4451
|
Abstract
Halophytes, plants that survive to reproduce in environments where the salt concentration is around 200 mm NaCl or more, constitute about 1% of the world's flora. Some halophytes show optimal growth in saline conditions; others grow optimally in the absence of salt. However, the tolerance of all halophytes to salinity relies on controlled uptake and compartmentalization of Na+, K+ and Cl- and the synthesis of organic 'compatible' solutes, even where salt glands are operative. Although there is evidence that different species may utilize different transporters in their accumulation of Na+, in general little is known of the proteins and regulatory networks involved. Consequently, it is not yet possible to assign molecular mechanisms to apparent differences in rates of Na+ and Cl- uptake, in root-to-shoot transport (xylem loading and retrieval), or in net selectivity for K+ over Na+. At the cellular level, H+-ATPases in the plasma membrane and tonoplast, as well as the tonoplast H+-PPiase, provide the trans-membrane proton motive force used by various secondary transporters. The widespread occurrence, taxonomically, of halophytes and the general paucity of information on the molecular regulation of tolerance mechanisms persuade us that research should be concentrated on a number of 'model' species that are representative of the various mechanisms that might be involved in tolerance.
Collapse
Affiliation(s)
- Timothy J Flowers
- School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex, BN1 9QG, UK
- School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Timothy D Colmer
- School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
4452
|
Abstract
The physiological and molecular mechanisms of tolerance to osmotic and ionic components of salinity stress are reviewed at the cellular, organ, and whole-plant level. Plant growth responds to salinity in two phases: a rapid, osmotic phase that inhibits growth of young leaves, and a slower, ionic phase that accelerates senescence of mature leaves. Plant adaptations to salinity are of three distinct types: osmotic stress tolerance, Na(+) or Cl() exclusion, and the tolerance of tissue to accumulated Na(+) or Cl(). Our understanding of the role of the HKT gene family in Na(+) exclusion from leaves is increasing, as is the understanding of the molecular bases for many other transport processes at the cellular level. However, we have a limited molecular understanding of the overall control of Na(+) accumulation and of osmotic stress tolerance at the whole-plant level. Molecular genetics and functional genomics provide a new opportunity to synthesize molecular and physiological knowledge to improve the salinity tolerance of plants relevant to food production and environmental sustainability.
Collapse
Affiliation(s)
- Rana Munns
- CSIRO Plant Industry, Canberra, ACT, Australia.
| | | |
Collapse
|
4453
|
Albacete A, Ghanem ME, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Martínez V, Lutts S, Dodd IC, Pérez-Alfocea F. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:4119-31. [PMID: 19036841 PMCID: PMC2639025 DOI: 10.1093/jxb/ern251] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 09/11/2008] [Accepted: 09/15/2008] [Indexed: 05/18/2023]
Abstract
Following exposure to salinity, the root/shoot ratio is increased (an important adaptive response) due to the rapid inhibition of shoot growth (which limits plant productivity) while root growth is maintained. Both processes may be regulated by changes in plant hormone concentrations. Tomato plants (Solanum lycopersicum L. cv Moneymaker) were cultivated hydroponically for 3 weeks under high salinity (100 mM NaCl) and five major plant hormones (abscisic acid, ABA; the cytokinins zeatin, Z, and zeatin-riboside, ZR; the auxin indole-3-acetic acid, IAA; and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, ACC) were determined weekly in roots, xylem sap, and leaves. Salinity reduced shoot biomass by 50-60% and photosynthetic area by 20-25% both by decreasing leaf expansion and delaying leaf appearance, while root growth was less affected, thus increasing the root/shoot ratio. ABA and ACC concentrations strongly increased in roots, xylem sap, and leaves after 1 d (ABA) and 15 d (ACC) of salinization. By contrast, cytokinins and IAA were differentially affected in roots and shoots. Salinity dramatically decreased the Z+ZR content of the plant, and induced the conversion of ZR into Z, especially in the roots, which accounted for the relative increase of cytokinins in the roots compared to the leaf. IAA concentration was also strongly decreased in the leaves while it accumulated in the roots. Decreased cytokinin content and its transport from the root to the shoot were probably induced by the basipetal transport of auxin from the shoot to the root. The auxin/cytokinin ratio in the leaves and roots may explain both the salinity-induced decrease in shoot vigour (leaf growth and leaf number) and the shift in biomass allocation to the roots, in agreement with changes in the activity of the sink-related enzyme cell wall invertase.
Collapse
Affiliation(s)
- Alfonso Albacete
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, E-30100, Espinardo, Murcia, Spain
| | - Michel Edmond Ghanem
- Groupe de Recherche en Physiologie Végétale, Université catholique de Louvain (UCL), Croix du Sud 5, boîte 13, B-1348 Louvain-la-Neuve, Belgium
| | - Cristina Martínez-Andújar
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, E-30100, Espinardo, Murcia, Spain
| | - Manuel Acosta
- Departamento de Biología Vegetal-Fisiología Vegetal, Facultad de Biología, Universidad de Murcia, Campus Universitario de Espinardo, E-30100, Espinardo, Murcia, Spain
| | - José Sánchez-Bravo
- Departamento de Biología Vegetal-Fisiología Vegetal, Facultad de Biología, Universidad de Murcia, Campus Universitario de Espinardo, E-30100, Espinardo, Murcia, Spain
| | - Vicente Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, E-30100, Espinardo, Murcia, Spain
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale, Université catholique de Louvain (UCL), Croix du Sud 5, boîte 13, B-1348 Louvain-la-Neuve, Belgium
| | - Ian C. Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Francisco Pérez-Alfocea
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, E-30100, Espinardo, Murcia, Spain
| |
Collapse
|