401
|
Vellecco V, Armogida C, Bucci M. Hydrogen sulfide pathway and skeletal muscle: an introductory review. Br J Pharmacol 2018; 175:3090-3099. [PMID: 29767441 PMCID: PMC6031874 DOI: 10.1111/bph.14358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/18/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
The presence of the H2 S pathway in skeletal muscle (SKM) has recently been established. SKM expresses the three constitutive H2 S-generating enzymes in animals and humans, and it actively produces H2 S. The main, recognized molecular targets of H2 S, that is, potassium channels and PDEs, have been evaluated in SKM physiology in order to hypothesize a role for H2 S signalling. SKM dysfunctions, including muscular dystrophy and malignant hyperthermia, have also been evaluated as conditions in which the H2 S and transsulfuration pathways have been suggested to be involved. The intrinsic complexity of the molecular mechanisms involved in excitation-contraction (E-C) coupling together with the scarcity of preclinical models of SKM-related disorders have hampered any advances in the knowledge of SKM function. Here, we have addressed the role of the H2 S pathway in E-C coupling and the relative importance of cystathionine β-synthase, cistathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase in SKM diseases.
Collapse
Affiliation(s)
- Valentina Vellecco
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Naples, 80131, Italy
| | - Chiara Armogida
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Naples, 80131, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Naples, 80131, Italy
| |
Collapse
|
402
|
Bora P, Chauhan P, Pardeshi KA, Chakrapani H. Small molecule generators of biologically reactive sulfur species. RSC Adv 2018; 8:27359-27374. [PMID: 35540007 PMCID: PMC9083908 DOI: 10.1039/c8ra03658f] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/19/2018] [Indexed: 12/13/2022] Open
Abstract
Sulfur metabolism is integral to cellular growth and survival. The presence of a wide range of oxidation states of sulfur in biology coupled with its unique reactivity are some key features of the biology of this element. In particular, nearly all oxidation states of sulfur not only occur but are also inter-convertible. In order to study the chemical biology of reactive sulfur species, tools to reliably detect as well as generate these species within cells are necessary. Herein, an overview of strategies to generate certain reactive sulfur species is presented. The donors of reactive sulfur species have been organized based on their oxidation states. These interesting small molecules have helped lay a strong foundation to study the biology of reactive sulfur species and some may have therapeutic applications in the future as well.
Collapse
Affiliation(s)
- Prerona Bora
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411 008 Maharashtra India
| | - Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411 008 Maharashtra India
| | - Kundansingh A Pardeshi
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411 008 Maharashtra India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411 008 Maharashtra India
| |
Collapse
|
403
|
Raggio R, Bonani W, Callone E, Dirè S, Gambari L, Grassi F, Motta A. Silk Fibroin Porous Scaffolds Loaded with a Slow-Releasing Hydrogen Sulfide Agent (GYY4137) for Applications of Tissue Engineering. ACS Biomater Sci Eng 2018; 4:2956-2966. [DOI: 10.1021/acsbiomaterials.8b00212] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rosasilvia Raggio
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Via delle Regole 101, 38123 Trento, Italy
| | - Walter Bonani
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Via delle Regole 101, 38123 Trento, Italy
| | - Emanuela Callone
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
- “Klaus Muller” Magnetic Resonance Laboratory, Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Sandra Dirè
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
- “Klaus Muller” Magnetic Resonance Laboratory, Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Laura Gambari
- RAMSES Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Francesco Grassi
- RAMSES Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Via delle Regole 101, 38123 Trento, Italy
| |
Collapse
|
404
|
Pal K, Islam ASM, Prodhan C, Bhunya S, Paul A, Ali M. A Benzooxazole-Based Probe for the Sensitive Detection of Hydrogen Sulfide: Kinetic and Transition-State Studies and In Vitro Application in HepG2 Cells. ChemistrySelect 2018. [DOI: 10.1002/slct.201801090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kaberi Pal
- Department of Chemistry; Jadavpur University; 188 Raja S.C. Mallick Road Kolkata - 700032 India
| | - Abu Saleh Musha Islam
- Department of Chemistry; Jadavpur University; 188 Raja S.C. Mallick Road Kolkata - 700032 India
| | - Chandraday Prodhan
- Molecular& Human Genetics Division; CSIR-Indian Institute of Chemical Biology; 4 Raja S.C. Mallick Road Kolkata - 700032 India
| | - Sourav Bhunya
- Raman Centre for Atomic, Optical and Molecular Physics; Indian Association for the Cultivation of Science, Jadavpur; Kolkata - 700032 India
| | - Ankan Paul
- Raman Centre for Atomic, Optical and Molecular Physics; Indian Association for the Cultivation of Science, Jadavpur; Kolkata - 700032 India
| | - Mahammad Ali
- Department of Chemistry; Jadavpur University; 188 Raja S.C. Mallick Road Kolkata - 700032 India
| |
Collapse
|
405
|
Yang R, Liu Y, Yu T, Liu D, Shi S, Zhou Y, Zhou Y. Hydrogen sulfide maintains dental pulp stem cell function via TRPV1-mediated calcium influx. Cell Death Discov 2018; 4:1. [PMID: 30062050 PMCID: PMC6060166 DOI: 10.1038/s41420-018-0071-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S), an endogenous gasotransmitter, mediated a variety of biological processes through multiple signaling pathways, and aberrant H2S metabolism has been associated with mesenchymal stem cell (MSC) dysfunction. Here we employed the small interfering RNA treatment for cystathionine β-synthase (CBS), cystathionine γ-lyase, the main enzymes to synthesize H2S, and CBS-knockout mice to analyze the effect of H2S on dental pulp homeostasis. We showed that H2S deficiency attenuated dental pulp stem cell (DPSC) osteogenic/dentinogenic differentiation in vitro and in vivo with enhanced cell proliferation. Mechanically, H2S facilitated the transient receptor potential action channel subfamily V member 1-mediated calcium (Ca2+) influx, which subsequently activated the β-catenin pathway. While H2S deficiency decreased Ca2+, resulting in glycogen synthase kinase-3β-mediated β-catenin degradation, which controls proliferation and differentiation of DPSCs. Consistently, H2S-deficient mice displayed disturbed pattern of dental pulp and less dentin formation. In this study, we identified a previously unknown mechanism by which H2S regulates DPSC lineage determination and dental pulp homeostasis.
Collapse
Affiliation(s)
- Ruili Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 100081 Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050 Beijing, China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 100081 Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Dawei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 100081 Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Songtao Shi
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Yongsheng Zhou
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 100081 Beijing, China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 100081 Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
| |
Collapse
|
406
|
Abstract
Hydrogen sulfide (H2S) is a novel signaling molecule most recently found to be of fundamental importance in cellular function as a regulator of apoptosis, inflammation, and perfusion. Mechanisms of endogenous H2S signaling are poorly understood; however, signal transmission is thought to occur via persulfidation at reactive cysteine residues on proteins. Although much has been discovered about how H2S is synthesized in the body, less is known about how it is metabolized. Recent studies have discovered a multitude of different targets for H2S therapy, including those related to protein modification, intracellular signaling, and ion channel depolarization. The most difficult part of studying hydrogen sulfide has been finding a way to accurately and reproducibly measure it. The purpose of this review is to: elaborate on the biosynthesis and catabolism of H2S in the human body, review current knowledge of the mechanisms of action of this gas in relation to ischemic injury, define strategies for physiological measurement of H2S in biological systems, and review potential novel therapies that use H2S for treatment.
Collapse
|
407
|
Umezawa K, Kamiya M, Urano Y. A Reversible Fluorescent Probe for Real‐Time Live‐Cell Imaging and Quantification of Endogenous Hydropolysulfides. Angew Chem Int Ed Engl 2018; 57:9346-9350. [DOI: 10.1002/anie.201804309] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/21/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Keitaro Umezawa
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Present address: Research Team for Mechanism of Aging Tokyo Metropolitan Institute of Gerontology Tokyo Japan
| | - Mako Kamiya
- Graduate School of Medicine The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Graduate School of Medicine The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
408
|
Umezawa K, Kamiya M, Urano Y. A Reversible Fluorescent Probe for Real‐Time Live‐Cell Imaging and Quantification of Endogenous Hydropolysulfides. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Keitaro Umezawa
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Present address: Research Team for Mechanism of Aging Tokyo Metropolitan Institute of Gerontology Tokyo Japan
| | - Mako Kamiya
- Graduate School of Medicine The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Graduate School of Medicine The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
409
|
Ji A, Fan Y, Ren W, Zhang S, Ai HW. A Sensitive Near-Infrared Fluorescent Sensor for Mitochondrial Hydrogen Sulfide. ACS Sens 2018; 3:992-997. [PMID: 29701949 PMCID: PMC5970079 DOI: 10.1021/acssensors.8b00142] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogen sulfide (H2S) is an important gasotransmitter. Although a large number of fluorescent probes for cellular H2S have been reported, only a few can detect H2S in mitochondria, a cellular organelle connecting H2S with mitochondrial function and metabolic pathways. We hereby describe a novel near-infrared fluorescent probe, nimazide, by introducing sulfonyl azide to the core structure of a QSY-21 dark quencher. Nimazide responded quickly to H2S, resulting in robust fluorescence turn-off changes. This conversion displayed high specificity and fast kinetics. More impressively, we observed a robust fluorescence decrease in live cells loaded with mitochondrial nimazide in response to extracellular addition of nanomolar H2S, and successfully imaged biologically generated mitochondrial H2S in live mammalian cells. Nimazide is one of the most sensitive fluorescent probes for mitochondrial H2S.
Collapse
Affiliation(s)
- Ao Ji
- Department of Chemistry, University of California at Riverside, Riverside, CA 92521, United States
| | - Yichong Fan
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, Department of Chemistry, and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, United States
| | - Wei Ren
- Department of Chemistry, University of California at Riverside, Riverside, CA 92521, United States
| | - Shen Zhang
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, Department of Chemistry, and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, United States
| | - Hui-wang Ai
- Department of Chemistry, University of California at Riverside, Riverside, CA 92521, United States
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, Department of Chemistry, and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, United States
| |
Collapse
|
410
|
Hydrogen sulphide facilitates exocytosis by regulating the handling of intracellular calcium by chromaffin cells. Pflugers Arch 2018; 470:1255-1270. [DOI: 10.1007/s00424-018-2147-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 01/09/2023]
|
411
|
Duzs Á, Tóth A, Németh B, Balogh T, Kós PB, Rákhely G. A novel enzyme of type VI sulfide:quinone oxidoreductases in purple sulfur photosynthetic bacteria. Appl Microbiol Biotechnol 2018; 102:5133-5147. [PMID: 29680900 DOI: 10.1007/s00253-018-8973-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/23/2018] [Accepted: 03/28/2018] [Indexed: 11/24/2022]
Abstract
Sulfide detoxification can be catalyzed by ancient membrane-bound flavoproteins, sulfide:quinone oxidoreductases (Sqr), which have important roles in sulfide homeostasis and sulfide-dependent energy conservation processes by transferring electrons from sulfide to respiratory or photosynthetic membrane electron flow. Sqr enzymes have been categorized into six groups. Several members of the groups I, II, III, and V are well-known, but type IV and VI Sqrs are, as yet, uncharacterized or hardly characterized at all. Here, we report detailed characterization of a type VI sulfide:quinone oxidoreductase (TrSqrF) from a purple sulfur bacterium, Thiocapsa roseopersicina. Phylogenetic analysis classified this enzyme in a special group composed of SqrFs of endosymbionts, while a weaker relationship could be observed with SqrF of Chlorobaculum tepidum which is the only type VI enzyme characterized so far. Directed mutagenesis experiments showed that TrSqrF contributed substantially to the sulfide:quinone oxidoreductase activity of the membranes. Expression of the sqrF gene could be induced by sulfide. Homologous recombinant TrSqrF protein was expressed and purified from the membranes of a SqrF-deleted T. roseopersicina strain. The purified protein contains redox-active covalently bound FAD cofactor. The recombinant TrSqrF enzyme catalyzes sulfur-dependent quinone reduction and prefers ubiquinone-type quinone compounds. Kinetic parameters of TrSqrF show that the affinity of the enzyme is similar to duroquinone and decylubiquinone, but the reaction has substantially lower activation energy with decylubiquinone, indicating that the quinone structure has an effect on the catalytic process. TrSqrF enzyme affinity for sulfide is low, therefore, in agreement with the gene expressional analyis, SqrF could play a role in energy-conserving sulfide oxidation at high sulfide concentrations. TrSqrF is a good model enzyme for the subgroup of type VI Sqrs of endosymbionts and its characterization might provide deeper insight into the molecular details of the ancient, anoxic, energy-gaining processes using sulfide as an electron donor.
Collapse
Affiliation(s)
- Ágnes Duzs
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.,Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, Szeged, 6726, Hungary
| | - András Tóth
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.,Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, Szeged, 6726, Hungary
| | - Brigitta Németh
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, Szeged, 6726, Hungary
| | - Tímea Balogh
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Péter B Kós
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.,Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, Szeged, 6726, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary. .,Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, Szeged, 6726, Hungary.
| |
Collapse
|
412
|
Berberova NT, Smolyaninov IV, Shinkar EV, Kuzmin VV, Sediki DB, Shevtsova AV. Electrosynthesis of biologically active dicycloalkyl di- and trisulfides involving an H2S—S8 redox system. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2044-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
413
|
Abstract
An electrochemical method capable of direct, real-time detection of hydrogen sulfide was developed using triple pulse amperometry (TPA) to mitigate sulfur poisoning and its related passivation of the working electrode surface. Through repeated cycles of discrete potential pulses, the electrooxidation of surface-adsorbed elemental sulfur to water-soluble sulfate ions was exploited to regenerate the glassy carbon electrode surface and maintain consistent sensor performance. Amperometric measurements and X-ray photoelectron spectroscopy surface analysis demonstrated that the TPA sensors provided enhanced analytical performance via decreased sulfur accumulation relative to low-potential (≤+0.7 V) constant potential amperometry. Sensors operated under optimized TPA parameters retained high sensitivity (57.4 ± 13.0 nA/μM), a wide linear dynamic range (150 nM-15 μM), fast response times (<10 s), and a submicromolar detection limit (<100 nM) upon consecutive calibration cycles. The sensitivity and response time achieved were comparable to or better than current electrochemical sensors. Moreover, the simplicity of the method eliminates the need for external redox mediators or semipermeable membranes.
Collapse
Affiliation(s)
- Jackson R. Hall
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina, 27599, United States
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina, 27599, United States
| |
Collapse
|
414
|
Yang C, Jeong S, Ku S, Lee K, Park MH. Use of gasotransmitters for the controlled release of polymer-based nitric oxide carriers in medical applications. J Control Release 2018; 279:157-170. [PMID: 29673643 DOI: 10.1016/j.jconrel.2018.04.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/22/2023]
Abstract
Nitric Oxide (NO) is a small molecule gasotransmitter synthesized by nitric oxide synthase in almost all types of mammalian cells. NO is synthesized by NO synthase by conversion of l-arginine to l-citrulline in the human body. NO then stimulates soluble guanylate cyclase, from which various physiological functions are mediated in a concentration-dependent manner. High concentrations of NO induce apoptosis or antibacterial responses whereas low NO circulation leads to angiogenesis. The bidirectional effect of NO has attracted considerable attention, and efforts to deliver NO in a controlled manner, especially through polymeric carriers, has been the topic of much research. This naturally produced signaling molecule has stood out as a potentially more potent therapeutic agent compared to exogenously synthesized drugs. In this review, we will focus on past efforts of using the controlled release of NO via polymer-based materials to derive specific therapeutic results. We have also added studies and our future suggestions on co-delivery methods with other gasotransmitters as a step towards developing multifunctional carriers.
Collapse
Affiliation(s)
- Chungmo Yang
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Soohyun Jeong
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Seul Ku
- School of Medicine, Stanford University, 291 Campus Drive, Stanford, CA 94305, USA
| | - Kangwon Lee
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Gyeonggi-do 16229, Republic of Korea.
| | - Min Hee Park
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
415
|
Gao M, Wang R, Yu F, Chen L. Evaluation of sulfane sulfur bioeffects via a mitochondria-targeting selenium-containing near-infrared fluorescent probe. Biomaterials 2018; 160:1-14. [DOI: 10.1016/j.biomaterials.2018.01.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/27/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
|
416
|
Pal VK, Bandyopadhyay P, Singh A. Hydrogen sulfide in physiology and pathogenesis of bacteria and viruses. IUBMB Life 2018; 70:393-410. [PMID: 29601123 PMCID: PMC6029659 DOI: 10.1002/iub.1740] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/14/2018] [Accepted: 03/02/2018] [Indexed: 12/18/2022]
Abstract
An increasing number of studies have established hydrogen sulfide (H2S) gas as a major cytoprotectant and redox modulator. Following its discovery, H2S has been found to have pleiotropic effects on physiology and human health. H2S acts as a gasotransmitter and exerts its influence on gastrointestinal, neuronal, cardiovascular, respiratory, renal, and hepatic systems. Recent discoveries have clearly indicated the importance of H2S in regulating vasorelaxation, angiogenesis, apoptosis, ageing, and metabolism. Contrary to studies in higher organisms, the role of H2S in the pathophysiology of infectious agents such as bacteria and viruses has been less studied. Bacterial and viral infections are often accompanied by changes in the redox physiology of both the host and the pathogen. Emerging studies indicate that bacterial-derived H2S constitutes a defense system against antibiotics and oxidative stress. The H2S signaling pathway also seems to interfere with redox-based events affected on infection with viruses. This review aims to summarize recent advances on the emerging role of H2S gas in the bacterial physiology and viral infections. Such studies have opened up new research avenues exploiting H2S as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Virender Kumar Pal
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science (IISc), Bangalore, India
| | - Parijat Bandyopadhyay
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science (IISc), Bangalore, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science (IISc), Bangalore, India
| |
Collapse
|
417
|
Wahafu W, Gai J, Song L, Ping H, Wang M, Yang F, Niu Y, Xing N. Increased H 2S and its synthases in urothelial cell carcinoma of the bladder, and enhanced cisplatin-induced apoptosis following H 2S inhibition in EJ cells. Oncol Lett 2018; 15:8484-8490. [PMID: 29928321 PMCID: PMC6004664 DOI: 10.3892/ol.2018.8373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/15/2018] [Indexed: 01/02/2023] Open
Abstract
H2S, synthesized by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (MPST), functions as a signalling molecule in mammalian cells. H2S serves complex functions in physiological and pathological processes, including in bladder cancer. In the present study, H2S production, the expression of the associated enzymes and the effect of H2S on human urothelial cell carcinoma of the bladder (UCB) tissue and cell lines were evaluated, and whether decreasing H2S levels influenced cell viability and tumour growth following treatment with cisplatin (CDDP) was assessed in UCB cells in vitro and in vivo. H2S production and the expression of CBS, CSE and MPST in bladder tissue specimens and the UCB cell lines 5637, EJ and UM-UC-3 were analysed using a sulfur-sensitive electrode and western blotting. UCB cells were subjected to different treatments, and viability and protein expression were determined. H2S production was inhibited to examine its influence on EJ cell tumour growth following CDDP treatment in vivo. It was identified that CBS, CSE and MPST protein were up-regulated in UCB tissues and cells. The H2S production and enzyme expression levels were the highest in UCB tissue and EJ cells. The inhibition of endogenous H2S biosynthesis decreased EJ cell viability and tumour growth in response to CDDP treatment. H2S levels and the associated biosynthetic enzymes were increased in human UCB tissue and cells compared with adjacent tissue and normal cells, which may have increased the resistance to CDDP-induced apoptosis in UCB. Therefore, H2S and its production may be an alternative therapeutic target for UCB.
Collapse
Affiliation(s)
- Wasilijiang Wahafu
- Department of Urology, Beijing Chao Yang Hospital, Beijing 100020, P.R. China
| | - Junwei Gai
- Department of Urology, Tianjin First Central Hospital, Tianjin 300191, P.R. China
| | - Liming Song
- Department of Urology, Beijing Chao Yang Hospital, Beijing 100020, P.R. China
| | - Hao Ping
- Department of Urology, Beijing Chao Yang Hospital, Beijing 100020, P.R. China
| | - Mingshuai Wang
- Department of Urology, Beijing Chao Yang Hospital, Beijing 100020, P.R. China
| | - Feiya Yang
- Department of Urology, Beijing Chao Yang Hospital, Beijing 100020, P.R. China
| | - Yinong Niu
- Department of Urology, Beijing Chao Yang Hospital, Beijing 100020, P.R. China
| | - Nianzeng Xing
- Department of Urology, Beijing Chao Yang Hospital, Beijing 100020, P.R. China
| |
Collapse
|
418
|
Venkatesh Y, Das J, Chaudhuri A, Karmakar A, Maiti TK, Singh NDP. Light triggered uncaging of hydrogen sulfide (H 2S) with real-time monitoring. Chem Commun (Camb) 2018. [PMID: 29517102 DOI: 10.1039/c8cc01172a] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An ESIPT based light activated hydrogen sulfide (H2S) donor using a p-hydroxyphenacyl phototrigger has been developed. The unique feature of our H2S donor system is that it provides real-time monitoring of H2S release by a non-invasive fluorescence colour change approach.
Collapse
Affiliation(s)
- Yarra Venkatesh
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 Kharagpur, West Bengal, India.
| | - Joyjyoti Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, 721302 Kharagpur, West Bengal, India
| | - Amrita Chaudhuri
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 Kharagpur, West Bengal, India.
| | - Anupam Karmakar
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 Kharagpur, West Bengal, India.
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, 721302 Kharagpur, West Bengal, India
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 Kharagpur, West Bengal, India.
| |
Collapse
|
419
|
Yi SY, Moon YK, Kim S, Kim S, Park G, Kim JJ, You Y. Visible light-driven photogeneration of hydrogen sulfide. Chem Commun (Camb) 2018; 53:11830-11833. [PMID: 29039856 DOI: 10.1039/c7cc06990a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The combined use of a singlet oxygen photosensitizer and 1,3-diarylisobenzothiophene enables efficient generation of hydrogen sulfide under visible light illumination.
Collapse
Affiliation(s)
- Seung Yeon Yi
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Korea.
| | | | | | | | | | | | | |
Collapse
|
420
|
Powell CR, Dillon KM, Matson JB. A review of hydrogen sulfide (H 2S) donors: Chemistry and potential therapeutic applications. Biochem Pharmacol 2018; 149:110-123. [PMID: 29175421 PMCID: PMC5866188 DOI: 10.1016/j.bcp.2017.11.014] [Citation(s) in RCA: 390] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022]
Abstract
Hydrogen sulfide (H2S) is a ubiquitous small gaseous signaling molecule, playing an important role in many physiological processes and joining nitric oxide and carbon monoxide in the group of signaling agents termed gasotransmitters. Endogenous concentrations of H2S are generally low, making it difficult to discern precise biological functions. As such, probing the physiological roles of H2S is aided by exogenous delivery of the gas in cell and animal studies. This need for an exogenous source of H2S provides a unique challenge for chemists to develop chemical tools that facilitate the study of H2S under biological conditions. Compounds that degrade in response to a specific trigger to release H2S, termed H2S donors, include a wide variety of functional groups and delivery systems, some of which mimic the tightly controlled endogenous production in response to specific, biologically relevant conditions. This review examines a variety of H2S donor systems classified by their H2S-releasing trigger as well as their H2S release profiles, byproducts, and potential therapeutic applications.
Collapse
Affiliation(s)
- Chadwick R Powell
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kearsley M Dillon
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - John B Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
421
|
Szabo C. A timeline of hydrogen sulfide (H 2S) research: From environmental toxin to biological mediator. Biochem Pharmacol 2018; 149:5-19. [PMID: 28947277 PMCID: PMC5862769 DOI: 10.1016/j.bcp.2017.09.010] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
The history of H2S - as an environmental toxin - dates back to 1700, to the observations of the Italian physician Bernardino Ramazzini, whose book "De Morbis Artificum Diatriba" described the painful eye irritation and inflammation of "sewer gas" in sewer workers. The gas has subsequently been identified as hydrogen sulfide (H2S), and opened three centuries of research into the biological roles of H2S. The current article highlights the key discoveries in the field of H2S research, including (a) the toxicological studies, which characterized H2S as an environmental toxin, and identified some of its modes of action, including the inhibition of mitochondrial respiration; (b) work in the field of bacteriology, which, starting in the early 1900s, identified H2S as a bacterial product - with subsequently defined roles in the regulation of periodontal disease (oral bacterial flora), intestinal epithelial cell function (enteral bacterial flora) as well as in the regulation of bacterial resistance to antibiotics; and (c), work in diverse fields of mammalian biology, which, starting in the 1940s, identified H2S as an endogenous mammalian enzymatic product, the functions of which - among others, in the cardiovascular and nervous system - have become subjects of intensive investigation for the last decade. The current review not only enumerates the key discoveries related to H2S made over the last three centuries, but also compiles the most frequently cited papers in the field which have been published over the last decade and highlights some of the current 'hot topics' in the field of H2S biology.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
| |
Collapse
|
422
|
Gheibi S, Jeddi S, Kashfi K, Ghasemi A. Regulation of vascular tone homeostasis by NO and H 2S: Implications in hypertension. Biochem Pharmacol 2018; 149:42-59. [PMID: 29330066 PMCID: PMC5866223 DOI: 10.1016/j.bcp.2018.01.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/05/2018] [Indexed: 02/09/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two gasotransmitters that are produced in the vasculature and contribute to the regulation of vascular tone. NO and H2S are synthesized in both vascular smooth muscle and endothelial cells; NO functions primarily through the sGC/cGMP pathway, and H2S mainly through activation of the ATP-dependent potassium channels; both leading to relaxation of vascular smooth muscle cells. A deficit in the NO/H2S homeostasis is involved in the pathogenesis of various cardiovascular diseases, especially hypertension. It is now becoming increasingly clear that there are important interactions between NO and H2S and that have a profound impact on vascular tone and this may provide insights into the new therapeutic interventions. The aim of this review is to provide a better understanding of individual and interactive roles of NO and H2S in vascular biology. Overall, available data indicate that both NO and H2S contribute to vascular (patho)physiology and in regulating blood pressure. In addition, boosting NO and H2S using various dietary sources or donors could be a hopeful therapeutic strategy in the management of hypertension.
Collapse
Affiliation(s)
- Sevda Gheibi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
423
|
Tobler M, Kelley JL, Plath M, Riesch R. Extreme environments and the origins of biodiversity: Adaptation and speciation in sulphide spring fishes. Mol Ecol 2018; 27:843-859. [DOI: 10.1111/mec.14497] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Michael Tobler
- Division of Biology Kansas State University Manhattan KS USA
| | - Joanna L. Kelley
- School of Biological Sciences Washington State University Pullman WA USA
| | - Martin Plath
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi China
| | - Rüdiger Riesch
- School of Biological Sciences Centre for Ecology, Evolution and Behaviour Royal Holloway University of London Egham Surrey UK
| |
Collapse
|
424
|
Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chemical Biology of H 2S Signaling through Persulfidation. Chem Rev 2018; 118:1253-1337. [PMID: 29112440 PMCID: PMC6029264 DOI: 10.1021/acs.chemrev.7b00205] [Citation(s) in RCA: 680] [Impact Index Per Article: 97.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Signaling by H2S is proposed to occur via persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH). Persulfidation provides a framework for understanding the physiological and pharmacological effects of H2S. Due to the inherent instability of persulfides, their chemistry is understudied. In this review, we discuss the biologically relevant chemistry of H2S and the enzymatic routes for its production and oxidation. We cover the chemical biology of persulfides and the chemical probes for detecting them. We conclude by discussing the roles ascribed to protein persulfidation in cell signaling pathways.
Collapse
Affiliation(s)
- Milos R. Filipovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Jasmina Zivanovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la Republica, 11400 Montevideo, Uruguay
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600, United States
| |
Collapse
|
425
|
Mercaptopyruvate acts as endogenous vasodilator independently of 3-mercaptopyruvate sulfurtransferase activity. Nitric Oxide 2018; 75:53-59. [PMID: 29452248 DOI: 10.1016/j.niox.2018.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/30/2018] [Accepted: 02/12/2018] [Indexed: 12/16/2022]
Abstract
Hydrogen sulfide (H2S) is produced by the action of cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) or 3-mercaptopyruvate sulfurtransferase (3-MST). 3-MST converts 3-mercaptopyruvate (MPT) to H2S and pyruvate. H2S is recognized as an endogenous gaseous mediator with multiple regulatory roles in mammalian cells and organisms. In the present study we demonstrate that MPT, the endogenous substrate of 3-MST, acts also as endogenous H2S donor. Colorimetric, amperometric and fluorescence based assays demonstrated that MPT releases H2S in vitro in an enzyme-independent manner. A functional study was performed on aortic rings harvested from C57BL/6 (WT) or 3-MST-knockout (3-MST-/-) mice with and without endothelium. MPT relaxed mouse aortic rings in endothelium-independent manner and at the same extent in both WT and 3-MST-/- mice. N5-(1-Iminoethyl)-l-ornithine dihydrochloride (L-NIO, an inhibitor of endothelial nitric oxide synthase) as well as 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ, a soluble guanylyl cyclase inhibitor) did not affect MPT relaxant action. Conversely, hemoglobin (as H2S scavenger), as well as glybenclamide (an ATP-dependent potassium channel blocker) markedly reduced MPT-induced relaxation. The functional data clearly confirmed a non enzymatic vascular effect of MPT. In conclusion, MPT acts also as an endogenous H2S donor and not only as 3-MST substrate. MPT could, thus, be further investigated as a means to increase H2S in conditions where H2S bioavailability is reduced such as hypertension, coronary artery disease, diabetes or urogenital tract disease.
Collapse
|
426
|
Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. Chem Rev 2018; 118:1770-1839. [DOI: 10.1021/acs.chemrev.7b00425] [Citation(s) in RCA: 479] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qi Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Huanjie Wei
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi’an 710072, P. R. China
- Key
Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced
Materials (IAM), Jiangsu National Synergetic Innovation Center for
Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211800, P. R. China
| |
Collapse
|
427
|
Bird RP. The Emerging Role of Vitamin B6 in Inflammation and Carcinogenesis. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 83:151-194. [PMID: 29477221 DOI: 10.1016/bs.afnr.2017.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vitamin B6 serves as a coenzyme catalyzing more than 150 enzymes regulating metabolism and synthesis of proteins, carbohydrates, lipids, heme, and important bioactive metabolites. For several years vitamin B6 and its vitamers (B6) were recognized as antioxidant and antiinflammatory and in modulating immunity and gene expression. During the last 10 years, there were growing reports implicating B6 in inflammation and inflammation-related chronic illnesses including cancer. It is unclear if the deficiency of B6 or additional intake of B6, above the current requirement, should be the focus. Whether the current recommended daily intake for B6 is adequate should be revisited, since B6 is important to human health beyond its role as a coenzyme and its status is affected by many factors including but not limited to age, obesity, and inflammation associated with chronic illnesses. A link between inflammation B6 status and carcinogenesis is not yet completely understood. B6-mediated synthesis of H2S, a gasotransmitter, and taurine in health and disease, especially in maintaining mitochondrial integrity and biogenesis and inflammation, remains an important area to be explored. Recent developments in the molecular role of B6 and its direct interaction with inflammasomes, and nuclear receptor corepressor and coactivator, receptor-interacting protein 140, provide a strong impetus to further explore the multifaceted role of B6 in carcinogenesis and human health.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| |
Collapse
|
428
|
Ng LT, Gruber J, Moore PK. Is there a role of H 2S in mediating health span benefits of caloric restriction? Biochem Pharmacol 2018; 149:91-100. [PMID: 29360438 DOI: 10.1016/j.bcp.2018.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
Caloric restriction (CR) is a dietary regimen that aims to reduce the intake of total calories while maintaining adequate supply of key nutrients so as to avoid malnutrition. CR is one of only a small number of interventions that show promising outcomes on health span and lifespan across different species. There is growing interest in the development of compounds that might replicate CR-related benefits without actually restricting food intake. Hydrogen sulfide (H2S) is produced inside the bodies of many animals, including humans, by evolutionarily conserved H2S synthesizing enzymes. Endogenous H2S is increasingly recognized as an important gaseous signalling molecule involved in diverse cellular and molecular processes. However, the specific role of H2S in diverse biological processes remains to be elucidated and not all its biological effects are beneficial. Nonetheless, recent evidence suggests that the biological functions of H2S intersect with the network of evolutionarily conserved nutrient sensing and stress response pathways that govern organismal responses to CR. Induction of H2S synthesizing enzymes appears to be a conserved and essential feature of the CR response in evolutionarily distant organisms, including nematodes and mice. Here we review the evidence for a role of H2S in CR and lifespan modulation. H2S releasing drugs, capable of controlled delivery of exogenous H2S, are currently in clinical development. These findings suggest such H2S releasing drugs as a promising novel avenue for the development of CR mimetic compounds.
Collapse
Affiliation(s)
- Li Theng Ng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore; Yale-NUS College, Science Division, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Yale-NUS College, Science Division, Singapore.
| | - Philip Keith Moore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
429
|
Christoforidis T, Driver TG, Rehman J, Eddington DT. Generation of controllable gaseous H 2S concentrations using microfluidics. RSC Adv 2018; 8:4078-4083. [PMID: 30294423 DOI: 10.1039/c7ra12220a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hydrogen sulfide (H2S) plays an important role as an intercellular and intracellular signaling molecule, yet its targets are not well understood. As a molecule it easily evaporates and it is hard to acquire stable concentration for in vitro studies, constituting a major problem for the field to identify its downstream targets and function. Here we develop a microfluidic system that can provide consistent and controllable H2S levels in contrast to the current method of delivering large bolus doses to cells. The system relies on the permeability of H2S gas through a polydimethylsiloxane thin membrane. A hydrogen sulfide donor, sodium hydrosulfide, is perfused in the microchannels below the gas permeable membrane and gaseous H2S diffuses across the membrane, providing a stable concentration for up to 5 hours. Using electrochemical sensors within 3 ppm range, we found that H2S concentration was dependent on two parameters, the concentration of H2S donor, sodium hydrosulfide and the flow rate of the solution in the microchannels. Additionally, different H2S concentration profiles can be obtained by alternating the flow rate, providing an easy means to control the H2S concentration. Our approach constitutes a unique method for H2S delivery for in vitro and ex vivo studies and is ideally suited to identify novel biological processes and cellular mechanisms regulated by H2S.
Collapse
Affiliation(s)
- Theodore Christoforidis
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| | - Tom G Driver
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| | - Jalees Rehman
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, 60607, USA.,Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| | - David T Eddington
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, 60607, USA.,Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, 60607, USA.,Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, 60607, USA.,Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| |
Collapse
|
430
|
Chen Y, Shang X, Zhao X, Li J, Yuan J, Chen H, Zhang J, Wang T. Highly selective probes of copper(II) complexes for sulfide detection and cytotoxicity assay. J Sulphur Chem 2018. [DOI: 10.1080/17415993.2018.1425410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yanmei Chen
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Xuefang Shang
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Xing Zhao
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Jie Li
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Jianmei Yuan
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Hongli Chen
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Jinlian Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Tianyun Wang
- Department of Biochemistry, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| |
Collapse
|
431
|
Zhao Q, Kang J, Wen Y, Huo F, Zhang Y, Yin C. "Turn-on" fluorescent probe for detection of H 2S and its applications in bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 189:8-12. [PMID: 28783587 DOI: 10.1016/j.saa.2017.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/19/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
A novel fluorescent probe (named YQ-1) containing disulfide-bond coumarin derivative was developed for H2S. In response to H2S, YQ-1 showed remarkable fluorescent emission enhancement at 462nm. Besides, YQ-1 exhibited higher selectivity, faster response rate, low cytotoxicity and low detection limit (0.052μM). Further, YQ-1 was used to detect the presence of H2S level in living A549 cells, indicating YQ-1 has good membrane permeability and fluorescence properties.
Collapse
Affiliation(s)
- Qi Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Jin Kang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Ying Wen
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Yongbin Zhang
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
432
|
Yang L, Su Y, Sha Z, Geng Y, Qi F, Song X. A red-emitting fluorescent probe for hydrogen sulfide in living cells with a large Stokes shift. Org Biomol Chem 2018; 16:1150-1156. [DOI: 10.1039/c7ob02641b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An azido-based fluorescent probe was developed for the sensitive and selective detection of H2S with a red emission and a large Stokes shift. The probe was successfully applied to detect H2S both in aqueous solution and in living cells.
Collapse
Affiliation(s)
- Lei Yang
- College of Chemistry & Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Yuanan Su
- College of Chemistry & Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Zhankui Sha
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- P.R. China 430074
| | - Yani Geng
- College of Chemistry & Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Fengpei Qi
- College of Chemistry & Chemical Engineering
- Central South University
- Changsha
- P. R. China
- Department of Chemistry and Environmental Engineering
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering
- Central South University
- Changsha
- P. R. China
| |
Collapse
|
433
|
Zhang X, Sun R, Duan G, Zhou Z, Luo Y, Li W, Zhang L, Gu Y, Zha X. A highly sensitive near-infrared fluorescent probe for the detection of hydrogen sulfide and its application in living cells and mice. NEW J CHEM 2018. [DOI: 10.1039/c8nj04824j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen sulfide (H2S), an endogenous gaseous signalling molecule, has attracted attention in biochemical research.
Collapse
Affiliation(s)
- Xin Zhang
- School of Engineering, China Pharmaceutical University
- Nanjing 211198
- China
| | - Runing Sun
- Senior Vocational School, China Pharmaceutical University
- Nanjing 211198
- China
| | - Guofeng Duan
- Senior Vocational School, China Pharmaceutical University
- Nanjing 211198
- China
| | - Ziyan Zhou
- School of Engineering, China Pharmaceutical University
- Nanjing 211198
- China
| | - Yanjun Luo
- School of Pharmacy, China Pharmaceutical University
- Nanjing 211198
- China
| | - Wen Li
- School of Engineering, China Pharmaceutical University
- Nanjing 211198
- China
| | - Liying Zhang
- Institute of Traditional Chinese Medicine, Chengde Medical University
- Chengde 067000
- China
| | - Yueqing Gu
- School of Engineering, China Pharmaceutical University
- Nanjing 211198
- China
| | - Xiaoming Zha
- School of Engineering, China Pharmaceutical University
- Nanjing 211198
- China
| |
Collapse
|
434
|
Wang P, Ma J, Xia D. A H2S and I− dual-responsive supramolecular polymer constructed via pillar[5]arene-based host–guest interactions and metal coordination. Org Chem Front 2018. [DOI: 10.1039/c7qo01165b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A supramolecular polymer was designed and prepared by self-assembly of a pillar[5]arene dimer (AA-type), constructed from Ag-coordination, and a homoditopic (BB-type) guest (G). The supramolecular polymer displayed H2S and I− dual responsiveness due to the sensitivity of Ag+ to H2S and I−.
Collapse
Affiliation(s)
- Pi Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials
- Research Center of Advanced Materials Science and Technology
- Taiyuan University of Technology
- Taiyuan
- China
| | - Jiao Ma
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials
- Research Center of Advanced Materials Science and Technology
- Taiyuan University of Technology
- Taiyuan
- China
| | - Danyu Xia
- Scientific Instrument Center
- Shanxi University
- Taiyuan 030006
- P. R. China
| |
Collapse
|
435
|
Zhang W, Huo F, Yin C. Recent advances of dicyano-based materials in biology and medicine. J Mater Chem B 2018; 6:6919-6929. [DOI: 10.1039/c8tb02205d] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We highlight the development of dicyano-based fluorescent materials in biology and medicine.
Collapse
Affiliation(s)
- Weijie Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Key Laboratory of Materials for Energy
- Conversion and Storage of Shanxi Province
- Institute of Molecular Science
- Shanxi University
| | - Fangjun Huo
- Research Institute of Applied Chemistry
- Shanxi University
- Taiyuan 030006
- China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Key Laboratory of Materials for Energy
- Conversion and Storage of Shanxi Province
- Institute of Molecular Science
- Shanxi University
| |
Collapse
|
436
|
Ryu HG, Singha S, Jun YW, Reo YJ, Ahn KH. Two-photon fluorescent probe for hydrogen sulfide based on a red-emitting benzocoumarin dye. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.11.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
437
|
Liu J, Chen X, Zhang Y, Gao G, Zhang X, Hou S, Hou Y. A novel 3-hydroxychromone fluorescent probe for hydrogen sulfide based on an excited-state intramolecular proton transfer mechanism. NEW J CHEM 2018. [DOI: 10.1039/c8nj01626g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel fluorescent probe based on an excited-state intramolecular proton transfer mechanism can detect H2S with high sensitivity and high selectivity.
Collapse
Affiliation(s)
- Jingjing Liu
- College of Science
- China Agricultural University
- Beijing
- P. R. China
| | - Xiangzhu Chen
- College of Science
- China Agricultural University
- Beijing
- P. R. China
| | - Yuanyuan Zhang
- College of Science
- China Agricultural University
- Beijing
- P. R. China
| | - Gui Gao
- College of Science
- China Agricultural University
- Beijing
- P. R. China
| | - Xueyan Zhang
- College of Science
- China Agricultural University
- Beijing
- P. R. China
| | - Shicong Hou
- College of Science
- China Agricultural University
- Beijing
- P. R. China
| | - Yuxia Hou
- College of Science
- China Agricultural University
- Beijing
- P. R. China
| |
Collapse
|
438
|
Qian M, Zhang L, Pu Z, Xia J, Chen L, Xia Y, Cui H, Wang J, Peng X. A NIR fluorescent probe for the detection and visualization of hydrogen sulfide using the aldehyde group assisted thiolysis of dinitrophenyl ether strategy. J Mater Chem B 2018; 6:7916-7925. [DOI: 10.1039/c8tb02218f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A NIR fluorescent probe exploiting the aldehyde group assisted thiolysis of dinitrophenyl ether strategy for H2S imaging in cells, tissues and mice.
Collapse
Affiliation(s)
- Ming Qian
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
- School of Life Science and Biotechnology
| | - Liuwei Zhang
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian
- P. R. China
| | - Zhongji Pu
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian
- P. R. China
| | - Jing Xia
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian
- P. R. China
| | - Lili Chen
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian
- P. R. China
| | - Ying Xia
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian
- P. R. China
| | - Hongyan Cui
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian
- P. R. China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
- School of Life Science and Biotechnology
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| |
Collapse
|
439
|
Zhao Q, Huo F, Kang J, Zhang Y, Yin C. A novel FRET-based fluorescent probe for the selective detection of hydrogen sulfide (H2S) and its application for bioimaging. J Mater Chem B 2018; 6:4903-4908. [DOI: 10.1039/c8tb01070f] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, our group developed a fast response fluorescent probe (Flu-N3) for H2S on the basis of the 7-amino-4-methylcoumarin and fluorescein FRET system with high sensitivity and selectivity and a low detection limit of 0.031 μM. Moreover, the probe was successfully applied to image exogenous and endogenous H2S in living cells and nude mice.
Collapse
Affiliation(s)
- Qi Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
- Institute of Molecular Science, Shanxi University
- Taiyuan 030006
- China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University
- Taiyuan 030006
- China
| | - Jin Kang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
- Institute of Molecular Science, Shanxi University
- Taiyuan 030006
- China
| | - Yongbin Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
- Institute of Molecular Science, Shanxi University
- Taiyuan 030006
- China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
- Institute of Molecular Science, Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
440
|
Zhu CQ, Zhang JH, Sun LM, Zhu LF, Abliz B, Hu WJ, Zhong C, Bai ZG, Sajid H, Cao XC, Jin QY. Hydrogen Sulfide Alleviates Aluminum Toxicity via Decreasing Apoplast and Symplast Al Contents in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:294. [PMID: 29559992 PMCID: PMC5845667 DOI: 10.3389/fpls.2018.00294] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/20/2018] [Indexed: 05/03/2023]
Abstract
Hydrogen sulfide (H2S) plays a vital role in Al3+ stress resistance in plants, but the underlying mechanism is unclear. In the present study, pretreatment with 2 μM of the H2S donor NaHS significantly alleviated the inhibition of root elongation caused by Al toxicity in rice roots, which was accompanied by a decrease in Al contents in root tips under 50 μM Al3+ treatment. NaHS pretreatment decreased the negative charge in cell walls by reducing the activity of pectin methylesterase and decreasing the pectin and hemicellulose contents in rice roots. This treatment also masked Al-binding sites in the cell wall by upregulating the expression of OsSATR1 and OsSTAR2 in roots and reduced Al binding in the cell wall by stimulating the expression of the citrate acid exudation gene OsFRDL4 and increasing the secretion of citrate acid. In addition, NaHS pretreatment decreased the symplasmic Al content by downregulating the expression of OsNRAT1, and increasing the translocation of cytoplasmic Al to the vacuole via upregulating the expression of OsALS1. The increment of antioxidant enzyme [superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POD)] activity with NaHS pretreatment significantly decreased the MDA and H2O2 content in rice roots, thereby reducing the damage of Al3+ toxicity on membrane integrity in rice. H2S exhibits crosstalk with nitric oxide (NO) in response to Al toxicity, and through reducing NO content in root tips to alleviate Al toxicity. Together, this study establishes that H2S alleviates Al toxicity by decreasing the Al content in the apoplast and symplast of rice roots.
Collapse
Affiliation(s)
- Chun Q. Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jun H. Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Li M. Sun
- State Key Laboratory of Soil and Sustainable Agriculture, China Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Lian F. Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Buhailiqem Abliz
- Nuclear Technology Biotechnology Research Institute, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Wen J. Hu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chu Zhong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhi G. Bai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Hussain Sajid
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiao C. Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- *Correspondence: Xiao C. Cao, Qian Y. Jin, ;,
| | - Qian Y. Jin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- *Correspondence: Xiao C. Cao, Qian Y. Jin, ;,
| |
Collapse
|
441
|
Yang L, Zhao J, Yu X, Zhang R, Han G, Liu R, Liu Z, Zhao T, Han MY, Zhang Z. Dynamic mapping of spontaneously produced H2S in the entire cell space and in live animals using a rationally designed molecular switch. Analyst 2018; 143:1881-1889. [DOI: 10.1039/c7an01802a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rationally designed molecular switch created to detect and dynamically map spontaneous production of H2S in whole cells and the organs of live zebrafish.
Collapse
|
442
|
Wei S, Zhou XR, Huang Z, Yao Q, Gao Y. Hydrogen sulfide induced supramolecular self-assembly in living cells. Chem Commun (Camb) 2018; 54:9051-9054. [DOI: 10.1039/c8cc05174g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A gasotransmitter mediated reduction instructs supramolecular self-assembly in multiple living cell lines, revealing the variation in intracellular H2S production.
Collapse
Affiliation(s)
- Simin Wei
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Xi-Rui Zhou
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Zhentao Huang
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Qingxin Yao
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Yuan Gao
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| |
Collapse
|
443
|
Kumar P, Kumar V, Pandey S, Gupta R. Detection of sulfide ion and gaseous H2S using a series of pyridine-2,6-dicarboxamide based scaffolds. Dalton Trans 2018; 47:9536-9545. [DOI: 10.1039/c8dt01351a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This work presents a series of pyridine-2,6-dicarboxamide based scaffolds with different appendages and their roles as chemosensors for the selective detection of S2− ion, as well as gaseous H2S, in primarily aqueous media.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | - Vijay Kumar
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | - Saurabh Pandey
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | - Rajeev Gupta
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| |
Collapse
|
444
|
Jung Y, Jung J, Huh Y, Kim D. Benzo[ g]coumarin-Based Fluorescent Probes for Bioimaging Applications. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:5249765. [PMID: 30013807 PMCID: PMC6022312 DOI: 10.1155/2018/5249765] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/22/2018] [Indexed: 05/12/2023]
Abstract
Benzo[g]coumarins, which consist of coumarins fused with other aromatic units in the linear shape, have recently emerged as an interesting fluorophore in the bioimaging research. The pi-extended skeleton with the presence of electron-donating and electron-withdrawing substituents from the parent coumarins changes the basic photophysical parameters such as absorption and fluorescence emission significantly. Most of the benzo[g]coumarin analogues show red/far-red fluorescence emission with high two-photon absorbing property that can be applicable for the two-photon microscopy (TPM) imaging. In this review, we summarized the recently developed benzo[g]coumarin analogues including photophysical properties, synthesis, and applications for molecular probes that can sense biologically important species such as metal ions, cell organs, reactive species, and disease biomarkers.
Collapse
Affiliation(s)
- Yuna Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Junyang Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Youngbuhm Huh
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Center for Converging Humanities, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| |
Collapse
|
445
|
Biological Stimuli-responsive Polymer Systems: Design, Construction and Controlled Self-assembly. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2080-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
446
|
Börnigen D, Ren B, Pickard R, Li J, Ozer E, Hartmann EM, Xiao W, Tickle T, Rider J, Gevers D, Franzosa EA, Davey ME, Gillison ML, Huttenhower C. Alterations in oral bacterial communities are associated with risk factors for oral and oropharyngeal cancer. Sci Rep 2017; 7:17686. [PMID: 29247187 PMCID: PMC5732161 DOI: 10.1038/s41598-017-17795-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/30/2017] [Indexed: 12/16/2022] Open
Abstract
Oral squamous cell carcinomas are a major cause of morbidity and mortality, and tobacco usage, alcohol consumption, and poor oral hygiene are established risk factors. To date, no large-scale case-control studies have considered the effects of these risk factors on the composition of the oral microbiome, nor microbial community associations with oral cancer. We compared the composition, diversity, and function of the oral microbiomes of 121 oral cancer patients to 242 age- and gender-matched controls using a metagenomic multivariate analysis pipeline. Significant shifts in composition and function of the oral microbiome were observed with poor oral hygiene, tobacco smoking, and oral cancer. Specifically, we observed dramatically altered community composition and function after tooth loss, with smaller alterations in current tobacco smokers, increased production of antioxidants in individuals with periodontitis, and significantly decreased glutamate metabolism metal transport in oral cancer patients. Although the alterations in the oral microbiome of oral cancer patients were significant, they were of substantially lower effect size relative to microbiome shifts after tooth loss. Alterations following tooth loss, itself a major risk factor for oral cancer, are likely a result of severe ecological disruption due to habitat loss but may also contribute to the development of the disease.
Collapse
Affiliation(s)
- Daniela Börnigen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA.,University Heart Center Hamburg-Eppendorf, Clinic for General and Interventional Cardiology, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Hamburg/Lübeck/Kiel Partner Site, Hamburg, Germany
| | - Boyu Ren
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA
| | - Robert Pickard
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43202, USA
| | - Jingfeng Li
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43202, USA
| | - Enver Ozer
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43202, USA
| | - Erica M Hartmann
- Biology and the Built Environment Center and Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA.,Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Weihong Xiao
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43202, USA
| | - Timothy Tickle
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA
| | - Jennifer Rider
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Dirk Gevers
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA
| | - Eric A Franzosa
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA
| | - Mary Ellen Davey
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32610, USA
| | - Maura L Gillison
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43202, USA.
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA.
| |
Collapse
|
447
|
Pardeshi KA, Ravikumar G, Chakrapani H. Esterase Sensitive Self-Immolative Sulfur Dioxide Donors. Org Lett 2017; 20:4-7. [PMID: 29235873 DOI: 10.1021/acs.orglett.7b02544] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of cell-permeable esterase-sensitive sulfonates that undergo self-immolation to produce sulfur dioxide (SO2), a gaseous pollutant with new and emerging biological roles, is reported. These compounds should facilitate the study SO2 biology and will lay the platform for newer stimuli-responsive donors of this gas.
Collapse
Affiliation(s)
- Kundansingh A Pardeshi
- Department of Chemistry, Indian Institute of Science Education and Research Pune , Dr. Homi Bhabha Road, Pune 411 008, Maharashtra, India
| | - Govindan Ravikumar
- Department of Chemistry, Indian Institute of Science Education and Research Pune , Dr. Homi Bhabha Road, Pune 411 008, Maharashtra, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune , Dr. Homi Bhabha Road, Pune 411 008, Maharashtra, India
| |
Collapse
|
448
|
Ohia SE, Robinson J, Mitchell L, Ngele KK, Heruye S, Opere CA, Njie-Mbye YF. Regulation of Aqueous Humor Dynamics by Hydrogen Sulfide: Potential Role in Glaucoma Pharmacotherapy. J Ocul Pharmacol Ther 2017; 34:61-69. [PMID: 29215951 DOI: 10.1089/jop.2017.0077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gaseous transmitter with well-known biological actions in a wide variety of tissues and organs. The potential involvement of this gas in physiological and pathological processes in the eye has led to several in vitro, ex vivo, and in vivo studies to understand its pharmacological role in some mammalian species. Evidence from literature demonstrates that 4 enzymes responsible for the biosynthesis of this gas (cystathionine β-synthase, CBS; cystathionine γ-lyase, CSE; 3-mercaptopyruvate sulfurtransferase, 3MST; and d-amino acid oxidase) are present in the cornea, iris, ciliary body, lens, and retina. Studies of the pharmacological actions of H2S (using several compounds as fast- and slow-releasing gas donors) on anterior uveal tissues reveal an effect on sympathetic neurotransmission and the ability of the gas to relax precontracted iris and ocular vascular smooth muscles, responses that were blocked by inhibitors of CSE, CBS, and KATP channels. In the retina, there is evidence that H2S can inhibit excitatory amino acid neurotransmission and can also protect this tissue from a wide variety of insults. Furthermore, exogenous application of H2S-releasing compounds was reported to increase aqueous humor outflow facility in an ex vivo model of the porcine ocular anterior segment and lowered intraocular pressure (IOP) in both normotensive and glaucomatous rabbits. Taken together, the finding that H2S-releasing compounds can lower IOP and can serve a neuroprotective role in the retina suggests that H2S prodrugs could be used as tools or therapeutic agents in diseases such as glaucoma.
Collapse
Affiliation(s)
- Sunny E Ohia
- 1 Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Jenaye Robinson
- 1 Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Leah Mitchell
- 1 Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Kalu K Ngele
- 2 Department of Biology/Microbiology/Biotechnology, Federal University Ndufu Alike Ikwo , Abakaliki, Nigeria
| | - Segewkal Heruye
- 3 Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University , Omaha, Nebraska
| | - Catherine A Opere
- 3 Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University , Omaha, Nebraska
| | - Ya Fatou Njie-Mbye
- 1 Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| |
Collapse
|
449
|
Searcy DG. Elemental sulfur reduction to H 2S by Tetrahymena thermophila. Eur J Protistol 2017; 62:56-68. [PMID: 29248819 DOI: 10.1016/j.ejop.2017.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 11/19/2022]
Abstract
Eukaryotic nucleocytoplasm is believed to be descended from ancient Archaea that respired on elemental sulfur. If so, a vestige of sulfur reduction might persist in modern eukaryotic cells. That was tested in Tetrahymena thermophila, chosen as a model organism. When oxygenated, the cells consumed H2S rapidly, but when made anoxic they produced H2S mostly by amino acid catabolism. That could be inhibited by adding aminooxyacetic acid, and then H2S production from elemental sulfur became more evident. Anoxic cell lysates produced H2S when provided with sulfur and NADH, but not with either substrate alone. When lysates were fractionated by centrifugation, NADH-dependent H2S production was 83% in the soluble fraction. When intact cells that had just previously oxidized H2S were shifted to anoxia, the cells produced H2S evidently by re-using the oxidized sulfur. After aerobic H2S oxidation was stopped, the oxidation product remained available for H2S production for about 10 min. The observed H2S production is consistent with an evolutionary relationship of nucleocytoplasm to sulfur-reducing Archaea. Mitochondria often are the cellular site of H2S oxidation, suggesting that eukaryotic cells might have evolved from an ancient symbiosis that was based upon sulfur exchange.
Collapse
Affiliation(s)
- Dennis G Searcy
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
450
|
Au-Yeung HY, Chan CY, Tong KY, Yu ZH. Copper-based reactions in analyte-responsive fluorescent probes for biological applications. J Inorg Biochem 2017; 177:300-312. [DOI: 10.1016/j.jinorgbio.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 02/04/2023]
|