401
|
Fukuzumi S, Yamada Y. Shape- and size-controlled nanomaterials for artificial photosynthesis. CHEMSUSCHEM 2013; 6:1834-1847. [PMID: 23940015 DOI: 10.1002/cssc.201300361] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/08/2013] [Indexed: 06/02/2023]
Abstract
Nanomaterials with various shapes and sizes have been developed to mimic functions of photosynthesis in which solar energy conversion is achieved by using nanosized proteins with controlled shapes and sizes. Artificial photosynthesis consists of light-harvesting and charge-separation processes together with catalytic units of water oxidation and reduction. Nanosized mesoporous silica-alumina was utilized to encapsulate organic charge-separation molecules inside the nanospace to elongate the lifetimes of the charge-separated states, as observed in the photosynthetic reaction centers. Metal nanoparticles with controlled shapes and sizes have also been utilized as efficient catalysts for photocatalytic hydrogen evolution from water with reductants by using electron donor-acceptor organic molecules as photocatalysts. The control of the shape and size of metal nanoparticles plays a very important role in achieving high catalytic performance in catalytic hydrogen evolution in water reduction and also in catalytic oxygen evolution in water oxidation.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Material and Life Science, Division of Advanced Science and Biotechnology Graduate School of Engineering, ALCA (Japan) Science and Technology Agency (JST), Osaka University, 2-1 Yamada-oka, Suita, Osaka 563-0028 (Japan); Department of Bioinspired Science, Ewha Womans University, Seoul 120-750 (Korea).
| | | |
Collapse
|
402
|
Tikhonov AN. pH-dependent regulation of electron transport and ATP synthesis in chloroplasts. PHOTOSYNTHESIS RESEARCH 2013; 116:511-34. [PMID: 23695653 DOI: 10.1007/s11120-013-9845-y] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 04/25/2013] [Indexed: 05/02/2023]
Abstract
This review is focused on pH-dependent mechanisms of regulation of photosynthetic electron transport and ATP synthesis in chloroplasts. The light-induced acidification of the thylakoid lumen is known to decelerate the plastoquinol oxidation by the cytochrome b 6 f complex, thus impeding the electron flow between photosystem II and photosystem I. Acidification of the lumen also triggers the dissipation of excess energy in the light-harvesting antenna of photosystem II, thereby protecting the photosynthetic apparatus against a solar stress. After brief description of structural and functional organization of the chloroplast electron transport chain, our attention is focused on the nature of the rate-limiting step of electron transfer between photosystem II and photosystem I. In the context of pH-dependent mechanism of photosynthetic control in chloroplasts, the mechanisms of plastoquinol oxidation by the cytochrome b 6 f complex have been considered. The light-induced alkalization of stroma is another factor of pH-dependent regulation of electron transport in chloroplasts. Alkalization of stroma induces activation of the Bassham-Benson-Calvin cycle reactions, thereby promoting efflux of electrons from photosystem I to NADP(+). The mechanisms of the light-induced activation of ATP synthase are briefly considered.
Collapse
Affiliation(s)
- Alexander N Tikhonov
- Department of Biophysics, Faculty of Physics, M. V. Lomonosov, Moscow State University, Moscow, Russia,
| |
Collapse
|
403
|
Nelson N. Evolution of photosystem I and the control of global enthalpy in an oxidizing world. PHOTOSYNTHESIS RESEARCH 2013; 116:145-151. [PMID: 23954951 DOI: 10.1007/s11120-013-9902-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 07/26/2013] [Indexed: 05/28/2023]
Abstract
Life on earth is governed by light, chemical reactions, and the second law of thermodynamics, which defines the tendency for increasing entropy as an expression of disorder or randomness. Life is an expression of increasing order, and a constant influx of energy and loss of entropic wastes are required to maintain or increase order in living organisms. Most of the energy for life comes from sunlight and, thus, photosynthesis underlies the survival of all life forms. Oxygenic photosynthesis determines not only the global amount of enthalpy in living systems, but also the composition of the Earth's atmosphere and surface. Photosynthesis was established on the Earth more than 3.5 billion years ago. The primordial reaction center has been suggested to comprise a homodimeric unit resembling the core complex of the current reaction centers in Chlorobi, Heliobacteria, and Acidobacteria. Here, an evolutionary scenario based on the known structures of the current reaction centers is proposed.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel,
| |
Collapse
|
404
|
Wang X, Huang G, Yu D, Ge B, Wang J, Xu F, Huang F, Xu H, Lu JR. Solubilization and stabilization of isolated photosystem I complex with lipopeptide detergents. PLoS One 2013; 8:e76256. [PMID: 24098786 PMCID: PMC3787008 DOI: 10.1371/journal.pone.0076256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/22/2013] [Indexed: 11/20/2022] Open
Abstract
It is difficult to maintain a target membrane protein in a soluble and functional form in aqueous solution without biological membranes. Use of surfactants can improve solubility, but it remains challenging to identify adequate surfactants that can improve solubility without damaging their native structures and biological functions. Here we report the use of a new class of lipopeptides to solubilize photosystem I (PS-I), a well known membrane protein complex. Changes in the molecular structure of these surfactants affected their amphiphilicity and the goal of this work was to exploit a delicate balance between detergency and biomimetic performance in PS-I solubilization via their binding capacity. Meanwhile, the effects of these surfactants on the thermal and structural stability and functionality of PS-I in aqueous solution were investigated by circular dichroism, fluorescence spectroscopy, SDS-PAGE analysis and O2 uptake measurements, respectively. Our studies showed that the solubility of PS-I depended on both the polarity and charge in the hydrophilic head of the lipopeptides and the length of its hydrophobic tail. The best performing lipopeptides in favour of PS-I solubility turned out to be C14DK and C16DK, which were comparable to the optimal amphiphilicity of the conventional chemical surfactants tested. Lipopeptides showed obvious advantages in enhancing PS-I thermostability over sugar surfactant DDM and some full peptide amphiphiles reported previously. Fluorescence spectroscopy along with SDS-PAGE analysis demonstrated that lipopeptides did not undermine the polypeptide composition and conformation of PS-I after solubilization; instead they showed better performance in improving the structural stability and integrity of this multi-subunit membrane protein than conventional detergents. Furthermore, O2 uptake measurements indicated that PS-I solubilized with lipopeptides maintained its functionality. The underlying mechanism for the favorable actions of lipopeptide in PS-I solubilization and stabilization is discussed.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
| | - Guihong Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
| | - Fengxi Xu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
- * E-mail: (FH); (HX)
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
- * E-mail: (FH); (HX)
| | - Jian R. Lu
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
405
|
C-terminal processing of reaction center protein D1 is essential for the function and assembly of photosystem II in Arabidopsis. Proc Natl Acad Sci U S A 2013; 110:16247-52. [PMID: 24043802 DOI: 10.1073/pnas.1313894110] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosystem II (PSII) reaction center protein D1 is synthesized as a precursor (pD1) with a short C-terminal extension. The pD1 is processed to mature D1 by carboxyl-terminal peptidase A to remove the C-terminal extension and form active protein. Here we report functional characterization of the Arabidopsis gene encoding D1 C-terminal processing enzyme (AtCtpA) in the chloroplast thylakoid lumen. Recombinant AtCtpA converted pD1 to mature D1 and a mutant lacking AtCtpA retained all D1 in precursor form, confirming that AtCtpA is solely responsible for processing. As with cyanobacterial ctpa, a knockout Arabidopsis atctpa mutant was lethal under normal growth conditions but was viable with sucrose under low-light conditions. Viable plants, however, showed deficiencies in PSII and thylakoid stacking. Surprisingly, unlike its cyanobacterial counterpart, the Arabidopsis mutant retained both monomer and dimer forms of the PSII complexes that, although nonfunctional, contained both the core and extrinsic subunits. This mutant was also essentially devoid of PSII supercomplexes, providing an unexpected link between D1 maturation and supercomplex assembly. A knock-down mutant expressing about 2% wild-type level of AtCtpA showed normal growth under low light but was stunted and accumulated pD1 under high light, indicative of delayed C-terminal processing. Although demonstrating the functional significance of C-terminal D1 processing in PSII biogenesis, our study reveals an unsuspected link between D1 maturation and PSII supercomplex assembly in land plants, opening an avenue for exploring the mechanism for the association of light-harvesting complexes with the PSII core complexes.
Collapse
|
406
|
Lin HD, Liu BH, Kuo TT, Tsai HC, Feng TY, Huang CC, Chien LF. Knockdown of PsbO leads to induction of HydA and production of photobiological H2 in the green alga Chlorella sp. DT. BIORESOURCE TECHNOLOGY 2013; 143:154-62. [PMID: 23792754 DOI: 10.1016/j.biortech.2013.05.101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/26/2013] [Accepted: 05/27/2013] [Indexed: 05/09/2023]
Abstract
Green algae are able to convert solar energy to H2 via the photosynthetic electron transport pathway under certain conditions. Algal hydrogenase (HydA, encoded by HYDA) is in charge of catalyzing the reaction: 2H(+)+2e(-)↔H2 but usually inhibited by O2, a byproduct of photosynthesis. The aim of this study was to knockdown PsbO (encoded by psbO), a subunit concerned with O2 evolution, so that it would lead to HydA induction. The alga, Chlorella sp. DT, was then transformed with short interference RNA antisense-psbO (siRNA-psbO) fragments. The algal mutants were selected by checking for the existence of siRNA-psbO fragments in their genomes and the low amount of PsbO proteins. The HYDA transcription and the HydA expression were observed in the PsbO-knockdown mutants. Under semi-aerobic condition, PsbO-knockdown mutants could photobiologically produce H2 which increased by as much as 10-fold in comparison to the wild type.
Collapse
Affiliation(s)
- Hsin-Di Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | | | | | | | |
Collapse
|
407
|
Janouskovec J, Sobotka R, Lai DH, Flegontov P, Koník P, Komenda J, Ali S, Prásil O, Pain A, Oborník M, Lukes J, Keeling PJ. Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of Chromera velia. Mol Biol Evol 2013; 30:2447-62. [PMID: 23974208 DOI: 10.1093/molbev/mst144] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The canonical photosynthetic plastid genomes consist of a single circular-mapping chromosome that encodes a highly conserved protein core, involved in photosynthesis and ATP generation. Here, we demonstrate that the plastid genome of the photosynthetic relative of apicomplexans, Chromera velia, departs from this view in several unique ways. Core photosynthesis proteins PsaA and AtpB have been broken into two fragments, which we show are independently transcribed, oligoU-tailed, translated, and assembled into functional photosystem I and ATP synthase complexes. Genome-wide transcription profiles support expression of many other highly modified proteins, including several that contain extensions amounting to hundreds of amino acids in length. Canonical gene clusters and operons have been fragmented and reshuffled into novel putative transcriptional units. Massive genomic coverage by paired-end reads, coupled with pulsed-field gel electrophoresis and polymerase chain reaction, consistently indicate that the C. velia plastid genome is linear-mapping, a unique state among all plastids. Abundant intragenomic duplication probably mediated by recombination can explain protein splits, extensions, and genome linearization and is perhaps the key driving force behind the many features that defy the conventional ways of plastid genome architecture and function.
Collapse
Affiliation(s)
- Jan Janouskovec
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
408
|
Offenbacher AR, Polander BC, Barry BA. An intrinsically disordered photosystem II subunit, PsbO, provides a structural template and a sensor of the hydrogen-bonding network in photosynthetic water oxidation. J Biol Chem 2013; 288:29056-68. [PMID: 23940038 DOI: 10.1074/jbc.m113.487561] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem II (PSII) is a membrane-bound enzyme that utilizes solar energy to catalyze the photooxidation of water. Molecular oxygen is evolved after four sequential light-driven oxidation reactions at the Mn4CaO5 oxygen-evolving complex, producing five sequentially oxidized states, Sn. PSII is composed of 17 membrane-spanning subunits and three extrinsic subunits, PsbP, PsbQ, and PsbO. PsbO is intrinsically disordered and plays a role in facilitation of the water oxidizing cycle. Native PsbO can be removed and substituted with recombinant PsbO, thereby restoring steady-state activity. In this report, we used reaction-induced Fourier transform infrared spectroscopy to obtain information concerning the role of PsbP, PsbQ, and PsbO during the S state cycle. Light-minus-dark difference spectra were acquired, monitoring structural changes associated with each accessible flash-induced S state transition in a highly purified plant PSII preparation (Triton X-100, octylthioglucoside). A comparison of S2 minus S1 spectra revealed that removal of PsbP and PsbQ had no significant effect on the data, whereas amide frequency and intensity changes were associated with PsbO removal. These data suggest that PsbO acts as an organizational template for the PSII reaction center. To identify any coupled conformational changes arising directly from PsbO, global (13)C-PsbO isotope editing was employed. The reaction-induced Fourier transform infrared spectra of accessible S states provide evidence that PsbO spectral contributions are temperature (263 and 277 K) and S state dependent. These experiments show that PsbO undergoes catalytically relevant structural dynamics, which are coupled over long distance to hydrogen-bonding changes at the Mn4CaO5 cluster.
Collapse
Affiliation(s)
- Adam R Offenbacher
- From the School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | | | | |
Collapse
|
409
|
Chlorophyll fluorescence in the leaves of Tradescantia species of different ecological groups: induction events at different intensities of actinic light. Biosystems 2013; 114:85-97. [PMID: 23948518 DOI: 10.1016/j.biosystems.2013.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 07/18/2013] [Accepted: 08/02/2013] [Indexed: 11/23/2022]
Abstract
Chlorophyll fluorescence analysis is one of the most convenient and widespread techniques used to monitor photosynthesis performance in plants. In this work, after a brief overview of the mechanisms of regulation of photosynthetic electron transport and protection of photosynthetic apparatus against photodamage, we describe results of our study of the effects of actinic light intensity on photosynthetic performance in Tradescantia species of different ecological groups. Using the chlorophyll fluorescence as a probe of photosynthetic activity, we have found that the shade-tolerant species Tradescantia fluminensis shows a higher sensitivity to short-term illumination (≤20min) with low and moderate light (≤200μEm(-2)s(-1)) as compared with the light-resistant species Tradescantia sillamontana. In T. fluminensis, non-photochemical quenching of chlorophyll fluorescence (NPQ) and photosystem II operational efficiency (parameter ΦPSII) saturate as soon as actinic light reaches ≈200μEm(-2)s(-1). Otherwise, T. sillamontana revealed a higher capacity for NPQ at strong light (≥800μEm(-2)s(-1)). The post-illumination adaptation of shade-tolerant plants occurs slower than in the light-resistant species. The data obtained are discussed in terms of reactivity of photosynthetic apparatus to short-term variations of the environment light.
Collapse
|
410
|
Block A, Fristedt R, Rogers S, Kumar J, Barnes B, Barnes J, Elowsky CG, Wamboldt Y, Mackenzie SA, Redding K, Merchant SS, Basset GJ. Functional modeling identifies paralogous solanesyl-diphosphate synthases that assemble the side chain of plastoquinone-9 in plastids. J Biol Chem 2013; 288:27594-27606. [PMID: 23913686 DOI: 10.1074/jbc.m113.492769] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
It is a little known fact that plastoquinone-9, a vital redox cofactor of photosynthesis, doubles as a precursor for the biosynthesis of a vitamin E analog called plastochromanol-8, the physiological significance of which has remained elusive. Gene network reconstruction, GFP fusion experiments, and targeted metabolite profiling of insertion mutants indicated that Arabidopsis possesses two paralogous solanesyl-diphosphate synthases, AtSPS1 (At1g78510) and AtSPS2 (At1g17050), that assemble the side chain of plastoquinone-9 in plastids. Similar paralogous pairs were detected throughout terrestrial plant lineages but were not distinguished in the literature and genomic databases from mitochondrial homologs involved in the biosynthesis of ubiquinone. The leaves of the atsps2 knock-out were devoid of plastochromanol-8 and displayed severe losses of both non-photoactive and photoactive plastoquinone-9, resulting in near complete photoinhibition at high light intensity. Such a photoinhibition was paralleled by significant damage to photosystem II but not to photosystem I. In contrast, in the atsps1 knock-out, a small loss of plastoquinone-9, restricted to the non-photoactive pool, was sufficient to eliminate half of the plastochromanol-8 content of the leaves. Taken together, these results demonstrate that plastochromanol-8 originates from a subfraction of the non-photoactive pool of plastoquinone-9. In contrast to other plastochromanol-8 biosynthetic mutants, neither the single atsps knock-outs nor the atsps1 atsps2 double knock-out displayed any defects in tocopherols accumulation or germination.
Collapse
Affiliation(s)
- Anna Block
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Rikard Fristedt
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Sara Rogers
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Jyothi Kumar
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Brian Barnes
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Joshua Barnes
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Christian G Elowsky
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Yashitola Wamboldt
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Sally A Mackenzie
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Kevin Redding
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Gilles J Basset
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588.
| |
Collapse
|
411
|
van Stokkum IH, Desquilbet TE, van der Weij-de Wit CD, Snellenburg JJ, van Grondelle R, Thomas JC, Dekker JP, Robert B. Energy Transfer and Trapping in Red-Chlorophyll-Free Photosystem I from Synechococcus WH 7803. J Phys Chem B 2013; 117:11176-83. [DOI: 10.1021/jp401364a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ivo H.M. van Stokkum
- Institute for Lasers, Life and Biophotonics,
Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam
| | - Thibaut E. Desquilbet
- CEA, Institut de Biologie et de Technologies de Saclay, and CNRS, 91191
Gif/Yvette Cedex France
| | - Chantal D. van der Weij-de Wit
- Institute for Lasers, Life and Biophotonics,
Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam
| | - Joris J. Snellenburg
- Institute for Lasers, Life and Biophotonics,
Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam
| | - Rienk van Grondelle
- Institute for Lasers, Life and Biophotonics,
Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam
| | - Jean-Claude Thomas
- Biologie
Moléculaire des Organismes Photosynthétiques, Unité
Mixte de Recherche 8186, Ecole Normale Supérieure, 46 rue d’Ulm, 75230 Paris Cedex 05, France
| | - Jan P. Dekker
- Institute for Lasers, Life and Biophotonics,
Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam
| | - Bruno Robert
- Institute for Lasers, Life and Biophotonics,
Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam
- CEA, Institut de Biologie et de Technologies de Saclay, and CNRS, 91191
Gif/Yvette Cedex France
| |
Collapse
|
412
|
Wang Y, Zhang C, Wang L, Zhao J. Assignment of the μ4-O5 atom in catalytic center for water oxidation in photosystem II. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5973-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
413
|
Frankel LK, Sallans L, Bellamy H, Goettert JS, Limbach PA, Bricker TM. Radiolytic mapping of solvent-contact surfaces in Photosystem II of higher plants: experimental identification of putative water channels within the photosystem. J Biol Chem 2013; 288:23565-72. [PMID: 23814046 DOI: 10.1074/jbc.m113.487033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem II uses water as an enzymatic substrate. It has been hypothesized that this water is vectored to the active site for water oxidation via water channels that lead from the surface of the protein complex to the Mn4O5Ca metal cluster. The radiolysis of water by synchrotron radiation produces amino acid residue-modifying OH(•) and is a powerful technique to identify regions of proteins that are in contact with water. In this study, we have used this technique to oxidatively modify buried amino acid residues in higher plant Photosystem II membranes. Fourier transform ion cyclotron resonance mass spectrometry was then used to identify these oxidized amino acid residues that were located in several core Photosystem II subunits (D1, D2, CP43, and CP47). While, as expected, the majority of the identified oxidized residues (≈75%) are located on the solvent-exposed surface of the complex, a number of buried residues on these proteins were also modified. These residues form groups which appear to lead from the surface of the complex to the Mn4O5Ca cluster. These residues may be in contact with putative water channels in the photosystem. These results are discussed within the context of a number of largely computational studies that have identified putative water channels in Photosystem II.
Collapse
Affiliation(s)
- Laurie K Frankel
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | | | |
Collapse
|
414
|
Detection of an intermediary, protonated water cluster in photosynthetic oxygen evolution. Proc Natl Acad Sci U S A 2013; 110:10634-9. [PMID: 23757501 DOI: 10.1073/pnas.1306532110] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In photosynthesis, photosystem II evolves oxygen from water by the accumulation of photooxidizing equivalents at the oxygen-evolving complex (OEC). The OEC is a Mn4CaO5 cluster, and its sequentially oxidized states are termed the Sn states. The dark-stable state is S1, and oxygen is released during the transition from S3 to S0. In this study, a laser flash induces the S1 to S2 transition, which corresponds to the oxidation of Mn(III) to Mn(IV). A broad infrared band, at 2,880 cm(-1), is produced during this transition. Experiments using ammonia and (2)H2O assign this band to a cationic cluster of internal water molecules, termed "W5(+)." Observation of the W5(+) band is dependent on the presence of calcium, and flash dependence is observed. These data provide evidence that manganese oxidation during the S1 to S2 transition results in a coupled proton transfer to a substrate-containing, internal water cluster in the OEC hydrogen-bonded network.
Collapse
|
415
|
Sjöholm J, Chen G, Ho F, Mamedov F, Styring S. Split electron paramagnetic resonance signal induction in Photosystem II suggests two binding sites in the S2 state for the substrate analogue methanol. Biochemistry 2013; 52:3669-77. [PMID: 23621812 DOI: 10.1021/bi400144e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Illuminating a photosystem II sample at low temperatures (here 5-10 K) yields so-called split signals detectable with continuous wave-electron paramagnetic resonance (CW-EPR). These signals reflect the oxidized, deprotonated radical of D1-Tyr161 (YZ(•)) in a magnetic interaction with the CaMn4 cluster in a particular S state. The intensity of the split EPR signals are affected by the addition of the water substrate analogue methanol. This was previously shown by the induction of split EPR signals from the S1, S3, and S0 states [Su, J.-H. et al. (2006) Biochemistry 45, 7617-7627.]. Here, we use two split EPR signals induced from photosystem II trapped in the S2 state to further probe the binding of methanol in an S state dependent manner. The signals are induced with either visible or near-infrared light illumination provided at 5-10 K where methanol cannot bind or unbind from its site. The results imply that the binding of methanol not only changes the magnetic properties of the CaMn4 cluster but also the hydrogen bond network in the oxygen evolving complex (OEC), thereby affecting the relative charge of the S2 state. The induction mechanisms for the two split EPR signals are different resulting in two different redox states, S2YZ(•) and S1YZ(•) respectively. The two states show different methanol dependence for their induction. This indicates the existence of two binding sites for methanol in the CaMn4 cluster. It is proposed that methanol binds to MnA with high affinity and to MnD with lower affinity. The molecular nature and S-state dependence of the methanol binding to each respective site are discussed.
Collapse
Affiliation(s)
- Johannes Sjöholm
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University , P. O. Box 523, SE-751 20 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
416
|
Chi W, Ma J, Zhang L. Regulatory factors for the assembly of thylakoid membrane protein complexes. Philos Trans R Soc Lond B Biol Sci 2013; 367:3420-9. [PMID: 23148269 DOI: 10.1098/rstb.2012.0065] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Major multi-protein photosynthetic complexes, located in thylakoid membranes, are responsible for the capture of light and its conversion into chemical energy in oxygenic photosynthetic organisms. Although the structures and functions of these photosynthetic complexes have been explored, the molecular mechanisms underlying their assembly remain elusive. In this review, we summarize current knowledge of the regulatory components involved in the assembly of thylakoid membrane protein complexes in photosynthetic organisms. Many of the known regulatory factors are conserved between prokaryotes and eukaryotes, whereas others appear to be newly evolved or to have expanded predominantly in eukaryotes. Their specific features and fundamental differences in cyanobacteria, green algae and land plants are discussed.
Collapse
Affiliation(s)
- Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | |
Collapse
|
417
|
Wientjes E, van Amerongen H, Croce R. Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation. J Phys Chem B 2013; 117:11200-8. [PMID: 23534376 DOI: 10.1021/jp401663w] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have studied thylakoid membranes of Arabidopsis thaliana acclimated to different light conditions and have related protein composition to excitation energy transfer and trapping kinetics in Photosystem II (PSII). In high light: the plants have reduced amounts of the antenna complexes LHCII and CP24, the overall trapping time of PSII is only ∼180 ps, and the quantum efficiency reaches a value of 91%. In low light: LHCII is upregulated, the PSII lifetime becomes ∼310 ps, and the efficiency decreases to 84%. This difference is largely caused by slower excitation energy migration to the reaction centers in low-light plants due to the LHCII trimers that are not part of the C2S2M2 supercomplex. This pool of "extra" LHCII normally transfers energy to both photosystems, whereas it transfers only to PSII upon far-red light treatment (state 1). It is shown that in high light the reduction of LHCII mainly concerns the LHCII-M trimers, while the pool of "extra" LHCII remains intact and state transitions continue to occur. The obtained values for the efficiency of PSII are compared with the values of Fv/Fm, a parameter that is widely used to indicate the PSII quantum efficiency, and the observed differences are discussed.
Collapse
Affiliation(s)
- Emilie Wientjes
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam , 1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
418
|
Grimaud F, Renaut J, Dumont E, Sergeant K, Lucau-Danila A, Blervacq AS, Sellier H, Bahrman N, Lejeune-Hénaut I, Delbreil B, Goulas E. Exploring chloroplastic changes related to chilling and freezing tolerance during cold acclimation of pea (Pisum sativum L.). J Proteomics 2013; 80:145-59. [PMID: 23318888 DOI: 10.1016/j.jprot.2012.12.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/22/2012] [Accepted: 12/29/2012] [Indexed: 01/10/2023]
Abstract
Pea (Pisum sativum L.) productivity is linked to its ability to cope with abiotic stresses such as low temperatures during fall and winter. In this study, we investigate the chloroplast-related changes occurring during pea cold acclimation, in order to further lead to genetic improvement of its field performance. Champagne and Térèse, two pea lines with different acclimation capabilities, were studied by physiological measurements, sub-cellular fractionation followed by relative protein quantification and two-dimensional DIGE. The chilling tolerance might be related to an increase in protein related to soluble sugar synthesis, antioxidant potential, regulation of mRNA transcription and translation through the chloroplast. Freezing tolerance, only observed in Champagne, seems to rely on a higher inherent photosynthetic potential at the beginning of the cold exposure, combined with an early ability to start metabolic processes aimed at maintaining the photosynthetic capacity, optimizing the stoichiometry of the photosystems and inducing dynamic changes in carbohydrate and protein synthesis and/or turnover.
Collapse
Affiliation(s)
- Florent Grimaud
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France; Centre de Recherche Public, Gabriel Lippmann, Department of Environment and Agrobiotechnologies (EVA), 4422, Belvaux, Luxembourg.
| | - Jenny Renaut
- Centre de Recherche Public, Gabriel Lippmann, Department of Environment and Agrobiotechnologies (EVA), 4422, Belvaux, Luxembourg.
| | - Estelle Dumont
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| | - Kjell Sergeant
- Centre de Recherche Public, Gabriel Lippmann, Department of Environment and Agrobiotechnologies (EVA), 4422, Belvaux, Luxembourg.
| | - Anca Lucau-Danila
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| | - Anne-Sophie Blervacq
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| | - Hélène Sellier
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| | - Nasser Bahrman
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| | - Isabelle Lejeune-Hénaut
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| | - Bruno Delbreil
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| | - Estelle Goulas
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| |
Collapse
|
419
|
Diradical intermediate within the context of tryptophan tryptophylquinone biosynthesis. Proc Natl Acad Sci U S A 2013; 110:4569-73. [PMID: 23487750 DOI: 10.1073/pnas.1215011110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the importance of tryptophan (Trp) radicals in biology, very few radicals have been trapped and characterized in a physiologically meaningful context. Here we demonstrate that the diheme enzyme MauG uses Trp radical chemistry to catalyze formation of a Trp-derived tryptophan tryptophylquinone cofactor on its substrate protein, premethylamine dehydrogenase. The unusual six-electron oxidation that results in tryptophan tryptophylquinone formation occurs in three discrete two-electron catalytic steps. Here the exact order of these oxidation steps in the processive six-electron biosynthetic reaction is determined, and reaction intermediates are structurally characterized. The intermediates observed in crystal structures are also verified in solution using mass spectrometry. Furthermore, an unprecedented Trp-derived diradical species on premethylamine dehydrogenase, which is an intermediate in the first two-electron step, is characterized using high-frequency and -field electron paramagnetic resonance spectroscopy and UV-visible absorbance spectroscopy. This work defines a unique mechanism for radical-mediated catalysis of a protein substrate, and has broad implications in the areas of applied biocatalysis and understanding of oxidative protein modification during oxidative stress.
Collapse
|
420
|
Frankel LK, Sallans L, Limbach PA, Bricker TM. Oxidized amino acid residues in the vicinity of Q(A) and Pheo(D1) of the photosystem II reaction center: putative generation sites of reducing-side reactive oxygen species. PLoS One 2013; 8:e58042. [PMID: 23469138 PMCID: PMC3585169 DOI: 10.1371/journal.pone.0058042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/30/2013] [Indexed: 02/04/2023] Open
Abstract
Under a variety of stress conditions, Photosystem II produces reactive oxygen species on both the reducing and oxidizing sides of the photosystem. A number of different sites including the Mn4O5Ca cluster, P680, PheoD1, QA, QB and cytochrome b559 have been hypothesized to produce reactive oxygen species in the photosystem. In this communication using Fourier-transform ion cyclotron resonance mass spectrometry we have identified several residues on the D1 and D2 proteins from spinach which are oxidatively modified and in close proximity to QA (D1 residues 239F, 241Q, 242E and the D2 residues 238P, 239T, 242E and 247M) and PheoD1 (D1 residues 130E, 133L and 135F). These residues may be associated with reactive oxygen species exit pathways located on the reducing side of the photosystem, and their modification may indicate that both QA and PheoD1 are sources of reactive oxygen species on the reducing side of Photosystem II.
Collapse
Affiliation(s)
- Laurie K. Frankel
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Larry Sallans
- The Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Patrick A. Limbach
- The Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Terry M. Bricker
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
421
|
Manocchi AK, Baker DR, Pendley SS, Nguyen K, Hurley MM, Bruce BD, Sumner JJ, Lundgren CA. Photocurrent generation from surface assembled photosystem I on alkanethiol modified electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2412-9. [PMID: 23379304 DOI: 10.1021/la304477u] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Photosystem I (PSI) is a key component of oxygenic photosynthetic electron transport because of its light-induced electron transfer to the soluble electron acceptor ferredoxin. This work demonstrates the incorporation of surface assembled cyanobacterial trimeric PSI complexes into a biohybrid system for light-driven current generation. Specifically, this work demonstrates the improved assembly of PSI via electrophoretic deposition, with controllable surface assembled PSI density, on different self-assembled alkanethiol monolayers. Using artificial electron donors and acceptors (Os(bpy)(2)Cl(2) and methyl viologen) we demonstrate photocurrent generation from a single PSI layer, which remains photoactive for at least three hours of intermittent illumination. Photoelectrochemical comparison of the biohybrid systems assembled from different alkanethiols (hexanethiol, aminohexanethiol, mercaptohexanol, and mercaptohexanoic acid) reveals that the PSI generated photocurrent is enhanced by almost 5 times on negatively charged SAM surfaces as compared to positively charged surfaces. These results are discussed in light of how PSI is oriented upon electrodeposition on a SAM.
Collapse
Affiliation(s)
- Amy K Manocchi
- Sensors and Electron Devices Directorate, United States Army Research Laboratory, Adelphi, Maryland 20783, United States
| | | | | | | | | | | | | | | |
Collapse
|
422
|
Shim Y, Yuhas BD, Dyar SM, Smeigh AL, Douvalis AP, Wasielewski MR, Kanatzidis MG. Tunable biomimetic chalcogels with Fe4S4 cores and [Sn(n)S(2n+2)](4-)(n = 1, 2, 4) building blocks for solar fuel catalysis. J Am Chem Soc 2013; 135:2330-7. [PMID: 23368697 DOI: 10.1021/ja311310k] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biology sustains itself by converting solar energy in a series of reactions between light harvesting components, electron transfer pathways, and redox-active centers. As an artificial system mimicking such solar energy conversion, porous chalcogenide aerogels (chalcogels) encompass the above components into a common architecture. We present here the ability to tune the redox properties of chalcogel frameworks containing biological Fe(4)S(4) clusters. We have investigated the effects of [Sn(n)S(2n+2)](4-) linking blocks ([SnS(4)](4-), [Sn(2)S(6)](4-), [Sn(4)S(10)](4-)) on the electrochemical and electrocatalytic properties of the chalcogels, as well as on the photophysical properties of incorporated light-harvesting dyes, tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)). The various thiostannate linking blocks do not alter significantly the chalcogel surface area (90-310 m(2)/g) or the local environment around the Fe(4)S(4) clusters as indicated by (57)Fe Mössbauer spectroscopy. However, the varying charge density of the linking blocks greatly affects the reduction potential of the Fe(4)S(4) cluster and the electronic interaction between the clusters. We find that when the Fe(4)S(4) clusters are bridged with the adamantane [Sn(4)S(10)](4-) linking blocks, the electrochemical reduction of CS(2) and the photochemical production of hydrogen are enhanced. The ability to tune the redox properties of biomimetic chalcogels presents a novel avenue to control the function of multifunctional chalcogels for a wide range of electrochemical or photochemical processes relevant to solar fuels.
Collapse
Affiliation(s)
- Yurina Shim
- Department of Chemistry and Argonne-Northwestern Solar Energy Research Center, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | | | |
Collapse
|
423
|
Keough JM, Zuniga AN, Jenson DL, Barry BA. Redox control and hydrogen bonding networks: proton-coupled electron transfer reactions and tyrosine Z in the photosynthetic oxygen-evolving complex. J Phys Chem B 2013; 117:1296-307. [PMID: 23346921 DOI: 10.1021/jp3118314] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In photosynthetic oxygen evolution, redox active tyrosine Z (YZ) plays an essential role in proton-coupled electron transfer (PCET) reactions. Four sequential photooxidation reactions are necessary to produce oxygen at a Mn(4)CaO(5) cluster. The sequentially oxidized states of this oxygen-evolving cluster (OEC) are called the S(n) states, where n refers to the number of oxidizing equivalents stored. The neutral radical, YZ•, is generated and then acts as an electron transfer intermediate during each S state transition. In the X-ray structure, YZ, Tyr161 of the D1 subunit, is involved in an extensive hydrogen bonding network, which includes calcium-bound water. In electron paramagnetic resonance experiments, we measured the YZ• recombination rate, in the presence of an intact Mn(4)CaO(5) cluster. We compared the S(0) and S(2) states, which differ in Mn oxidation state, and found a significant difference in the YZ• decay rate (t(1/2) = 3.3 ± 0.3 s in S(0); t(1/2) = 2.1 ± 0.3 s in S(2)) and in the solvent isotope effect (SIE) on the reaction (1.3 ± 0.3 in S(0); 2.1 ± 0.3 in S(2)). Although the YZ site is known to be solvent accessible, the recombination rate and SIE were pH independent in both S states. To define the origin of these effects, we measured the YZ• recombination rate in the presence of ammonia, which inhibits oxygen evolution and disrupts the hydrogen bond network. We report that ammonia dramatically slowed the YZ• recombination rate in the S(2) state but had a smaller effect in the S(0) state. In contrast, ammonia had no significant effect on YD•, the stable tyrosyl radical. Therefore, the alterations in YZ• decay, observed with S state advancement, are attributed to alterations in OEC hydrogen bonding and consequent differences in the YZ midpoint potential/pK(a). These changes may be caused by activation of metal-bound water molecules, which hydrogen bond to YZ. These observations document the importance of redox control in proton-coupled electron transfer reactions.
Collapse
Affiliation(s)
- James M Keough
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | |
Collapse
|
424
|
Kawatsu T. Review pathway analysis for peptide-mediated electronic coupling in the super-exchange mechanism of ET and EET. Biopolymers 2013; 100:100-13. [DOI: 10.1002/bip.22142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/13/2012] [Accepted: 08/08/2012] [Indexed: 11/12/2022]
|
425
|
Asada M, Nagashima H, Koua FHM, Shen JR, Kawamori A, Mino H. Electronic structure of S(2) state of the oxygen-evolving complex of photosystem II studied by PELDOR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:438-45. [PMID: 23313805 DOI: 10.1016/j.bbabio.2012.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 12/25/2012] [Accepted: 12/27/2012] [Indexed: 11/29/2022]
Abstract
Photosynthetic water splitting is catalyzed by a Mn(4)CaO(5) cluster in photosystem II, whose structure was recently determined at a resolution of 1.9Å [Umena, Y. et al. 2011, Nature, 473:55-60]. To determine the electronic structure of the Mn(4)CaO(5) cluster, pulsed electron-electron double resonance (PELDOR) measurements were performed for the tyrosine residue Y(D)() and S(2) state signals with non-oriented and oriented photosystem II (PS II) samples. Based on these measurements, the spin density distributions were calculated by comparing with the experimental results. The best fitting parameters were obtained with a model in which Mn1 has a large positive projection, Mn3 has a small positive projection, and Mn2 and Mn4 have negative projections (the numbering of Mni (i=1-4) is based on the crystal structure at a 1.9Å resolution), which yielded spin projections of 1.97, -1.20, 1.19 and -0.96 for Mn1-4 ions. The results show that the Mn1 ion, which is coordinated by H332, D342 and E189, has a valence of Mn(III) in the S(2) state. The sign of the exchange interactions J(13) is positive, and the other signs are negative.
Collapse
Affiliation(s)
- Mizue Asada
- Graduate school of Science, Nagoya University, Chikusa, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
426
|
Plastoglobuli, Thylakoids, Chloroplast Structure and Development of Plastids. PLASTID DEVELOPMENT IN LEAVES DURING GROWTH AND SENESCENCE 2013. [DOI: 10.1007/978-94-007-5724-0_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
427
|
Mazor Y, Nataf D, Toporik H, Nelson N. Crystal structures of virus-like photosystem I complexes from the mesophilic cyanobacterium Synechocystis PCC 6803. eLife 2013; 3:e01496. [PMID: 24473073 PMCID: PMC3903132 DOI: 10.7554/elife.01496] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oxygenic photosynthesis supports virtually all life forms on earth. Light energy is converted by two photosystems—photosystem I (PSI) and photosystem II (PSII). Globally, nearly 50% of photosynthesis takes place in the Ocean, where single cell cyanobacteria and algae reside together with their viruses. An operon encoding PSI was identified in cyanobacterial marine viruses. We generated a PSI that mimics the salient features of the viral complex, named PSIPsaJF. PSIPsaJF is promiscuous for its electron donors and can accept electrons from respiratory cytochromes. We solved the structure of PSIPsaJF and a monomeric PSI, with subunit composition similar to the viral PSI, providing for the first time a detailed description of the reaction center and antenna system from mesophilic cyanobacteria, including red chlorophylls and cofactors of the electron transport chain. Our finding extends the understanding of PSI structure, function and evolution and suggests a unique function for the viral PSI. DOI:http://dx.doi.org/10.7554/eLife.01496.001 Photosynthesis—the process by which plants and other organisms harness the energy in sunlight—is the source of almost all oxygen, food and fuel on earth. Oxygenic photosynthesis in living cells involves a series of reactions catalyzed by large protein complexes, various other soluble chemicals, and the transfer of electrons from so-called donors to acceptors. The energy in the sunlight is captured by two membrane-embedded protein complexes—photosystem I, which is the most powerful electron donor in nature, and photosystem II—and converted into chemical energy. Almost half of the world’s photosynthesis occurs in the oceans, and is performed by single-celled cyanobacteria and algae. Interestingly, some of the genes that encode photosynthetic enzymes in cyanobacteria are also found in the genomes of viruses that infect these bacteria. It is thought that these viruses can alter photosynthetic pathways in their hosts, but the interactions between these viruses and their hosts are not fully understood. Now, Mazor et al. have created a photosystem I complex that mimics the viral version of this complex, and have gone on to solve its three-dimensional structure. This mimetic virus-encoded complex was shown to be a ‘promiscuous’ electron acceptor: this means that, unlike most electron acceptors, it can accept electrons from more than one electron donor. Further, Mazor et al. solved the structure of photosystem I from Synechocystis, a cyanobacterium that lives in fresh water; and found some surprising differences between it and the only other published structure for photosystem I from a cyanobacterium (which was from a species that lives in hot water springs). These included differences in components involved in the electron transfer chain—a series of chemical reactions in which electrons are passed from donor to acceptor molecules—that were thought to be highly conserved. Other differences in the structures allowed Mazor et al. to identify the location of a unique chlorophyll pigment group in the Synechocystis photosystem I. Since Synechocystis is commonly used as a model to study photosynthesis, an improved understanding of its photosystem I should lead to further improvements in our knowledge of photosynthesis. DOI:http://dx.doi.org/10.7554/eLife.01496.002
Collapse
Affiliation(s)
- Yuval Mazor
- Department of Biochemistry and Molecular Biology, The George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
428
|
Zhou K, Ren Y, Lv J, Wang Y, Liu F, Zhou F, Zhao S, Chen S, Peng C, Zhang X, Guo X, Cheng Z, Wang J, Wu F, Jiang L, Wan J. Young Leaf Chlorosis 1, a chloroplast-localized gene required for chlorophyll and lutein accumulation during early leaf development in rice. PLANTA 2013; 237:279-92. [PMID: 23053539 DOI: 10.1007/s00425-012-1756-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 08/28/2012] [Indexed: 05/08/2023]
Abstract
Chlorophyll (Chl) and lutein are the two most abundant and essential components in photosynthetic apparatus, and play critical roles in plant development. In this study, we characterized a rice mutant named young leaf chlorosis 1 (ylc1) from a ⁶⁰Co-irradiated population. Young leaves of the ylc1 mutant showed decreased levels of Chl and lutein compared to those of wild type, and transmission electron microscopy analysis revealed that the thylakoid lamellar structures were obviously loosely arranged. Whereas, the mutant turns green gradually and approaches normal green at the maximum tillering stage. The Young Leaf Chlorosis 1 (YLC1) gene was isolated via map-based cloning and identified to encode a protein of unknown function belonging to the DUF3353 superfamily. Complementation and RNA-interference tests confirmed the role of the YLC1 gene, which expressed in all tested rice tissues, especially in the leaves. Real-time PCR analyses showed that the expression levels of the genes associated with Chl biosynthesis and photosynthesis were affected in ylc1 mutant at different temperatures. In rice protoplasts, the YLC1 protein displayed a typical chloroplast location pattern. The N-terminal 50 amino acid residues were confirmed to be necessary and sufficient for chloroplast targeting. These data suggested that the YLC1 protein may be involved in Chl and lutein accumulation and chloroplast development at early leaf development in rice.
Collapse
Affiliation(s)
- Kunneng Zhou
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
429
|
Swierk JR, Mallouk TE. Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. Chem Soc Rev 2013; 42:2357-87. [DOI: 10.1039/c2cs35246j] [Citation(s) in RCA: 453] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
430
|
Meierhoff K, Westhoff P. The Biogenesis of the Thylakoid Membrane: Photosystem II, a Case Study. PLASTID DEVELOPMENT IN LEAVES DURING GROWTH AND SENESCENCE 2013. [DOI: 10.1007/978-94-007-5724-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
431
|
|
432
|
High-light vs. low-light: effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:411-9. [PMID: 23274453 DOI: 10.1016/j.bbabio.2012.12.003] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/11/2012] [Accepted: 12/14/2012] [Indexed: 11/20/2022]
Abstract
The structural response of photosystem II (PSII) and its light-harvesting proteins (LHCII) in Arabidopis thaliana after long-term acclimation to either high or low light intensity was characterized. Biochemical and structural analysis of isolated thylakoid membranes by electron microscopy indicates a distinctly different response at the level of PSII and LHCII upon plant acclimation. In high light acclimated plants, the C(2)S(2)M(2) supercomplex, which is the dominating form of PSII in Arabidopsis, is a major target of structural re-arrangement due to the down-regulation of Lhcb3 and Lhcb6 antenna proteins. The PSII ability to form semi-crystalline arrays in the grana membrane is strongly reduced compared to plants grown under optimal light conditions. This is due to the structural heterogeneity of PSII supercomplexes rather than to the action of PsbS protein as its level was unexpectedly reduced in high light acclimated plants. In low light acclimated plants, the architecture of the C(2)S(2)M(2) supercomplex and its ability to form semi-crystalline arrays remained unaffected but the density of PSII in grana membranes is reduced due to the synthesis of additional LHCII proteins. However, the C(2)S(2)M(2) supercomplexes in semi-crystalline arrays are more densely packed, which can be important for efficient energy transfer between PSII under light limiting conditions.
Collapse
|
433
|
Kasson TMD, Barry BA. Reactive oxygen and oxidative stress: N-formyl kynurenine in photosystem II and non-photosynthetic proteins. PHOTOSYNTHESIS RESEARCH 2012; 114:97-110. [PMID: 23161228 DOI: 10.1007/s11120-012-9784-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 10/31/2012] [Indexed: 06/01/2023]
Abstract
While light is the essential driving force for photosynthetic carbon fixation, high light intensities are toxic to photosynthetic organisms. Prolonged exposure to high light results in damage to the photosynthetic membrane proteins and suboptimal activity, a phenomenon called photoinhibition. The primary target for inactivation is the photosystem II (PSII) reaction center. PSII catalyzes the light-induced oxidation of water at the oxygen-evolving complex. Reactive oxygen species (ROS) are generated under photoinhibitory conditions and induce oxidative post translational modifications of amino acid side chains. Specific modification of tryptophan residues to N-formylkynurenine (NFK) occurs in the CP43 and D1 core polypeptides of PSII. The NFK modification has also been detected in other proteins, such as mitochondrial respiratory enzymes, and is formed by a non-random, ROS-targeted mechanism. NFK has been shown to accumulate in PSII during conditions of high light stress in vitro. This review provides a summary of what is known about the generation and function of NFK in PSII and other proteins. Currently, the role of ROS in photoinhibition is under debate. Furthermore, the triggers for the degradation and accelerated turnover of PSII subunits, which occur under high light, are not yet identified. Owing to its unique optical and Raman signal, NFK provides a new marker to use in the identification of ROS generation sites in PSII and other proteins. Also, the speculative hypothesis that NFK, and other oxidative modifications of tryptophan, play a role in the PSII damage and repair cycle is discussed. NFK may have a similar function during oxidative stress in other biologic systems.
Collapse
Affiliation(s)
- Tina M Dreaden Kasson
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
434
|
Nellaepalli S, Kodru S, Tirupathi M, Subramanyam R. Anaerobiosis induced state transition: a non photochemical reduction of PQ pool mediated by NDH in Arabidopsis thaliana. PLoS One 2012. [PMID: 23185453 PMCID: PMC3504099 DOI: 10.1371/journal.pone.0049839] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Non photochemical reduction of PQ pool and mobilization of LHCII between PSII and PSI are found to be linked under abiotic stress conditions. The interaction of non photochemical reduction of PQ pool and state transitions associated physiological changes are critically important under anaerobic condition in higher plants. Methodology/Findings The present study focused on the effect of anaerobiosis on non-photochemical reduction of PQ pool which trigger state II transition in Arabidopsis thaliana. Upon exposure to dark-anaerobic condition the shape of the OJIP transient rise is completely altered where as in aerobic treated leaves the rise is unaltered. Rise in Fo and FJ was due to the loss of oxidized PQ pool as the PQ pool becomes more reduced. The increase in Fo′ was due to the non photochemical reduction of PQ pool which activated STN7 kinase and induced LHCII phosphorylation under anaerobic condition. Further, it was observed that the phosphorylated LHCII is migrated and associated with PSI supercomplex increasing its absorption cross-section. Furthermore, evidences from crr2-2 (NDH mutant) and pgr5 mutants (deficient in non NDH pathway of cyclic electron transport) have indicated that NDH is responsible for non photochemical reduction of the PQ pool. We propose that dark anaerobic condition accelerates production of reducing equivalents (such as NADPH by various metabolic pathways) which reduce PQ pool and is mediated by NDH leading to state II transition. Conclusions/Significance Anaerobic condition triggers non photochemical reduction of PQ pool mediated by NDH complex. The reduced PQ pool activates STN7 kinase leading to state II transition in A. thaliana.
Collapse
Affiliation(s)
- Sreedhar Nellaepalli
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sireesha Kodru
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Malavath Tirupathi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Rajagopal Subramanyam
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
- * E-mail:
| |
Collapse
|
435
|
Rahire M, Laroche F, Cerutti L, Rochaix JD. Identification of an OPR protein involved in the translation initiation of the PsaB subunit of photosystem I. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:652-61. [PMID: 22817760 DOI: 10.1111/j.1365-313x.2012.05111.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Genetic analysis of mutants deficient in the biosynthesis of the photosystem I complex has revealed several nucleus-encoded factors that act at different post-transcriptional steps of chloroplast gene expression. Here we have identified and characterized the gene affected in the tab 1-F15 mutant, which is specifically deficient in the translation of the photosystem I reaction center protein PsaB as the result of a single nucleotide deletion. This gene encodes Tab 1, a 1287 amino acid protein that contains 10 tandem 38-40 amino acid degenerate repeats of the PPPEW/OPR (octatricopeptide repeat) family, first described for the chloroplast translation factor Tbc2. These repeats are involved in the binding of Tab 1 to the 5'-untranslated region of the psaB mRNA based on gel mobility shift assays. Tab 1 is part of a large family of proteins in Chlamydomonas that are also found in several bacteria and protozoans, but are rare in land plants.
Collapse
Affiliation(s)
- Michèle Rahire
- Departments of Molecular Biology and Plant Biology, University of Geneva, 30, Quai Ernest Ansermet, Geneva 1211, Switzerland
| | | | | | | |
Collapse
|
436
|
Kang Z, Li G, Huang J, Niu X, Zou H, Zang G, Wenwen Y, Wang G. Photosynthetic and physiological analysis of the rice high-chlorophyll mutant (Gc). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 60:81-7. [PMID: 22922107 DOI: 10.1016/j.plaphy.2012.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/16/2012] [Indexed: 05/26/2023]
Abstract
Chlorophyll (Chl) molecules are essential for harvesting light energy in photosynthesis. A rice high-chlorophyll mutant (Gc) with significantly increased Chl b was identified previously in Zhenshan 97B (Oryza sativa indica). However, the mechanism underlying this higher Chl b content and its effects on photosynthetic efficiency are still unclear. Immunoblot and blue native polyacrylamide gel electrophoresis (BN-PAGE) with a second dimension electrophoresis followed by the matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) analysis showed that a few core proteins of photosystem I (PSI) and photosystem II (PSII), and light-harvesting complex II (LHCII) proteins were overexpressed in the mutant plants. Remarkable differences in chloroplast ultrastructure were observed between the wild-type and mutant plants, with the latter having more highly stacked and larger grana. Chl florescence analysis demonstrated that Gc had markedly increased quantum efficiency of photosystem II (ΦPSII), photochemical quenching (qP), non-photochemical quenching (qN) and electron transport rate (ETR). This morphological and physiological adaptation might confer a higher photosynthetic capacity in Gc than the wild-type.
Collapse
Affiliation(s)
- Zhenhui Kang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China
| | | | | | | | | | | | | | | |
Collapse
|
437
|
Shimoda Y, Ito H, Tanaka A. Conversion of chlorophyll b to chlorophyll a precedes magnesium dechelation for protection against necrosis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:501-11. [PMID: 22762131 DOI: 10.1111/j.1365-313x.2012.05095.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chlorophyll is a deleterious molecule that generates reactive oxygen species and must be converted to nontoxic molecules during plant senescence. The degradation pathway of chlorophyll a has been determined; however, that of chlorophyll b is poorly understood, and multiple pathways of chlorophyll b degradation have been proposed. In this study, we found that chlorophyll b is degraded by a single pathway, and elucidated the importance of this pathway in avoiding cell death. In order to determine the chlorophyll degradation pathway, we first examined the substrate specificity of 7-hydroxymethyl chlorophyll a reductase. 7-hydroxymethyl chlorophyll a reductase reduces 7-hydroxymethyl chlorophyll a but not 7-hydroxymethyl pheophytin a or 7-hydroxymethyl pheophorbide a. These results indicate that the first step of chlorophyll b degradation is its conversion to 7-hydroxymethyl chlorophyll a by chlorophyll b reductase, although chlorophyll b reductase has broad substrate specificity. In vitro experiments showed that chlorophyll b reductase converted all of the chlorophyll b in the light-harvesting chlorophyll a/b protein complex to 7-hydroxymethyl chlorophyll a, but did not completely convert chlorophyll b in the core antenna complexes. When plants whose core antennae contained chlorophyll b were incubated in the dark, chlorophyll b was not properly degraded, and the accumulation of 7-hydroxymethyl pheophorbide a and pheophorbide b resulted in cell death. This result indicates that chlorophyll b is not properly degraded when it exists in core antenna complexes. Based on these results, we discuss the importance of the proper degradation of chlorophyll b.
Collapse
Affiliation(s)
- Yousuke Shimoda
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo 060-0819, Japan
| | | | | |
Collapse
|
438
|
Yan X, Faulkner CJ, Jennings GK, Cliffel DE. Photosystem I in Langmuir-Blodgett and Langmuir-Schaefer monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:15080-15086. [PMID: 23009258 DOI: 10.1021/la302611a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Photosystem I (PSI) is a membrane protein complex that generates photoinduced electrons and transfers them across the thylakoid membrane during photosynthesis. The PSI complex, separated from spinach leaves, was spread onto the air-water interface as a monolayer and transferred onto a gold electrode surface that was precoated with a self-assembled monolayer (SAM). The electrochemical properties of the transferred PSI monolayer, including cyclic voltammetry and photoinduced chronoamperometry, were measured. The results showed that PSI retained its bioactivity after the manipulation. Its capability of converting photoenergy into electrical potential was demonstrated by its reducing an electron acceptor, dichloroindophenol (DCIP), and by oxidizing an electron donor, sodium ascorbate (ASC). We have shown that the protein has two possible orientations at the water interface. The orientation distribution was determined by comparing the controlled reductive and oxidative photocurrents generated from Langmuir-Blodgett and Langmuir-Schaefer monolayers.
Collapse
Affiliation(s)
- Xun Yan
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235-1822, United States
| | | | | | | |
Collapse
|
439
|
Tu W, Li Y, Zhang Y, Zhang L, Liu H, Liu C, Yang C. Diminished photoinhibition is involved in high photosynthetic capacities in spring ephemeral Berteroa incana under strong light conditions. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1463-70. [PMID: 22854181 DOI: 10.1016/j.jplph.2012.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/22/2012] [Accepted: 05/22/2012] [Indexed: 05/15/2023]
Abstract
Berteroa incana (B. incana), a spring ephemeral species of Brassicaceae, possesses very high photosynthetic capacities at high irradiances. Exploring the mechanism of the high light use efficiency of B. incana under strong light conditions may help to explore mechanisms of plants' survival strategies. Therefore, the photosynthetic characteristics of B. incana grown under three different light intensities (field conditions (field): 200-1500μmolphotonsm(-2)s(-1); greenhouse high light (HL) conditons: 600μmolphotonsm(-2)s(-1); and greenhouse low light (LL) conditions: 100μmolphotonsm(-2)s(-1)) were investigated and compared with those of the model plant Arabidopsis thaliana (A. thaliana). Our results revealed that B. incana behaved differently in adjusting its photosynthetic activities under both HL and LL conditions compared with what A. thaliana did under the same conditions, suggesting that the potential of photosynthetic capacity of B. incana might be enhanced under strong light conditions. Under LL conditions, B. incana reached its maximum photosynthetic activity at a much higher light intensity than A. thaliana did, although their maximum photochemical efficiency of photosystem II (PSII) (F(v)/F(m)) was almost the same. When grown under HL conditions, B. incana showed much higher photosynthetic capacity than A. thaliana. A detailed analysis of the OJIP transient kinetics of B. incana under HL and LL conditions revealed that HL-grown B. incana possessed not only a high ability in regulating photosystem stoichiometry that ensured high linear electron transport, but also an enhanced availability of oxidized plastoquinone (PQ) pool which reduced non-photochemical quenching (NPQ), especially its slow components qT and qI, and increased the photochemical efficiency, which in turn, increased the electron transport. We suggest that the high ability in regulating photosystem stoichiometry and the high level of the availability of oxidized PQ pool in B. incana under strong light conditions play important roles in its ability to retain higher photosynthetic capacity under extreme environmental conditions.
Collapse
Affiliation(s)
- Wenfeng Tu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | |
Collapse
|
440
|
Aluru M, Zola J, Nettleton D, Aluru S. Reverse engineering and analysis of large genome-scale gene networks. Nucleic Acids Res 2012; 41:e24. [PMID: 23042249 PMCID: PMC3592423 DOI: 10.1093/nar/gks904] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reverse engineering the whole-genome networks of complex multicellular organisms continues to remain a challenge. While simpler models easily scale to large number of genes and gene expression datasets, more accurate models are compute intensive limiting their scale of applicability. To enable fast and accurate reconstruction of large networks, we developed Tool for Inferring Network of Genes (TINGe), a parallel mutual information (MI)-based program. The novel features of our approach include: (i) B-spline-based formulation for linear-time computation of MI, (ii) a novel algorithm for direct permutation testing and (iii) development of parallel algorithms to reduce run-time and facilitate construction of large networks. We assess the quality of our method by comparison with ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks) and GeneNet and demonstrate its unique capability by reverse engineering the whole-genome network of Arabidopsis thaliana from 3137 Affymetrix ATH1 GeneChips in just 9 min on a 1024-core cluster. We further report on the development of a new software Gene Network Analyzer (GeNA) for extracting context-specific subnetworks from a given set of seed genes. Using TINGe and GeNA, we performed analysis of 241 Arabidopsis AraCyc 8.0 pathways, and the results are made available through the web.
Collapse
Affiliation(s)
- Maneesha Aluru
- Department of Genetics, Iowa State University, Ames, IA 50011, USA.
| | | | | | | |
Collapse
|
441
|
Garo F, Häner R. Influence of a GC Base Pair on Excitation Energy Transfer in DNA-Assembled Phenanthrene π-Stacks. Bioconjug Chem 2012; 23:2105-13. [DOI: 10.1021/bc300302v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Florian Garo
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
442
|
Gururani MA, Upadhyaya CP, Strasser RJ, Woong YJ, Park SW. Physiological and biochemical responses of transgenic potato plants with altered expression of PSII manganese stabilizing protein. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 58:182-94. [PMID: 22824424 DOI: 10.1016/j.plaphy.2012.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/02/2012] [Indexed: 05/06/2023]
Abstract
Manganese-stabilizing protein (MSP) represents a key component of the oxygen-evolving complex (OEC). Transgenic potato plants with both enhanced (sense) and reduced (anti-sense) MSP expression levels were generated to investigate the possible physiological role of MSP in overall plant growth, particularly in tuber development. MSP antisense plants exhibited both higher tuberization frequency and higher tuber yield with increased total soluble carbohydrates. The photosynthetic efficiencies of the plants were examined using the OJIP kinetics; MSP-antisense plants were photosynthetically more active than the MSP-sense and UT (untransformed) control plants. The oxygen measurements indicated that the relative oxygen evolution was directly proportional to the MSP expression, as MSP-antisense plants showed much lower oxygen evolution compared to MSP-sense as well as UT plants. MSP-sense plants behaved like the UT plants with respect to morphology, tuber yield, and photosynthetic performance. Chlorophyll a fluorescence analyses indicate a possible lack of intact Oxygen Evolving Complexes (OECs) in MSP antisense plants, which allow access to internal non-water electron donors (e.g., ascorbate and proline) and consequently increase the Photosystem II (PSII) activity of those plants. These findings further indicate that this altered photosynthetic machinery may be associated with early tuberization and increased tuberization frequency.
Collapse
Affiliation(s)
- Mayank Anand Gururani
- Dept. of Molecular Biotechnology, School of Life & Environmental Sciences, Konkuk University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
443
|
Frankel LK, Sallans L, Limbach PA, Bricker TM. Identification of oxidized amino acid residues in the vicinity of the Mn(4)CaO(5) cluster of Photosystem II: implications for the identification of oxygen channels within the Photosystem. Biochemistry 2012; 51:6371-7. [PMID: 22827410 DOI: 10.1021/bi300650n] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As a light-driven water-plastoquinone oxidoreductase, Photosystem II produces molecular oxygen as an enzymatic product. Additionally, under a variety of stress conditions, reactive oxygen species are produced at or near the active site for oxygen evolution. In this study, Fourier-transform ion cyclotron resonance mass spectrometry was used to identify oxidized amino acid residues located in several core Photosystem II proteins (D1, D2, CP43, and CP47) isolated from spinach Photosystem II membranes. While the majority of these oxidized residues (81%) are located on the oxygenated solvent-exposed surface of the complex, several residues on the CP43 protein ((354)E, (355)T, (356)M, and (357)R) which are in close proximity (<15 Å) to the Mn(4)CaO(5) active site are also modified. These residues appear to be associated with putative oxygen/reactive oxygen species exit channel(s) in the photosystem. These results are discussed within the context of a number of computational studies which have identified putative oxygen channels within the photosystem.
Collapse
Affiliation(s)
- Laurie K Frankel
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
444
|
Zhang G, Pan L, Yin Y, Liu W, Huang D, Zhang T, Wang L, Xin C, Lin Q, Sun G, Ba Abdullah MM, Zhang X, Hu S, Al-Mssallem IS, Yu J. Large-scale collection and annotation of gene models for date palm (Phoenix dactylifera, L.). PLANT MOLECULAR BIOLOGY 2012; 79:521-36. [PMID: 22736259 PMCID: PMC3402680 DOI: 10.1007/s11103-012-9924-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/07/2012] [Indexed: 05/25/2023]
Abstract
The date palm (Phoenix dactylifera L.), famed for its sugar-rich fruits (dates) and cultivated by humans since 4,000 B.C., is an economically important crop in the Middle East, Northern Africa, and increasingly other places where climates are suitable. Despite a long history of human cultivation, the understanding of P. dactylifera genetics and molecular biology are rather limited, hindered by lack of basic data in high quality from genomics and transcriptomics. Here we report a large-scale effort in generating gene models (assembled expressed sequence tags or ESTs and mapped to a genome assembly) for P. dactylifera, using the long-read pyrosequencing platform (Roche/454 GS FLX Titanium) in high coverage. We built fourteen cDNA libraries from different P. dactylifera tissues (cultivar Khalas) and acquired 15,778,993 raw sequencing reads-about one million sequencing reads per library-and the pooled sequences were assembled into 67,651 non-redundant contigs and 301,978 singletons. We annotated 52,725 contigs based on the plant databases and 45 contigs based on functional domains referencing to the Pfam database. From the annotated contigs, we assigned GO (Gene Ontology) terms to 36,086 contigs and KEGG pathways to 7,032 contigs. Our comparative analysis showed that 70.6 % (47,930), 69.4 % (47,089), 68.4 % (46,441), and 69.3 % (47,048) of the P. dactylifera gene models are shared with rice, sorghum, Arabidopsis, and grapevine, respectively. We also assigned our gene models into house-keeping and tissue-specific genes based on their tissue specificity.
Collapse
Affiliation(s)
- Guangyu Zhang
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- Graduate University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Linlin Pan
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Yuxin Yin
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Wanfei Liu
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- Graduate University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Dawei Huang
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- Graduate University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Tongwu Zhang
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- Graduate University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Lei Wang
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- Graduate University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Chengqi Xin
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- Graduate University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Qiang Lin
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Gaoyuan Sun
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Mohammed M. Ba Abdullah
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
| | - Xiaowei Zhang
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Songnian Hu
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Ibrahim S. Al-Mssallem
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- Department of Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Hssa, Hofuf, Kingdom of Saudi Arabia
| | - Jun Yu
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| |
Collapse
|
445
|
Dreaden Kasson TM, Rexroth S, Barry BA. Light-induced oxidative stress, N-formylkynurenine, and oxygenic photosynthesis. PLoS One 2012; 7:e42220. [PMID: 22860088 PMCID: PMC3409137 DOI: 10.1371/journal.pone.0042220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 07/02/2012] [Indexed: 01/30/2023] Open
Abstract
Light stress in plants results in damage to the water oxidizing reaction center, photosystem II (PSII). Redox signaling, through oxidative modification of amino acid side chains, has been proposed to participate in this process, but the oxidative signals have not yet been identified. Previously, we described an oxidative modification, N-formylkynurenine (NFK), of W365 in the CP43 subunit. The yield of this modification increases under light stress conditions, in parallel with the decrease in oxygen evolving activity. In this work, we show that this modification, NFK365-CP43, is present in thylakoid membranes and may be formed by reactive oxygen species produced at the Mn(4)CaO(5) cluster in the oxygen-evolving complex. NFK accumulation correlates with the extent of photoinhibition in PSII and thylakoid membranes. A modest increase in ionic strength inhibits NFK365-CP43 formation, and leads to accumulation of a new, light-induced NFK modification (NFK317) in the D1 polypeptide. Western analysis shows that D1 degradation and oligomerization occur under both sets of conditions. The NFK modifications in CP43 and D1 are found 17 and 14 Angstrom from the Mn(4)CaO(5) cluster, respectively. Based on these results, we propose that NFK is an oxidative modification that signals for damage and repair in PSII. The data suggest a two pathway model for light stress responses. These pathways involve differential, specific, oxidative modification of the CP43 or D1 polypeptides.
Collapse
Affiliation(s)
- Tina M. Dreaden Kasson
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Sascha Rexroth
- Department of Biology, Ruhr-Universität, Bochum, Germany
| | - Bridgette A. Barry
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
446
|
Ido K, Kakiuchi S, Uno C, Nishimura T, Fukao Y, Noguchi T, Sato F, Ifuku K. The conserved His-144 in the PsbP protein is important for the interaction between the PsbP N-terminus and the Cyt b559 subunit of photosystem II. J Biol Chem 2012; 287:26377-87. [PMID: 22707728 PMCID: PMC3406721 DOI: 10.1074/jbc.m112.385286] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Indexed: 11/06/2022] Open
Abstract
The PsbP protein regulates the binding properties of Ca(2+) and Cl(-), and stabilizes the Mn cluster of photosystem II (PSII); however, the binding site and topology in PSII have yet to be clarified. Here we report that the structure around His-144 and Asp-165 in PsbP, which is suggested to be a metal binding site, has a crucial role for the functional interaction between PsbP and PSII. The mutated PsbP-H144A protein exhibits reduced ability to retain Cl(-) anions in PSII, whereas the D165V mutation does not affect PsbP function. Interestingly, H144A/D165V double mutation suppresses the effect of H144A mutation, suggesting that these residues have a role other than metal binding. FTIR difference spectroscopy suggests that H144A/D165V restores proper interaction with PSII and induces the conformational change around the Mn cluster during the S(1)/S(2) transition. Cross-linking experiments show that the H144A mutation affects the direct interaction between PsbP and the Cyt b(559) α subunit of PSII (the PsbE protein). However, this interaction is restored in the H144A/D165V mutant. In the PsbP structure, His-144 and Asp-165 form a salt bridge. H144A mutation is likely to disrupt this bridge and liberate Asp-165, inhibiting the proper PsbP-PSII interaction. Finally, mass spectrometric analysis has identified the cross-linked sites of PsbP and PsbE as Ala-1 and Glu-57, respectively. Therefore His-144, in the C-terminal domain of PsbP, plays a crucial role in maintaining proper N terminus interaction. These data provide important information about the binding characteristics of PsbP in green plant PSII.
Collapse
Affiliation(s)
- Kunio Ido
- From the Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shusuke Kakiuchi
- From the Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Chihiro Uno
- the Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Taishi Nishimura
- the Faculty of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 Japan
| | - Yoichiro Fukao
- the Plant Global Educational Project, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan, and
| | - Takumi Noguchi
- the Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Fumihiko Sato
- From the Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- the Faculty of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 Japan
| | - Kentaro Ifuku
- From the Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- the Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
447
|
Abstract
Photosynthetic reaction centers (PRCs) employ multiple-step tunneling (hopping) to separate electrons and holes that ultimately drive the chemistry required for metabolism. We recently developed hopping maps that can be used to interpret the rates and energetics of electron/hole hopping in three-site (donor-intermediate-acceptor) tunneling reactions, including those in PRCs. Here we analyze several key ET reactions in PRCs, including forward ET in the L-branch, and hopping that could involve thermodynamically uphill intermediates in the M-branch, which is ET-inactive in vivo. We also explore charge recombination reactions, which could involve hopping. Our hopping maps support the view that electron flow in PRCs involves strong electronic coupling between cofactors and reorganization energies that are among the lowest in biology (≤ 0.4 eV).
Collapse
|
448
|
Lohmiller T, Cox N, Su JH, Messinger J, Lubitz W. The basic properties of the electronic structure of the oxygen-evolving complex of photosystem II are not perturbed by Ca2+ removal. J Biol Chem 2012; 287:24721-33. [PMID: 22549771 PMCID: PMC3397899 DOI: 10.1074/jbc.m112.365288] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/25/2012] [Indexed: 11/06/2022] Open
Abstract
Ca(2+) is an integral component of the Mn(4)O(5)Ca cluster of the oxygen-evolving complex in photosystem II (PS II). Its removal leads to the loss of the water oxidizing functionality. The S(2)' state of the Ca(2+)-depleted cluster from spinach is examined by X- and Q-band EPR and (55)Mn electron nuclear double resonance (ENDOR) spectroscopy. Spectral simulations demonstrate that upon Ca(2+) removal, its electronic structure remains essentially unaltered, i.e. that of a manganese tetramer. No redistribution of the manganese valence states and only minor perturbation of the exchange interactions between the manganese ions were found. Interestingly, the S(2)' state in spinach PS II is very similar to the native S(2) state of Thermosynechococcus elongatus in terms of spin state energies and insensitivity to methanol addition. These results assign the Ca(2+) a functional as opposed to a structural role in water splitting catalysis, such as (i) being essential for efficient proton-coupled electron transfer between Y(Z) and the manganese cluster and/or (ii) providing an initial binding site for substrate water. Additionally, a novel (55)Mn(2+) signal, detected by Q-band pulse EPR and ENDOR, was observed in Ca(2+)-depleted PS II. Mn(2+) titration, monitored by (55)Mn ENDOR, revealed a specific Mn(2+) binding site with a submicromolar K(D). Ca(2+) titration of Mn(2+)-loaded, Ca(2+)-depleted PS II demonstrated that the site is reversibly made accessible to Mn(2+) by Ca(2+) depletion and reconstitution. Mn(2+) is proposed to bind at one of the extrinsic subunits. This process is possibly relevant for the formation of the Mn(4)O(5)Ca cluster during photoassembly and/or D1 repair.
Collapse
Affiliation(s)
- Thomas Lohmiller
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| | - Nicholas Cox
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| | - Ji-Hu Su
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| | - Johannes Messinger
- the Department of Chemistry, Chemical
Biological Centre (KBC), Umeå University, S-90187 Umeå,
Sweden
| | - Wolfgang Lubitz
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| |
Collapse
|
449
|
Zhang L, Silva DA, Yan Y, Huang X. Force field development for cofactors in the photosystem II. J Comput Chem 2012; 33:1969-80. [DOI: 10.1002/jcc.23016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/05/2012] [Accepted: 04/22/2012] [Indexed: 01/03/2023]
|
450
|
Abstract
The metal complex [(tpy)(Mebim-py)Ru(II)(S)](2+) (tpy = 2,2' : 6',2''-terpyridine; Mebim-py = 3-methyl-1-pyridylbenzimidazol-2-ylidene; S = solvent) is a robust, reactive electrocatalyst toward both water oxidation to oxygen and carbon dioxide reduction to carbon monoxide. Here we describe its use as a single electrocatalyst for CO(2) splitting, CO(2) → CO + 1/2 O(2), in a two-compartment electrochemical cell.
Collapse
|