401
|
Ward SK, Abomoelak B, Marcus SA, Talaat AM. Transcriptional profiling of mycobacterium tuberculosis during infection: lessons learned. Front Microbiol 2010; 1:121. [PMID: 21738523 PMCID: PMC3125582 DOI: 10.3389/fmicb.2010.00121] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 10/12/2010] [Indexed: 12/12/2022] Open
Abstract
Infection with Mycobacterium tuberculosis, the causative agent of tuberculosis, is considered one of the biggest infectious disease killers worldwide. A significant amount of attention has been directed toward revealing genes involved in the virulence and pathogenesis of this air-born pathogen. With the advances in technologies for transcriptional profiling, several groups, including ours, took advantage of DNA microarrays to identify transcriptional units differentially regulated by M. tuberculosis within a host. The main idea behind this approach is that pathogens tend to regulate their gene expression levels depending on the host microenvironment, and preferentially express those needed for survival. Identifying this class of genes will improve our understanding of pathogenesis. In our case, we identified an in vivo expressed genomic island that was preferentially active in murine lungs during early infection, as well as groups of genes active during chronic tuberculosis. Other studies have identified additional gene groups that are active during macrophage infection and even in human lungs. Despite all of these findings, one of the lingering questions remaining was whether in vivo expressed transcripts are relevant to the virulence, pathogenesis, and persistence of the organism. The work of our group and others addressed this question by examining the contribution of in vivo expressed genes using a strategy based on gene deletions followed by animal infections. Overall, the analysis of most of the in vivo expressed genes supported a role of these genes in M. tuberculosis pathogenesis. Further, these data suggest that in vivo transcriptional profiling is a valid approach to identify genes required for bacterial pathogenesis.
Collapse
Affiliation(s)
- Sarah K Ward
- Department of Pathobiological Sciences, University of Wisconsin-Madison Madison, WI, USA
| | | | | | | |
Collapse
|
402
|
Kaufmann SHE. Future vaccination strategies against tuberculosis: thinking outside the box. Immunity 2010; 33:567-77. [PMID: 21029966 DOI: 10.1016/j.immuni.2010.09.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/18/2010] [Accepted: 08/30/2010] [Indexed: 02/08/2023]
Abstract
With almost a dozen vaccine candidates in clinical trials, tuberculosis (TB) research and development is finally reaping the first fruits of its labors. Vaccine candidates in clinical trials may prevent TB disease reactivation by efficiently containing the pathogen Mycobacterium tuberculosis (Mtb). Future research should target vaccines that achieve sterile eradication of Mtb or even prevent stable infection. These are ambitious goals that can be reached only by highly cooperative engagement of basic immunologists, vaccinologists, and clinical researchers--or in other words, by translation from basic immunology to vaccine research and development, as well as reverse translation of insights from clinical trials back to hypothesis-driven research in the basic laboratory. Here, we review current and future strategies toward the rational design of novel vaccines against TB, as well as the progress made thus far, and the hurdles that need to be overcome in the near and distant future.
Collapse
Affiliation(s)
- Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
403
|
Kruh NA, Troudt J, Izzo A, Prenni J, Dobos KM. Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo. PLoS One 2010; 5:e13938. [PMID: 21085642 PMCID: PMC2978697 DOI: 10.1371/journal.pone.0013938] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 10/07/2010] [Indexed: 12/23/2022] Open
Abstract
Background Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a facultative intracellular pathogen that can persist within the host. The bacteria are thought to be in a state of reduced replication and metabolism as part of the chronic lung infection. Many in vitro studies have dissected the hypothesized environment within the infected lung, defining the bacterial response to pH, starvation and hypoxia. While these experiments have afforded great insight, the picture remains incomplete. The only way to study the combined effects of these environmental factors and the mycobacterial response is to study the bacterial response in vivo. Methodology/Principal Findings We used the guinea pig model of tuberculosis to examine the bacterial proteome during the early and chronic stages of disease. Lungs were harvested thirty and ninety days after aerosol challenge with Mtb, and analyzed by liquid chromatography-mass spectrometry. To date, in vivo proteomics of the tubercle bacillus has not been described and this work has generated the first large-scale shotgun proteomic data set, comprising over 500 unique protein identifications. Cell wall and cell wall processes, and intermediary metabolism and respiration were the two major functional classes of proteins represented in the infected lung. These classes of proteins displayed the greatest heterogeneity indicating important biological processes for establishment of a productive bacterial infection and its persistence. Proteins necessary for adaptation throughout infection, such as nitrate/nitrite reduction were found at both time points. The PE-PPE protein class, while not well characterized, represented the third most abundant category and showed the most consistent expression during the infection. Conclusions/Significance Cumulatively, the results of this work may provide the basis for rational drug design – identifying numerous Mtb proteins, from essential kinases to products involved in metal regulation and cell wall remodeling, all present throughout the course of infection.
Collapse
Affiliation(s)
- Nicole A. Kruh
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jolynn Troudt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Angelo Izzo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jessica Prenni
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Karen M. Dobos
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
404
|
Nolan ST, Lamichhane G. Protective efficacy of BCG overexpressing an L,D-transpeptidase against M. tuberculosis infection. PLoS One 2010; 5:e13773. [PMID: 21048936 PMCID: PMC2966435 DOI: 10.1371/journal.pone.0013773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/12/2010] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND M. bovis Bacille Calmette-Guérin (BCG), currently the only available vaccine against tuberculosis (TB), fails to adequately protect individuals from active and latent TB infection. New vaccines are desperately needed to decrease the worldwide burden of TB. METHODS AND FINDINGS We created a recombinant strain of BCG that overproduces an L,D-transpeptidase in order to alter the bacterial peptidoglycan layer and consequently increase the ability of this immunogen to protect against virulent M. tuberculosis (Mtb). We demonstrate that this novel recombinant BCG protects mice against virulent Mtb at least as well as control BCG, as measured by its ability to reduce bacterial burden in lungs and spleen, reduce lung histopathology, and prolong survival. A nutrient starved recombinant BCG preparation, while offering comparable protection, elicited a response characterized by elevated levels of select Th1 cytokines. CONCLUSIONS Recombinant BCG overexpressing a L,D-transpeptidase that is nutrient starved elicits a stronger Th1 type response and is at least as protective as parent BCG. Results from this study suggest that nutrient starvation treatment of live BCG vaccines should be further investigated as a way to increase host induction of Th-1 related cytokines in the development of experimental anti-TB vaccines.
Collapse
Affiliation(s)
- Scott T. Nolan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Gyanu Lamichhane
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
405
|
Nde CW, Toghrol F, Jang HJ, Bentley WE. Toxicogenomic response of Mycobacterium bovis BCG to peracetic acid and a comparative analysis of the M. bovis BCG response to three oxidative disinfectants. Appl Microbiol Biotechnol 2010; 90:277-304. [PMID: 21152916 DOI: 10.1007/s00253-010-2931-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/08/2010] [Accepted: 10/01/2010] [Indexed: 12/16/2022]
Abstract
Tuberculosis is a leading cause of death worldwide and infects thousands of Americans annually. Mycobacterium bovis causes tuberculosis in humans and several animal species. Peracetic acid is an approved tuberculocide in hospital and domestic environments. This study presents for the first time the transcriptomic changes in M. bovis BCG after treatment with 0.1 mM peracetic acid for 10 and 20 min. This study also presents for the first time a comparison among the transcriptomic responses of M. bovis BCG to three oxidative disinfectants: peracetic acid, sodium hypochlorite, and hydrogen peroxide after 10 min of treatment. Results indicate that arginine biosynthesis, virulence, and oxidative stress response genes were upregulated after both peracetic acid treatment times. Three DNA repair genes were downregulated after 10 and 20 min and cell wall component genes were upregulated after 20 min. The devR-devS signal transduction system was upregulated after 10 min, suggesting a role in the protection against peracetic acid treatment. Results also suggest that peracetic acid and sodium hypochlorite both induce the expression of the ctpF gene which is upregulated in hypoxic environments. Further, this study reveals that in M. bovis BCG, hydrogen peroxide and peracetic acid both induce the expression of katG involved in oxidative stress response and the mbtD and mbtI genes involved in iron regulation/virulence.
Collapse
Affiliation(s)
- Chantal W Nde
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
406
|
Nitrate respiration protects hypoxic Mycobacterium tuberculosis against acid- and reactive nitrogen species stresses. PLoS One 2010; 5:e13356. [PMID: 21048946 PMCID: PMC2965054 DOI: 10.1371/journal.pone.0013356] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 09/10/2010] [Indexed: 12/24/2022] Open
Abstract
There are strong evidences that Mycobacterium tuberculosis survives in a non-replicating state in the absence of oxygen in closed lesions and granuloma in vivo. In addition, M. tuberculosis is acid-resistant, allowing mycobacteria to survive in acidic, inflamed lesions. The ability of M. tuberculosis to resist to acid was recently shown to contribute to the bacillus virulence although the mechanisms involved have yet to be deciphered. In this study, we report that M. tuberculosis resistance to acid is oxygen-dependent; whereas aerobic mycobacteria were resistant to a mild acid challenge (pH 5.5) as previously reported, we found microaerophilic and hypoxic mycobacteria to be more sensitive to acid. In hypoxic conditions, mild-acidity promoted the dissipation of the protonmotive force, rapid ATP depletion and cell death. Exogenous nitrate, the most effective alternate terminal electron acceptor after molecular oxygen, protected hypoxic mycobacteria from acid stress. Nitrate-mediated resistance to acidity was not observed for a respiratory nitrate reductase NarGH knock-out mutant strain. Furthermore, we found that nitrate respiration was equally important in protecting hypoxic non-replicating mycobacteria from radical nitrogen species toxicity. Overall, these data shed light on a new role for nitrate respiration in protecting M. tuberculosis from acidity and reactive nitrogen species, two environmental stresses likely encountered by the pathogen during the course of infection.
Collapse
|
407
|
Detrimental effects of hypoxia-specific expression of uracil DNA glycosylase (Ung) in Mycobacterium smegmatis. J Bacteriol 2010; 192:6439-46. [PMID: 20971917 DOI: 10.1128/jb.00679-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis is known to reside latently in a significant fraction of the human population. Although the bacterium possesses an aerobic mode of metabolism, it adapts to persistence under hypoxic conditions such as those encountered in granulomas. While in mammalian systems hypoxia is a recognized DNA-damaging stress, aspects of DNA repair in mycobacteria under such conditions have not been studied. We subjected Mycobacterium smegmatis, a model organism, to the Wayne's protocol of hypoxia. Analysis of the mRNA of a key DNA repair enzyme, uracil DNA glycosylase (Ung), by real-time reverse transcriptase PCR (RT-PCR) revealed its downregulation during hypoxia. However, within an hour of recovery of the culture under normal oxygen levels, the Ung mRNA was restored. Analysis of Ung by immunoblotting and enzyme assays supported the RNA analysis results. To understand its physiological significance, we misexpressed Ung in M. smegmatis by using a hypoxia-responsive promoter of narK2 from M. tuberculosis. Although the misexpression of Ung during hypoxia decreased C-to-T mutations, it compromised bacterial survival upon recovery at normal oxygen levels. RT-PCR analysis of other base excision repair gene transcripts (UdgB and Fpg) suggested that these DNA repair functions also share with Ung the phenomenon of downregulation during hypoxia and recovery with return to normal oxygen conditions. We discuss the potential utility of this phenomenon in developing attenuated strains of mycobacteria.
Collapse
|
408
|
Haagsma AC, Driessen NN, Hahn MM, Lill H, Bald D. ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction. FEMS Microbiol Lett 2010; 313:68-74. [PMID: 21039782 DOI: 10.1111/j.1574-6968.2010.02123.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
ATP synthase is a validated drug target for the treatment of tuberculosis, and ATP synthase inhibitors are promising candidate drugs for the treatment of infections caused by other slow-growing mycobacteria, such as Mycobacterium leprae and Mycobacterium ulcerans. ATP synthase is an essential enzyme in the energy metabolism of Mycobacterium tuberculosis; however, no biochemical data are available to characterize the role of ATP synthase in slow-growing mycobacterial strains. Here, we show that inverted membrane vesicles from the slow-growing model strain Mycobacterium bovis BCG are active in ATP synthesis, but ATP synthase displays no detectable ATP hydrolysis activity and does not set up a proton-motive force (PMF) using ATP as a substrate. Treatment with methanol as well as PMF activation unmasked the ATP hydrolysis activity, indicating that the intrinsic subunit ɛ and inhibitory ADP are responsible for the suppression of hydrolytic activity. These results suggest that the enzyme is needed for the synthesis of ATP, not for the maintenance of the PMF. For the development of new antimycobacterial drugs acting on ATP synthase, screening for ATP synthesis inhibitors, but not for ATP hydrolysis blockers, can be regarded as a promising strategy.
Collapse
Affiliation(s)
- Anna C Haagsma
- Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
409
|
Welsh KJ, Hwang SA, Hunter RL, Kruzel ML, Actor JK. Lactoferrin modulation of mycobacterial cord factor trehalose 6-6'-dimycolate induced granulomatous response. Transl Res 2010; 156:207-15. [PMID: 20875896 PMCID: PMC2948024 DOI: 10.1016/j.trsl.2010.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/03/2010] [Accepted: 06/07/2010] [Indexed: 11/17/2022]
Abstract
The immune system responds to tuberculosis (TB) infection by forming granulomas. However, subsequent immune-mediated destruction of lung tissue is a cause of significant morbidity and contributes to disease transmission. Lactoferrin, an iron-binding glycoprotein, has demonstrated immunomodulatory properties that decrease tissue destruction and promote T(H)1 immune responses, both of which are essential for controlling TB infection. The cord factor trehalose 6,6'-dimycolate (TDM) model of granuloma formation mimics many aspects of TB infection with a similar histopathology accompanied by proinflammatory cytokine production. C57BL/6 mice were injected intravenously with TDM. A subset of mice was given 1 mg of bovine lactoferrin 24 h post-TDM challenge. Lung tissue was analyzed for histological response and for the production of proinflammatory mediators. C57BL/6 mice demonstrated a granuloma formation that correlated with an increased production of interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α,) IL-12p40, interferon-gamma (IFN-γ), and IL-10 protein. Mice treated with lactoferrin postchallenge had significantly fewer and smaller granulomas compared with those given TDM alone. Proinflammatory and T(H)1 cytokines essential to the control of mycobacterial infections, such as TNF-α and IFN-γ, were not significantly different in mice treated with lactoferrin. Furthermore, the anti-inflammatory cytokines IL-10 and transforming growth factor-β were increased. A potential mechanism for decreased tissue damage observed in the lactoferrin-treated mice is proposed. Because of its influence to modulate immune responses, lactoferrin may be a useful adjunct in the treatment of granulomatous inflammation occurring during mycobacterial infection.
Collapse
Affiliation(s)
- Kerry J Welsh
- Medical School, Department of Pathology and Laboratory Medicine, University of Texas-Houston, Houston, Tex 77030, USA
| | | | | | | | | |
Collapse
|
410
|
Kim MJ, Park KJ, Ko IJ, Kim YM, Oh JI. Different roles of DosS and DosT in the hypoxic adaptation of Mycobacteria. J Bacteriol 2010; 192:4868-75. [PMID: 20675480 PMCID: PMC2944544 DOI: 10.1128/jb.00550-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/22/2010] [Indexed: 11/20/2022] Open
Abstract
The DosS (DevS) and DosT histidine kinases form a two-component system together with the DosR (DevR) response regulator in Mycobacterium tuberculosis. DosS and DosT, which have high sequence similarity to each other over the length of their amino acid sequences, contain two GAF domains (GAF-A and GAF-B) in their N-terminal sensory domains. Complementation tests in conjunction with phylogenetic analysis showed that DevS of Mycobacterium smegmatis is more closely related to DosT than DosS. We also demonstrated in vivo that DosS and DosT of M. tuberculosis play a differential role in hypoxic adaptation. DosT responds to a decrease in oxygen tension more sensitively and strongly than DosS, which might be attributable to their different autooxidation rates. The different responsiveness of DosS and DosT to hypoxia is due to the difference in their GAF-A domains accommodating the hemes. Multiple alignment analysis of the GAF-A domains of mycobacterial DosS (DosT) homologs and subsequent site-directed mutagenesis revealed that just one substitution of E87, D90, H97, L118, or T169 of DosS with the corresponding residue of DosT is sufficient to convert DosS to DosT with regard to the responsiveness to changes in oxygen tension.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Microbiology, Pusan National University, 609-735 Busan, South Korea, Korea Science Academy of KAIST, 614-822 Busan, South Korea, Department of Biology, Yonsei University, 120-749 Seoul, South Korea
| | - Kwang-Jin Park
- Department of Microbiology, Pusan National University, 609-735 Busan, South Korea, Korea Science Academy of KAIST, 614-822 Busan, South Korea, Department of Biology, Yonsei University, 120-749 Seoul, South Korea
| | - In-Jeong Ko
- Department of Microbiology, Pusan National University, 609-735 Busan, South Korea, Korea Science Academy of KAIST, 614-822 Busan, South Korea, Department of Biology, Yonsei University, 120-749 Seoul, South Korea
| | - Young Min Kim
- Department of Microbiology, Pusan National University, 609-735 Busan, South Korea, Korea Science Academy of KAIST, 614-822 Busan, South Korea, Department of Biology, Yonsei University, 120-749 Seoul, South Korea
| | - Jeong-Il Oh
- Department of Microbiology, Pusan National University, 609-735 Busan, South Korea, Korea Science Academy of KAIST, 614-822 Busan, South Korea, Department of Biology, Yonsei University, 120-749 Seoul, South Korea
| |
Collapse
|
411
|
Letek M, González P, MacArthur I, Rodríguez H, Freeman TC, Valero-Rello A, Blanco M, Buckley T, Cherevach I, Fahey R, Hapeshi A, Holdstock J, Leadon D, Navas J, Ocampo A, Quail MA, Sanders M, Scortti MM, Prescott JF, Fogarty U, Meijer WG, Parkhill J, Bentley SD, Vázquez-Boland JA. The genome of a pathogenic rhodococcus: cooptive virulence underpinned by key gene acquisitions. PLoS Genet 2010; 6:e1001145. [PMID: 20941392 PMCID: PMC2947987 DOI: 10.1371/journal.pgen.1001145] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 08/31/2010] [Indexed: 11/29/2022] Open
Abstract
We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid-rich intestine and manure of herbivores--two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche-adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT-acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi.
Collapse
Affiliation(s)
- Michal Letek
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Patricia González
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Irish Equine Centre, Johnstown, Naas, Ireland
| | - Iain MacArthur
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Irish Equine Centre, Johnstown, Naas, Ireland
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Héctor Rodríguez
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Irish Equine Centre, Johnstown, Naas, Ireland
| | - Tom C. Freeman
- Division of Genetics and Genomics, Roslin BioCentre, University of Edinburgh, Edinburgh, United Kingdom
| | - Ana Valero-Rello
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Irish Equine Centre, Johnstown, Naas, Ireland
| | - Mónica Blanco
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Irish Equine Centre, Johnstown, Naas, Ireland
| | - Tom Buckley
- Irish Equine Centre, Johnstown, Naas, Ireland
| | - Inna Cherevach
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Ruth Fahey
- School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Alexia Hapeshi
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Jolyon Holdstock
- Oxford Gene Technology, Begbroke Science Park, Oxford, United Kingdom
| | | | - Jesús Navas
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | | | - Michael A. Quail
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Mandy Sanders
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Mariela M. Scortti
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Departamento de Bioquímica y Biología Molecular IV, Universidad Complutense, Madrid, Spain
| | - John F. Prescott
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | | | - Wim G. Meijer
- School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Julian Parkhill
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Stephen D. Bentley
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - José A. Vázquez-Boland
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Grupo de Patogenómica Bacteriana, Universidad de León, León, Spain
| |
Collapse
|
412
|
Zhu L, Sharp JD, Kobayashi H, Woychik NA, Inouye M. Noncognate Mycobacterium tuberculosis toxin-antitoxins can physically and functionally interact. J Biol Chem 2010; 285:39732-8. [PMID: 20876537 DOI: 10.1074/jbc.m110.163105] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Mycobacterium tuberculosis genome harbors a striking number (>40) of toxin-antitoxin systems. Among them are at least seven MazF orthologs, designated MazF-mt1 through MazF-mt7, four of which have been demonstrated to function as mRNA interferases that selectively target mRNA for cleavage at distinct consensus sequences. As is characteristic of all toxin-antitoxin systems, each of the mazF-mt toxin genes is organized in an operon downstream of putative antitoxin genes. However, only one of the seven putative upstream antitoxins (designated MazE-mt1 through MazE-mt7) has significant sequence similarity to Escherichia coli MazE, the cognate antitoxin for E. coli MazF. Interestingly, the M. tuberculosis genome contains two independent operons encoding E. coli MazE orthologs, but they are not paired with mazF-mt-like genes. Instead, the genes encoding these two MazE orthologs are each paired with proteins containing a PIN domain, indicating that they may be members of the very large VapBC toxin-antitoxin family. We tested a spectrum of pair-wise combinations of cognate and noncognate Mtb toxin-antitoxins using in vivo toxicity and rescue experiments along with in vitro interaction experiments. Surprisingly, we uncovered several examples of noncognate toxin-antitoxin association, even among different families (e.g. MazF toxins and VapB antitoxins). These results challenge the "one toxin for one antitoxin" dogma and suggest that M. tuberculosis may enlist a sophisticated toxin-antitoxin network to alter its physiology in response to environmental cues.
Collapse
Affiliation(s)
- Ling Zhu
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA
| | | | | | | | | |
Collapse
|
413
|
Dick T, Manjunatha U, Kappes B, Gengenbacher M. Vitamin B6 biosynthesis is essential for survival and virulence of Mycobacterium tuberculosis. Mol Microbiol 2010; 78:980-8. [PMID: 20815826 DOI: 10.1111/j.1365-2958.2010.07381.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
With 500000 cases of multidrug-resistant tuberculosis there is an urgent need for attractive targets to enable the discovery of novel antimycobacterials. The biosynthesis of essential cofactors is of particular interest as these pathways are absent in man and their inhibition is expected to affect the metabolism of Mycobacterium tuberculosis at multiple sites. Our data demonstrate that the pathogen synthesizes pyridoxal 5-phosphate (PLP), the bioactive form of vitamin B6, by a heteromeric PLP synthase composed of Pdx1 (Rv2606c) and Pdx2 (Rv2604c). Disruption of the pdx1 gene generated a strictly B6 auxotrophic M. tuberculosis mutant, Δpdx1. Removal of the cofactor during exponential growth or stationary phase demonstrated the essentiality of vitamin B6 biosynthesis for growth and survival of the pathogen in culture. In a tuberculosis dormancy model based on gradual oxygen depletion, de novo biosynthesis of PLP was required for regrowth of the bacillus after direct oxygen exposure. The Δpdx1 mutant showed a severe growth defect in immunocompetent mice: bacilli applied intranasally failed to persist in host tissues and were quickly cleared. We conclude that vitamin B6 biosynthesis is required for survival of M. tuberculosis in vivo and thus might represent a candidate pathway for the development of new antitubercular agents.
Collapse
Affiliation(s)
- Thomas Dick
- Novartis Institute for Tropical Diseases Pte. Ltd., 10 Biopolis Road, #05-01 Chromos, Singapore 138670, Singapore
| | | | | | | |
Collapse
|
414
|
Fivian-Hughes AS, Davis EO. Analyzing the regulatory role of the HigA antitoxin within Mycobacterium tuberculosis. J Bacteriol 2010; 192:4348-56. [PMID: 20585061 PMCID: PMC2937366 DOI: 10.1128/jb.00454-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 06/18/2010] [Indexed: 12/31/2022] Open
Abstract
Bacterial chromosomally encoded type II toxin-antitoxin (TA) loci may be involved in survival upon exposure to stress and have been linked to persistence and dormancy. Therefore, understanding the role of the numerous predicted TA loci within the human pathogen Mycobacterium tuberculosis has become a topic of great interest. Antitoxin proteins are known to autoregulate TA expression under normal growth conditions, but it is unknown whether they have a more global role in transcriptional regulation. This study focuses on analyzing the regulatory role of the M. tuberculosis HigA antitoxin. We first show that the M. tuberculosis higBA locus is functional within its native organism, as higB, higA, and Rv1957 were successfully deleted from the genome together while the deletion of higA alone was not possible. The effects of higB-Rv1957 deletion on M. tuberculosis global gene expression were investigated, and a number of potential HigA-regulated genes were identified. Transcriptional fusion and protein-DNA-binding assays were utilized to confirm the direct role of HigA in Rv1954A-Rv1957 repression, and the M. tuberculosis HigA DNA-binding motif was defined as ATATAGG(N(6))CCTATAT. As HigA failed to bind to the next-most-closely related motif within the M. tuberculosis genome, HigA may not directly regulate any other genes in addition to its own operon.
Collapse
Affiliation(s)
- Amanda S. Fivian-Hughes
- Division of Mycobacterial Research, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | - Elaine O. Davis
- Division of Mycobacterial Research, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| |
Collapse
|
415
|
Sigma factor F does not prevent rifampin inhibition of RNA polymerase or cause rifampin tolerance in Mycobacterium tuberculosis. J Bacteriol 2010; 192:5472-9. [PMID: 20729364 DOI: 10.1128/jb.00687-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tolerance of Mycobacterium tuberculosis to antituberculosis drugs is a major reason for the lengthy therapy needed to treat a tuberculosis infection. Rifampin is a potent inhibitor of RNA polymerase (RNAP) in vivo but has been shown to be less effective against stationary-phase bacteria. Sigma factor F is associated with bacteria entering stationary phase and has been proposed to impact rifampin activity. Here we investigate whether RNAP containing SigF is more resistant to rifampin inhibition in vitro and whether overexpression of sigF renders M. tuberculosis more tolerant to rifampin. Real-time and radiometric in vitro transcription assays revealed that rifampin equally inhibits transcription by RNAP containing sigma factors SigA and SigF, therefore ruling out the hypothesis that SigF may be responsible for increased resistance of the enzyme to rifampin in vitro. In addition, overexpression or deletion of sigF did not alter rifampin susceptibility in axenic cultures of M. tuberculosis, indicating that SigF does not affect rifampin tolerance in vivo.
Collapse
|
416
|
Simple model for testing drugs against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 2010; 54:4150-8. [PMID: 20679505 DOI: 10.1128/aac.00821-10] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonreplicating or dormant cells of Mycobacterium tuberculosis constitute a challenge to tuberculosis (TB) therapy because of their tolerance or phenotypic resistance to most drugs. Here, we propose a simple model for testing drugs against nongrowing cells that exploits the 18b strain of M. tuberculosis, a streptomycin (STR)-dependent mutant. Optimal conditions were established that allowed 18b cells to replicate in the presence of STR and to survive, but not multiply, following withdrawal of STR. In the presence of the antibiotic, M. tuberculosis 18b was susceptible to the currently approved TB drugs, isoniazid (INH) and rifampin (RIF), and to the experimental drugs TMC207, PA-824, meropenem (MER), benzothiazinone (BTZ), and moxifloxacin (MOXI). After STR depletion, the strain displayed greatly reduced susceptibility to the cell wall inhibitors INH and BTZ but showed increased susceptibility to RIF and PA-824, while MOXI and MER appeared equipotent under both conditions. The same potency ranking was found against nonreplicating M. tuberculosis 18b after in vivo treatment of chronically infected mice with five of these drugs. Despite the growth arrest, strain 18b retains significant metabolic activity in vitro, remaining positive in the resazurin reduction assay. Upon adaption to a 96-well format, this assay was shown to be suitable for high-throughput screening with strain 18b to find new inhibitors of dormant M. tuberculosis.
Collapse
|
417
|
Barry CE, Blanchard JS. The chemical biology of new drugs in the development for tuberculosis. Curr Opin Chem Biol 2010; 14:456-66. [PMID: 20452813 PMCID: PMC2918717 DOI: 10.1016/j.cbpa.2010.04.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/06/2010] [Accepted: 04/12/2010] [Indexed: 11/30/2022]
Abstract
With the worldwide emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis (Mtb), there are serious concerns about the continued ability to contain this disease. We discuss the most promising new drugs in late-stage development that might be useful in treating MDR and XDR forms of the disease. These agents have novel mechanisms of action that are not targeted by the standard drugs used presently to treat susceptible strains.
Collapse
Affiliation(s)
- Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Infectious Disease, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20892, United States
| | | |
Collapse
|
418
|
Tudó G, Laing K, Mitchison DA, Butcher PD, Waddell SJ. Examining the basis of isoniazid tolerance in nonreplicating Mycobacterium tuberculosis using transcriptional profiling. Future Med Chem 2010; 2:1371-83. [PMID: 21426023 PMCID: PMC7166126 DOI: 10.4155/fmc.10.219] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Understanding how growth state influences Mycobacterium tuberculosis responses to antibiotic exposure provides a window into drug action during patient chemotherapy. In this article, we describe the transcriptional programs mediated by isoniazid (INH) during the transition from log-phase to nonreplicating bacilli, from INH-sensitive to INH-tolerant bacilli respectively, using the Wayne model. RESULTS INH treatment did not elicit a transcriptional response from nonreplicating bacteria under microarophilic conditions (NRP2), unlike the induction of a robust and well-characterized INH signature in log-phase bacilli. CONCLUSION The differential regulation (between drug-free NRP2 and log-phase bacilli) of genes directly implicated in INH resistance could not account for the abrogation of INH killing in nongrowing bacilli. Thus, factors affecting the requirement for mycolic acids and the redox status of bacilli are likely responsible for the reduction in INH efficacy. We speculate on additional mechanisms revealed by transcriptome analysis that might account for INH tolerance.
Collapse
Affiliation(s)
- Griselda Tudó
- Medical Microbiology, Centre for Infection, Division of Cellular & Molecular Medicine, St George’s University of London, London, SW17 0RE, UK
- Hospital Clínic-IDBAPS, Universitat de Barcelona, Spain
| | - Ken Laing
- Medical Microbiology, Centre for Infection, Division of Cellular & Molecular Medicine, St George’s University of London, London, SW17 0RE, UK
| | - Denis A Mitchison
- Medical Microbiology, Centre for Infection, Division of Cellular & Molecular Medicine, St George’s University of London, London, SW17 0RE, UK
| | - Philip D Butcher
- Medical Microbiology, Centre for Infection, Division of Cellular & Molecular Medicine, St George’s University of London, London, SW17 0RE, UK
| | - Simon J Waddell
- Medical Microbiology, Centre for Infection, Division of Cellular & Molecular Medicine, St George’s University of London, London, SW17 0RE, UK
- Medical School Teaching Building, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| |
Collapse
|
419
|
Nikonenko BV, Einck L, Nacy CA. Anti-tuberculosis drug therapy in mice of different inbred strains. INFECTION GENETICS AND EVOLUTION 2010; 10:1151-4. [PMID: 20655396 DOI: 10.1016/j.meegid.2010.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/11/2010] [Accepted: 07/15/2010] [Indexed: 10/24/2022]
Abstract
Standard anti-tuberculosis (TB) drug therapy had distinct effects on the bacilli burden in mice of DBA/2, C3H, SWR/J, and C57BL/6 inbred strains. To standardize the TB infection process, susceptible DBA/2 mice were infected with 1/10 of the dose used for relatively resistant C57BL/6 mice, such that the lung CFUs were roughly identical 3 weeks after infection when therapy was initiated. We found that TB treatment was more effective in the susceptible DBA/2 mice than in the relatively resistant C57BL/6 mice.
Collapse
|
420
|
Russell DG, VanderVen BC, Lee W, Abramovitch RB, Kim M, Homolka S, Niemann S, Rohde KH. Mycobacterium tuberculosis wears what it eats. Cell Host Microbe 2010; 8:68-76. [PMID: 20638643 PMCID: PMC2929656 DOI: 10.1016/j.chom.2010.06.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/07/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Abstract
Mycobacterium tuberculosis remains one of the most pernicious of human pathogens. Current vaccines are ineffective, and drugs, although efficacious, require prolonged treatment with constant medical oversight. Overcoming these problems requires a greater appreciation of M. tuberculosis in the context of its host. Upon infection of either macrophages in culture or animal models, the bacterium realigns its metabolism in response to the new environments it encounters. Understanding these environments, and the stresses that they place on M. tuberculosis, should provide insights invaluable for the development of new chemo- and immunotherapeutic strategies.
Collapse
Affiliation(s)
- David G. Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Brian C. VanderVen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Wonsik Lee
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Robert B. Abramovitch
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | - Susanne Homolka
- Molecular Mycobacteriology, Research Center Borstel, 23845, Borstel, Germany
| | - Stefan Niemann
- Molecular Mycobacteriology, Research Center Borstel, 23845, Borstel, Germany
| | - Kyle H. Rohde
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
421
|
Low KL, Shui G, Natter K, Yeo WK, Kohlwein SD, Dick T, Rao SPS, Wenk MR. Lipid droplet-associated proteins are involved in the biosynthesis and hydrolysis of triacylglycerol in Mycobacterium bovis bacillus Calmette-Guerin. J Biol Chem 2010; 285:21662-70. [PMID: 20452973 PMCID: PMC2898439 DOI: 10.1074/jbc.m110.135731] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 05/06/2010] [Indexed: 11/06/2022] Open
Abstract
Mycobacteria store triacylglycerols (TGs) in the form of intracellular lipid droplets (LDs) during hypoxia-induced nonreplicating persistence. These bacteria are phenotypically drug-resistant and therefore are believed to be the cause for prolonged tuberculosis treatment. LDs are also associated with bacilli in tuberculosis patient sputum and hypervirulent strains. Although proteins bound to LDs are well characterized in eukaryotes, the identities and functions of such proteins have not been described in mycobacteria. Here, we have identified five proteins: Tgs1 (BCG3153c), Tgs2 (BCG3794c), BCG1169c, BCG1489c, and BCG1721, which are exclusively associated with LDs purified from hypoxic nonreplicating Mycobacterium bovis bacillus Calmette-Guérin (BCG). Disruption of genes tgs1, tgs2, BCG1169c, and BCG1489c in M. bovis BCG revealed that they are indeed involved in TG metabolism. We also characterized BCG1721, an essential bi-functional enzyme capable of promoting buildup and hydrolysis of TGs, depending on the metabolic state. Nonreplicating mycobacteria overexpressing a BCG1721 construct with an inactive lipase domain displayed a phenotype of attenuated TG breakdown and regrowth upon resuscitation. In addition, by heterologous expression in baker's yeast, these mycobacterial proteins also co-localized with LDs and complemented a lipase-deficient yeast strain, indicating that neutral lipid deposition and homeostasis in eukaryotic and prokaryotic microorganisms are functionally related. The demonstrated functional role of BCG1721 to support growth upon resuscitation makes this novel LD-associated factor a potential new target for therapeutic intervention.
Collapse
Affiliation(s)
- Kai Leng Low
- From the NUS Graduate School for Integrative Sciences and Engineering
| | - Guanghou Shui
- the Department of Biochemistry, Yong Loo Lin School of Medicine, and
| | - Klaus Natter
- the Institute of Molecular Biosciences, University of Graz, A8010 Graz, Austria
| | - Wee Kiang Yeo
- the Novartis Institute for Tropical Diseases, Singapore 138670, and
| | - Sepp D. Kohlwein
- the Institute of Molecular Biosciences, University of Graz, A8010 Graz, Austria
| | - Thomas Dick
- the Novartis Institute for Tropical Diseases, Singapore 138670, and
| | | | - Markus R. Wenk
- From the NUS Graduate School for Integrative Sciences and Engineering
- the Department of Biochemistry, Yong Loo Lin School of Medicine, and
- the Department of Biological Sciences, Faculty of Science, National University of Singapore (NUS), Singapore 117456
| |
Collapse
|
422
|
Sriram D, Yogeeswari P, Vyas DRK, Senthilkumar P, Bhat P, Srividya M. 5-Nitro-2-furoic acid hydrazones: design, synthesis and in vitro antimycobacterial evaluation against log and starved phase cultures. Bioorg Med Chem Lett 2010; 20:4313-6. [PMID: 20615698 DOI: 10.1016/j.bmcl.2010.06.096] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/09/2010] [Accepted: 06/17/2010] [Indexed: 10/19/2022]
Abstract
Various 5-nitro-2-furoic acid hydrazones were synthesized and evaluated for in vitro activities against log and starved phase culture of two mycobacterial species and Mycobacterium tuberculosis (MTB) isocitrate lyase (ICL) enzyme inhibition studies. Among twenty one compounds, 5-nitro-N'-[(5-nitro-2-furyl)methylidene]-2-furohydrazide (4o) was found to be the most active compound in vitro with MICs of 2.65 and 10.64 microM against log- and starved-phase culture of MTB. Compound 4o also showed good enzyme inhibition of MTB ICL at 10 microM. The docking studies also confirmed the binding potential of the compounds at the ICL active site.
Collapse
Affiliation(s)
- Dharmarajan Sriram
- Medicinal Chemistry & Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Andhra Pradesh, India.
| | | | | | | | | | | |
Collapse
|
423
|
Schnell R, Schneider G. Structural enzymology of sulphur metabolism in Mycobacterium tuberculosis. Biochem Biophys Res Commun 2010; 396:33-8. [PMID: 20494107 DOI: 10.1016/j.bbrc.2010.02.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
Abstract
The emergence of multidrug-resistant strains of Mycobacterium tuberculosis poses a serious threat to human health and has led to world-wide efforts focusing on the development of novel vaccines and antibiotics against this pathogen. Sulphur metabolism in this organism has been linked to essential processes such as virulence and redox defence. The cysteine biosynthetic pathway is up-regulated in models of persistent M. tuberculosis infections and provides potential targets for novel anti-mycobacterial agents, directed specifically toward the pathogen in its persistent phase. Functional and structural characterization of enzymes from sulfur metabolism establishes a necessary framework for the design of strong binding inhibitors that might be developed into new drugs. This review summarizes recent progress in the elucidation of the structural enzymology of the sulphate reduction and cysteine biosynthesis pathways.
Collapse
Affiliation(s)
- Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | |
Collapse
|
424
|
Chaturvedi R, Bansal K, Narayana Y, Kapoor N, Sukumar N, Togarsimalemath SK, Chandra N, Mishra S, Ajitkumar P, Joshi B, Katoch VM, Patil SA, Balaji KN. The multifunctional PE_PGRS11 protein from Mycobacterium tuberculosis plays a role in regulating resistance to oxidative stress. J Biol Chem 2010; 285:30389-403. [PMID: 20558725 DOI: 10.1074/jbc.m110.135251] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mycobacterium tuberculosis utilizes unique strategies to survive amid the hostile environment of infected host cells. Infection-specific expression of a unique mycobacterial cell surface antigen that could modulate key signaling cascades can act as a key survival strategy in curtailing host effector responses like oxidative stress. We demonstrate here that hypothetical PE_PGRS11 ORF encodes a functional phosphoglycerate mutase. The transcriptional analysis revealed that PE_PGRS11 is a hypoxia-responsive gene, and enforced expression of PE_PGRS11 by recombinant adenovirus or Mycobacterium smegmatis imparted resistance to alveolar epithelial cells against oxidative stress. PE_PGRS11-induced resistance to oxidative stress necessitated the modulation of genetic signatures like induced expression of Bcl2 or COX-2. This modulation of specific antiapoptotic molecular signatures involved recognition of PE_PGRS11 by TLR2 and subsequent activation of the PI3K-ERK1/2-NF-κB signaling axis. Furthermore, PE_PGRS11 markedly diminished H(2)O(2)-induced p38 MAPK activation. Interestingly, PE_PGRS11 protein was exposed at the mycobacterial cell surface and was involved in survival of mycobacteria under oxidative stress. Furthermore, PE_PGRS11 displayed differential B cell responses during tuberculosis infection. Taken together, our investigation identified PE_PGRS11 as an in vivo expressed immunodominant antigen that plays a crucial role in modulating cellular life span restrictions imposed during oxidative stress by triggering TLR2-dependent expression of COX-2 and Bcl2. These observations clearly provide a mechanistic basis for the rescue of pathogenic Mycobacterium-infected lung epithelial cells from oxidative stress.
Collapse
Affiliation(s)
- Rashmi Chaturvedi
- Department of Microbiology and Cell Biology, Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
425
|
Schobert M, Tielen P. Contribution of oxygen-limiting conditions to persistent infection of Pseudomonas aeruginosa. Future Microbiol 2010; 5:603-21. [PMID: 20353301 DOI: 10.2217/fmb.10.16] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is a versatile opportunistic human pathogen that is able to colonize a broad spectrum of different aquatic and soil habitats. In the environment and during pathogenesis, P. aeruginosa encounters oxygen-limited and anaerobic environments. Particularly during chronic infection of the cystic fibrosis lung, oxygen-limiting conditions seem to contribute to persistent infection. Oxygen limitation increases antibiotic tolerance, robust biofilms and alginate biosynthesis, which contribute to the persistence of this opportunistic pathogen. Despite the importance of anaerobic metabolism during persistent infection of P. aeruginosa, we are just beginning to understand the underlying regulatory network and the molecular basis of how anaerobic metabolism contributes to a persistent infection. A deeper understanding of the anaerobic physiology of P. aeruginosa will allow the identification of new antibiotic targets and new therapeutic strategies.
Collapse
Affiliation(s)
- Max Schobert
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.
| | | |
Collapse
|
426
|
Ryan GJ, Hoff DR, Driver ER, Voskuil MI, Gonzalez-Juarrero M, Basaraba RJ, Crick DC, Spencer JS, Lenaerts AJ. Multiple M. tuberculosis phenotypes in mouse and guinea pig lung tissue revealed by a dual-staining approach. PLoS One 2010; 5:e11108. [PMID: 20559431 PMCID: PMC2885421 DOI: 10.1371/journal.pone.0011108] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 05/25/2010] [Indexed: 11/18/2022] Open
Abstract
A unique hallmark of tuberculosis is the granulomatous lesions formed in the lung. Granulomas can be heterogeneous in nature and can develop a necrotic, hypoxic core which is surrounded by an acellular, fibrotic rim. Studying bacilli in this in vivo microenvironment is problematic as Mycobacterium tuberculosis can change its phenotype and also become acid-fast negative. Under in vitro models of differing environments, M. tuberculosis alters its metabolism, transcriptional profile and rate of replication. In this study, we investigated whether these phenotypic adaptations of M. tuberculosis are unique for certain environmental conditions and if they could therefore be used as differential markers. Bacilli were studied using fluorescent acid-fast auramine-rhodamine targeting the mycolic acid containing cell wall, and immunofluorescence targeting bacterial proteins using an anti-M. tuberculosis whole cell lysate polyclonal antibody. These techniques were combined and simultaneously applied to M. tuberculosis in vitro culture samples and to lung sections of M. tuberculosis infected mice and guinea pigs. Two phenotypically different subpopulations of M. tuberculosis were found in stationary culture whilst three subpopulations were found in hypoxic culture and in lung sections. Bacilli were either exclusively acid-fast positive, exclusively immunofluorescent positive or acid-fast and immunofluorescent positive. These results suggest that M. tuberculosis exists as multiple populations in most conditions, even within seemingly a single microenvironment. This is relevant information for approaches that study bacillary characteristics in pooled samples (using lipidomics and proteomics) as well as in M. tuberculosis drug development.
Collapse
Affiliation(s)
- Gavin J. Ryan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Donald R. Hoff
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Emily R. Driver
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Martin I. Voskuil
- School of Medicine, University of Colorado Denver, Denver, Colorado, United States of America
| | - Mercedes Gonzalez-Juarrero
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Randall J. Basaraba
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Dean C. Crick
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - John S. Spencer
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Anne J. Lenaerts
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
427
|
Abstract
New vaccines are urgently needed if we want to reach the goal of substantially reducing the incidence of tuberculosis by 2050. Despite a steady increase in funding over the past decade, there is still a striking financial shortfall for vaccine research and development for tuberculosis. Yet, around ten vaccine candidates have left the laboratory stage and entered clinical trials. These vaccines are either aimed at replacing the present vaccine, BCG, or at enhancing immunity induced by BCG. However, these pre-exposure candidates are designed for prevention of disease and will therefore neither eradicate the pathogen, nor prevent stable infection. Long-term vaccination strategies need to target these more ambitious goals. Even though vaccine development will have a price, the return of investment will greatly exceed original costs.
Collapse
Affiliation(s)
- Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany.
| | | | | |
Collapse
|
428
|
Hingley-Wilson SM, Lougheed KEA, Ferguson K, Leiva S, Williams HD. Individual Mycobacterium tuberculosis universal stress protein homologues are dispensable in vitro. Tuberculosis (Edinb) 2010; 90:236-44. [PMID: 20541977 PMCID: PMC2914252 DOI: 10.1016/j.tube.2010.03.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/16/2010] [Accepted: 03/31/2010] [Indexed: 01/25/2023]
Abstract
Mycobacterium tuberculosis has 10 universal stress proteins, whose function is unknown. However, proteomic and transcriptomic analyses have shown that a number of usp genes are significantly upregulated under hypoxic conditions and in response to nitric oxide and carbon monoxide, as well as during M. tuberculosis infection of macrophage cell lines. Six of these USPs are part of the DosR regulon and this, along with their expression pattern and the phenotypes of usp mutants in other bacterial species, suggests a potential role in the persistence and/or intracellular survival of Mtb. Knock-out mutants of individual usp genes encoding the USPs Rv1996, Rv2005c, Rv2026c and Rv2028c were generated and their growth and survival under hypoxic and other stress conditions examined. Although the majority of usp genes are highly induced in hypoxic conditions, mutation did not affect the long term survival of Mtb under these conditions, or in response to a range of stress conditions chosen to represent the environmental onslaughts experienced by the bacillus during an infection, nor during infection of mouse and human - derived macrophage cell lines. The possibility remains that these USPs are functionally redundant in Mtb.
Collapse
Affiliation(s)
- S M Hingley-Wilson
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
429
|
Mycobacterium tuberculosis transcriptional adaptation, growth arrest and dormancy phenotype development is triggered by vitamin C. PLoS One 2010; 5:e10860. [PMID: 20523728 PMCID: PMC2877710 DOI: 10.1371/journal.pone.0010860] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/30/2010] [Indexed: 12/03/2022] Open
Abstract
Background Tubercle bacilli are thought to persist in a dormant state during latent tuberculosis (TB) infection. Although little is known about the host factors that induce and maintain Mycobacterium tuberculosis (M. tb) within latent lesions, O2 depletion, nutrient limitation and acidification are some of the stresses implicated in bacterial dormancy development/growth arrest. Adaptation to hypoxia and exposure to NO/CO is implemented through the DevRS/DosT two-component system which induces the dormancy regulon. Methodology/Principal Findings Here we show that vitamin C (ascorbic acid/AA) can serve as an additional signal to induce the DevR regulon. Physiological levels of AA scavenge O2 and rapidly induce the DevR regulon at an estimated O2 saturation of <30%. The kinetics and magnitude of the response suggests an initial involvement of DosT and a sustained DevS-mediated response during bacterial adaptation to increasing hypoxia. In addition to inducing DevR regulon mechanisms, vitamin C induces the expression of selected genes previously shown to be responsive to low pH and oxidative stress, triggers bacterial growth arrest and promotes dormancy phenotype development in M. tb grown in axenic culture and intracellularly in THP-1 cells. Conclusions/Significance Vitamin C mimics multiple intracellular stresses and has wide-ranging regulatory effects on gene expression and physiology of M. tb which leads to growth arrest and a ‘dormant’ drug-tolerant phenotype, but in a manner independent of the DevRS/DosT sytem. The ‘AA-dormancy infection model’ offers a potential alternative to other models of non-replicating persistence of M. tb and may be useful for investigating host-‘dormant’ M. tb interactions. Our findings offer a new perspective on the role of nutritional factors in TB and suggest a possible role for vitamin C in TB.
Collapse
|
430
|
|
431
|
Singh B, Ghosh J, Islam NM, Dasgupta S, Kirsebom LA. Growth, cell division and sporulation in mycobacteria. Antonie van Leeuwenhoek 2010; 98:165-77. [PMID: 20437098 PMCID: PMC2906719 DOI: 10.1007/s10482-010-9446-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 04/13/2010] [Indexed: 01/25/2023]
Abstract
Bacteria have the ability to adapt to different growth conditions and to survive in various environments. They have also the capacity to enter into dormant states and some bacteria form spores when exposed to stresses such as starvation and oxygen deprivation. Sporulation has been demonstrated in a number of different bacteria but Mycobacterium spp. have been considered to be non-sporulating bacteria. We recently provided evidence that Mycobacterium marinum and likely also Mycobacterium bovis bacillus Calmette–Guérin can form spores. Mycobacterial spores were detected in old cultures and our findings suggest that sporulation might be an adaptation of lifestyle for mycobacteria under stress. Here we will discuss our current understanding of growth, cell division, and sporulation in mycobacteria.
Collapse
Affiliation(s)
- Bhupender Singh
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 751 24 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
432
|
Micklinghoff JC, Schmidt M, Geffers R, Tegge W, Bange FC. Analysis of expression and regulatory functions of the ribosome-binding protein TypA in Mycobacterium tuberculosis under stress conditions. Arch Microbiol 2010; 192:499-504. [PMID: 20437167 DOI: 10.1007/s00203-010-0571-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/10/2010] [Accepted: 03/25/2010] [Indexed: 11/29/2022]
Abstract
In many bacterial species, the translational GTPase TypA acts as a global stress- and virulence regulator and also mediates resistance to the antimicrobial peptide BPI. On the chromosome of M. tuberculosis, typA is located next to narGHJI, which plays a role in adaptation of the pathogen to various environmental conditions. Here, we show that Mycobacterium tuberculosis is sensitive to P2, a derivative of BPI. Using a typA mutant of M. tuberculosis, we found this phenotype to be independent of TypA. We further tested typA expression in M. tuberculosis under defined stress conditions, such as oxygen- and nutrient depletion, low pH, heat shock, antibiotic stress and the presence of P2, and found that typA expression remains unaffected by any of these conditions. Analysis of growth and whole-genome expression revealed similar growth kinetics and gene expression profiles of the wild type and the mutant under normal growth conditions as well as under stress conditions. Our results suggest that in contrast to the findings in other bacteria, TypA does not act as a global stress- and virulence regulator in M. tuberculosis.
Collapse
Affiliation(s)
- Julia C Micklinghoff
- Department of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
433
|
Pruksakorn P, Arai M, Kotoku N, Vilchèze C, Baughn AD, Moodley P, Jacobs WR, Kobayashi M. Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorg Med Chem Lett 2010; 20:3658-63. [PMID: 20483615 DOI: 10.1016/j.bmcl.2010.04.100] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/17/2010] [Accepted: 04/21/2010] [Indexed: 11/30/2022]
Abstract
Three new aminolipopeptides, designated trichoderins A (1), A1 (2), and B (3), were isolated from a culture of marine sponge-derived fungus of Trichoderma sp. as anti-mycobacterial substances with activity against active and dormant bacilli. The chemical structures of trichoderins were determined on the basis of spectroscopic study. Trichoderins showed potent anti-mycobacterial activity against Mycobacterium smegmatis, Mycobacterium bovis BCG, and Mycobacterium tuberculosis H37Rv under standard aerobic growth conditions as well as dormancy-inducing hypoxic conditions, with MIC values in the range of 0.02-2.0 microg/mL.
Collapse
|
434
|
Flores Valdez MA, Schoolnik GK. DosR-regulon genes induction in Mycobacterium bovis BCG under aerobic conditions. Tuberculosis (Edinb) 2010; 90:197-200. [PMID: 20421176 DOI: 10.1016/j.tube.2010.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/31/2010] [Accepted: 04/01/2010] [Indexed: 11/18/2022]
Abstract
In this report we demonstrated that under aerobic conditions, Mycobacterium bovis BCG expressing an hsp60-driven second copy of the hypoxia-related transcriptional regulator DosR increased 2-fold or greater the expression of 38 out of the 48 genes belonging to the DosR regulon, including the latency antigens Rv1733c, Rv2029, Rv2627, and Rv2628. Expression of DosR under these conditions slightly delayed in vitro growth, but did not promote a non-replicating state as opposed to microaerobic and hypoxic adaptation. Our results suggest BCG producing DosR can be cultured under standard in vitro conditions, allowing evaluation of this strain as a latency-specific vaccine candidate.
Collapse
|
435
|
Chowdhury RP, Saraswathi R, Chatterji D. Mycobacterial stress regulation: The Dps "twin sister" defense mechanism and structure-function relationship. IUBMB Life 2010; 62:67-77. [PMID: 20014234 DOI: 10.1002/iub.285] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this work, we have tried to emphasize the connection between mycobacterial growth and regulation of gene expression. Utilization of multiple carbon sources and diauxic growth helps bacteria to regulate gene expression at an optimum level so that the inhospitable conditions encountered during nutrient depletion can be circumvented. These aspects will be discussed with respect to mycobacterial growth in subsequent sections. Identification and characterization of genes induced under such conditions is helpful to understand the physiology of the bacterium. Although it is necessary to compare the total expression profile of proteins as they transit from vegetative growth to stationary phase, at times a lot of insights can be deciphered from the expression pattern of one or two proteins. We have compared the protein expression and sigma factor selectivity of two such proteins in M. smegmatis to understand the differential regulation of genes playing diverse function in the same species. Some newer insights on the structure and function of one of the Dps proteins are also explained.
Collapse
|
436
|
Gupta R, Lavollay M, Mainardi JL, Arthur M, Bishai WR, Lamichhane G. The Mycobacterium tuberculosis protein LdtMt2 is a nonclassical transpeptidase required for virulence and resistance to amoxicillin. Nat Med 2010; 16:466-9. [PMID: 20305661 PMCID: PMC2851841 DOI: 10.1038/nm.2120] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 02/15/2010] [Indexed: 01/31/2023]
Abstract
The peptidoglycan layer is a vital component of the bacterial cell wall. The existing paradigm describes the peptidoglycan network as a static structure that is cross-linked predominantly by 4-->3 transpeptide linkages. However, the nonclassical 3-->3 linkages predominate the transpeptide networking of the peptidoglycan layer of nonreplicating Mycobacterium tuberculosis. The molecular basis of these linkages and their role in the physiology of the peptidoglycan layer, virulence and susceptibility of M. tuberculosis to drugs remain undefined. Here we identify MT2594 as an L,D-transpeptidase that generates 3-->3 linkages in M. tuberculosis. We show that the loss of this protein leads to altered colony morphology, loss of virulence and increased susceptibility to amoxicillin-clavulanate during the chronic phase of infection. This suggests that 3-->3 cross-linking is vital to the physiology of the peptidoglycan layer. Although a functional homolog exists, expression of ldtMt2 is dominant throughout the growth phases of M. tuberculosis. 4-->3 transpeptide linkages are targeted by one of the most widely used classes of antibacterial drugs in human clinical use today, beta-lactams. Recently, meropenem-clavulanate was shown to be effective against drug-resistant M. tuberculosis. Our study suggests that a combination of L,D-transpeptidase and beta-lactamase inhibitors could effectively target persisting bacilli during the chronic phase of tuberculosis.
Collapse
Affiliation(s)
- Radhika Gupta
- Department of Medicine, Johns Hopkins University, 1550 Orleans St, Baltimore, MD 21287, USA
| | - Marie Lavollay
- Centre de Recherche des Cordeliers, LRMA, Equipe 12, Université Pierre et Marie Curie - Paris6, UMR S 872, Paris, F-75006 France
- Université Paris Descartes, UMR S 872, Paris, F-75006 France
- INSERM, U872, Paris, F-75006, France
| | - Jean-Luc Mainardi
- Centre de Recherche des Cordeliers, LRMA, Equipe 12, Université Pierre et Marie Curie - Paris6, UMR S 872, Paris, F-75006 France
- Université Paris Descartes, UMR S 872, Paris, F-75006 France
- INSERM, U872, Paris, F-75006, France
- AP-HP, Hôpital Européen Georges Pompidou, Paris, F-75015 France
| | - Michel Arthur
- Centre de Recherche des Cordeliers, LRMA, Equipe 12, Université Pierre et Marie Curie - Paris6, UMR S 872, Paris, F-75006 France
- Université Paris Descartes, UMR S 872, Paris, F-75006 France
- INSERM, U872, Paris, F-75006, France
| | - William R. Bishai
- Department of Medicine, Johns Hopkins University, 1550 Orleans St, Baltimore, MD 21287, USA
| | - Gyanu Lamichhane
- Department of Medicine, Johns Hopkins University, 1550 Orleans St, Baltimore, MD 21287, USA
| |
Collapse
|
437
|
Fallow A, Domenech P, Reed MB. Strains of the East Asian (W/Beijing) lineage of Mycobacterium tuberculosis are DosS/DosT-DosR two-component regulatory system natural mutants. J Bacteriol 2010; 192:2228-38. [PMID: 20154135 PMCID: PMC2849454 DOI: 10.1128/jb.01597-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 01/29/2010] [Indexed: 12/15/2022] Open
Abstract
As part of our ongoing efforts to uncover the phenotypic consequences of genetic variability among clinical Mycobacterium tuberculosis isolates, we previously reported that isolates of the "East Asian" or "W/Beijing" lineage constitutively overexpress the coordinately regulated transcriptional program known as the DosR regulon under standard in vitro conditions. This phenotype distinguishes the W/Beijing lineage from all other M. tuberculosis lineages, which normally induce expression of this regulon only once exposed to low oxygen or nitric oxide, both of which result in inhibition of bacterial respiration and replication. Transcription of the DosR regulon is controlled through a two-component regulatory system comprising the transcription factor DosR and two possible cognate histidine sensor kinases, DosS and DosT. Through sequence analysis of a carefully selected set of isolates representing each of the major M. tuberculosis lineages, we describe herein a naturally occurring frameshift mutation in the gene encoding the DosT sensor kinase for isolates of the most recently evolved W/Beijing sublineages. Intriguingly, the occurrence of the frameshift mutation correlates precisely with the appearance of the constitutive DosR regulon phenotype displayed by the same "modern" W/Beijing strains. However, complementation studies have revealed that the mutation in dosT alone is not directly responsible for the constitutive DosR regulon phenotype. Our data serve to highlight the evolutionary pressure that exists among distinct M. tuberculosis lineages to maintain tight control over DosR regulon expression.
Collapse
Affiliation(s)
- Ashley Fallow
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Pilar Domenech
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Michael B. Reed
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
438
|
Bald D, Koul A. Respiratory ATP synthesis: the new generation of mycobacterial drug targets? FEMS Microbiol Lett 2010; 308:1-7. [PMID: 20402785 DOI: 10.1111/j.1574-6968.2010.01959.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, poses a global health challenge due to the emergence of drug-resistant strains. Recently, bacterial energy metabolism has come into focus as a promising new target pathway for the development of antimycobacterial drugs. This review summarizes our current knowledge on mycobacterial respiratory energy conversion, in particular, during the physiologically dormant state that is associated with latent or persistent tuberculosis infections. Targeting components of respiratory ATP production, such as type-2 NADH dehydrogenase or ATP synthase, is illustrated as an emerging strategy in the development of novel drugs.
Collapse
Affiliation(s)
- Dirk Bald
- Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, The Netherlands.
| | | |
Collapse
|
439
|
|
440
|
Abstract
Mycobacterium tuberculosis causes more deaths in humans than any other bacterial pathogen. The most recent data from the World Health Organization reveal that over 9million new cases of tuberculosis occur each year and that the incidence appears to be increasing with population growth. Despite the global burden of tuberculosis, we are still reliant on relatively dated measures to prevent, diagnose, and treat the disease. New, more effective tools are needed to diminish the incidence of tuberculosis. M. tuberculosis lacks a natural host beyond humans and, hence, surrogate models have been employed in the study of the pathogen. The discovery and development of new vaccines, diagnostics, or antitubercular drugs are dependent upon the validity of any experimental model used and its relevance to tuberculosis in humans. In this review, a range of experimental models, from in vitro studies with fast-growing low-pathogenic species of mycobacteria to the infection of nonhuman primates with virulent M. tuberculosis, will be discussed.
Collapse
Affiliation(s)
- Ronan O'Toole
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
441
|
Sriram D, Yogeeswari P, Senthilkumar P, Sangaraju D, Nelli R, Banerjee D, Bhat P, Manjashetty TH. Synthesis and antimycobacterial evaluation of novel Phthalazin-4-ylacetamides against log- and starved phase cultures. Chem Biol Drug Des 2010; 75:381-91. [PMID: 20148903 DOI: 10.1111/j.1747-0285.2010.00947.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Twenty four novel 2-[3-(4-bromo-2-fluorobenzyl)-4-oxo-3,4-dihydro-1-phthalazinyl]acetic acid amides were synthesized from phthalic anhydride and were subjected to in vitro and in vivo evaluation against log- and starved phase of mycobacterial species and Mycobacterium tuberculosis isocitrate lyase enzyme inhibition studies. Among the compounds screened, 2-(2-(4-bromo-2-fluorobenzyl)-1,2-dihydro-1-oxophthalazin-4-yl)-N-(2,6-dimethylphenyl)acetamide (5j) inhibited all eight mycobacterial species with MIC's ranging from 0.08 to 5.05 microm and was non-toxic to Vero cells till 126.43 microm. Four compounds were tested against starved culture of Mycobacterium tuberculosis and they inhibited with MIC's ranging from 3.78 to 23.2 microm. Some compounds showed 40-66% inhibition against Mycobacterium tuberculosis isocitrate lyase enzyme at 10 microm. The docking studies also confirmed the binding potential of the compounds at the isocitrate lyase active site. In the in vivo animal model, 5j reduced the mycobacterial load in lung and spleen tissues with 1.38 and 2.9-log10 protections, respectively, at 25 mg/kg body weight dose.
Collapse
Affiliation(s)
- Dharmarajan Sriram
- Medicinal Chemistry & Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad - 500 078, Andhra Pradesh, India.
| | | | | | | | | | | | | | | |
Collapse
|
442
|
Chauhan S, Singh A, Tyagi JS. A single-nucleotide mutation in the −10 promoter region inactivates thenarK2Xpromoter inMycobacterium bovisandMycobacterium bovisBCG and has an application in diagnosis. FEMS Microbiol Lett 2010; 303:190-6. [DOI: 10.1111/j.1574-6968.2009.01876.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
443
|
Babu S, Bhat SQ, Kumar NP, Kumaraswami V, Nutman TB. Regulatory T cells modulate Th17 responses in patients with positive tuberculin skin test results. J Infect Dis 2010; 201:20-31. [PMID: 19929695 DOI: 10.1086/648735] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The factors governing latency in tuberculosis are not well understood but appear to involve both the pathogen and the host. We have used tuberculin skin test (TST) positivity as a tool to study cytokine responses in latent tuberculosis. METHODS To identify the host factors that are important in the maintenance of TST positivity, we examined mycobacteria-specific immune responses of TST-positive (latent tuberculosis) or TST-negative individuals in South India, where TST positivity can define tuberculosis latency. RESULTS Although purified protein derivative-specific and Mycobacterium tuberculosis culture filtrate antigen-specific Th1 and Th2 cytokines were not statistically significantly different between the 2 groups, the Th17 cytokines (interleukin 17 and interleukin 23) were statistically significantly decreased in TST-positive individuals, compared with those in TST-negative individuals. This Th17 cytokine modulation was associated with statistically significantly increased expression of cytotoxic T lymphocyte antigen 4 (CTLA-4) and Foxp3. Although CTLA-4 blockade failed to restore full production of interleukin 17 and interleukin 23 in TST-positive individuals, depletion of regulatory T cells significantly increased production of these cytokines. CONCLUSION TST positivity is characterized by increased activity of regulatory T cells and a coincident down-regulation of the Th17 response.
Collapse
Affiliation(s)
- Subash Babu
- National Institutes of Health-International Center for Excellence in Research, India.
| | | | | | | | | |
Collapse
|
444
|
Cardona PJ. Revisiting the natural history of tuberculosis. The inclusion of constant reinfection, host tolerance, and damage-response frameworks leads to a better understanding of latent infection and its evolution towards active disease. Arch Immunol Ther Exp (Warsz) 2010; 58:7-14. [PMID: 20049645 DOI: 10.1007/s00005-009-0062-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 08/06/2009] [Indexed: 11/30/2022]
Abstract
Once Mycobacterium tuberculosis infects a person it can persist for a long time in a process called latent tuberculosis infection (LTBI). LTBI has traditionally been considered to involve the bacilli remaining in a non-replicating state (dormant) in old lesions but still retaining their ability to induce reactivation and cause active tuberculosis (TB) once a disruption of the immune response takes place. The present review aims to challenge these concepts by including recent experimental data supporting LTBI as a constant endogenous reinfection process as well as the recently introduced concepts of damage-response and tolerance frameworks to explain TB induction. These frameworks highlight the key role of an exaggerated and intolerant host response against M. tuberculosis bacilli which induces the classical TB cavity in immunocompetent adults once the constant endogenous reinfection process has resulted in the presence of bacilli in the upper lobes, where they can grow faster and the immune response is delayed. This essay intends to provide new clues to understanding the induction of TB in non-immunosuppressed patients.
Collapse
Affiliation(s)
- Pere-Joan Cardona
- Unitat de Tuberculosi Experimental, Department of Microbiology, Fundació Institut per a la Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Crta. del can Ruti, camí de les escoles s/n, Badalona, Catalonia, Spain.
| |
Collapse
|
445
|
|
446
|
The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J Bacteriol 2009; 192:1662-70. [PMID: 20023019 DOI: 10.1128/jb.00926-09] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis survives in latently infected individuals, likely in a nonreplicating or dormancy-like state. The M. tuberculosis DosR regulon is a genetic program induced by conditions that inhibit aerobic respiration and prevent bacillus replication. In this study, we used a mutant incapable of DosR regulon induction to investigate the contribution of this regulon to bacterial metabolism during anaerobic dormancy. Our results confirm that the DosR regulon is essential for M. tuberculosis survival during anaerobic dormancy and demonstrate that it is required for metabolic processes that occur upon entry into and throughout the dormant state. Specifically, we showed that regulon mechanisms shift metabolism away from aerobic respiration in the face of dwindling oxygen availability and are required for maintaining energy levels and redox balance as the culture becomes anaerobic. We also demonstrated that the DosR regulon is crucial for rapid resumption of growth once M. tuberculosis exits an anaerobic or nitric oxide-induced nonrespiring state. In summary, the DosR regulon encodes novel metabolic mechanisms essential for M. tuberculosis to survive in the absence of respiration and to successfully transition rapidly between respiring and nonrespiring conditions without loss of viability.
Collapse
|
447
|
Lilienkampf A, Pieroni M, Wan B, Wang Y, Franzblau SG, Kozikowski AP. Rational Design of 5-Phenyl-3-isoxazolecarboxylic Acid Ethyl Esters as Growth Inhibitors of Mycobacterium tuberculosis. A Potent and Selective Series for Further Drug Development. J Med Chem 2009; 53:678-88. [DOI: 10.1021/jm901273n] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Annamaria Lilienkampf
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612
| | - Marco Pieroni
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612
| | - Baojie Wan
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612
| | - Yuehong Wang
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612
| | - Scott G. Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612
| | - Alan P. Kozikowski
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612
| |
Collapse
|
448
|
Ramage HR, Connolly LE, Cox JS. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet 2009; 5:e1000767. [PMID: 20011113 PMCID: PMC2781298 DOI: 10.1371/journal.pgen.1000767] [Citation(s) in RCA: 378] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 11/12/2009] [Indexed: 12/16/2022] Open
Abstract
Toxin-antitoxin (TA) systems, stress-responsive genetic elements ubiquitous in microbial genomes, are unusually abundant in the major human pathogen Mycobacterium tuberculosis. Why M. tuberculosis has so many TA systems and what role they play in the unique biology of the pathogen is unknown. To address these questions, we have taken a comprehensive approach to identify and functionally characterize all the TA systems encoded in the M. tuberculosis genome. Here we show that 88 putative TA system candidates are present in M. tuberculosis, considerably more than previously thought. Comparative genomic analysis revealed that the vast majority of these systems are conserved in the M. tuberculosis complex (MTBC), but largely absent from other mycobacteria, including close relatives of M. tuberculosis. We found that many of the M. tuberculosis TA systems are located within discernable genomic islands and were thus likely acquired recently via horizontal gene transfer. We discovered a novel TA system located in the core genome that is conserved across the genus, suggesting that it may fulfill a role common to all mycobacteria. By expressing each of the putative TA systems in M. smegmatis, we demonstrate that 30 encode a functional toxin and its cognate antitoxin. We show that the toxins of the largest family of TA systems, VapBC, act by inhibiting translation via mRNA cleavage. Expression profiling demonstrated that four systems are specifically activated during stresses likely encountered in vivo, including hypoxia and phagocytosis by macrophages. The expansion and maintenance of TA genes in the MTBC, coupled with the finding that a subset is transcriptionally activated by stress, suggests that TA systems are important for M. tuberculosis pathogenesis. Tuberculosis (TB) continues to be a major global health problem, causing 2 million deaths every year. A hallmark of TB pathogenesis is that the bacilli can enter into a slow or non-growing state in response to the host immune system. Because these persistent bacteria are resistant to antibiotic treatment, efforts to eliminate TB from the human population must include therapies to target dormant organisms as they can eventually resume replication to cause active disease. How Mycobacterium tuberculosis, the causative agent of TB, alters its replication dynamics in response to host cues is not understood. Toxin-antitoxin (TA) systems, which may control persistence in other bacteria, are massively expanded in M. tuberculosis, suggesting that they are important for TB pathogenesis. Surprisingly, the vast majority of these numerous TA systems are conserved only in pathogenic mycobacteria, suggesting their acquisition was important in M. tuberculosis evolution. Of the 88 putative TA systems identified, we show that 30 are functional in mycobacteria. A subset of these systems is activated upon exposure to stresses encountered during infection, indicating that specific TA systems are involved in adapting to environmental cues in the host. These genes are promising candidates for the development of novel therapies to target persistent bacteria.
Collapse
Affiliation(s)
- Holly R. Ramage
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California San Francisco, San Francisco, California, United States of America
| | - Lynn E. Connolly
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, Division of Infectious Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - Jeffery S. Cox
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
449
|
Genome sequence of the Fleming strain of Micrococcus luteus, a simple free-living actinobacterium. J Bacteriol 2009; 192:841-60. [PMID: 19948807 DOI: 10.1128/jb.01254-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Micrococcus luteus (NCTC2665, "Fleming strain") has one of the smallest genomes of free-living actinobacteria sequenced to date, comprising a single circular chromosome of 2,501,097 bp (G+C content, 73%) predicted to encode 2,403 proteins. The genome shows extensive synteny with that of the closely related organism, Kocuria rhizophila, from which it was taxonomically separated relatively recently. Despite its small size, the genome harbors 73 insertion sequence (IS) elements, almost all of which are closely related to elements found in other actinobacteria. An IS element is inserted into the rrs gene of one of only two rrn operons found in M. luteus. The genome encodes only four sigma factors and 14 response regulators, a finding indicative of adaptation to a rather strict ecological niche (mammalian skin). The high sensitivity of M. luteus to beta-lactam antibiotics may result from the presence of a reduced set of penicillin-binding proteins and the absence of a wblC gene, which plays an important role in the antibiotic resistance in other actinobacteria. Consistent with the restricted range of compounds it can use as a sole source of carbon for energy and growth, M. luteus has a minimal complement of genes concerned with carbohydrate transport and metabolism and its inability to utilize glucose as a sole carbon source may be due to the apparent absence of a gene encoding glucokinase. Uniquely among characterized bacteria, M. luteus appears to be able to metabolize glycogen only via trehalose and to make trehalose only via glycogen. It has very few genes associated with secondary metabolism. In contrast to most other actinobacteria, M. luteus encodes only one resuscitation-promoting factor (Rpf) required for emergence from dormancy, and its complement of other dormancy-related proteins is also much reduced. M. luteus is capable of long-chain alkene biosynthesis, which is of interest for advanced biofuel production; a three-gene cluster essential for this metabolism has been identified in the genome.
Collapse
|
450
|
Blasi P, Schoubben A, Giovagnoli S, Rossi C, Ricci M. Fighting tuberculosis: old drugs, new formulations. Expert Opin Drug Deliv 2009; 6:977-93. [PMID: 19678791 DOI: 10.1517/17425240903130577] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review reports the state of the art on innovative drug delivery strategies designed for antitubercular chemotherapeutics. The introduction contains the fundamental biological background concerning tuberculosis and a review of the current antitubercular therapy, and is followed by a critical report of the micrometric and nanometric particulate systems designed and investigated to improve tuberculosis chemotherapy.
Collapse
Affiliation(s)
- Paolo Blasi
- University of Perugia, School of Pharmacy, Department of Chemistry and Technology of Drugs, Perugia, Italy.
| | | | | | | | | |
Collapse
|