1
|
Ganse-Dumrath A, Chohan A, Samuel S, Bretherton P, Haenschel C, Fett AK. Systematic review and meta-analysis of early visual processing, social cognition, and functional outcomes in schizophrenia spectrum disorders. Schizophr Res Cogn 2025; 40:100351. [PMID: 40028174 PMCID: PMC11872129 DOI: 10.1016/j.scog.2025.100351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025]
Abstract
Non-affective psychotic disorders are marked by cognitive and sensory processing abnormalities, including in early visual processing and social cognition. Understanding the relationships between these deficits and their impact on daily-life functional outcomes may help to improve outcomes in affected individuals. This systematic review and meta-analysis aimed to summarise the existing evidence on the relationships between early visual processing, social cognition, and functional outcomes, and to assess the evidence regarding the mediating role of social cognition in the association between early visual processing and functional outcomes in individuals with schizophrenia spectrum disorders. A comprehensive search across five databases identified 364 potentially eligible studies, with eight articles meeting all inclusion criteria. Meta-analytic techniques were employed to synthesise effect sizes and assess a meta-mediation model. Three random-effects meta-analyses revealed significant associations between all three domains of interest. Social cognition partially mediated the relationship between early visual processing and functional outcomes. The direct effect of early visual processing on functional outcomes remained significant, albeit with a reduced effect size. The findings suggest that interventions targeting both early visual processing and social cognition concurrently may improve functional outcomes more effectively than focusing on either domain alone.
Collapse
Affiliation(s)
- Akke Ganse-Dumrath
- Department of Psychology, School of Health and Medical Sciences, City St George's, University of London, UK
| | - Anya Chohan
- Department of Psychology, School of Health and Medical Sciences, City St George's, University of London, UK
| | - Steven Samuel
- Department of Psychology, School of Health and Medical Sciences, City St George's, University of London, UK
| | - Paul Bretherton
- Department of Psychology, School of Health and Medical Sciences, City St George's, University of London, UK
| | - Corinna Haenschel
- Department of Psychology, School of Health and Medical Sciences, City St George's, University of London, UK
| | - Anne-Kathrin Fett
- Department of Psychology, School of Health and Medical Sciences, City St George's, University of London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK
| |
Collapse
|
2
|
Babadi B, Holt DJ, Tootell RBH. Visual Deficits in Contrast and Depth Perception in Psychotic Disorders: Implications for a Neural Hierarchy. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00168-5. [PMID: 40412621 DOI: 10.1016/j.bpsc.2025.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/25/2025] [Accepted: 05/12/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND A key challenge in understanding the neurobehavioral mechanisms of psychotic disorders (PD) is identifying the level and interactions of the affected brain regions. The early visual system, with its hierarchical structure, offers a model for studying such mechanisms. Specifically, variations in visual contrast are detected as early as in the retina, whereas binocular depth perception emerges at a higher level, in visual cortex. Comparing these processes within individuals can provide insights into the mechanisms and progression of perceptual deficits in PD. METHODS Psychophysical sensitivity to stimulus contrast and binocular disparity were assessed in 53 PD subjects and 58 demographically-matched healthy control (HC) subjects. Across the two tasks, the physical features of the stimuli were matched except for the primary variable of interest. Psychometric functions were fitted to the performance of each subject, and the normalized area under the psychometric curves quantified the average performance across stimulus strengths. RESULTS The PD group showed significantly impaired performance in both visual contrast detection (p<0.007) and binocular depth perception (p<0.021), compared to the HC group. In the PD but not the HC group, the performance across the two tasks were correlated with each other. A direct comparison revealed a more pronounced deficit in depth perception compared to contrast detection in the PD group. Differences in psychometric parameters (i.e. threshold, flatness, and lapse rate) revealed additional cognitive and attentional dysfunctions in the PD group. CONCLUSION These findings provide evidence for a progressive accumulation of deficits through the visual hierarchy in psychosis.
Collapse
Affiliation(s)
- Baktash Babadi
- Department of Psychiatry, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; The Athinoula A. Martinos Center for Biomedical Imaging, 149 13th Street, Charlestown, MA 02129, USA
| | - Roger B H Tootell
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; The Athinoula A. Martinos Center for Biomedical Imaging, 149 13th Street, Charlestown, MA 02129, USA
| |
Collapse
|
3
|
Dhankhar S, Sharma P, Chauhan S, Saini M, Garg N, Singh R, Kamal MA, Sharma SK, Rani N. Cognitive Rehabilitation For Early-Stage Dementia: A Review. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2025; 21:109-122. [DOI: 10.2174/0126660822275618231129073551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 05/04/2025]
Abstract
:
In the primary phases of Alzheimer's disease (AD) and vascular dementia,
memory impairments and cognitive abnormalities are common. Because of the rising
prevalence of dementia among the elderly, it is critical to promote healthy habits that
can delay the onset of cognitive decline. Cognitive training (CT) and cognitive rehabilitation
(CR) are particular treatments aimed to resolve memory and further areas of cognitive
working in order to overcome these challenges. These are some of the different
kinds of non-pharmacological treatments like reality orientation and skills training programs
that can be used to deal with the cognitive and non-cognitive repercussions. The
purpose of this review is to assess the efficacy and influence of cognitive training and
cognitive rehabilitation in patients who are in their early phases of Alzheimer's disease or
vascular dementia. These interventions are geared toward improving the patients'
memory, in addition to other aspects of their cognitive functioning.
Collapse
Affiliation(s)
- Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Prerna Sharma
- Guru Gobind Singh College of
Pharmacy, Yamunanagar, 135001, Haryana, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Monika Saini
- Maharishi Markandeshwar (Deemed to be
University), Mullana, Ambala, 133207, India
| | - Nitika Garg
- Ganpati Institute of Pharmacy, Bilaspur, 135102,
Haryana, India
| | - Randhir Singh
- Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Mohammad Amjad Kamal
- West China
School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for
Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041,
Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box,
80216, Jeddah, 21589, Saudi Arabia,
- Novel Global Community Educational Foundation,
Australia
| | | | - Nidhi Rani
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
4
|
Lyu X, Liu T, Ma Y, Wang L, Wu J, Yan T, Liu M, Yang J. Weaker top-down cognitive control and stronger bottom-up signaling transmission as a pathogenesis of schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:36. [PMID: 40044672 PMCID: PMC11883009 DOI: 10.1038/s41537-025-00587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025]
Abstract
The clinical symptoms of schizophrenia are highly heterogeneous, with the most striking symptoms being cognitive deficits and perceptual disturbances. Cognitive deficits are typically linked to abnormalities in top-down mechanisms, whereas perceptual disturbances stem from dysfunctions in bottom-up processing. However, it remains unclear whether schizophrenia is primarily driven by top-down control mechanisms, bottom-up perceptual processes, or their interaction. We hypothesized that abnormal top-down and bottom-up interactions constitute the neural mechanisms of schizophrenia. Considering that autoencoders can identify hidden data features and support vector machines are capable of automatically locating the classification hyperplane, we developed an improved stacked autoencoder-support vector machine (ISAE-SVM) model for diagnosing schizophrenia based on resting-state functional magnetic resonance imaging data. A permutation test was used to identify the 213 most discriminative functional connections from the model's output features. Functional connections linking regions of higher cognitive functions and lower perceptual tasks were extracted to further examine their relevance to clinical symptoms. Finally, spectral dynamic causal modeling (sDCM) was used to analyze the dynamic causal interaction between brain regions corresponding to these functional connections. Our results showed that the ISAE-SVM model achieved an average classification accuracy of 82%. Notably, five resting-state functional connections spanning both cognitive and sensory brain areas were significantly correlated with Positive and Negative Syndrome Scale scores. Furthermore, sDCM analysis revealed weakened top-down regulation and enhanced bottom-up signaling in schizophrenia. These findings support our hypothesis that impaired top-down regulation and enhanced bottom-up signaling contribute to the neural mechanisms of schizophrenia.
Collapse
Affiliation(s)
- Xiaodan Lyu
- Cognitive Neuroscience Lab, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Tiantian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Yunxiao Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Li Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Jinglong Wu
- Cognitive Neuroscience Lab, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
- Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, China
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Miaomiao Liu
- School of Psychology, Shenzhen University, Shenzhen, China.
| | - Jiajia Yang
- Cognitive Neuroscience Lab, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.
| |
Collapse
|
5
|
Ma L, Jiang S, Tang W. Altered coupling relationships across resting-state functional connectivity measures in schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder. Psychiatry Res Neuroimaging 2025; 347:111943. [PMID: 39709676 DOI: 10.1016/j.pscychresns.2024.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Resting-state functional connectivity (rsFC) measures have enjoyed significant success in discovering the neuropathological characteristics of schizophrenia (SZ), bipolar disorder (BD), and attention deficit/hyperactivity disorder (ADHD). However, it is unknown whether and how the spatial and temporal coupling relationships across rsFC measures would be altered in these psychiatric disorders. Here, resting-state fMRI data were obtained from a transdiagnostic sample of healthy controls (HC) and individuals with SZ, BD, and ADHD. We used Kendall's W to compute volume-wise and voxel-wise concordance across rsFC measures, followed by group comparisons. In terms of the spatial coupling, both SZ and BD individuals exhibited decreased volume-wise concordance compared with HC. Regarding the temporal coupling, SZ individuals showed decreased voxel-wise concordance in the right lateral occipital cortex relative to HC. BD individuals exhibited decreased voxel-wise concordance in the bilateral basal forebrain and bilateral superior/middle temporal gyrus compared to HC. Additionally, correlation analyses demonstrated positive associations of voxel-wise concordance in the left basal forebrain with negative symptoms including alogia and affective flattening in pooled SZ and BD individuals. Our findings of distinct patterns of spatial and temporal decoupling across rsFC measures among SZ, BD, and ADHD may provide unique insights into the neuropathological mechanisms of these psychiatric disorders.
Collapse
Affiliation(s)
- Lu Ma
- Department of Radiology, Tsinghua University Hospital, Beijing 100084, China
| | - Shanshan Jiang
- Department of Radiology, Tsinghua University Hospital, Beijing 100084, China
| | - Wei Tang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
6
|
Mayol-Troncoso R, Gaspar PA, Verdugo R, Mariman JJ, Maldonado PE. Fixational eye movements and their associated evoked potentials during natural vision are altered in schizophrenia. Schizophr Res Cogn 2024; 38:100324. [PMID: 39238484 PMCID: PMC11375315 DOI: 10.1016/j.scog.2024.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 07/17/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
Background Visual exploration is abnormal in schizophrenia; however, few studies have investigated the physiological responses during selecting objectives in more ecological scenarios. This study aimed to demonstrate that people with schizophrenia have difficulties observing the prominent elements of an image due to a deficit mechanism of sensory modulation (active sensing) during natural vision. Methods An electroencephalogram recording with eye tracking data was collected on 18 healthy individuals and 18 people affected by schizophrenia while looking at natural images. These had a prominent color element and blinking produced by changes in image luminance. Results We found fewer fixations when all images were scanned, late focus on prominent image areas, decreased amplitude in the eye-fixation-related potential, and decreased intertrial coherence in the SCZ group. Conclusions The decrease in the visual attention response evoked by the prominence of visual stimuli in patients affected by schizophrenia is generated by a reduction in endogenous attention mechanisms to initiate and maintain visual exploration. Further work is required to explain the relationship of this decrease with clinical indicators.
Collapse
Affiliation(s)
- Rocío Mayol-Troncoso
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile
- Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Imhay, Chile
- Facultad de Psicología, Universidad Alberto Hurtado, Chile
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Laboratorio Psiquiatría Traslacional
| | - Pablo A Gaspar
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile
- Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Imhay, Chile
- Clínica Alemana, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Laboratorio Psiquiatría Traslacional
| | - Roberto Verdugo
- Biomedical Neuroscience Institute (BNI)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile
- Instituto Psiquiátrico Dr. José Horwitz Barak, Chile
| | - Juan J Mariman
- Department of Physical Therapy, Faculty of Arts and Physical Education, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Department of Physical Therapy, Faculty of Medicine, Universidad de Chile
- Nucleus of wellbeing and human development, education research center (CIE-UMCE), Universidad Metropolitana de Ciencias de la educación
| | - Pedro E Maldonado
- Biomedical Neuroscience Institute (BNI)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile
- Nacional Center for Artificial Intelligence (CENIA), Chile
| |
Collapse
|
7
|
Bergson Z, Ahmed AO, Bell J, Butler PD, Gordon J, Seitz AR, Silverstein SM, Thompson JL, Zemon V. Visual remediation of contrast processing impairments in schizophrenia: A preliminary clinical trial. Schizophr Res 2024; 274:396-405. [PMID: 39481234 PMCID: PMC11620924 DOI: 10.1016/j.schres.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/25/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024]
Abstract
Schizophrenia (SZ) is associated with visual processing impairments, which are related to higher-level functional impairments. This study investigated the impact of a novel visual remediation intervention (VisR) targeting low- and mid-level visual processing impairments in SZ. We hypothesized that VisR would lead to greater improvements in contrast processing when compared to an active control condition and explored potential treatment-related changes in symptom severity. SZ participants (N = 47) were randomized into one of four groups: an active control group (cognitive training; AC); Contrast Sensitivity Training + AC (CST + AC); Contour Integration Training + AC (CIT + AC); and CST + CIT. Participants completed 20-40 training sessions. Clinical symptom severity was assessed using the Positive and Negative Syndrome Scale and contrast processing was assessed using steady-state visual evoked potentials to increasing levels of contrast of isolated-check pattern stimuli. A significant Group × Timepoint × Contrast interaction indicated superiority of CST + CIT over AC for improving contrast processing. Furthermore, a large, significant Group × Timepoint interaction indicated that CST + CIT was associated with a greater reduction in positive symptoms compared to AC. In addition, lower severity of positive symptoms at baseline was associated with a greater improvement in contrast processing over the course of treatment. This initial evaluation of VisR demonstrated that it is well tolerated and may produce greater improvements in contrast processing and positive symptoms compared to an intervention targeting only high-level cognitive functions.
Collapse
Affiliation(s)
- Zachary Bergson
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA.
| | - Anthony O Ahmed
- Department of Psychiatry, Weill Cornell Medicine, White Plains, NY, USA.
| | - Jewel Bell
- Department of Psychiatry, Weill Cornell Medicine, White Plains, NY, USA.
| | - Pamela D Butler
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - James Gordon
- Department of Psychology, Hunter College, NY, New York, USA.
| | - Aaron R Seitz
- Department of Psychology, Northeastern University, Boston, MA, USA.
| | - Steven M Silverstein
- Departments of Psychiatry, Neuroscience, and Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Judy L Thompson
- Departments of Psychiatry and Neuroscience, University of Rochester Medical Center, Rochester, NY, USA.
| | - Vance Zemon
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| |
Collapse
|
8
|
Keane BP, Silverstein SM, Papathomas TV, Krekelberg B. Correcting visual acuity beyond 20/20 improves contour element detection and integration: A cautionary tale for studies of special populations. PLoS One 2024; 19:e0310678. [PMID: 39325768 PMCID: PMC11426532 DOI: 10.1371/journal.pone.0310678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Contrary to popular lore, optimal visual acuity is typically better than 20/20. Could correcting acuity beyond 20/20 offer any benefit? An affirmative answer could present new confounds in studies of aging, development, psychiatric illness, neurodegenerative disorders, or any other population where refractive error might be more likely. An affirmative answer would also offer a novel explanation of inter-observer variability in visual performance. To address the question, we had individuals perform two well-studied visual tasks, once with 20/20 vision and once with optical correction, so that observers could see one line better on an eye chart. In the contour integration task, observers sought to identify the screen quadrant location of a sparsely defined (integrated) shape embedded in varying quantities of randomly oriented "noise" elements. In the collinear facilitation task, observers sought to detect a low-contrast element flanked by collinear or orthogonal high-contrast elements. In each case, displays were scaled in size to modulate element visibility and spatial frequency (4-12 cycles/deg). We found that improving acuity beyond 20/20 improved contour integration for the high spatial frequency displays. Although improving visual acuity did not affect collinear facilitation, it did improve detection of the central low-contrast target, especially at high spatial frequencies. These results, which were large in magnitude, suggest that optically correcting beyond 20/20 improves the detection and integration of contour elements, especially those that are smaller and of higher spatial frequency. Refractive blur within the normal range may confound special population studies, explain inter-observer differences, and meaningfully impact performance in low-visibility environments.
Collapse
Affiliation(s)
- Brian P. Keane
- Center for Cognitive Science, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
- University Behavioral Health Care, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
- Department of Psychiatry, University of Rochester Medical Center, University of Rochester, Rochester, NY, United States of America
- Department of Neuroscience, University of Rochester, Rochester, NY, United States of America
- Center for Visual Science, University of Rochester, Rochester, NY, United States of America
- Department of Brain & Cognitive Science, University of Rochester, Rochester, NY, United States of America
| | - Steven M. Silverstein
- Center for Cognitive Science, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
- University Behavioral Health Care, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
- Department of Psychiatry, University of Rochester Medical Center, University of Rochester, Rochester, NY, United States of America
- Department of Neuroscience, University of Rochester, Rochester, NY, United States of America
- Center for Visual Science, University of Rochester, Rochester, NY, United States of America
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Thomas V. Papathomas
- Center for Cognitive Science, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
| | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| |
Collapse
|
9
|
Martin E, Chowdury A, Kopchick J, Thomas P, Khatib D, Rajan U, Zajac-Benitez C, Haddad L, Amirsadri A, Robison AJ, Thakkar KN, Stanley JA, Diwadkar VA. The mesolimbic system and the loss of higher order network features in schizophrenia when learning without reward. Front Psychiatry 2024; 15:1337882. [PMID: 39355381 PMCID: PMC11443173 DOI: 10.3389/fpsyt.2024.1337882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/16/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Schizophrenia is characterized by a loss of network features between cognition and reward sub-circuits (notably involving the mesolimbic system), and this loss may explain deficits in learning and cognition. Learning in schizophrenia has typically been studied with tasks that include reward related contingencies, but recent theoretical models have argued that a loss of network features should be seen even when learning without reward. We tested this model using a learning paradigm that required participants to learn without reward or feedback. We used a novel method for capturing higher order network features, to demonstrate that the mesolimbic system is heavily implicated in the loss of network features in schizophrenia, even when learning without reward. Methods fMRI data (Siemens Verio 3T) were acquired in a group of schizophrenia patients and controls (n=78; 46 SCZ, 18 ≤ Age ≤ 50) while participants engaged in associative learning without reward-related contingencies. The task was divided into task-active conditions for encoding (of associations) and cued-retrieval (where the cue was to be used to retrieve the associated memoranda). No feedback was provided during retrieval. From the fMRI time series data, network features were defined as follows: First, for each condition of the task, we estimated 2nd order undirected functional connectivity for each participant (uFC, based on zero lag correlations between all pairs of regions). These conventional 2nd order features represent the task/condition evoked synchronization of activity between pairs of brain regions. Next, in each of the patient and control groups, the statistical relationship between all possible pairs of 2nd order features were computed. These higher order features represent the consistency between all possible pairs of 2nd order features in that group and embed within them the contributions of individual regions to such group structure. Results From the identified inter-group differences (SCZ ≠ HC) in higher order features, we quantified the respective contributions of individual brain regions. Two principal effects emerged: 1) SCZ were characterized by a massive loss of higher order features during multiple task conditions (encoding and retrieval of associations). 2) Nodes in the mesolimbic system were over-represented in the loss of higher order features in SCZ, and notably so during retrieval. Discussion Our analytical goals were linked to a recent circuit-based integrative model which argued that synergy between learning and reward circuits is lost in schizophrenia. The model's notable prediction was that such a loss would be observed even when patients learned without reward. Our results provide substantial support for these predictions where we observed a loss of network features between the brain's sub-circuits for a) learning (including the hippocampus and prefrontal cortex) and b) reward processing (specifically constituents of the mesolimbic system that included the ventral tegmental area and the nucleus accumbens. Our findings motivate a renewed appraisal of the relationship between reward and cognition in schizophrenia and we discuss their relevance for putative behavioral interventions.
Collapse
Affiliation(s)
- Elizabeth Martin
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Psychiatry, University of Texas Austin, Austin, TX, United States
| | - Asadur Chowdury
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - John Kopchick
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Patricia Thomas
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dalal Khatib
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Usha Rajan
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Caroline Zajac-Benitez
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Luay Haddad
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Alireza Amirsadri
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Alfred J. Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Katherine N. Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Jeffrey A. Stanley
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Vaibhav A. Diwadkar
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
10
|
Kadivar A, Ilapakurti M, Dobkins K, Cadenhead KS. Visual contrast sensitivity in clinical high risk and first episode psychosis. Schizophr Res 2024; 271:186-193. [PMID: 39032431 DOI: 10.1016/j.schres.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Individuals at Clinical High Risk (CHR) for psychosis or in their First Episode (FE) of psychosis are in a pivotal time in adolescence or young adulthood when illness can greatly impact their functioning. Finding relevant biomarkers for psychosis in the early stages of illness can contribute to early diagnosis, therapeutic management and prediction of outcome. One such biomarker that has been studied in schizophrenia (SZ) is visual contrast sensitivity (VCS). VCS can be used to differentiate visual information processing function in the magnocellular versus parvocellular visual pathways. Few studies have assessed VCS in early psychosis. METHODS Participants included CHR (n = 68), FE psychosis (n = 34) and Healthy Comparison (HC) (n = 63). All were clinically assessed and completed a VCS paradigm that involved near threshold luminance and chromatic stimuli. RESULTS CHR and FE participants had lower VCS in the luminance condition (F[2166] = 3.42, p < 0.05) compared to HC. There was also a significant sex X group interaction (F[5163] = 4.3, p < 0.001) in the luminance condition (F[5163] = 4.3, p < 0.001) as FE males (p < 0.01) and CHR females (p < 0.01) had the greatest deficits compared to male and female HC participants respectively. VCS deficits in the luminance condition were associated with more thought disorder, slower processing speed, worse executive functioning and poor global functioning (r's 0.25-0.50, p < 0.05). CONCLUSION This study supports the hypothesis that there are deficits in visual information processing, particularly in tasks that emphasize the magnocellular pathway, in patients experiencing early psychosis. VCS therefore has the potential to be used as a biomarker in this population.
Collapse
Affiliation(s)
- Armita Kadivar
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Manju Ilapakurti
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Karen Dobkins
- Department of Psychology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States.
| |
Collapse
|
11
|
Ifrah C, Herrera SN, Silverstein SM, Corcoran CM, Gordon J, Butler PD, Zemon V. The Relationship between Clinical and Psychophysical Assessments of Visual Perceptual Disturbances in Individuals at Clinical High Risk for Psychosis: A Preliminary Study. Brain Sci 2024; 14:819. [PMID: 39199510 PMCID: PMC11352348 DOI: 10.3390/brainsci14080819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
This study investigated relations between a measure of early-stage visual function and self-reported visual anomalies in individuals at clinical high risk for psychosis (CHR-P). Eleven individuals at CHR identified via the Structured Interview for Psychosis-Risk Syndromes (SIPS) were recruited from a CHR-P research program in NYC. The sample was ~36% female, ranging from 16 to 33 years old (M = 23.90, SD = 6.14). Participants completed a contrast sensitivity task on an iPad with five spatial frequencies (0.41-13 cycles/degree) and completed the self-report Audio-Visual Abnormalities Questionnaire. Higher contrast sensitivity (better performance) to low spatial frequencies was associated with higher perceptual (r = 0.616, p = 0.044) and visual disturbances (r = 0.667, p = 0.025); lower contrast sensitivity to a middle spatial frequency was also associated with higher perceptual (r = -0.604, p = 0.049) and visual disturbances (r = -0.606, p = 0.048). This relation between the questionnaire and contrast sensitivity to low spatial frequency may be indicative of a reduction in lateral inhibition and "flooding" of environmental stimuli. The association with middle spatial frequencies, which play a critical role in face processing, may result in a range of perceptual abnormalities. These findings demonstrate that self-reported perceptual anomalies occur in these individuals and are linked to performance on a measure of early visual processing.
Collapse
Affiliation(s)
- Chloe Ifrah
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY 10641, USA;
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.N.H.); (C.M.C.)
| | - Shaynna N. Herrera
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.N.H.); (C.M.C.)
| | - Steven M. Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Cheryl M. Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.N.H.); (C.M.C.)
| | - James Gordon
- Department of Psychology, Hunter College, City University of New York, New York, NY 10065, USA;
| | - Pamela D. Butler
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Vance Zemon
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY 10641, USA;
| |
Collapse
|
12
|
Dugan C, Zikopoulos B, Yazdanbakhsh A. A neural modeling approach to study mechanisms underlying the heterogeneity of visual spatial frequency sensitivity in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:63. [PMID: 39013944 PMCID: PMC11252134 DOI: 10.1038/s41537-024-00480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
Patients with schizophrenia exhibit abnormalities in spatial frequency sensitivity, and it is believed that these abnormalities indicate more widespread dysfunction and dysregulation of bottom-up processing. The early visual system, including the first-order Lateral Geniculate Nucleus of the thalamus (LGN) and the primary visual cortex (V1), are key contributors to spatial frequency sensitivity. Medicated and unmedicated patients with schizophrenia exhibit contrasting changes in spatial frequency sensitivity, thus making it a useful probe for examining potential effects of the disorder and antipsychotic medications in neural processing. We constructed a parameterized, rate-based neural model of on-center/off-surround neurons in the early visual system to investigate the impacts of changes to the excitatory and inhibitory receptive field subfields. By incorporating changes in both the excitatory and inhibitory subfields that are associated with pathophysiological findings in schizophrenia, the model successfully replicated perceptual data from behavioral/functional studies involving medicated and unmedicated patients. Among several plausible mechanisms, our results highlight the dampening of excitation and/or increase in the spread and strength of the inhibitory subfield in medicated patients and the contrasting decreased spread and strength of inhibition in unmedicated patients. Given that the model was successful at replicating results from perceptual data under a variety of conditions, these elements of the receptive field may be useful markers for the imbalances seen in patients with schizophrenia.
Collapse
Affiliation(s)
- Caroline Dugan
- Program in Neuroscience, Boston University, Boston, MA, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA.
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA.
| | - Arash Yazdanbakhsh
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA.
- Computational Neuroscience and Vision Laboratory, Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA.
| |
Collapse
|
13
|
Schoonover KE, Dienel SJ, Holly Bazmi H, Enwright JF, Lewis DA. Altered excitatory and inhibitory ionotropic receptor subunit expression in the cortical visuospatial working memory network in schizophrenia. Neuropsychopharmacology 2024; 49:1183-1192. [PMID: 38548877 PMCID: PMC11109337 DOI: 10.1038/s41386-024-01854-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/14/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024]
Abstract
Dysfunction of the cortical dorsal visual stream and visuospatial working memory (vsWM) network in individuals with schizophrenia (SZ) likely reflects alterations in both excitatory and inhibitory neurotransmission within nodes responsible for information transfer across the network, including primary visual (V1), visual association (V2), posterior parietal (PPC), and dorsolateral prefrontal (DLPFC) cortices. However, the expression patterns of ionotropic glutamatergic and GABAergic receptor subunits across these regions, and alterations of these patterns in SZ, have not been investigated. We quantified transcript levels of key subunits for excitatory N-methyl-D-aspartate receptors (NMDARs), excitatory alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs), and inhibitory GABAA receptors (GABAARs) in postmortem total gray matter from V1, V2, PPC, and DLPFC of unaffected comparison (UC) and matched SZ subjects. In UC subjects, levels of most AMPAR and NMDAR mRNAs exhibited opposite rostral-to-caudal gradients, with AMPAR GRIA1 and GRIA2 mRNA levels highest in DLPFC and NMDAR GRIN1 and GRIN2A mRNA levels highest in V1. GABRA5 and GABRA1 mRNA levels were highest in DLPFC and V1, respectively. In SZ, most transcript levels were lower relative to UC subjects, with these differences largest in V1, intermediate in V2 and PPC, and smallest in DLPFC. In UC subjects, these distinct patterns of receptor transcript levels across the cortical vsWM network suggest that the balance between excitation and inhibition is achieved in a region-specific manner. In SZ subjects, the large deficits in excitatory and inhibitory receptor transcript levels in caudal sensory regions suggest that abnormalities early in the vsWM pathway might contribute to altered information processing in rostral higher-order regions.
Collapse
Affiliation(s)
- Kirsten E Schoonover
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Behavioral Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samuel J Dienel
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - H Holly Bazmi
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John F Enwright
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Yoshida M, Miura K, Fujimoto M, Yamamori H, Yasuda Y, Iwase M, Hashimoto R. Visual salience is affected in participants with schizophrenia during free-viewing. Sci Rep 2024; 14:4606. [PMID: 38409435 PMCID: PMC10897421 DOI: 10.1038/s41598-024-55359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
Abnormalities in visual exploration affect the daily lives of patients with schizophrenia. For example, scanpath length during free-viewing is shorter in schizophrenia. However, its origin and its relevance to symptoms are unknown. Here we investigate the possibility that abnormalities in eye movements result from abnormalities in visual or visuo-cognitive processing. More specifically, we examined whether such abnormalities reflect visual salience in schizophrenia. Eye movements of 82 patients and 252 healthy individuals viewing natural and/or complex images were examined using saliency maps for static images to determine the contributions of low-level visual features to salience-guided eye movements. The results showed that the mean value for orientation salience at the gazes of the participants with schizophrenia were higher than that of the healthy control subjects. Further analyses revealed that orientation salience defined by the L + M channel of the DKL color space is specifically affected in schizophrenia, suggesting abnormalities in the magnocellular visual pathway. By looking into the computational stages of the visual salience, we found that the difference between schizophrenia and healthy control emerges at the earlier stage, suggesting functional decline in early visual processing. These results suggest that visual salience is affected in schizophrenia, thereby expanding the concept of the aberrant salience hypothesis of psychosis to the visual domain.
Collapse
Affiliation(s)
- Masatoshi Yoshida
- Center for Human Nature, Artificial Intelligence, and Neuroscience (CHAIN), Hokkaido University, Sapporo, Japan.
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan.
| | - Michiko Fujimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hidenaga Yamamori
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
- Japan Community Health Care Organization, Osaka Hospital, Osaka, Japan
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Medical Corporation Foster, Life Grow Brilliant Mental Clinic, Osaka, Japan
| | - Masao Iwase
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
- Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka Prefectural Hospital Organization, Hirakata, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
15
|
Adámek P, Grygarová D, Jajcay L, Bakštein E, Fürstová P, Juríčková V, Jonáš J, Langová V, Neskoroďana I, Kesner L, Horáček J. The Gaze of Schizophrenia Patients Captured by Bottom-up Saliency. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:21. [PMID: 38378724 PMCID: PMC10879495 DOI: 10.1038/s41537-024-00438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024]
Abstract
Schizophrenia (SCHZ) notably impacts various human perceptual modalities, including vision. Prior research has identified marked abnormalities in perceptual organization in SCHZ, predominantly attributed to deficits in bottom-up processing. Our study introduces a novel paradigm to differentiate the roles of top-down and bottom-up processes in visual perception in SCHZ. We analysed eye-tracking fixation ground truth maps from 28 SCHZ patients and 25 healthy controls (HC), comparing these with two mathematical models of visual saliency: one bottom-up, based on the physical attributes of images, and the other top-down, incorporating machine learning. While the bottom-up (GBVS) model revealed no significant overall differences between groups (beta = 0.01, p = 0.281, with a marginal increase in SCHZ patients), it did show enhanced performance by SCHZ patients with highly salient images. Conversely, the top-down (EML-Net) model indicated no general group difference (beta = -0.03, p = 0.206, lower in SCHZ patients) but highlighted significantly reduced performance in SCHZ patients for images depicting social interactions (beta = -0.06, p < 0.001). Over time, the disparity between the groups diminished for both models. The previously reported bottom-up bias in SCHZ patients was apparent only during the initial stages of visual exploration and corresponded with progressively shorter fixation durations in this group. Our research proposes an innovative approach to understanding early visual information processing in SCHZ patients, shedding light on the interplay between bottom-up perception and top-down cognition.
Collapse
Affiliation(s)
- Petr Adámek
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic.
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Dominika Grygarová
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lucia Jajcay
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
- Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Eduard Bakštein
- Early Episodes of SMI Research Center, National Institute of Mental Health, Klecany, Czech Republic
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University, Prague, Czech Republic
| | - Petra Fürstová
- Early Episodes of SMI Research Center, National Institute of Mental Health, Klecany, Czech Republic
| | - Veronika Juríčková
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Juraj Jonáš
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
- Faculty of Humanities, Charles University, Prague, Czech Republic
| | - Veronika Langová
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Iryna Neskoroďana
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
| | - Ladislav Kesner
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
- Department of Art History, Masaryk University, Brno, Czech Republic
| | - Jiří Horáček
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
16
|
Ye Q, Xu K, Chen Z, Liu Z, Fan Y, Liu P, Yu M, Yang Y. Early impairment of magnocellular visual pathways mediated by isolated-check visual evoked potentials in primary open-angle glaucoma: a cross-sectional study. BMJ Open Ophthalmol 2024; 9:e001463. [PMID: 38237934 PMCID: PMC10806665 DOI: 10.1136/bmjophth-2023-001463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVE To explore different performances in the magnocellular (MC) and parvocellular (PC) visual pathways in patients with primary open-angle glaucoma (POAG) and to objectively assess impairment in early stage of POAG. METHODS AND ANALYSIS This is a cross-sectional study. MC and PC visual pathways were assessed using isolated-check visual evoked potential (ic-VEP). Visual acuity, intraocular pressure, fundus examination, optical coherence tomography and visual field were measured. Signal-to-noise ratios (SNRs), mediated by ic-VEP were recorded. The Spearman's correlation analysis was used to estimate the relationships between visual functions and structures. Receiver-operating-characteristic (ROC) curves were used to estimate the accuracy in detection of early POAG. RESULTS 60 participants (30 early POAG eyes and 30 age-matched control subjects) were recruited. MC visual pathway showed a non-linear response function, while PC visual pathway was a linear response function as contrast increased. Early POAG eyes exhibited significantly weaker initial contrast gains and lower maximum responses in the MC visual pathway (p=0.001, p=0.004, respectively). The SNRs at 8% and 32% depths of modulation (DOM) were significantly correlated with temporal-side retinal nerve fibre layer (RNFL) thickness in early POAG in MC-biased stimulation (p=0.017, p=0.020, respectively). The areas under ROC of 16% DOM were 0.780 (sensitivity 80.0%, specificity 63.3%) with the cut-off SNR of 2.07. CONCLUSIONS The MC visual pathway was damaged in the early stage of POAG. The SNRs at 8% and 32% DOM of MC-biased stimulation were significantly correlated with temporal-side RNFL thickness in early POAG, which helped in understanding the mechanisms of visual impairment in the early stage of POAG.
Collapse
Affiliation(s)
- Qiaona Ye
- Department of Glaucoma, State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kezheng Xu
- Department of Glaucoma, State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zidong Chen
- Department of Glaucoma, State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zitian Liu
- Department of Glaucoma, State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanmei Fan
- Department of Glaucoma, State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pingping Liu
- Department of Glaucoma, State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minbin Yu
- Department of Glaucoma, State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yangfan Yang
- Department of Glaucoma, State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Martínez A, Hillyard SA, Javitt DC. Visual Neurophysiological Biomarkers for Patient Stratification and Treatment Development Across Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 40:757-799. [PMID: 39562463 DOI: 10.1007/978-3-031-69491-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The human visual system begins in the retina and projects to cortex through both the thalamocortical and retinotectal visual pathways. The thalamocortical system is divided into separate magnocellular and parvocellular divisions, which engage separate layers of the lateral geniculate nucleus (LGN) and project preferentially to the dorsal and ventral visual streams, respectively. The retinotectal system, in contrast, projects to the superior colliculus, pulvinar nucleus of the thalamus and amygdala. The pulvinar nucleus also plays a critical role in the integration of information processing across early visual regions.The functions of the visual system can be assessed using convergent EEG- and functional brain imaging approaches, increasingly supplemented by simultaneously collected eye-tracking information. These approaches may be used for tracing the flow of information from retina through early visual regions, as well as the contribution of these regions to higher-order cognitive processing. A pathway of increasing interest in relationship to neuropsychiatric disorders is the primate-specific "third visual pathway" that relies extensively on motion-related input and contributes preferentially to social information processing. Thus, disturbances in the brain's responsiveness to motion stimuli may be especially useful as biomarkers for early visual dysfunction related to impaired social cognition.Visual event-related potentials (ERPs) can be collected with high-fidelity and have proven effective for the study of neuropsychiatric disorders such as schizophrenia and Alzheimer's disease, in which alterations in visual processing may occur early in the disorder, andautism-spectrum disorder (ASD), in which abnormal persistence of early childhood patterns may persist into adulthood, leading to impaired functioning of visual social pathways. The utility of visual ERPs as biomarkers for larger clinical studies is limited at present by the need for standardization of visual stimuli across laboratories, which requires specialized protocols and equipment. The development of optimized stimulation protocols as well as newer headset-based systems may increase the clinical utility of present stimulation approaches.
Collapse
Affiliation(s)
- Antígona Martínez
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Steven A Hillyard
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA
| | - Daniel C Javitt
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
18
|
Xiang J, Sun Y, Wu X, Guo Y, Xue J, Niu Y, Cui X. Abnormal Spatial and Temporal Overlap of Time-Varying Brain Functional Networks in Patients with Schizophrenia. Brain Sci 2023; 14:40. [PMID: 38248255 PMCID: PMC10813230 DOI: 10.3390/brainsci14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Schizophrenia (SZ) is a complex psychiatric disorder with unclear etiology and pathological features. Neuroscientists are increasingly proposing that schizophrenia is an abnormality in the dynamic organization of brain networks. Previous studies have found that the dynamic brain networks of people with SZ are abnormal in both space and time. However, little is known about the interactions and overlaps between hubs of the brain underlying spatiotemporal dynamics. In this study, we aimed to investigate different patterns of spatial and temporal overlap of hubs between SZ patients and healthy individuals. Specifically, we obtained resting-state functional magnetic resonance imaging data from the public dataset for 43 SZ patients and 49 healthy individuals. We derived a representation of time-varying functional connectivity using the Jackknife Correlation (JC) method. We employed the Betweenness Centrality (BC) method to identify the hubs of the brain's functional connectivity network. We then applied measures of temporal overlap, spatial overlap, and hierarchical clustering to investigate differences in the organization of brain hubs between SZ patients and healthy controls. Our findings suggest significant differences between SZ patients and healthy controls at the whole-brain and subnetwork levels. Furthermore, spatial overlap and hierarchical clustering analysis showed that quasi-periodic patterns were disrupted in SZ patients. Analyses of temporal overlap revealed abnormal pairwise engagement preferences in the hubs of SZ patients. These results provide new insights into the dynamic characteristics of the network organization of the SZ brain.
Collapse
Affiliation(s)
- Jie Xiang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (J.X.); (Y.S.); (X.W.); (J.X.); (Y.N.)
| | - Yumeng Sun
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (J.X.); (Y.S.); (X.W.); (J.X.); (Y.N.)
| | - Xubin Wu
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (J.X.); (Y.S.); (X.W.); (J.X.); (Y.N.)
| | - Yuxiang Guo
- School of Software, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Jiayue Xue
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (J.X.); (Y.S.); (X.W.); (J.X.); (Y.N.)
| | - Yan Niu
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (J.X.); (Y.S.); (X.W.); (J.X.); (Y.N.)
| | - Xiaohong Cui
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (J.X.); (Y.S.); (X.W.); (J.X.); (Y.N.)
| |
Collapse
|
19
|
Xie Y, Guan M, Wang Z, Ma Z, Fang P, Wang H. Cerebral blood flow changes in schizophrenia patients with auditory verbal hallucinations during low-frequency rTMS treatment. Eur Arch Psychiatry Clin Neurosci 2023; 273:1851-1861. [PMID: 37280358 DOI: 10.1007/s00406-023-01624-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/22/2023] [Indexed: 06/08/2023]
Abstract
Auditory verbal hallucinations (AVH) are a prominent symptom of schizophrenia. Low-frequency repetitive transcranial magnetic stimulation (rTMS) has been evidenced to improve the treatment of AVH in schizophrenia. Although abnormalities in resting-state cerebral blood flow (CBF) have been reported in schizophrenia, the perfusion alterations specific to schizophrenia patients with AVH during rTMS require further investigation. In this study, we used arterial spin labeling (ASL) to investigate changes in brain perfusion in schizophrenia patients with AVH, and their associations with clinical improvement following low-frequency rTMS treatment applied to the left temporoparietal junction area. We observed improvements in clinical symptoms (e.g., positive symptoms and AVH) and certain neurocognitive functions (e.g., verbal learning and visual learning) following treatment. Furthermore, at baseline, the patients showed reductions in CBF in regions associated with language, sensory, and cognition compared to controls, primarily located in the prefrontal cortices (e.g., left inferior frontal gyrus and left middle frontal gyrus), occipital lobe (e.g., left calcarine cortex), and cingulate cortex (e.g., bilateral middle cingulate cortex), compared to controls. Conversely, we observed increased CBF in the left inferior temporal gyrus and bilateral putamen in patients relative to controls, regions known to be involved in AVH. However, the hypoperfusion or hyperperfusion patterns did not persist and instead were normalized, and were related to clinical response (e.g., AVH) in patients during low-frequency rTMS treatment. Importantly, the changes in brain perfusion were related to clinical response (e.g., AVH) in patients. Our findings suggest that low-frequency rTMS can regulate brain perfusion involving critical circuits by its remote effect in schizophrenia, and may play an important mechanistic role in the treatment of AVH.
Collapse
Affiliation(s)
- Yuanjun Xie
- Department of Military Medical Psychology, School of Psychology, Fourth Military Medical University, Xi'an, China.
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhujing Ma
- Department of Clinical Psychology, School of Psychology, Fourth Military Medical University, Xi'an, China
| | - Peng Fang
- Department of Military Medical Psychology, School of Psychology, Fourth Military Medical University, Xi'an, China.
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
20
|
Escelsior A, Inuggi A, Amadeo MB, Engel-Yeger B, Trabucco A, Esposito D, Campus C, Bovio A, Comparini S, Pereira da Silva B, Serafini G, Gori M, Amore M. Sensation seeking correlates with increased white matter integrity of structures associated with visuospatial processing in healthy adults. Front Neurosci 2023; 17:1267700. [PMID: 37954876 PMCID: PMC10637364 DOI: 10.3389/fnins.2023.1267700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction The ability to process sensory information is an essential adaptive function, and hyper- or hypo-sensitive maladaptive profiles of responses to environmental stimuli generate sensory processing disorders linked to cognitive, affective, and behavioral alterations. Consequently, assessing sensory processing profiles might help research the vulnerability and resilience to mental disorders. The research on neuroradiological correlates of the sensory processing profiles is mainly limited to the young-age population or neurodevelopmental disorders. So, this study aims to examine the structural MRI correlates of sensory profiles in a sample of typically developed adults. Methods We investigated structural cortical thickness (CT) and white matter integrity, through Diffusion Tensor Imaging (DTI), correlates of Adolescent/Adult Sensory Profile (AASP) questionnaire subscales in 57 typical developing subjects (34F; mean age: 32.7 ± 9.3). Results We found significant results only for the sensation seeking (STS) subscale. Positive and negative correlations emerged with fractional anisotropy (FA) and radial diffusivity (RD) in anterior thalamic radiation, optic radiation, superior longitudinal fasciculus, corpus callosum, and the cingulum bundle. No correlation between sensation seeking and whole brain cortical thickness was found. Discussion Overall, our results suggest a positive correlation between sensation seeking and higher white matter structural integrity in those tracts mainly involved in visuospatial processing but no correlation with gray matter structure. The enhanced structural integrity associated with sensation seeking may reflect a neurobiological substrate linked to active research of sensory stimuli and resilience to major psychiatric disorders like schizophrenia, bipolar disorder, and depression.
Collapse
Affiliation(s)
- Andrea Escelsior
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alberto Inuggi
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Maria Bianca Amadeo
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Batya Engel-Yeger
- Faculty of Social Welfare and Health Sciences, Department of Occupational Therapy, University of Haifa, Haifa, Israel
| | - Alice Trabucco
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Davide Esposito
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Claudio Campus
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Anna Bovio
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Sara Comparini
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Beatriz Pereira da Silva
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Gianluca Serafini
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Monica Gori
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Mario Amore
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
21
|
Dugan C, Zikopoulos B, Yazdanbakhsh A. A neural modeling approach to study mechanisms underlying the heterogeneity of visual spatial frequency sensitivity in schizophrenia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.563001. [PMID: 37904992 PMCID: PMC10614973 DOI: 10.1101/2023.10.18.563001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Patients with schizophrenia exhibit abnormalities in spatial frequency sensitivity, and it is believed that these abnormalities indicate more widespread dysfunction and dysregulation of bottom-up processing. The early visual system, including the first-order Lateral Geniculate Nucleus of the thalamus (LGN) and the primary visual cortex (V1), are key contributors to spatial frequency sensitivity. Medicated and unmedicated patients with schizophrenia exhibit contrasting changes in spatial frequency sensitivity, thus making it a useful probe for examining potential effects of the disorder and antipsychotic medications in neural processing. We constructed a parameterized, rate-based neural model of on-center/off-surround neurons in the early visual system to investigate the impacts of changes to the excitatory and inhibitory receptive field subfields. By incorporating changes in both the excitatory and inhibitory subfields that are associated with pathophysiological findings in schizophrenia, the model successfully replicated perceptual data from behavioral/functional studies involving medicated and unmedicated patients. Among several plausible mechanisms, our results highlight the dampening of excitation and/or increase in the spread and strength of the inhibitory subfield in medicated patients and the contrasting decreased spread and strength of inhibition in unmedicated patients. Given that the model was successful at replicating results from perceptual data under a variety of conditions, these elements of the receptive field may be useful markers for the imbalances seen in patients with schizophrenia.
Collapse
Affiliation(s)
- Caroline Dugan
- Program in Neuroscience, Boston University, Boston, MA, United States
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
| | - Arash Yazdanbakhsh
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Computational Neuroscience and Vision Laboratory, Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
22
|
Slapø NB, Jørgensen KN, Elvsåshagen T, Nerland S, Roelfs D, Valstad M, Timpe CMF, Richard G, Beck D, Sæther LS, Frogner Werner MC, Lagerberg TV, Andreassen OA, Melle I, Agartz I, Westlye LT, Moberget T, Jönsson EG. Relationship between function and structure in the visual cortex in healthy individuals and in patients with severe mental disorders. Psychiatry Res Neuroimaging 2023; 332:111633. [PMID: 37028226 DOI: 10.1016/j.pscychresns.2023.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 04/09/2023]
Abstract
Patients with schizophrenia spectrum disorders (SCZspect) and bipolar disorders (BD) show impaired function in the primary visual cortex (V1), indicated by altered visual evoked potential (VEP). While the neural substrate for altered VEP in these patients remains elusive, altered V1 structure may play a role. One previous study found a positive relationship between the amplitude of the P100 component of the VEP and V1 surface area, but not V1 thickness, in a small sample of healthy individuals. Here, we aimed to replicate these findings in a larger healthy control (HC) sample (n = 307) and to examine the same relationship in patients with SCZspect (n = 30) or BD (n = 45). We also compared the mean P100 amplitude, V1 surface area and V1 thickness between controls and patients and found no significant group differences. In HC only, we found a significant positive P100-V1 surface area association, while there were no significant P100-V1 thickness relationships in HC, SCZspect or BD. Together, our results confirm previous findings of a positive P100-V1 surface area association in HC, whereas larger patient samples are needed to further clarify the function-structure relationship in V1 in SCZspect and BD.
Collapse
Affiliation(s)
- Nora Berz Slapø
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway.
| | - Kjetil Nordbø Jørgensen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Torbjørn Elvsåshagen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Neurology, Oslo University Hospital, Norway
| | - Stener Nerland
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Daniel Roelfs
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway
| | - Mathias Valstad
- Department of Mental Disorders, Norwegian Institute of Public Health, Norway
| | - Clara M F Timpe
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | | | - Dani Beck
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | | | | | - Trine Vik Lagerberg
- NORMENT, Division of Mental Health and Addiction, Oslo University hospital, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University hospital, Norway
| | - Ingrid Melle
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University hospital, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| | - Lars T Westlye
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | - Torgeir Moberget
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Behavioral Sciences, Faculty of Health Sciences, Oslo Metropolitan University, OsloMet, Oslo, Norway
| | - Erik G Jönsson
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
23
|
Schallmo MP, Weldon KB, Kamath RS, Moser HR, Montoya SA, Killebrew KW, Demro C, Grant AN, Marjańska M, Sponheim SR, Olman CA. The psychosis human connectome project: Design and rationale for studies of visual neurophysiology. Neuroimage 2023; 272:120060. [PMID: 36997137 PMCID: PMC10153004 DOI: 10.1016/j.neuroimage.2023.120060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Visual perception is abnormal in psychotic disorders such as schizophrenia. In addition to hallucinations, laboratory tests show differences in fundamental visual processes including contrast sensitivity, center-surround interactions, and perceptual organization. A number of hypotheses have been proposed to explain visual dysfunction in psychotic disorders, including an imbalance between excitation and inhibition. However, the precise neural basis of abnormal visual perception in people with psychotic psychopathology (PwPP) remains unknown. Here, we describe the behavioral and 7 tesla MRI methods we used to interrogate visual neurophysiology in PwPP as part of the Psychosis Human Connectome Project (HCP). In addition to PwPP (n = 66) and healthy controls (n = 43), we also recruited first-degree biological relatives (n = 44) in order to examine the role of genetic liability for psychosis in visual perception. Our visual tasks were designed to assess fundamental visual processes in PwPP, whereas MR spectroscopy enabled us to examine neurochemistry, including excitatory and inhibitory markers. We show that it is feasible to collect high-quality data across multiple psychophysical, functional MRI, and MR spectroscopy experiments with a sizable number of participants at a single research site. These data, in addition to those from our previously described 3 tesla experiments, will be made publicly available in order to facilitate further investigations by other research groups. By combining visual neuroscience techniques and HCP brain imaging methods, our experiments offer new opportunities to investigate the neural basis of abnormal visual perception in PwPP.
Collapse
Affiliation(s)
- Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Kimberly B Weldon
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Rohit S Kamath
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Hannah R Moser
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Samantha A Montoya
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Kyle W Killebrew
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Caroline Demro
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Andrea N Grant
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Małgorzata Marjańska
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Veterans Affairs Medical Center, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Cheryl A Olman
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA; Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
24
|
Sklar AL, Ren X, Chlpka L, Curtis M, Coffman BA, Salisbury DF. Diminished Auditory Cortex Dynamic Range and its Clinical Correlates in First Episode Psychosis. Schizophr Bull 2023; 49:679-687. [PMID: 36749310 PMCID: PMC10154701 DOI: 10.1093/schbul/sbac208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND HYPOTHESIS There is growing appreciation for the contribution of sensory disruptions to disease morbidity in psychosis. The present study examined auditory cortex (AC) dynamic range: the scaling of neurophysiological responses to stimulus intensity, among individuals with a schizophrenia spectrum illness (FESz) and its relationship to clinical outcomes at disease onset. STUDY DESIGN Magnetoencephalography (MEG) was recorded from 35 FESz and 40 healthy controls (HC) during binaural presentation of tones at three intensities (75 dB, 80 dB, and 85 dB). MRIs were obtained to enhance cortical localization of MEG sensor-level activity. All participants completed the MATRICS cognitive battery (MCCB) and Global Functioning: Role and Social scales (GFR/GFS). Patients were administered the Positive and Negative Syndrome Scale (PANSS). STUDY RESULTS FESz exhibited reduced AC response relative to HC. Enhancement of AC activity to tones of increasing intensity was blunted in FESz relative to HC. Reduced dynamic range (85-75 dB AC response) was associated with lower GFS (r = .58) and GFR (r = .45) scores, worse MCCB performance (r = .45), and increased PANSS Negative symptom subscale scores (r = -.55) among FESz, relationships not observed with AC responses to individual tones. CONCLUSION Beyond an impaired AC response to pure tones, FESz exhibit reduced dynamic range relative to HC. This impairment was correlated with markers of disease morbidity including poorer community functioning as well as cognitive and negative symptoms. The relationship with impaired social functioning may reflect the role of AC dynamic range in decoding the emotional content of language and highlights its importance to future therapeutic sensory remediation protocols.
Collapse
Affiliation(s)
- Alfredo L Sklar
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xi Ren
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Lydia Chlpka
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Mark Curtis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, USA
| | - Brian A Coffman
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dean F Salisbury
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Løchen AR, Kolskår KK, de Lange AMG, Sneve MH, Haatveit B, Lagerberg TV, Ueland T, Melle I, Andreassen OA, Westlye LT, Alnæs D. Visual processing deficits in patients with schizophrenia spectrum and bipolar disorders and associations with psychotic symptoms, and intellectual abilities. Heliyon 2023; 9:e13354. [PMID: 36825178 PMCID: PMC9941950 DOI: 10.1016/j.heliyon.2023.e13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Objective Low-level sensory disruption is hypothesized as a precursor to clinical and cognitive symptoms in severe mental disorders. We compared visual discrimination performance in patients with schizophrenia spectrum disorder or bipolar disorder with healthy controls, and investigated associations with clinical symptoms and IQ. Methods Patients with schizophrenia spectrum disorder (n = 32), bipolar disorder (n = 55) and healthy controls (n = 152) completed a computerized visual discrimination task. Participants responded whether the latter of two consecutive grids had higher or lower spatial frequency, and discrimination thresholds were estimated using an adaptive maximum likelihood procedure. Case-control differences in threshold were assessed using linear regression, F-test and post-hoc pair-wise comparisons. Linear models were used to test for associations between visual discrimination threshold and psychotic symptoms derived from the PANSS and IQ assessed using the Matrix Reasoning and Vocabulary subtests from the Wechsler Abbreviated Scale of Intelligence (WASI). Results Robust regression revealed a significant main effect of diagnosis on discrimination threshold (robust F = 6.76, p = .001). Post-hoc comparisons revealed that patients with a schizophrenia spectrum disorder (mean = 14%, SD = 0.08) had higher thresholds compared to healthy controls (mean = 10.8%, SD = 0.07, β = 0.35, t = 3.4, p = .002), as did patients with bipolar disorder (12.23%, SD = 0.07, β = 0.21, t = 2.42, p = .04). There was no significant difference between bipolar disorder and schizophrenia (β = -0.14, t = -1.2, p = .45). Linear models revealed negative associations between IQ and threshold across all participants when controlling for diagnostic group (β = -0.3, t = -3.43, p = .0007). This association was found within healthy controls (t = -3.72, p = .0003) and patients with bipolar disorder (t = -2.53, p = .015), and no significant group by IQ interaction on threshold (F = 0.044, p = .97). There were no significant associations between PANSS domain scores and discrimination threshold. Conclusion Patients with schizophrenia spectrum or bipolar disorders exhibited higher visual discrimination thresholds than healthy controls, supporting early visual deficits among patients with severe mental illness. Discrimination threshold was negatively associated with IQ among healthy controls and bipolar disorder patients. These findings elucidate perception-related disease mechanisms in severe mental illness, which warrants replication in independent samples.
Collapse
Affiliation(s)
- Aili R. Løchen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway,Corresponding author. Oslo University Hospital, PO Box 4956 Nydalen, 0424 Oslo, Norway.
| | - Knut K. Kolskår
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway,Sunnaas Rehabilitation Hospital HT, Nesodden, Norway,Department of Psychology, University of Oslo, Norway
| | - Ann-Marie G. de Lange
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway,LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland,Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Beathe Haatveit
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Trine V. Lagerberg
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Torill Ueland
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway,Department of Psychology, University of Oslo, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Ole A. Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway,KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Norway
| | - Lars T. Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway,Department of Psychology, University of Oslo, Norway,KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Norway
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway,Kristiania University College, Oslo, Norway,Corresponding author. Oslo University Hospital, PO Box 4956 Nydalen, 0424 Oslo, Norway.
| |
Collapse
|
26
|
Tsai YT, Gordon J, Butler P, Zemon V. Frequency-domain analysis of transient visual evoked potentials in schizophrenia. Doc Ophthalmol 2023:10.1007/s10633-023-09921-2. [PMID: 36702946 DOI: 10.1007/s10633-023-09921-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/04/2023] [Indexed: 01/28/2023]
Abstract
PURPOSE Frequency-domain measures were applied to characterize neural deficits in individuals with schizophrenia using transient visual evoked potentials (tVEP). These measures were compared with conventional time-domain measures to elucidate underlying neurophysiological mechanisms and examine the value of frequency analysis. METHODS Four frequency bands of activity identified in previous work were explored with respect to magnitude (spectral power), timing (phase), a combined measure, magnitude-squared coherence (MSC), and compared to amplitudes and times of prominent deflections in the response. RESULTS Band 2 power/MSC (14-28 Hz) captured the major deflections in the waveform and its power predicted N75-P100 amplitude for patients and controls. Band 3 power/MSC (30-40 Hz) correlated highly with the earliest deflection (P60-N75), reflecting input to primary visual cortex (V1) and produced the largest magnitude effect. Phase of the 24th harmonic component predicted P100 peak time for patients and controls and yielded the largest group difference. Cluster analyses including time- and frequency-domain measures identified subgroups of patients with differential neurophysiological effects. A small but significant difference in visual acuity was found between groups that appears to be neurally based: Acuity (range 0.63-1.6) was not correlated with any tVEP measures in controls nor with input timing to V1 (P60 peak time) in patients, but was correlated with later tVEP measures in patients. All but two of the patients were on antipsychotic medication: Medication level (chlorpromazine equivalents) was correlated negatively with tVEP time measures and positively with certain magnitude measures yielding responses similar to controls at high levels. CONCLUSIONS Overall, frequency-domain measures were shown to be objective and recommended as an alternative to conventional, subjective time-domain measures for analyzing tVEPs and in distinguishing between groups (patients vs. controls and patient subgroups). The findings implicated a loss of excitatory input to V1 in schizophrenia. Acuity as measured in the current study reflected disease status, and medication level was associated with improved tVEP responses. These novel tVEP techniques may be useful in revealing neurophysiological processes affected in schizophrenia and as a clinical tool.
Collapse
Affiliation(s)
- Yu-Ting Tsai
- Ferkauf Graduate School of Psychology, Yeshiva University, 1165 Morris Park Ave., Bronx, NY, 10461, USA.,Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11696, Taiwan
| | - James Gordon
- Department of Psychology, Hunter College, City University of New York, 695 Park Ave., New York, NY, 10065, USA
| | - Pamela Butler
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA.,Department of Psychiatry, New York University School of Medicine, One Park Ave., New York, NY, 10016, USA
| | - Vance Zemon
- Ferkauf Graduate School of Psychology, Yeshiva University, 1165 Morris Park Ave., Bronx, NY, 10461, USA. .,Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA.
| |
Collapse
|
27
|
Javitt DC. Cognitive Impairment Associated with Schizophrenia: From Pathophysiology to Treatment. Annu Rev Pharmacol Toxicol 2023; 63:119-141. [PMID: 36151052 DOI: 10.1146/annurev-pharmtox-051921-093250] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cognitive impairment is a core feature of schizophrenia and a major contributor to poor functional outcomes. Methods for assessment of cognitive dysfunction in schizophrenia are now well established. In addition, there has been increasing appreciation in recent years of the additional role of social cognitive impairment in driving functional outcomes and of the contributions of sensory-level dysfunction to higher-order impairments. At the neurochemical level, acute administration of N-methyl-d-aspartate receptor (NMDAR) antagonists reproduces the pattern of neurocognitive dysfunction associated with schizophrenia, encouraging the development of treatments targeted at both NMDAR and its interactome. At the local-circuit level, an auditory neurophysiological measure, mismatch negativity, has emerged both as a veridical index of NMDAR dysfunction and excitatory/inhibitory imbalance in schizophrenia and as a critical biomarker for early-stage translational drug development. Although no compounds have yet been approved for treatment of cognitive impairment associated with schizophrenia, several candidates are showing promise in early-phase testing.
Collapse
Affiliation(s)
- Daniel C Javitt
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; .,Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| |
Collapse
|
28
|
Bi H, Abrham Y, Butler PD, Hu B, Keane BP. When do contrast sensitivity deficits (or enhancements) depend on spatial frequency? Two ways to avoid spurious interactions. Eur J Neurosci 2023; 57:351-359. [PMID: 36504242 DOI: 10.1111/ejn.15887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Studies across a broad range of disciplines-from psychiatry to cognitive science to behavioural neuroscience-have reported on whether the magnitude of contrast sensitivity alterations in one group or condition varies with spatial frequency. Significant interactions have often gone unexplained or have been used to argue for impairments in specific processing streams. Here, we show that interactions with spatial frequency may need to be re-evaluated if the inherent skew/heteroscedasticity was not taken into account or if visual acuity could plausibly differ across groups or conditions. By re-analysing a publicly available data set, we show that-when using raw contrast sensitivity data-schizophrenia patients exhibit an apparent contrast sensitivity impairment that lessens with spatial frequency, but that when using log-transformed data or when using generalized estimating equations, this interaction reversed. The reversed interaction, but not the overall contrast sensitivity deficit, disappeared when groups were matched on visual acuity. An analysis of the contrast threshold data yielded similar results. A caveat is that matching groups on acuity is probably only defensible if acuity differences arise from non-neural factors such as optical blur. Taken together, these analyses reconcile seemingly discrepant findings in the literature and demonstrate that reporting contrast sensitivity interactions with spatial frequency requires properly accounting for visual acuity and skew/heteroscedasticity.
Collapse
Affiliation(s)
- Howard Bi
- Department of Psychiatry, University of Rochester Medical Center, Rochester, New York, USA
| | - Yonatan Abrham
- Center for Visual Science, University of Rochester, Rochester, New York, USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York, USA
| | - Pamela D Butler
- Clinical Science Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| | - Boyang Hu
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York, USA
| | - Brian P Keane
- Department of Psychiatry, University of Rochester Medical Center, Rochester, New York, USA
- Center for Visual Science, University of Rochester, Rochester, New York, USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
29
|
Kody E, Diwadkar VA. Magnocellular and parvocellular contributions to brain network dysfunction during learning and memory: Implications for schizophrenia. J Psychiatr Res 2022; 156:520-531. [PMID: 36351307 DOI: 10.1016/j.jpsychires.2022.10.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Memory deficits are core features of schizophrenia, and a central aim in biological psychiatry is to identify the etiology of these deficits. Scrutiny is naturally focused on the dorsolateral prefrontal cortex and the hippocampal cortices, given these structures' roles in memory and learning. The fronto-hippocampal framework is valuable but restrictive. Network-based underpinnings of learning and memory are substantially diverse and include interactions between hetero-modal and early sensory networks. Thus, a loss of fidelity in sensory information may impact memorial and cognitive processing in higher-order brain sub-networks, becoming a sensory source for learning and memory deficits. In this overview, we suggest that impairments in magno- and parvo-cellular visual pathways result in degraded inputs to core learning and memory networks. The ascending cascade of aberrant neural events significantly contributes to learning and memory deficits in schizophrenia. We outline the network bases of these effects, and suggest that any network perspectives of dysfunction in schizophrenia must assess the impact of impaired perceptual contributions. Finally, we speculate on how this framework enriches the space of biomarkers and expands intervention strategies to ameliorate this prototypical disconnection syndrome.
Collapse
Affiliation(s)
- Elizabeth Kody
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA.
| |
Collapse
|
30
|
Qian N, Lipkin RM, Kaszowska A, Silipo G, Dias EC, Butler PD, Javitt DC. Computational modeling of excitatory/inhibitory balance impairments in schizophrenia. Schizophr Res 2022; 249:47-55. [PMID: 32291128 PMCID: PMC8760932 DOI: 10.1016/j.schres.2020.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
Deficits in glutamatergic function are well established in schizophrenia (SZ) as reflected in "input" dysfunction across sensory systems. By contrast, less is known about contributions of the GABAergic system to impairments in excitatory/inhibitory balance. We investigated this issue by measuring contrast thresholds for orientation detection, orientation discriminability, and orientation-tilt-aftereffect curves in schizophrenia subjects and matched controls. These measures depend on the amplitude and width of underlying orientation tuning curves, which, in turn, depend on excitatory and inhibitory interactions. By simulating a well-established V1 orientation selectivity model and its link to perception, we demonstrate that reduced cortical excitation and inhibition are both necessary to explain our psychophysical data. Reductions in GABAergic feedback may represent a compensatory response to impaired glutamatergic input in SZ, or a separate pathophysiological event. We also found evidence for the widely accepted, but rarely tested, inverse relationship between orientation discriminability and tuning width.
Collapse
Affiliation(s)
- Ning Qian
- Department of Neuroscience, Zuckerman Institute, Department of Physiology & Cellular Biophysics, Columbia University, New York, NY 10027, United States of America
| | - Richard M Lipkin
- Department of Neuroscience, Zuckerman Institute, Department of Physiology & Cellular Biophysics, Columbia University, New York, NY 10027, United States of America
| | - Aleksandra Kaszowska
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States of America; Department of Electronic Systems, Aalborg University, Denmark
| | - Gail Silipo
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States of America
| | - Elisa C Dias
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States of America
| | - Pamela D Butler
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States of America
| | - Daniel C Javitt
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States of America; Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States of America.
| |
Collapse
|
31
|
Schielke A, Krekelberg B. Steady state visual evoked potentials in schizophrenia: A review. Front Neurosci 2022; 16:988077. [PMID: 36389256 PMCID: PMC9650391 DOI: 10.3389/fnins.2022.988077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/11/2022] [Indexed: 05/08/2024] Open
Abstract
Over the past decades, researchers have explored altered rhythmic responses to visual stimulation in people with schizophrenia using steady state visual evoked potentials (SSVEPs). Here we systematically review studies performed between 1954 and 2021, as identified on PubMed. We included studies if they included people with schizophrenia, a control group, reported SSVEPs as their primary outcome, and used quantitative analyses in the frequency domain. We excluded studies that used SSVEPs to primarily quantify cognitive processes (e.g., attention). Fifteen studies met these criteria. These studies reported decreased SSVEPs across a range of frequencies and electrode locations in people living with schizophrenia compared to controls; none reported increases. Null results, however, were common. Given the typically modest number of subjects in these studies, this is consistent with a moderate effect size. It is notable that most studies targeted frequencies that fall within the alpha and beta band, and investigations of frequencies in the gamma band have been rare. We group test frequencies in frequency bands and summarize the results in topographic plots. From the wide range of approaches in these studies, we distill suggested experimental designs and analysis choices for future experiments. This will increase the value of SSVEP studies, improve our understanding of the mechanisms that result in altered rhythmic responses to visual stimulation in schizophrenia, and potentially further the development of diagnostic tools.
Collapse
Affiliation(s)
- Alexander Schielke
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | | |
Collapse
|
32
|
Barch DM, Boudewyn MA, Carter CC, Erickson M, Frank MJ, Gold JM, Luck SJ, MacDonald AW, Ragland JD, Ranganath C, Silverstein SM, Yonelinas A. Cognitive [Computational] Neuroscience Test Reliability and Clinical Applications for Serious Mental Illness (CNTRaCS) Consortium: Progress and Future Directions. Curr Top Behav Neurosci 2022; 63:19-60. [PMID: 36173600 DOI: 10.1007/7854_2022_391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The development of treatments for impaired cognition in schizophrenia has been characterized as the most important challenge facing psychiatry at the beginning of the twenty-first century. The Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) project was designed to build on the potential benefits of using tasks and tools from cognitive neuroscience to better understanding and treat cognitive impairments in psychosis. These benefits include: (1) the use of fine-grained tasks that measure discrete cognitive processes; (2) the ability to design tasks that distinguish between specific cognitive domain deficits and poor performance due to generalized deficits resulting from sedation, low motivation, poor test taking skills, etc.; and (3) the ability to link cognitive deficits to specific neural systems, using animal models, neuropsychology, and functional imaging. CNTRICS convened a series of meetings to identify paradigms from cognitive neuroscience that maximize these benefits and identified the steps need for translation into use in clinical populations. The Cognitive Neuroscience Test Reliability and Clinical Applications for Schizophrenia (CNTRaCS) Consortium was developed to help carry out these steps. CNTRaCS consists of investigators at five different sites across the country with diverse expertise relevant to a wide range of the cognitive systems identified as critical as part of CNTRICs. This work reports on the progress and current directions in the evaluation and optimization carried out by CNTRaCS of the tasks identified as part of the original CNTRICs process, as well as subsequent extensions into the Positive Valence systems domain of Research Domain Criteria (RDoC). We also describe the current focus of CNTRaCS, which involves taking a computational psychiatry approach to measuring cognitive and motivational function across the spectrum of psychosis. Specifically, the current iteration of CNTRaCS is using computational modeling to isolate parameters reflecting potentially more specific cognitive and visual processes that may provide greater interpretability in understanding shared and distinct impairments across psychiatric disorders.
Collapse
Affiliation(s)
- Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| | | | | | | | | | - James M Gold
- Maryland Psychiatric Research Center, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Sheldon AD, Kafadar E, Fisher V, Greenwald MS, Aitken F, Negreira AM, Woods SW, Powers AR. Perceptual pathways to hallucinogenesis. Schizophr Res 2022; 245:77-89. [PMID: 35216865 PMCID: PMC9232894 DOI: 10.1016/j.schres.2022.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/22/2022]
Abstract
Recent advances in computational psychiatry have provided unique insights into the neural and cognitive underpinnings of psychotic symptoms. In particular, a host of new data has demonstrated the utility of computational frameworks for understanding how hallucinations might arise from alterations in typical perceptual processing. Of particular promise are models based in Bayesian inference that link hallucinatory perceptual experiences to latent states that may drive them. In this piece, we move beyond these findings to ask: how and why do these latent states arise, and how might we take advantage of heterogeneity in that process to develop precision approaches to the treatment of hallucinations? We leverage specific models of Bayesian inference to discuss components that might lead to the development of hallucinations. Using the unifying power of our model, we attempt to place disparate findings in the study of psychotic symptoms within a common framework. Finally, we suggest directions for future elaboration of these models in the service of a more refined psychiatric nosology based on predictable, testable, and ultimately treatable information processing derangements.
Collapse
Affiliation(s)
- Andrew D Sheldon
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Eren Kafadar
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Victoria Fisher
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Maximillian S Greenwald
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Fraser Aitken
- School of Biomedical and Imaging Sciences, Kings College, London, UK
| | | | - Scott W Woods
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Albert R Powers
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America.
| |
Collapse
|
34
|
Yang W, Xu X, Wang C, Cheng Y, Li Y, Xu S, Li J. Alterations of dynamic functional connectivity between visual and executive-control networks in schizophrenia. Brain Imaging Behav 2022; 16:1294-1302. [PMID: 34997915 DOI: 10.1007/s11682-021-00592-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/20/2021] [Indexed: 01/28/2023]
Abstract
Schizophrenia is a chronic mental disorder characterized by continuous or relapsing episodes of psychosis. While previous studies have detected functional network connectivity alterations in patients with schizophrenia, and most have focused on static functional connectivity. However, brain activity is believed to change dynamically over time. Therefore, we computed dynamic functional network connectivity using the sliding window method in 38 patients with schizophrenia and 31 healthy controls. We found that patients with schizophrenia exhibited higher occurrences in the weakly and sparsely connected state (state 3) than healthy controls, positively correlated with negative symptoms. In addition, patients exhibited fewer occurrences in a strongly connected state (state 4) than healthy controls. Lastly, the dynamic functional network connectivity between the right executive-control network and the medial visual network was decreased in schizophrenia patients compared to healthy controls. Our results further prove that brain activity is dynamic, and that alterations of dynamic functional network connectivity features might be a fundamental neural mechanism in schizophrenia.
Collapse
Affiliation(s)
- Weiliang Yang
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Xuexin Xu
- Department of Radiology, MRI Center, Tianjin Children Hospital, Tianjin Medical University Affiliated Tianjin Children Hospital, Tianjin, China
| | - Chunxiang Wang
- Department of Radiology, MRI Center, Tianjin Children Hospital, Tianjin Medical University Affiliated Tianjin Children Hospital, Tianjin, China
| | - Yongying Cheng
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Yan Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Shuli Xu
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Jie Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China.
| |
Collapse
|
35
|
The glutamate/N-methyl-d-aspartate receptor (NMDAR) model of schizophrenia at 35: On the path from syndrome to disease. Schizophr Res 2022; 242:56-61. [PMID: 35125283 DOI: 10.1016/j.schres.2022.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
|
36
|
Adámek P, Langová V, Horáček J. Early-stage visual perception impairment in schizophrenia, bottom-up and back again. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:27. [PMID: 35314712 PMCID: PMC8938488 DOI: 10.1038/s41537-022-00237-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/17/2022] [Indexed: 01/01/2023]
Abstract
Visual perception is one of the basic tools for exploring the world. However, in schizophrenia, this modality is disrupted. So far, there has been no clear answer as to whether the disruption occurs primarily within the brain or in the precortical areas of visual perception (the retina, visual pathways, and lateral geniculate nucleus [LGN]). A web-based comprehensive search of peer-reviewed journals was conducted based on various keyword combinations including schizophrenia, saliency, visual cognition, visual pathways, retina, and LGN. Articles were chosen with respect to topic relevance. Searched databases included Google Scholar, PubMed, and Web of Science. This review describes the precortical circuit and the key changes in biochemistry and pathophysiology that affect the creation and characteristics of the retinal signal as well as its subsequent modulation and processing in other parts of this circuit. Changes in the characteristics of the signal and the misinterpretation of visual stimuli associated with them may, as a result, contribute to the development of schizophrenic disease.
Collapse
Affiliation(s)
- Petr Adámek
- Third Faculty of Medicine, Charles University, Prague, Czech Republic. .,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic.
| | - Veronika Langová
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
| | - Jiří Horáček
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
37
|
Francisco AA, Foxe JJ, Horsthuis DJ, Molholm S. Early visual processing and adaptation as markers of disease, not vulnerability: EEG evidence from 22q11.2 deletion syndrome, a population at high risk for schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:28. [PMID: 35314711 PMCID: PMC8938446 DOI: 10.1038/s41537-022-00240-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/21/2022] [Indexed: 01/17/2023]
Abstract
We investigated visual processing and adaptation in 22q11.2 deletion syndrome (22q11.2DS), a condition characterized by an increased risk for schizophrenia. Visual processing differences have been described in schizophrenia but remain understudied early in the disease course. Electrophysiology was recorded during a visual adaptation task with different interstimulus intervals to investigate visual processing and adaptation in 22q11.2DS (with (22q+) and without (22q−) psychotic symptoms), compared to control and idiopathic schizophrenia groups. Analyses focused on early windows of visual processing. While increased amplitudes were observed in 22q11.2DS in an earlier time window (90–140 ms), decreased responses were seen later (165–205 ms) in schizophrenia and 22q+. 22q11.2DS, and particularly 22q−, presented increased adaptation effects. We argue that while amplitude and adaptation in the earlier time window may reflect specific neurogenetic aspects associated with a deletion in chromosome 22, amplitude in the later window may be a marker of the presence of psychosis and/or of its chronicity/severity.
Collapse
Affiliation(s)
- Ana A Francisco
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA.,The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monde Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Douwe J Horsthuis
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monde Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
38
|
Fernandes TP, Oliveira MEC, Silva GM, Santos NA. Improvement in visual performance after nicotine gum administration in tobacco use disorder: a case report. J Addict Dis 2022; 40:568-576. [PMID: 35264083 DOI: 10.1080/10550887.2021.2020045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chronic tobacco consumption, identified as Tobacco Use Disorder (TUD), is a public health problem. We present a case report of a 37-year-old Brazilian male diagnosed with TUD at age 26, with no comorbidities, that presented visual improvements (i.e., lower thresholds and better discrimination) after nicotine gum administration. Here, we assessed contrast sensitivity and chromatic discrimination using the Metropsis and the Cambridge Colour Test, respectively. Results showed lower thresholds for both visual tasks after the use of nicotine gum. Even considering this is a single case report, our intent is to open new avenues for research involving smoking, addiction and the use of nicotine gum as a replacement tool or adjuvant tool for improvement of visual and/or cognitive processing. It is well known that nicotine gum has protective effects for some diseases, and improves some cognitive functions. However, unclear were its effects on visual processing of people with TUD.
Collapse
Affiliation(s)
- Thiago P Fernandes
- Perception, Neuroscience and Behaviour Lab, Federal University of Paraiba, Joao Pessoa, Brazil.,Department of Psychology, Federal University of Paraiba, Joao Pessoa, Brazil
| | - Milena E C Oliveira
- Perception, Neuroscience and Behaviour Lab, Federal University of Paraiba, Joao Pessoa, Brazil.,Department of Psychology, Federal University of Paraiba, Joao Pessoa, Brazil
| | - Gabriella M Silva
- Perception, Neuroscience and Behaviour Lab, Federal University of Paraiba, Joao Pessoa, Brazil.,Department of Psychology, Federal University of Paraiba, Joao Pessoa, Brazil
| | - Natanael A Santos
- Perception, Neuroscience and Behaviour Lab, Federal University of Paraiba, Joao Pessoa, Brazil.,Department of Psychology, Federal University of Paraiba, Joao Pessoa, Brazil
| |
Collapse
|
39
|
Hettwer MD, Lancaster TM, Raspor E, Hahn PK, Mota NR, Singer W, Reif A, Linden DEJ, Bittner RA. Evidence From Imaging Resilience Genetics for a Protective Mechanism Against Schizophrenia in the Ventral Visual Pathway. Schizophr Bull 2022; 48:551-562. [PMID: 35137221 PMCID: PMC9077432 DOI: 10.1093/schbul/sbab151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Illuminating neurobiological mechanisms underlying the protective effect of recently discovered common genetic resilience variants for schizophrenia is crucial for more effective prevention efforts. Current models implicate adaptive neuroplastic changes in the visual system and their pro-cognitive effects as a schizophrenia resilience mechanism. We investigated whether common genetic resilience variants might affect brain structure in similar neural circuits. METHOD Using structural magnetic resonance imaging, we measured the impact of an established schizophrenia polygenic resilience score (PRSResilience) on cortical volume, thickness, and surface area in 101 healthy subjects and in a replication sample of 33 224 healthy subjects (UK Biobank). FINDING We observed a significant positive whole-brain correlation between PRSResilience and cortical volume in the right fusiform gyrus (FFG) (r = 0.35; P = .0004). Post-hoc analyses in this cluster revealed an impact of PRSResilience on cortical surface area. The replication sample showed a positive correlation between PRSResilience and global cortical volume and surface area in the left FFG. CONCLUSION Our findings represent the first evidence of a neurobiological correlate of a genetic resilience factor for schizophrenia. They support the view that schizophrenia resilience emerges from strengthening neural circuits in the ventral visual pathway and an increased capacity for the disambiguation of social and nonsocial visual information. This may aid psychosocial functioning, ameliorate the detrimental effects of subtle perceptual and cognitive disturbances in at-risk individuals, and facilitate coping with the cognitive and psychosocial consequences of stressors. Our results thus provide a novel link between visual cognition, the vulnerability-stress concept, and schizophrenia resilience models.
Collapse
Affiliation(s)
- Meike D Hettwer
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany,Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas M Lancaster
- School of Psychology, Bath University, Bath, UK,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Eva Raspor
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Peter K Hahn
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Nina Roth Mota
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands,Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Wolf Singer
- Ernst Strüngmann Institute for Neuroscience (ESI) in Cooperation with Max Planck Society, Frankfurt am Main, Germany,Max Planck Institute for Brain Research (MPI BR), Frankfurt am Main, Germany,Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - David E J Linden
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK,School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Robert A Bittner
- To whom correspondence should be addressed; Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt am Main, Germany; tel: 69-6301-84713, fax: 69-6301-81775, e-mail:
| |
Collapse
|
40
|
Hoptman MJ, Tural U, Lim KO, Javitt DC, Oberlin LE. Relationships between Diffusion Tensor Imaging and Resting State Functional Connectivity in Patients with Schizophrenia and Healthy Controls: A Preliminary Study. Brain Sci 2022; 12:brainsci12020156. [PMID: 35203920 PMCID: PMC8870342 DOI: 10.3390/brainsci12020156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/02/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Schizophrenia is widely seen as a disorder of dysconnectivity. Neuroimaging studies have examined both structural and functional connectivity in the disorder, but these modalities have rarely been integrated directly. We scanned 29 patients with schizophrenia and 25 healthy control subjects, and we acquired resting state fMRI and diffusion tensor imaging. We used the Functional and Tractographic Connectivity Analysis Toolbox (FATCAT) to estimate functional and structural connectivity of the default mode network. Correlations between modalities were investigated, and multimodal connectivity scores (MCS) were created using principal component analysis. Of the 28 possible region pairs, 9 showed consistent (>80%) tracts across participants. Correlations between modalities were found among those with schizophrenia for the prefrontal cortex, posterior cingulate, and lateral temporal lobes, with frontal and parietal regions, consistent with frontotemporoparietal network involvement in the disorder. In patients, MCS correlated with several aspects of the Positive and Negative Syndrome Scale, with higher multimodal connectivity associated with outward-directed (externalizing) behavior and lower multimodal connectivity related to psychosis per se. In this preliminary sample, we found FATCAT to be a useful toolbox to directly integrate and examine connectivity between imaging modalities. A consideration of conjoint structural and functional connectivity can provide important information about the network mechanisms of schizophrenia.
Collapse
Affiliation(s)
- Matthew J. Hoptman
- Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Correspondence: or ; Tel.: +1-845-398-6569
| | - Umit Tural
- Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
| | - Kelvin O. Lim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA;
| | - Daniel C. Javitt
- Schizophrenia Research Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; or
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Lauren E. Oberlin
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA;
| |
Collapse
|
41
|
Antonova I, van Swam C, Hubl D, Griskova-Bulanova I, Dierks T, Koenig T. Altered Visuospatial Processing in Schizophrenia: An Event-related Potential Microstate Analysis Comparing Patients with and without Hallucinations with Healthy Controls. Neuroscience 2021; 479:140-156. [PMID: 34687795 DOI: 10.1016/j.neuroscience.2021.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
Patients with schizophrenia present with various symptoms related to different domains. Abnormalities of auditory and visual perception are parts of a more general problem. Nevertheless, the relationship between the lifetime history of auditory verbal hallucination (AVH), one of the most prevalent symptoms in schizophrenia, and visuospatial deficits remains unclear. This study aimed to investigate differences in hemispheric involvement and visuospatial processing between healthy controls (HCs) and schizophrenia patients with and without AVHs. HCs (N = 20), schizophrenia patients with AVH (AVH group, N = 16), and schizophrenia patients without hallucinations (NH group, N = 10) participated in a 4-choice reaction task with lateralized stimuli. An event-related potential (ERP)-microstate approach was used to analyze ERP differences between the conditions and groups. The schizophrenia patients without hallucinations had slower responses than the HCs. An early visual N1 contralateral to stimulation side was prominent in all groups of participants but with decreased amplitude in the patients with schizophrenia, especially in the AVH group over the right hemisphere. The amplitude of P3b, a cognitive evaluation component, was also decreased in schizophrenia. Compared to AVH and HC groups, the patients in the NH group had altered microstate patterns: P3b was replaced by a novelty component, P3a. Although the difference between both patient groups was only based on the presence of AVHs, our findings indicated that patients had specific visuospatial deficits associated with a lifetime history of hallucinations: patients with AVHs showed early visual component alterations in the right hemisphere, and those without AVHs had more prominent visuospatial impairment.
Collapse
Affiliation(s)
- Ingrida Antonova
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Vilnius University, Life Sciences Center, Vilnius, Lithuania; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Claudia van Swam
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Daniela Hubl
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | | | - Thomas Dierks
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Thomas Koenig
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
42
|
Herrera SN, Zemon V, Revheim N, Silipo G, Gordon J, Butler PD. Cognitive function mediates the relationship between visual contrast sensitivity and functional outcome in schizophrenia. J Psychiatr Res 2021; 144:138-145. [PMID: 34624619 PMCID: PMC8665016 DOI: 10.1016/j.jpsychires.2021.09.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Individuals with schizophrenia exhibit deficits in visual contrast processing, though less is known about how these deficits impact neurocognition and functional outcomes. This study investigated effects of contrast sensitivity (CS) on cognition and capacity for independent living in schizophrenia. METHODS Participants were 58 patients with schizophrenia (n = 49) and schizoaffective disorder (n = 9). Patients completed a psychophysical paradigm to obtain CS with stimuli consisting of grating patterns of low (0.5 and 1 cycles/degree) and high spatial frequencies (4, 7, 21 cycles/degree). Patients completed the MATRICS Consensus Cognitive Battery and Wechsler Adult Intelligence Scales, Third Edition to assess cognition, and the problem-solving factor of the Independent Living Scales to assess functional capacity. We computed bivariate correlation coefficients for all pairs of variables and tested mediation models with CS to low (CS-LSF) and high spatial frequencies (CS-HSF) as predictors, cognitive measures as mediators, and capacity for independent living as an outcome. RESULTS Cognition mediated the relationship between CS and independent living with CS-LSF a stronger predictor than CS-HSF. Mediation effects were strongest for perceptual organization and memory-related domains. In an expanded moderated mediation model, CS-HSF was found to be a significant predictor of independent living through perceptual organization as a mediator and CS-LSF as a moderator of this relationship. CONCLUSION CS relates to functional capacity in schizophrenia through neurocognition. These relationships may inform novel visual remediation interventions.
Collapse
Affiliation(s)
- Shaynna N Herrera
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA.
| | - Vance Zemon
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Nadine Revheim
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Gail Silipo
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - James Gordon
- Hunter College of the City University of New York, New York, NY, USA
| | - Pamela D Butler
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
43
|
Patel GH, Arkin SC, Ruiz-Betancourt D, DeBaun H, Strauss NE, Bartel LP, Grinband J, Martinez A, Berman RA, Leopold DA, Javitt DC. What you see is what you get: visual scanning failures of naturalistic social scenes in schizophrenia. Psychol Med 2021; 51:2923-2932. [PMID: 32498743 PMCID: PMC7751380 DOI: 10.1017/s0033291720001646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Impairments in social cognition contribute significantly to disability in schizophrenia patients (SzP). Perception of facial expressions is critical for social cognition. Intact perception requires an individual to visually scan a complex dynamic social scene for transiently moving facial expressions that may be relevant for understanding the scene. The relationship of visual scanning for these facial expressions and social cognition remains unknown. METHODS In 39 SzP and 27 healthy controls (HC), we used eye-tracking to examine the relationship between performance on The Awareness of Social Inference Test (TASIT), which tests social cognition using naturalistic video clips of social situations, and visual scanning, measuring each individual's relative to the mean of HC. We then examined the relationship of visual scanning to the specific visual features (motion, contrast, luminance, faces) within the video clips. RESULTS TASIT performance was significantly impaired in SzP for trials involving sarcasm (p < 10-5). Visual scanning was significantly more variable in SzP than HC (p < 10-6), and predicted TASIT performance in HC (p = 0.02) but not SzP (p = 0.91), differing significantly between groups (p = 0.04). During the visual scanning, SzP were less likely to be viewing faces (p = 0.0001) and less likely to saccade to facial motion in peripheral vision (p = 0.008). CONCLUSIONS SzP show highly significant deficits in the use of visual scanning of naturalistic social scenes to inform social cognition. Alterations in visual scanning patterns may originate from impaired processing of facial motion within peripheral vision. Overall, these results highlight the utility of naturalistic stimuli in the study of social cognition deficits in schizophrenia.
Collapse
Affiliation(s)
- Gaurav H. Patel
- Columbia University Medical Center
- New York State Psychiatric Institute
| | | | | | | | | | - Laura P. Bartel
- Columbia University Medical Center
- New York State Psychiatric Institute
| | - Jack Grinband
- Columbia University Medical Center
- New York State Psychiatric Institute
| | | | | | | | - Daniel C. Javitt
- Columbia University Medical Center
- New York State Psychiatric Institute
- Nathan Kline Institute
| |
Collapse
|
44
|
Non-invasive neurostimulation modulates processing of spatial frequency information in rapid perception of faces. Atten Percept Psychophys 2021; 84:150-160. [PMID: 34668174 DOI: 10.3758/s13414-021-02384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 11/08/2022]
Abstract
This study used high-frequency transcranial random noise stimulation (tRNS) to examine how low and high spatial frequency filtered faces are processed. Response times were measured in a task where healthy young adults categorised spatially filtered hybrid faces, presented at foveal and peripheral blocks, while sham and high-frequency random noise was applied to a lateral occipito-temporal location on their scalp. Both the Frequentist and Bayesian approaches show that in contrast to sham, active stimulation significantly reduced response times to peripherally presented low spatial frequency information. This finding points to a possible plasticity in targeted regions induced by non-invasive neuromodulation of spatial frequency information in rapid perception of faces.
Collapse
|
45
|
Hou WL, Yin XL, Yin XY, Guan LY, Cao JQ, Tang Z, Jiang CX, Xu DW, Yu X, Wang J, Jia QF, Chan RCK, Hui L. Association between stereopsis deficits and attention decline in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110267. [PMID: 33556482 DOI: 10.1016/j.pnpbp.2021.110267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/18/2021] [Accepted: 01/31/2021] [Indexed: 11/24/2022]
Abstract
Cognitive and sensory deficits were considered a core feature of major depressive disorder (MDD). However, few studies investigated stereopsis integrity in patients with MDD. Thus, the objectives of this study investigated stereopsis integrity and its correlations with cognitive function and depressive symptom in patients with MDD. 90 patients with MDD and 116 healthy controls (HCs) were enrolled in this study. Their stereoacuity was evaluated using the Titmus Stereopsis Test as well as assessing their cognitive function and depressive symptom by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and Hamilton Depression Scale (HAMD). Log seconds of arc was significantly higher in patients than HCs (1.92 ± 0.41 versus 1.67 ± 0.16, t = 5.35, p < 0.0001). The percentage of patients with correct stereopsis detection was markedly declined in 400 (z = 3.06, p = 0.002), 200 (z = 3.84, p < 0.001), 140 (z = 4.73, p < 0.001), 100 (z = 4.58, p < 0.001), 80 (z = 5.06, p < 0.001), 60 (z = 4.72, p < 0.001), 50 (z = 4.24, p < 0.001), and 40 (z = 4.85, p < 0.001) seconds of arc compared with HCs. Log seconds of arc was significantly correlated with the RBANS total score (r = -0.38, p < 0.0001), subscores of attention (r = -0.49, p < 0.0001) and language (r = -0.33, p = 0.001) rather than HAMD score (r = 0.03, p = 0.78) in MDD patients. In addition, log seconds of arc was significantly related to the RBANS total score (r = -0.58, p < 0.0001) and language score (r = -0.45, p = 0.006) rather than attention score (r = -0.30, p = 0.07) in HCs. Further stepwise multivariate regression analyses showed the negative correlation of log seconds of arc with attention score (β = -0.80, t = -3.95, p < 0.0001) rather than HAMD score (β = -0.008, t = -0.09, p = 0.93) in MDD patients. However, there was no relationship between log seconds of arc and attention score in HCs (β = 1.52, t = 1.19, p = 0.24). Our results identified the marked deficits of stereopsis in MDD patients that were tightly correlated with their attention functioning rather than depressive symptom.
Collapse
Affiliation(s)
- Wen-Long Hou
- Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu, PR China
| | - Xiao-Li Yin
- Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou 325007, Zhejiang, PR China
| | - Xu-Yuan Yin
- Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu, PR China
| | - Lu-Yang Guan
- Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu, PR China
| | - Jia-Qi Cao
- Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu, PR China
| | - Zhen Tang
- Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu, PR China
| | - Cai-Xia Jiang
- Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu, PR China
| | - Dong-Wu Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Xin Yu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China; Institute of Mental Health, Peking University, Beijing 100083, PR China
| | - Jing Wang
- Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu, PR China
| | - Qiu-Fang Jia
- Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu, PR China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health Institute of Psychiatry, Beijing 100101, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, PR China
| | - Li Hui
- Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu, PR China.
| |
Collapse
|
46
|
Edwards M, Goodhew SC, Badcock DR. Using perceptual tasks to selectively measure magnocellular and parvocellular performance: Rationale and a user's guide. Psychon Bull Rev 2021; 28:1029-1050. [PMID: 33742424 PMCID: PMC8367893 DOI: 10.3758/s13423-020-01874-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2020] [Indexed: 11/24/2022]
Abstract
The visual system uses parallel pathways to process information. However, an ongoing debate centers on the extent to which the pathways from the retina, via the Lateral Geniculate nucleus to the visual cortex, process distinct aspects of the visual scene and, if they do, can stimuli in the laboratory be used to selectively drive them. These questions are important for a number of reasons, including that some pathologies are thought to be associated with impaired functioning of one of these pathways and certain cognitive functions have been preferentially linked to specific pathways. Here we examine the two main pathways that have been the focus of this debate: the magnocellular and parvocellular pathways. Specifically, we review the results of electrophysiological and lesion studies that have investigated their properties and conclude that while there is substantial overlap in the type of information that they process, it is possible to identify aspects of visual information that are predominantly processed by either the magnocellular or parvocellular pathway. We then discuss the types of visual stimuli that can be used to preferentially drive these pathways.
Collapse
Affiliation(s)
- Mark Edwards
- Research School of Psychology, The Australian National University, Canberra, Australia.
| | - Stephanie C Goodhew
- Research School of Psychology, The Australian National University, Canberra, Australia
| | - David R Badcock
- School of Psychological Sciences, The University of Western Australia, Crawley, Australia
| |
Collapse
|
47
|
Devenney EM, Tu S, Caga J, Ahmed RM, Ramsey E, Zoing M, Kwok J, Halliday GM, Piguet O, Hodges JR, Kiernan MC. Neural mechanisms of psychosis vulnerability and perceptual abnormalities in the ALS-FTD spectrum. Ann Clin Transl Neurol 2021; 8:1576-1591. [PMID: 34156763 PMCID: PMC8351398 DOI: 10.1002/acn3.51363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The aims of this study were to (i) explore psychotic experiences across the entire amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) spectrum from a clinical and genetic perspective, (ii) determine the rate of abnormal perceptual experiences across the five sensory modalities and (iii) explore the neurobiological factors that lead to psychosis vulnerability in ALS-FTD. METHODS In a prospective case-controlled study design, 100 participants were enrolled including ALS (n = 37, 24% satisfied criteria for ALS-Plus), ALS-FTD (n = 11), bvFTD (n = 27) and healthy controls (n = 25). Psychotic experiences, perceptual abnormalities and psychosocial factors were determined by means of the clinical interview and carer and patient reports. Voxel-based morphometry analyses determined atrophy patterns in patients experiencing psychosis-like experiences and other perceptual abnormalities. RESULTS The rates of psychotic experiences and abnormalities of perception in each sensory modality were high across the entire ALS-FTD continuum. The rate was highest in those with C9orf72 expansions. Rates were also high in patients with pure ALS including psychosis measured by carer-based reports (18%) and self-report measures of psychotic-like experiences (21%). In an ENTER regression model, social anxiety and ACE-III scores were the best predictors of psychosis proneness, accounting for 44% of the score variance. Psychosis-like experiences and perceptual abnormalities were associated with a predominantly frontal and temporal pattern of atrophy that extended to the cerebellum and centred on the anterior thalamus. INTERPRETATION The model for psychosis proneness in ALS-FTD likely includes complex interactions between cognitive, social and neurobiological factors that determine vulnerability to psychosis and that may have relevance for individualised patient management.
Collapse
Affiliation(s)
- Emma M. Devenney
- Brain and Mind CentreUniversity of SydneySydneyNSWAustralia
- Faculty of Medicine and Health Translational Research CollectiveUniversity of SydneySydneyNSWAustralia
| | - Sicong Tu
- Brain and Mind CentreUniversity of SydneySydneyNSWAustralia
- Faculty of Medicine and Health Translational Research CollectiveUniversity of SydneySydneyNSWAustralia
| | - Jashelle Caga
- Brain and Mind CentreUniversity of SydneySydneyNSWAustralia
- Faculty of Medicine and Health Translational Research CollectiveUniversity of SydneySydneyNSWAustralia
| | - Rebekah M. Ahmed
- Brain and Mind CentreUniversity of SydneySydneyNSWAustralia
- Institute of Clinical NeurosciencesRoyal Prince Alfred HospitalSydneyNSWAustralia
| | - Eleanor Ramsey
- Brain and Mind CentreUniversity of SydneySydneyNSWAustralia
| | - Margie Zoing
- Brain and Mind CentreUniversity of SydneySydneyNSWAustralia
| | - John Kwok
- Brain and Mind CentreUniversity of SydneySydneyNSWAustralia
- Faculty of Medicine and Health School of Medical SciencesThe University of SydneySydneyNSWAustralia
| | - Glenda M. Halliday
- Brain and Mind CentreUniversity of SydneySydneyNSWAustralia
- Faculty of Medicine and Health School of Medical SciencesThe University of SydneySydneyNSWAustralia
| | - Olivier Piguet
- Brain and Mind CentreUniversity of SydneySydneyNSWAustralia
- Faculty of Science, School of PsychologyThe University of SydneySydneyNSWAustralia
- Australian Research Council Centre of Excellence in Cognition and its DisordersSydneyNSWAustralia
| | - John R. Hodges
- Brain and Mind CentreUniversity of SydneySydneyNSWAustralia
| | - Matthew C. Kiernan
- Brain and Mind CentreUniversity of SydneySydneyNSWAustralia
- Faculty of Medicine and Health Translational Research CollectiveUniversity of SydneySydneyNSWAustralia
- Institute of Clinical NeurosciencesRoyal Prince Alfred HospitalSydneyNSWAustralia
| |
Collapse
|
48
|
Hever F, Sahin D, Aschenbrenner S, Bossert M, Herwig K, Wirtz G, Oelkers-Ax R, Weisbrod M, Sharma A. Visual N80 latency as a marker of neuropsychological performance in schizophrenia: Evidence for bottom-up cognitive models. Clin Neurophysiol 2021; 132:872-885. [PMID: 33636604 DOI: 10.1016/j.clinph.2021.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Cognitive deficits and visual impairment in the magnocellular (M) pathway, have been independently reported in schizophrenia. The current study examined the association between neuropsychological (NPS) performance and visual evoked potentials (VEPs: N80/P1 to M- and P(parvocellular)-biased visual stimuli) in schizophrenia and healthy controls. METHODS NPS performance and VEPs were measured in n = 44 patients and n = 34 matched controls. Standardized NPS-scores were combined into Domains and a PCA (Principal Component Analysis) generated Composite. Group differences were assessed via (M)ANOVAs, association between NPS and VEP parameters via PCA, Pearson's coefficient and bootstrapping. Logistic regression was employed to assess classification power. RESULTS Patients showed general cognitive impairment, whereas group differences for VEP-parameters were non-significant. In patients, N80 latency across conditions loaded onto one factor with cognitive composite, showed significant negative correlations of medium effect sizes with NPS performance for M/P mixed stimuli and classified low and high performance with 70% accuracy. CONCLUSION The study provides no evidence for early visual pathway impairment but suggests a heightened association between early visual processing and cognitive performance in schizophrenia. SIGNIFICANCE Our results lend support to bottom-up models of cognitive function in schizophrenia and implicate visual N80 latency as a potential biomarker of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Felix Hever
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany.
| | - Derya Sahin
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Steffen Aschenbrenner
- Department of Psychiatry and Psychotherapy, SRH Hospital Karlsbad-Langensteinbach, Germany
| | - Magdalena Bossert
- Department of Psychiatry and Psychotherapy, SRH Hospital Karlsbad-Langensteinbach, Germany
| | - Kerstin Herwig
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Gustav Wirtz
- SRH RPK Karlsbad, Psychiatric Rehabilitation, Karlsbad-Langensteinbach, Germany
| | - Rieke Oelkers-Ax
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Matthias Weisbrod
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany; Department of Psychiatry and Psychotherapy, SRH Hospital Karlsbad-Langensteinbach, Germany
| | - Anuradha Sharma
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
49
|
Silverstein SM, Lai A. The Phenomenology and Neurobiology of Visual Distortions and Hallucinations in Schizophrenia: An Update. Front Psychiatry 2021; 12:684720. [PMID: 34177665 PMCID: PMC8226016 DOI: 10.3389/fpsyt.2021.684720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
Schizophrenia is characterized by visual distortions in ~60% of cases, and visual hallucinations (VH) in ~25-50% of cases, depending on the sample. These symptoms have received relatively little attention in the literature, perhaps due to the higher rate of auditory vs. visual hallucinations in psychotic disorders, which is the reverse of what is found in other neuropsychiatric conditions. Given the clinical significance of these perceptual disturbances, our aim is to help address this gap by updating and expanding upon prior reviews. Specifically, we: (1) present findings on the nature and frequency of VH and distortions in schizophrenia; (2) review proposed syndromes of VH in neuro-ophthalmology and neuropsychiatry, and discuss the extent to which these characterize VH in schizophrenia; (3) review potential cortical mechanisms of VH in schizophrenia; (4) review retinal changes that could contribute to VH in schizophrenia; (5) discuss relationships between findings from laboratory measures of visual processing and VH in schizophrenia; and (6) integrate findings across biological and psychological levels to propose an updated model of VH mechanisms, including how their content is determined, and how they may reflect vulnerabilities in the maintenance of a sense of self. In particular, we emphasize the potential role of alterations at multiple points in the visual pathway, including the retina, the roles of multiple neurotransmitters, and the role of a combination of disinhibited default mode network activity and enhanced state-related apical/contextual drive in determining the onset and content of VH. In short, our goal is to cast a fresh light on the under-studied symptoms of VH and visual distortions in schizophrenia for the purposes of informing future work on mechanisms and the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, United States.,Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States.,Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, United States.,Center for Visual Science, University of Rochester Medical Center, Rochester, NY, United States
| | - Adriann Lai
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
50
|
Desenvolvimento e validação de medidas psicofísicas de sensibilidade ao contraste de segunda-ordem. PSICO 2020. [DOI: 10.15448/1980-8623.2020.4.38077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A medida de sensibilidade ao contraste (SC) de primeira ordem é frequentemente utilizada para avaliação da percepção espacial. Nosso objetivo foi desenvolver e validar um teste de SC de segunda ordem para aplicação clínica. Modificações metodológicas foram realizadas na rotina psicofísica para redução do tempo de testagem e no primeiro experimento validamos a nova metodologia. Em um segundo experimento, dezesseis participantes foram testados nas mesmas condições do primeiro experimento. As medidas de consistência interna por alfa de Cronbach foram robustas para a medida de primeira ordem sendo α= 0,788, segunda ordem por ruído branco α= 0,668 e por ruído rosa α= 0,717. O desenvolvimento e validação deste novo experimento para medidas de SC de segunda ordem permitirá avançar nos estudos dos mecanismos básicos da percepção de espaço para estímulos complexos, assim como a aplicação clínica em diversas doenças.
Collapse
|