrelia burgdorferi. Infect Immun 2011; 79:3273-83. [PMID: 21670168 DOI: 10.1128/iai.05153-11] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
HD-GYP domain cyclic dimeric GMP (c-di-GMP) phosphodiesterases are implicated in motility and virulence in bacteria. Borrelia burgdorferi possesses a single set of c-di-GMP-metabolizing enzymes, including a putative HD-GYP domain protein, BB0374. Recently, we characterized the EAL domain phosphodiesterase PdeA. A mutation in pdeA resulted in cells that were defective in motility and virulence. Here we demonstrate that BB0374/PdeB specifically hydrolyzed c-di-GMP with a K(m) of 2.9 nM, confirming that it is a functional phosphodiesterase. Furthermore, by measuring phosphodiesterase enzyme activity in extracts from cells containing the pdeA pdeB double mutant, we demonstrate that no additional phosphodiesterases are present in B. burgdorferi. pdeB single mutant cells exhibit significantly increased flexing, indicating a role for c-di-GMP in motility. Constructing and analyzing a pilZ pdeB double mutant suggests that PilZ likely interacts with chemotaxis signaling. While virulence in needle-inoculated C3H/HeN mice did not appear to be altered significantly in pdeB mutant cells, these cells exhibited a reduced ability to survive in Ixodes scapularis ticks. Consequently, those ticks were unable to transmit the infection to naïve mice. All of these phenotypes were restored when the mutant was complemented. Identification of this role of pdeB increases our understanding of the c-di-GMP signaling network in motility regulation and the life cycle of B. burgdorferi.
Collapse
|
427
|
Liberman JA, Wedekind JE. Base ionization and ligand binding: how small ribozymes and riboswitches gain a foothold in a protein world. Curr Opin Struct Biol 2011; 21:327-34. [PMID: 21530235 PMCID: PMC3112304 DOI: 10.1016/j.sbi.2011.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/30/2011] [Accepted: 03/31/2011] [Indexed: 11/21/2022]
Abstract
Genome sequencing has produced thousands of nonprotein coding (nc)RNA sequences including new ribozymes and riboswitches. Such RNAs are notable for their extraordinary functionality, which entails exquisite folding that culminates in biocatalytic or ligand-binding capabilities. Here we discuss advances in relating ncRNA form to function with an emphasis on base pK(a) shifting by the hairpin and hepatitis delta virus ribozymes. We then describe ligand binding by the two smallest riboswitches, which target preQ(1) and S-adenosyl-(l)-homocysteine, followed by an analysis of a second-messenger riboswitch that binds cyclic-di-GMP. Each riboswitch is then compared to a protein that binds the same ligand to contrast binding properties. The results showcase the breadth of functionality attainable from ncRNAs, as well as molecular features notable for antibacterial design.
Collapse
Affiliation(s)
- Joseph A. Liberman
- Department of Biochemistry and Biophysics, and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Joseph E. Wedekind
- Department of Biochemistry and Biophysics, and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
428
|
Abstract
A critical feature of the hypothesized RNA world would have been the ability to control chemical processes in response to environmental cues. Riboswitches present themselves as viable candidates for a sophisticated mechanism of regulatory control in RNA-based life. These regulatory elements in the modern world are most commonly found in the 5'-untranslated regions of bacterial mRNAs, directly interacting with metabolites as a means of regulating expression of the coding region via a secondary structural switch. In this review, we focus on recent insights into how these RNAs fold into complex architectures capable of both recognizing a specific small molecule compound and exerting regulatory control over downstream sequences, with an emphasis on transcriptional regulation.
Collapse
Affiliation(s)
- Andrew D Garst
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 80309-0215, USA
| | | | | |
Collapse
|
429
|
Ishikawa J, Fujita Y, Maeda Y, Furuta H, Ikawa Y. GNRA/receptor interacting modules: Versatile modular units for natural and artificial RNA architectures. Methods 2011; 54:226-38. [DOI: 10.1016/j.ymeth.2010.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 12/08/2010] [Accepted: 12/08/2010] [Indexed: 12/25/2022] Open
|
430
|
Tran NT, Den Hengst CD, Gomez-Escribano JP, Buttner MJ. Identification and characterization of CdgB, a diguanylate cyclase involved in developmental processes in Streptomyces coelicolor. J Bacteriol 2011; 193:3100-8. [PMID: 21515767 PMCID: PMC3133206 DOI: 10.1128/jb.01460-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/12/2011] [Indexed: 11/20/2022] Open
Abstract
We describe the identification and functional characterization of cdgB (SCO4281), a recently discovered target of BldD, a key regulator of morphological differentiation and antibiotic production in the mycelial bacteria of the genus Streptomyces. cdgB (cyclic dimeric GMP [c-di-GMP] B) encodes a GGDEF-containing protein that has diguanylate cyclase activity in vitro. Consistent with this enzymatic activity, heterologous expression of cdgB in Escherichia coli resulted in increased production of extracellular matrix in colonies and enhanced surface attachment of cells in standing liquid cultures. In Streptomyces coelicolor, both overexpression and deletion of cdgB inhibited aerial-mycelium formation, and overexpression also inhibited production of the antibiotic actinorhodin, implicating c-di-GMP in the regulation of developmental processes in Streptomyces.
Collapse
Affiliation(s)
- Ngat T. Tran
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, United Kingdom
| | - Chris D. Den Hengst
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, United Kingdom
| | | | - Mark J. Buttner
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
431
|
Matilla MA, Travieso ML, Ramos JL, Ramos-González MI. Cyclic diguanylate turnover mediated by the sole GGDEF/EAL response regulator in Pseudomonas putida: its role in the rhizosphere and an analysis of its target processes. Environ Microbiol 2011; 13:1745-66. [PMID: 21554519 DOI: 10.1111/j.1462-2920.2011.02499.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
GGDEF and EAL/HD-GYP protein domains are responsible for the synthesis and hydrolysis of the bacterial secondary messenger cyclic diguanylate (c-di-GMP) through their diguanylate cyclase and phosphodiesterase activities, respectively. Forty-three genes in Pseudomonas putida KT2440 are putatively involved in the turnover of c-di-GMP. Of them only rup4959 (locus PP4959) encodes a GGDEF/EAL response regulator, which was identified in a genome wide analysis as preferentially induced while this bacterium colonizes roots and adjacent soil areas (the rhizosphere). By using fusions to reporter genes it was confirmed that the rup4959 promoter is active in the rhizosphere and inducible by corn plant root exudates and microaerobiosis. Transcription of rup4959 was strictly dependent on the alternative transcriptional factor σ(S) . The inactivation of the rup4959-4957 operon altered the expression of 22 genes in the rhizosphere and had a negative effect upon oligopeptide utilization and biofilm formation. In multicopy or when overexpressed, rup4959 enhanced adhesin LapA-dependent biofilm formation, the development of wrinkly colony morphology, and increased Calcofluor stainable exopolysaccharides (EPS). Under these conditions the inhibition of swarming motility was total and plant root tip colonization considerably less efficient, whereas swimming was partially diminished. This pleiotropic phenotype, which correlated with an increase in the global level of c-di-GMP, was not acquired with increased levels of Rup4959 catalytic mutant at GGDEF as a proof of this response regulator exhibiting diguanylate cyclase activity. A screen for mutants in putative targets of c-di-GMP led to the identification of a surface polysaccharide specific to KT2440, which is encoded by the genes cluster PP3133-PP3141, as essential for phenotypes associated with increased c-di-GMP. Cellulose and alginate were discarded as the overproduced EPS, and lipopolysaccharide (LPS) core and O-antigen were found to be essential for the development of wrinkly colony morphology.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, Granada 18008, Spain
| | | | | | | |
Collapse
|
432
|
Faucher SP, Shuman HA. Small Regulatory RNA and Legionella pneumophila. Front Microbiol 2011; 2:98. [PMID: 21833335 PMCID: PMC3153055 DOI: 10.3389/fmicb.2011.00098] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 04/19/2011] [Indexed: 11/13/2022] Open
Abstract
Legionella pneumophila is a gram-negative bacterial species that is ubiquitous in almost any aqueous environment. It is the agent of Legionnaires’ disease, an acute and often under-reported form of pneumonia. In mammals, L. pneumophila replicates inside macrophages within a modified vacuole. Many protein regulators have been identified that control virulence-related properties, including RpoS, LetA/LetS, and PmrA/PmrB. In the past few years, the importance of regulation of virulence factors by small regulatory RNA (sRNAs) has been increasingly appreciated. This is also the case in L. pneumophila where three sRNAs (RsmY, RsmZ, and 6S RNA) were recently shown to be important determinants of virulence regulation and 79 actively transcribed sRNAs were identified. In this review we describe current knowledge about sRNAs and their regulatory properties and how this relates to the known regulatory systems of L. pneumophila. We also provide a model for sRNA-mediated control of gene expression that serves as a framework for understanding the regulation of virulence-related properties of L. pneumophila.
Collapse
Affiliation(s)
- Sébastien P Faucher
- Complex Traits Group, Department of Microbiology, McGill University Montreal, QC, Canada
| | | |
Collapse
|
433
|
Structural basis of differential ligand recognition by two classes of bis-(3'-5')-cyclic dimeric guanosine monophosphate-binding riboswitches. Proc Natl Acad Sci U S A 2011; 108:7757-62. [PMID: 21518891 DOI: 10.1073/pnas.1018857108] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) signaling pathway regulates biofilm formation, virulence, and other processes in many bacterial species and is critical for their survival. Two classes of c-di-GMP-binding riboswitches have been discovered that bind this second messenger with high affinity and regulate diverse downstream genes, underscoring the importance of RNA receptors in this pathway. We have solved the structure of a c-di-GMP-II riboswitch, which reveals that the ligand is bound as part of a triplex formed with a pseudoknot. The structure also shows that the guanine bases of c-di-GMP are recognized through noncanonical pairings and that the phosphodiester backbone is not contacted by the RNA. Recognition is quite different from that observed in the c-di-GMP-I riboswitch, demonstrating that at least two independent solutions for RNA second messenger binding have evolved. We exploited these differences to design a c-di-GMP analog that selectively binds the c-di-GMP-II aptamer over the c-di-GMP-I RNA. There are several bacterial species that contain both types of riboswitches, and this approach holds promise as an important tool for targeting one riboswitch, and thus one gene, over another in a selective fashion.
Collapse
|
434
|
Bastet L, Dubé A, Massé E, Lafontaine DA. New insights into riboswitch regulation mechanisms. Mol Microbiol 2011; 80:1148-54. [PMID: 21477128 DOI: 10.1111/j.1365-2958.2011.07654.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Riboswitches are genetic elements located in non-coding regions of some messenger RNAs (mRNAs) that are present in all three domains of life. The binding of ligands to riboswitches induces conformational changes in the mRNA molecule, resulting in modulation of gene transcription, or RNA splicing, translation or stability. This mechanism of regulation is particularly widespread in bacteria and allows a direct response to various metabolic changes. A large number of riboswitches have been discovered in the last few years, suggesting the existence of a huge diversity of regulatory ligands and genetic mechanisms of regulation. This review focuses on recent discoveries in riboswitch regulatory mechanisms as well as current outstanding challenges.
Collapse
Affiliation(s)
- Laurène Bastet
- Département de biologie, Faculté des sciences, Groupe ARN/RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | |
Collapse
|
435
|
Bordeleau E, Fortier LC, Malouin F, Burrus V. c-di-GMP turn-over in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases. PLoS Genet 2011; 7:e1002039. [PMID: 21483756 PMCID: PMC3069119 DOI: 10.1371/journal.pgen.1002039] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/14/2011] [Indexed: 01/01/2023] Open
Abstract
Clostridium difficile infections have become a major healthcare concern in the last decade during which the emergence of new strains has underscored this bacterium's capacity to cause persistent epidemics. c-di-GMP is a bacterial second messenger regulating diverse bacterial phenotypes, notably motility and biofilm formation, in proteobacteria such as Vibrio cholerae, Pseudomonas aeruginosa, and Salmonella. c-di-GMP is synthesized by diguanylate cyclases (DGCs) that contain a conserved GGDEF domain. It is degraded by phosphodiesterases (PDEs) that contain either an EAL or an HD-GYP conserved domain. Very little is known about the role of c-di-GMP in the regulation of phenotypes of Gram-positive or fastidious bacteria. Herein, we exposed the main components of c-di-GMP signalling in 20 genomes of C. difficile, revealed their prevalence, and predicted their enzymatic activity. Ectopic expression of 31 of these conserved genes was carried out in V. cholerae to evaluate their effect on motility and biofilm formation, two well-characterized phenotype alterations associated with intracellular c-di-GMP variation in this bacterium. Most of the predicted DGCs and PDEs were found to be active in the V. cholerae model. Expression of truncated versions of CD0522, a protein with two GGDEF domains and one EAL domain, suggests that it can act alternatively as a DGC or a PDE. The activity of one purified DGC (CD1420) and one purified PDE (CD0757) was confirmed by in vitro enzymatic assays. GTP was shown to be important for the PDE activity of CD0757. Our results indicate that, in contrast to most Gram-positive bacteria including its closest relatives, C. difficile encodes a large assortment of functional DGCs and PDEs, revealing that c-di-GMP signalling is an important and well-conserved signal transduction system in this human pathogen.
Collapse
Affiliation(s)
- Eric Bordeleau
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Université de Sherbrooke, Sherbrooke, Canada
| | - Louis-Charles Fortier
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Université de Sherbrooke, Sherbrooke, Canada
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Université de Sherbrooke, Sherbrooke, Canada
| | - Vincent Burrus
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Université de Sherbrooke, Sherbrooke, Canada
- * E-mail:
| |
Collapse
|
436
|
Frederick JR, Sarkar J, McDowell JV, Marconi RT. Molecular signaling mechanisms of the periopathogen, Treponema denticola. J Dent Res 2011; 90:1155-63. [PMID: 21447698 DOI: 10.1177/0022034511402994] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the healthy subgingiva, oral treponemes account for a small percentage of the total bacteria. However, in diseased periodontal pockets, treponemes thrive and become a dominant component of the bacterial population. Oral treponemes are uniquely adept at capitalizing on the environmental conditions that develop with periodontal disease. The molecular basis of adaptive responses of oral treponemes is just beginning to be investigated and defined. The completion of several treponeme genome sequences and the characterization of global regulatory systems provide an important starting point in the analysis of signaling and adaptive responses. In this review, we discuss existing literature focused on the genetic regulatory mechanisms of Treponema denticola and present an overview of the possible roles of regulatory proteins identified through genome analyses. This information provides insight into the possible molecular mechanisms utilized by oral spirochetes to survive in the periodontal pocket and transition from a minor to a dominant organism.
Collapse
Affiliation(s)
- J R Frederick
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | | | | | | |
Collapse
|
437
|
Nakayama S, Kelsey I, Wang J, Sintim HO. c-di-GMP can form remarkably stable G-quadruplexes at physiological conditions in the presence of some planar intercalators. Chem Commun (Camb) 2011; 47:4766-8. [PMID: 21399808 DOI: 10.1039/c0cc05432a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ubiquitous bacterial biofilm regulator, c-di-GMP can form G-quadruplexes at physiological conditions in the presence of some aromatic compounds, such as acriflavine and proflavine. The fluorescence of these compounds is quenched upon c-di-GMP binding and some of the formed c-di-GMP G-quadruplexes are stable even at 75 °C.
Collapse
Affiliation(s)
- Shizuka Nakayama
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
438
|
Tremblay PL, Summers ZM, Glaven RH, Nevin KP, Zengler K, Barrett CL, Qiu Y, Palsson BO, Lovley DR. A c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in Geobacter sulfurreducens revealed by adaptive evolution. Environ Microbiol 2011; 13:13-23. [PMID: 20636372 DOI: 10.1111/j.1462-2920.2010.02302.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stimulation of subsurface microbial metabolism often associated with engineered bioremediation of groundwater contaminants presents subsurface microorganisms, which are adapted for slow growth and metabolism in the subsurface, with new selective pressures. In order to better understand how Geobacter species might adapt to selective pressure for faster metal reduction in the subsurface, Geobacter sulfurreducens was put under selective pressure for rapid Fe(III) oxide reduction. The genomes of two resultant strains with rates of Fe(III) oxide reduction that were 10-fold higher than those of the parent strain were resequenced. Both strains contain either a single base-pair change or a 1 nucleotide insertion in a GEMM riboswitch upstream of GSU1761, a gene coding for the periplasmic c-type cytochrome designated PgcA. GSU1771, a gene coding for a SARP regulator, was also mutated in both strains. Introduction of either of the GEMM riboswitch mutations upstream of pgcA in the wild-type increased the abundance of pgcA transcripts, consistent with increased expression of pgcA in the adapted strains. One of the mutations doubled the rate of Fe(III) oxide reduction. Interruption of GSU1771 doubled the Fe(III) oxide reduction rate. This was associated with an increased in expression of pilA, the gene encoding the structural protein for the pili thought to function as microbial nanowires. The combination of the GSU1771 interruption with either of the pgcA mutations resulted in a strain that reduced Fe(III) as fast as the comparable adapted strain. These results suggest that the accumulation of a small number of beneficial mutations under selective pressure, similar to that potentially present during bioremediation, can greatly enhance the capacity for Fe(III) oxide reduction in G. sulfurreducens. Furthermore, the results emphasize the importance of the c-type cytochrome PgcA and pili in Fe(III) oxide reduction and demonstrate how adaptive evolution studies can aid in the elucidation of complex mechanisms, such as extracellular electron transfer.
Collapse
Affiliation(s)
- Pier-Luc Tremblay
- Department of Microbiology, University of Massachusetts, Amherst, MA, USACenter for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Zarath M Summers
- Department of Microbiology, University of Massachusetts, Amherst, MA, USACenter for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Richard H Glaven
- Department of Microbiology, University of Massachusetts, Amherst, MA, USACenter for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Kelly P Nevin
- Department of Microbiology, University of Massachusetts, Amherst, MA, USACenter for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Karsten Zengler
- Department of Microbiology, University of Massachusetts, Amherst, MA, USACenter for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Christian L Barrett
- Department of Microbiology, University of Massachusetts, Amherst, MA, USACenter for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Yu Qiu
- Department of Microbiology, University of Massachusetts, Amherst, MA, USACenter for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Bernhard O Palsson
- Department of Microbiology, University of Massachusetts, Amherst, MA, USACenter for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Derek R Lovley
- Department of Microbiology, University of Massachusetts, Amherst, MA, USACenter for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
439
|
Nakayama S, Kelsey I, Wang J, Roelofs K, Stefane B, Luo Y, Lee VT, Sintim HO. Thiazole orange-induced c-di-GMP quadruplex formation facilitates a simple fluorescent detection of this ubiquitous biofilm regulating molecule. J Am Chem Soc 2011; 133:4856-64. [PMID: 21384923 DOI: 10.1021/ja1091062] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recently, there has been an explosion of research activities in the cyclic dinucleotides field. Cyclic dinucleotides, such as c-di-GMP and c-di-AMP, have been shown to regulate bacterial virulence and biofilm formation. c-di-GMP can exist in different aggregate forms, and it has been demonstrated that the polymorphism of c-di-GMP is influenced by the nature of cation that is present in solution. In previous work, polymorphism of c-di-GMP could only be demonstrated at hundreds of micromolar concentrations of the dinucleotide, and it has been a matter of debate if polymorphism of c-di-GMP exists under in vivo conditions. In this Article, we demonstrate that c-di-GMP can form G-quadruplexes at low micromolar concentrations when aromatic molecules such as thiazole orange template the quadruplex formation. We then use this property of aromatic molecule-induced G-quadruplex formation of c-di-GMP to design a thiazole orange-based fluorescent detection of this important signaling molecule. We determine, using this thiazole orange assay on a crude bacterial cell lysate, that WspR D70E (a constitutively activated diguanylate cyclase) is functional in vivo when overexpressed in E. Coli . The intracellular concentration of c-di-GMP in an E. Coli cell that is overexpressed with WspR D70E is very high and can reach 2.92 mM.
Collapse
Affiliation(s)
- Shizuka Nakayama
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | | | | | | | |
Collapse
|
440
|
Analysis of the Borrelia burgdorferi cyclic-di-GMP-binding protein PlzA reveals a role in motility and virulence. Infect Immun 2011; 79:1815-25. [PMID: 21357718 DOI: 10.1128/iai.00075-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The cyclic-dimeric-GMP (c-di-GMP)-binding protein PilZ has been implicated in bacterial motility and pathogenesis. Although BB0733 (PlzA), the only PilZ domain-containing protein in Borrelia burgdorferi, was reported to bind c-di-GMP, neither its role in motility or virulence nor it's affinity for c-di-GMP has been reported. We determined that PlzA specifically binds c-di-GMP with high affinity (dissociation constant [K(d)], 1.25 μM), consistent with K(d) values reported for c-di-GMP-binding proteins from other bacteria. Inactivation of the monocistronically transcribed plzA resulted in an opaque/solid colony morphology, whereas the wild-type colonies were translucent. While the swimming pattern of mutant cells appeared normal, on swarm plates, mutant cells exhibited a significantly reduced swarm diameter, demonstrating a role of plzA in motility. Furthermore, the plzA mutant cells were significantly less infectious in experimental mice (as determined by 50% infectious dose [ID(50)]) relative to wild-type spirochetes. The mutant also had survival rates in fed ticks lower than those of the wild type. Consequently, plzA mutant cells failed to complete the mouse-tick-mouse infection cycle, indicating plzA is essential for the enzootic life cycle of B. burgdorferi. All of these defects were corrected when the mutant was complemented in cis. We propose that failure of plzA mutant cells to infect mice was due to altered motility; however, the possibility that an unidentified factor(s) contributed to interruption of the B. burgdorferi enzootic life cycle cannot yet be excluded.
Collapse
|
441
|
Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA. Cyclic di-GMP activation of polynucleotide phosphorylase signal-dependent RNA processing. J Mol Biol 2011; 407:633-9. [PMID: 21320509 DOI: 10.1016/j.jmb.2011.02.019] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/05/2011] [Accepted: 02/08/2011] [Indexed: 11/19/2022]
Abstract
The second messenger cyclic diguanylic acid (c-di-GMP) is implicated in key lifestyle decisions of bacteria, including biofilm formation and changes in motility and virulence. Some challenges in deciphering the physiological roles of c-di-GMP are the limited knowledge about the cellular targets of c-di-GMP, the signals that control its levels, and the proportion of free cellular c-di-GMP, if any. Here, we identify the target and the regulatory signal for a c-di-GMP-responsive Escherichia coli ribonucleoprotein complex. We show that a direct c-di-GMP target in E. coli is polynucleotide phosphorylase (PNPase), an important enzyme in RNA metabolism that serves as a 3' polyribonucleotide polymerase or a 3'-to-5' exoribonuclease. We further show that a complex of polynucleotide phosphorylase with the direct oxygen sensors DosC and DosP can perform oxygen-dependent RNA processing. We conclude that c-di-GMP can mediate signal-dependent RNA processing and that macromolecular complexes can compartmentalize c-di-GMP signaling.
Collapse
Affiliation(s)
- Jason R Tuckerman
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas,TX 75390-9038, USA
| | | | | |
Collapse
|
442
|
Identification of a chitin-induced small RNA that regulates translation of the tfoX gene, encoding a positive regulator of natural competence in Vibrio cholerae. J Bacteriol 2011; 193:1953-65. [PMID: 21317321 DOI: 10.1128/jb.01340-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The tfoX (also called sxy) gene product is the central regulator of DNA uptake in the naturally competent bacteria Haemophilus influenzae and Vibrio cholerae. However, the mechanisms regulating tfoX gene expression in both organisms are poorly understood. Our previous studies revealed that in V. cholerae, chitin disaccharide (GlcNAc)₂ is needed to activate the transcription and translation of V. cholerae tfoX (tfoX(VC)) to induce natural competence. In this study, we screened a multicopy library of V. cholerae DNA fragments necessary for translational regulation of tfoX(VC). A clone carrying the VC2078-VC2079 intergenic region, designated tfoR, increased the expression of a tfoX(VC)::lacZ translational fusion constructed in Escherichia coli. Using a tfoX(VC)::lacZ reporter system in V. cholerae, we confirmed that tfoR positively regulated tfoX(VC) expression at the translational level. Deletion of tfoR abolished competence for exogenous DNA even when (GlcNAc)₂ was provided. The introduction of a plasmid clone carrying the tfoR(+) gene into the tfoR deletion mutant complemented the competence deficiency. We also found that the tfoR gene encodes a 102-nucleotide small RNA (sRNA), which was transcriptionally activated in the presence of (GlcNAc)₂. Finally, we showed that this sRNA activated translation from tfoX(VC) mRNA in a highly purified in vitro translation system. Taking these results together, we propose that in the presence of (GlcNAc)₂, TfoR sRNA is expressed to activate the translation of tfoX(VC), which leads to the induction of natural competence.
Collapse
|
443
|
Navarro MVAS, Newell PD, Krasteva PV, Chatterjee D, Madden DR, O'Toole GA, Sondermann H. Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis. PLoS Biol 2011; 9:e1000588. [PMID: 21304926 PMCID: PMC3032553 DOI: 10.1371/journal.pbio.1000588] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 12/15/2010] [Indexed: 12/28/2022] Open
Abstract
The bacterial second messenger bis-(3'-5') cyclic dimeric guanosine monophosphate (c-di-GMP) has emerged as a central regulator for biofilm formation. Increased cellular c-di-GMP levels lead to stable cell attachment, which in Pseudomonas fluorescens requires the transmembrane receptor LapD. LapD exhibits a conserved and widely used modular architecture containing a HAMP domain and degenerate diguanylate cyclase and phosphodiesterase domains. c-di-GMP binding to the LapD degenerate phosphodiesterase domain is communicated via the HAMP relay to the periplasmic domain, triggering sequestration of the protease LapG, thus preventing cleavage of the surface adhesin LapA. Here, we elucidate the molecular mechanism of autoinhibition and activation of LapD based on structure-function analyses and crystal structures of the entire periplasmic domain and the intracellular signaling unit in two different states. In the absence of c-di-GMP, the intracellular module assumes an inactive conformation. Binding of c-di-GMP to the phosphodiesterase domain disrupts the inactive state, permitting the formation of a trans-subunit dimer interface between adjacent phosphodiesterase domains via interactions conserved in c-di-GMP-degrading enzymes. Efficient mechanical coupling of the conformational changes across the membrane is realized through an extensively domain-swapped, unique periplasmic fold. Our structural and functional analyses identified a conserved system for the regulation of periplasmic proteases in a wide variety of bacteria, including many free-living and pathogenic species.
Collapse
Affiliation(s)
- Marcos V. A. S. Navarro
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Peter D. Newell
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Petya V. Krasteva
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Debashree Chatterjee
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Dean R. Madden
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - George A. O'Toole
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Holger Sondermann
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
444
|
Newell PD, Boyd CD, Sondermann H, O'Toole GA. A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biol 2011; 9:e1000587. [PMID: 21304920 PMCID: PMC3032545 DOI: 10.1371/journal.pbio.1000587] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 12/15/2010] [Indexed: 11/18/2022] Open
Abstract
In Pseudomonas fluorescens Pf0-1 the availability of inorganic phosphate (Pi) is an environmental signal that controls biofilm formation through a cyclic dimeric GMP (c-di-GMP) signaling pathway. In low Pi conditions, a c-di-GMP phosphodiesterase (PDE) RapA is expressed, depleting cellular c-di-GMP and causing the loss of a critical outer-membrane adhesin LapA from the cell surface. This response involves an inner membrane protein LapD, which binds c-di-GMP in the cytoplasm and exerts a periplasmic output promoting LapA maintenance on the cell surface. Here we report how LapD differentially controls maintenance and release of LapA: c-di-GMP binding to LapD promotes interaction with and inhibition of the periplasmic protease LapG, which targets the N-terminus of LapA. We identify conserved amino acids in LapA required for cleavage by LapG. Mutating these residues in chromosomal lapA inhibits LapG activity in vivo, leading to retention of the adhesin on the cell surface. Mutations with defined effects on LapD's ability to control LapA localization in vivo show concomitant effects on c-di-GMP-dependent LapG inhibition in vitro. To establish the physiological importance of the LapD-LapG effector system, we track cell attachment and LapA protein localization during Pi starvation. Under this condition, the LapA adhesin is released from the surface of cells and biofilms detach from the substratum. This response requires c-di-GMP depletion by RapA, signaling through LapD, and proteolytic cleavage of LapA by LapG. These data, in combination with the companion study by Navarro et al. presenting a structural analysis of LapD's signaling mechanism, give a detailed description of a complete c-di-GMP control circuit—from environmental signal to molecular output. They describe a novel paradigm in bacterial signal transduction: regulation of a periplasmic enzyme by an inner membrane signaling protein that binds a cytoplasmic second messenger. Bacteria can live as free swimming cells or attached to surfaces in communities called biofilms. The di-nucleotide c-di-GMP is a key cytoplasmic signal that regulates biofilm formation in a number of bacterial species. Our study, in combination with structural analysis described in the accompanying paper by Sondermann et al., describes key interactions in a c-di-GMP signaling pathway that allows cells of Pseudomonas fluorescens to adapt to changes in the concentration of the nutrient phosphate by regulating biofilm formation. The adhesion protein LapA is localized outside the bacterial cell membrane and is responsible for keeping cells attached to surfaces. We show that under low phosphate conditions levels of c-di-GMP are depleted in cells, and these changes are sensed by LapD, a transmembrane c-di-GMP receptor protein. When c-di-GMP levels are low, the LapD protein is kept in an “off” state that allows LapG, a periplasmic protease, to interact with LapA and cleave the N-terminal domain of this adhesion, releasing LapA from the cell surface and promoting biofilm detachment. Under abundant phosphate conditions, LapD binds c-di-GMP in the cytoplasm and binds to and sequesters LapG in the periplasm, promoting cell adhesion via maintenance of LapA on the cell surface.
Collapse
Affiliation(s)
- Peter D. Newell
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Chelsea D. Boyd
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Holger Sondermann
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - George A. O'Toole
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
445
|
Abstract
Riboswitches are mRNA-based elements that regulate gene expression via binding of a specific ligand. Breaker and coworkers have now discovered a novel type of regulatory RNA motif that acts by c-di-GMP-dependent control of a self-splicing group I intron ribozyme (Lee et al., 2010).
Collapse
Affiliation(s)
- Jörg S Hartig
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| |
Collapse
|
446
|
Cyclic diguanylate signaling proteins control intracellular growth of Legionella pneumophila. mBio 2011; 2:e00316-10. [PMID: 21249170 PMCID: PMC3023162 DOI: 10.1128/mbio.00316-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 12/07/2010] [Indexed: 11/20/2022] Open
Abstract
Proteins that metabolize or bind the nucleotide second messenger cyclic diguanylate regulate a wide variety of important processes in bacteria. These processes include motility, biofilm formation, cell division, differentiation, and virulence. The role of cyclic diguanylate signaling in the lifestyle of Legionella pneumophila, the causative agent of Legionnaires' disease, has not previously been examined. The L. pneumophila genome encodes 22 predicted proteins containing domains related to cyclic diguanylate synthesis, hydrolysis, and recognition. We refer to these genes as cdgS (cyclic diguanylate signaling) genes. Strains of L. pneumophila containing deletions of all individual cdgS genes were created and did not exhibit any observable growth defect in growth medium or inside host cells. However, when overexpressed, several cdgS genes strongly decreased the ability of L. pneumophila to grow inside host cells. Expression of these cdgS genes did not affect the Dot/Icm type IVB secretion system, the major determinant of intracellular growth in L. pneumophila. L. pneumophila strains overexpressing these cdgS genes were less cytotoxic to THP-1 macrophages than wild-type L. pneumophila but retained the ability to resist grazing by amoebae. In many cases, the intracellular-growth inhibition caused by cdgS gene overexpression was independent of diguanylate cyclase or phosphodiesterase activities. Expression of the cdgS genes in a Salmonella enterica serovar Enteritidis strain that lacks all diguanylate cyclase activity indicated that several cdgS genes encode potential cyclases. These results indicate that components of the cyclic diguanylate signaling pathway play an important role in regulating the ability of L. pneumophila to grow in host cells.
Collapse
|
447
|
Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru AE, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP. Geobacter: the microbe electric's physiology, ecology, and practical applications. Adv Microb Physiol 2011; 59:1-100. [PMID: 22114840 DOI: 10.1016/b978-0-12-387661-4.00004-5] [Citation(s) in RCA: 412] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Geobacter species specialize in making electrical contacts with extracellular electron acceptors and other organisms. This permits Geobacter species to fill important niches in a diversity of anaerobic environments. Geobacter species appear to be the primary agents for coupling the oxidation of organic compounds to the reduction of insoluble Fe(III) and Mn(IV) oxides in many soils and sediments, a process of global biogeochemical significance. Some Geobacter species can anaerobically oxidize aromatic hydrocarbons and play an important role in aromatic hydrocarbon removal from contaminated aquifers. The ability of Geobacter species to reductively precipitate uranium and related contaminants has led to the development of bioremediation strategies for contaminated environments. Geobacter species produce higher current densities than any other known organism in microbial fuel cells and are common colonizers of electrodes harvesting electricity from organic wastes and aquatic sediments. Direct interspecies electron exchange between Geobacter species and syntrophic partners appears to be an important process in anaerobic wastewater digesters. Functional and comparative genomic studies have begun to reveal important aspects of Geobacter physiology and regulation, but much remains unexplored. Quantifying key gene transcripts and proteins of subsurface Geobacter communities has proven to be a powerful approach to diagnose the in situ physiological status of Geobacter species during groundwater bioremediation. The growth and activity of Geobacter species in the subsurface and their biogeochemical impact under different environmental conditions can be predicted with a systems biology approach in which genome-scale metabolic models are coupled with appropriate physical/chemical models. The proficiency of Geobacter species in transferring electrons to insoluble minerals, electrodes, and possibly other microorganisms can be attributed to their unique "microbial nanowires," pili that conduct electrons along their length with metallic-like conductivity. Surprisingly, the abundant c-type cytochromes of Geobacter species do not contribute to this long-range electron transport, but cytochromes are important for making the terminal electrical connections with Fe(III) oxides and electrodes and also function as capacitors, storing charge to permit continued respiration when extracellular electron acceptors are temporarily unavailable. The high conductivity of Geobacter pili and biofilms and the ability of biofilms to function as supercapacitors are novel properties that might contribute to the field of bioelectronics. The study of Geobacter species has revealed a remarkable number of microbial physiological properties that had not previously been described in any microorganism. Further investigation of these environmentally relevant and physiologically unique organisms is warranted.
Collapse
Affiliation(s)
- Derek R Lovley
- Department of Microbiology and Environmental Biotechnology Center, University of Massachusetts, Amherst, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
448
|
Erion TV, Strobel SA. Identification of a tertiary interaction important for cooperative ligand binding by the glycine riboswitch. RNA (NEW YORK, N.Y.) 2011; 17:74-84. [PMID: 21098652 PMCID: PMC3004068 DOI: 10.1261/rna.2271511] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 10/27/2010] [Indexed: 05/21/2023]
Abstract
The glycine riboswitch has a tandem dual aptamer configuration, where each aptamer is a separate ligand-binding domain, but the aptamers function together to bind glycine cooperatively. We sought to understand the molecular basis of glycine riboswitch cooperativity by comparing sites of tertiary contacts in a series of cooperative and noncooperative glycine riboswitch mutants using hydroxyl radical footprinting, in-line probing, and native gel-shift studies. The results illustrate the importance of a direct or indirect interaction between the P3b hairpin of aptamer 2 and the P1 helix of aptamer 1 in cooperative glycine binding. Furthermore, our data support a model in which glycine binding is sequential; where the binding of glycine to the second aptamer allows tertiary interactions to be made that facilitate binding of a second glycine molecule to the first aptamer. These results provide insight into cooperative ligand binding in RNA macromolecules.
Collapse
Affiliation(s)
- Thanh V Erion
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | |
Collapse
|
449
|
Functional Nucleic Acids for Fluorescence-Based Biosensing Applications. ADVANCED FLUORESCENCE REPORTERS IN CHEMISTRY AND BIOLOGY III 2011. [DOI: 10.1007/978-3-642-18035-4_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
450
|
Abstract
Metal ions are required by all organisms in order to execute an array of essential molecular functions. They play a critical role in many catalytic mechanisms and structural properties. Proper homeostasis of ions is critical; levels that are aberrantly low or high are deleterious to cellular physiology. To maintain stable intracellular pools, metal ion-sensing regulatory (metalloregulatory) proteins couple metal ion concentration fluctuations with expression of genes encoding for cation transport or sequestration. However, these transcriptional-based regulatory strategies are not the only mechanisms by which organisms coordinate metal ions with gene expression. Intriguingly, a few classes of signal-responsive RNA elements have also been discovered to function as metalloregulatory agents. This suggests that RNA-based regulatory strategies can be precisely tuned to intracellular metal ion pools, functionally akin to metal-loregulatory proteins. In addition to these metal-sensing regulatory RNAs, there is a yet broader role for metal ions in directly assisting the structural integrity of other signal-responsive regulatory RNA elements. In this chapter, we discuss how the intimate physicochemical relationship between metal ions and nucleic acids is important for the structure and function of metal ion- and metabolite-sensing regulatory RNAs.
Collapse
Affiliation(s)
- Adrian R Ferré-D'Amaré
- Howard Hughes Medical Institute and Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | | |
Collapse
|