401
|
Abstract
The developmental programme of embryogenesis is controlled by both genetic and epigenetic mechanisms. An emerging theme from recent studies is that the regulation of higher-order chromatin structures by DNA methylation and histone modification is crucial for genome reprogramming during early embryogenesis and gametogenesis, and for tissue-specific gene expression and global gene silencing. Disruptions to chromatin modification can lead to the dysregulation of developmental processes, such as X-chromosome inactivation and genomic imprinting, and to various diseases. Understanding the process of epigenetic reprogramming in development is important for studies of cloning and the clinical application of stem-cell therapy.
Collapse
Affiliation(s)
- En Li
- Cardiovascular Research Center, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, USA.
| |
Collapse
|
402
|
Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 2002; 117:15-23. [PMID: 12204247 DOI: 10.1016/s0925-4773(02)00181-8] [Citation(s) in RCA: 830] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Genome-wide epigenetic reprogramming in mammalian germ cells, zygote and early embryos, plays a crucial role in regulating genome functions at critical stages of development. We show here that mouse primordial germ cells (PGCs) exhibit dynamic changes in epigenetic modifications between days 10.5 and 12.5 post coitum (dpc). First, contrary to previous suggestions, we show that PGCs do indeed acquire genome-wide de novo methylation during early development and migration into the genital ridge. However, following their entry into the genital ridge, there is rapid erasure of DNA methylation of regions within imprinted and non-imprinted loci. For most genes, the erasure commences simultaneously in PGCs in both male and female embryos, which is completed within 1 day of development. Based on the kinetics of this process, we suggest that this is an active demethylation process initiated upon the entry of PGCs into the gonadal anlagen. The timing of reprogramming in PGCs is crucial since it ensures that germ cells of both sexes acquire an equivalent epigenetic state prior to the differentiation of the definitive male and female germ cells in which new parental imprints are established subsequently. Some repetitive elements, however, show incomplete erasure, which may be essential for chromosome stability and for preventing activation of transposons to reduce the risk of germline mutations. Aberrant epigenetic reprogramming in the germ line would cause the inheritance of epimutations that may have consequences for human diseases as suggested by studies on mouse models.
Collapse
Affiliation(s)
- Petra Hajkova
- Universität des Saarlandes, Fr 8.2 Genetik, Postfach 151150, 66041 Saarbrücken, Germany
| | | | | | | | | | | | | | | |
Collapse
|
403
|
Abstract
Aberrant gene silencing in mammalian cells is associated with promoter region methylation, but the sequence of these two events is not clear. This review will consider the possibility that gene silencing is not a single event, but instead a series of events that begins with a dramatic drop in transcription potential and ends with its complete cessation. This transition will be portrayed as a chaotic process that ensues when transcription levels drop and DNA methylation begins spreading haltingly towards the diminished promoter. According to this view, silencing is stabilized when the promoter region is 'captured' by the spread of DNA methylation near or into its transcription factor binding sites.
Collapse
Affiliation(s)
- Mitchell S Turker
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon, OR 97201, USA.
| |
Collapse
|
404
|
Abstract
The laboratory mouse is one of the most powerful tools for both gene discovery and validation in cancer genetics. Recent technological advances in engineering the mouse genome with chromosome translocations, latent alleles, and tissue-specific and temporally regulated mutations have provided more exacting models of human disease. The marriage of mouse tumor models with rapidly evolving methods to profile genetic and epigenetic alterations in tumors, and to finely map genetic modifier loci, will continue to provide insight into the key pathways leading to tumorigenesis. These discoveries hold great promise for identifying relevant drug targets for treating human cancer.
Collapse
Affiliation(s)
- Laurie Jackson-Grusby
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts, MA 02142, USA.
| |
Collapse
|
405
|
Suzuki T, Fujii M, Ayusawa D. Demethylation of classical satellite 2 and 3 DNA with chromosomal instability in senescent human fibroblasts. Exp Gerontol 2002; 37:1005-14. [PMID: 12213551 DOI: 10.1016/s0531-5565(02)00061-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Demethylation of genomic 5-methylcytosine is reported in aged human tissues and senesced human cells, although it is not understood to what extent this phenomenon contributes to replicative senescence. We examined methylation status of satellite 2 and 3 sequences during passages of normal human fibroblasts. These sequences are abundant in the juxtacentromeric heterochromatin of human chromosomes 1, 9 and 16, and heavily methylated in tissues of normal individuals. The decrease in DNA methylation level was two times faster in satellite 3 DNA than in satellite 2 and total DNA. Then we monitored appearance of micronuclei during the passages since they are indicative of heterochromatin decondensation or chromosome breakage. Concomitant with the DNA demethylation, micronuclei containing the heterochromatin of chromosomes 1, 9 or 16, appeared specifically. These results suggest that demethylation of heterochromatin has a role in replicative senescence through chromosome instability.
Collapse
Affiliation(s)
- Toshikazu Suzuki
- Kihara Institute for Biological Research, Yokohama City University, Maioka-cho 641-12, Totsuka-ku, Yokohama 244-0813, Japan
| | | | | |
Collapse
|
406
|
Kim GD, Ni J, Kelesoglu N, Roberts RJ, Pradhan S. Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. EMBO J 2002; 21:4183-95. [PMID: 12145218 PMCID: PMC126147 DOI: 10.1093/emboj/cdf401] [Citation(s) in RCA: 260] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2002] [Revised: 06/10/2002] [Accepted: 06/10/2002] [Indexed: 11/13/2022] Open
Abstract
Three different families of DNA (cytosine-5) methyltransferases, DNMT1, DUMT2, DNMT3a and DNMT3b, participate in establishing and maintaining genomic methylation patterns during mammalian development. These enzymes have a large N-terminal domain fused to a catalytic domain. The catalytic domain is homologous to prokaryotic (cytosine-5) methyltransferases and contains the catalytic PC dipeptide, while the N-terminus acts as a transcriptional repressor by recruiting several chromatin remodeling proteins. Here, we show that the human de novo enzymes hDNMT3a and hDNMT3b form complexes with the major maintenance enzyme hDNMT1. Antibodies against hDNMT1 pull down both the de novo enzymes. Furthermore, the N-termini of the enzymes are involved in protein-protein interactions. Immunocytochemical staining revealed mostly nuclear co-localization of the fusion proteins, with the exception of hDNMT3a, which is found either exclusively in cytoplasm or in both nucleus and cytoplasm. Pre-methylated substrate DNAs exhibited differential methylation by de novo and maintenance enzymes. In vivo co-expression of hDNMT1 and hDNMT3a or hDNMT3b leads to methylation spreading in the genome, suggesting co-operation between de novo and maintenance enzymes during DNA methylation.
Collapse
Affiliation(s)
- Gun-Do Kim
- New England Biolabs, 32 Tozer Road, Beverly, MA 01915 and Cell Signaling Technology Inc., 166B Cummings Center, Beverly, MA 01915, USA Present address: Korea Research Institute of Chemical Technology, Yusung, Taejon 305-600, South Korea Present address: Celera Genomics Inc., 45 West Gude Drive, Rockville, MD 20850, USA Corresponding author e-mail:
| | - Jingwei Ni
- New England Biolabs, 32 Tozer Road, Beverly, MA 01915 and Cell Signaling Technology Inc., 166B Cummings Center, Beverly, MA 01915, USA Present address: Korea Research Institute of Chemical Technology, Yusung, Taejon 305-600, South Korea Present address: Celera Genomics Inc., 45 West Gude Drive, Rockville, MD 20850, USA Corresponding author e-mail:
| | - Nicole Kelesoglu
- New England Biolabs, 32 Tozer Road, Beverly, MA 01915 and Cell Signaling Technology Inc., 166B Cummings Center, Beverly, MA 01915, USA Present address: Korea Research Institute of Chemical Technology, Yusung, Taejon 305-600, South Korea Present address: Celera Genomics Inc., 45 West Gude Drive, Rockville, MD 20850, USA Corresponding author e-mail:
| | - Richard J. Roberts
- New England Biolabs, 32 Tozer Road, Beverly, MA 01915 and Cell Signaling Technology Inc., 166B Cummings Center, Beverly, MA 01915, USA Present address: Korea Research Institute of Chemical Technology, Yusung, Taejon 305-600, South Korea Present address: Celera Genomics Inc., 45 West Gude Drive, Rockville, MD 20850, USA Corresponding author e-mail:
| | - Sriharsa Pradhan
- New England Biolabs, 32 Tozer Road, Beverly, MA 01915 and Cell Signaling Technology Inc., 166B Cummings Center, Beverly, MA 01915, USA Present address: Korea Research Institute of Chemical Technology, Yusung, Taejon 305-600, South Korea Present address: Celera Genomics Inc., 45 West Gude Drive, Rockville, MD 20850, USA Corresponding author e-mail:
| |
Collapse
|
407
|
Abstract
Human monozygotic (MZ) twins estimated to occur once in 250 live births, result from an errant decision by embryonic cell(s) to develop as separate embryos. They are considered genetically identical and any phenotypic discordance between them has been used to implicate the role of environment. More recent literature, however, has questioned these assumptions but the frequency and the nature of any genetic discordance between MZ twins remains poorly understood. We will review published cases of phenotypic and genetic discordance between monozygotic twins to argue that not all discordance between such twins is due to differences in environment. The causes of reduced concordance between MZ twins remains poorly understood. They represent among the challenging aspects of the genetics of complex multi-factorial traits and diseases. A number of questions regarding the published results on MZ twins merit a re-assessment in the light of modern molecular insight of the human genome. Such an assessment is needed in directing future studies on MZ twins. In particular, we will deal with the origin, development, genetic and epigenetic factors that may have implications in discordance of the MZ twin pairs.
Collapse
Affiliation(s)
- S M Singh
- Molecular Genetics Unit, Department of Biology and Division of Medical Genetics, The University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|
408
|
Saito Y, Kanai Y, Sakamoto M, Saito H, Ishii H, Hirohashi S. Overexpression of a splice variant of DNA methyltransferase 3b, DNMT3b4, associated with DNA hypomethylation on pericentromeric satellite regions during human hepatocarcinogenesis. Proc Natl Acad Sci U S A 2002; 99:10060-5. [PMID: 12110732 PMCID: PMC126624 DOI: 10.1073/pnas.152121799] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2002] [Indexed: 11/18/2022] Open
Abstract
DNA hypomethylation on pericentromeric satellite regions is an early and frequent event associated with heterochromatin instability during human hepatocarcinogenesis. A DNA methyltransferase, DNMT3b, is required for methylation on pericentromeric satellite regions during mouse development. To clarify the molecular mechanism underlying DNA hypomethylation on pericentromeric satellite regions during human hepatocarcinogenesis, we examined mutations of the DNMT3b gene and mRNA expression levels of splice variants of DNMT3b in noncancerous liver tissues showing chronic hepatitis and cirrhosis, which are considered to be precancerous conditions, and in hepatocellular carcinomas (HCCs). Mutation of the DNMT3b gene was not found in HCCs. Overexpression of DNMT3b4, a splice variant of DNMT3b lacking conserved methyltransferase motifs IX and X, significantly correlated with DNA hypomethylation on pericentromeric satellite regions in precancerous conditions and HCCs (P = 0.0001). In particular, the ratio of expression of DNMT3b4 to that of DNMT3b3, which is the major splice variant in normal liver tissues and retains conserved methyltransferase motifs I, IV, VI, IX, and X, showed significant correlation with DNA hypomethylation (P = 0.009). Transfection of human epithelial 293 cells with DNMT3b4 cDNA induced DNA demethylation on satellite 2 in pericentromeric heterochromatin DNA. These results suggest that overexpression of DNMT3b4, which may lack DNA methyltransferase activity and compete with DNMT3b3 for targeting to pericentromeric satellite regions, results in DNA hypomethylation on these regions, even in precancerous stages, and plays a critical role in human hepatocarcinogenesis by inducing chromosomal instability.
Collapse
Affiliation(s)
- Yoshimasa Saito
- Pathology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | | | |
Collapse
|
409
|
Gowher H, Jeltsch A. Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyltransferases. J Biol Chem 2002; 277:20409-14. [PMID: 11919202 DOI: 10.1074/jbc.m202148200] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal domains of the mammalian DNA methyltransferases Dnmt1, Dnmt3a, and Dnmt3b harbor all the conserved motifs characteristic for cytosine-C5 methyltransferases. Whereas the isolated catalytic domain of Dnmt1 is inactive, we show here that the C-terminal domains of Dnmt3a and Dnmt3b are catalytically active. Neither Dnmt3a nor Dnmt3b shows a significant preference for the satellite 2 sequence, although Dnmt3b is required for methylation of these regions in vivo. However, the catalytic domain of Dnmt3a methylates DNA in a distributive reaction, whereas Dnmt3b is processive, which accelerates methylation of macromolecular DNA in vitro. This property could make Dnmt3b a preferred enzyme for methylation at satellite 2 repeats, since they are highly CG-rich. We have also analyzed the catalytic activities of six different mutations found in ICF (immunodeficiency, centromeric instability, and facial abnormalities) patients in the catalytic domain of Dnmt3b. Five of them display catalytic activities reduced by 10-50-fold; one mutant was inactive in our assay (residual activity <1%). These results confirm that a reduced catalytic activity of Dnm3b causes ICF. However, the mutations in general do not completely abrogate catalytic activity. This finding may explain why ICF patients are viable, whereas nmt3b knock-out mice die during embryogenesis.
Collapse
Affiliation(s)
- Humaira Gowher
- Institut für Biochemie, FB 8, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, 35392 Giessen, Germany
| | | |
Collapse
|
410
|
Abstract
Patterns of DNA methylation and chromatin structure are profoundly altered in neoplasia and include genome-wide losses of, and regional gains in, DNA methylation. The recent explosion in our knowledge of how chromatin organization modulates gene transcription has further highlighted the importance of epigenetic mechanisms in the initiation and progression of human cancer. These epigenetic changes -- in particular, aberrant promoter hypermethylation that is associated with inappropriate gene silencing -- affect virtually every step in tumour progression. In this review, we discuss these epigenetic events and the molecular alterations that might cause them and/or underlie altered gene expression in cancer.
Collapse
Affiliation(s)
- Peter A Jones
- USC/Norris Comprehensive Cancer Center, Department of Urology, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, MS 8302L, Los Angeles, California 90089-9181, USA.
| | | |
Collapse
|