1
|
Schmunk LJ, Call TP, McCartney DL, Javaid H, Hastings WJ, Jovicevic V, Kojadinović D, Tomkinson N, Zlamalova E, McGee KC, Sullivan J, Campbell A, McIntosh AM, Óvári V, Wishart K, Behrens CE, Stone E, Gavrilov M, Thompson R, Jackson T, Lord JM, Stubbs TM, Marioni RE, Martin‐Herranz DE. A novel framework to build saliva-based DNA methylation biomarkers: Quantifying systemic chronic inflammation as a case study. Aging Cell 2025; 24:e14444. [PMID: 39888134 PMCID: PMC11984670 DOI: 10.1111/acel.14444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 02/01/2025] Open
Abstract
Accessible and non-invasive biomarkers that measure human ageing processes and the risk of developing age-related disease are paramount in preventative healthcare. Here, we describe a novel framework to train saliva-based DNA methylation (DNAm) biomarkers that are reproducible and biologically interpretable. By leveraging a reliability dataset with replicates across tissues, we demonstrate that it is possible to transfer knowledge from blood DNAm to saliva DNAm data using DNAm proxies of blood proteins (EpiScores). We apply these methods to create a new saliva-based epigenetic clock (InflammAge) that quantifies systemic chronic inflammation (SCI) in humans. Using a large blood DNAm human cohort with linked electronic health records and over 18,000 individuals (Generation Scotland), we demonstrate that InflammAge significantly associates with all-cause mortality, disease outcomes, lifestyle factors, and immunosenescence; in many cases outperforming the widely used SCI biomarker C-reactive protein (CRP). We propose that our biomarker discovery framework and InflammAge will be useful to improve understanding of the molecular mechanisms underpinning human ageing and to assess the impact of gero-protective interventions.
Collapse
Affiliation(s)
| | | | - Daniel L. McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | | | - Waylon J. Hastings
- Department of Psychiatry and Behavioral SciencesTulane University School of MedicineNew OrleansLouisianaUSA
| | | | | | | | - Eliska Zlamalova
- Hurdle.Bio/Chronomics Ltd.LondonUK
- Present address:
Pale Fire Capital SEPragueCzech Republic
| | - Kirsty C. McGee
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
| | - Jack Sullivan
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Andrew M. McIntosh
- Centre for Genomic and Experimental Medicine, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Division of Psychiatry, Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | | | | | | | | | | | | | - Thomas Jackson
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
| | - Janet M. Lord
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
- NIHR Birmingham Biomedical Research CentreUniversity Hospitals BirminghamBirminghamUK
| | | | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | | |
Collapse
|
2
|
Wang Q, Gao Y, Song J, Taiwaikuli D, Ding H, Yang X, Tang B, Zhou X. DNA methylation-based telomere length is more strongly associated with cardiovascular disease and long-term mortality than quantitative polymerase chain reaction-based telomere length: evidence from the NHANES 1999-2002. Clin Epigenetics 2024; 16:177. [PMID: 39633416 PMCID: PMC11619434 DOI: 10.1186/s13148-024-01795-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Telomere length (TL) serves as a pivotal gauge of cellular aging, with shorter TL linked to various age-related ailments. Recently, a DNA methylation-based TL estimator, known as DNAmTL, has emerged as a novel TL measurement tool. Our current investigation scrutinized the correlation between DNAmTL and the risks of cardiovascular disease (CVD) and enduring mortality among middle-aged and elderly individuals. METHODS We enrolled a nationwide, population-based cohort of subjects from the National Health and Nutrition Examination Survey spanning 1999 to 2002, possessing data on both DNAmTL and quantitative polymerase chain reaction-based TL (qPCRTL). Logistic regression models and Cox proportional hazards models were employed to evaluate the associations of DNAmTL with CVD risk and mortality, respectively. RESULTS The cohort comprised 2532 participants, with a weighted CVD prevalence of 19.06%. Notably, each one-kilobase increase in DNAmTL was linked to a 53% diminished CVD risk [odds ratio (OR): 0.47, 95% confidence interval (CI): 0.23-0.95, P = 0.035]. Over a median follow-up period of 206 months, 1361 deaths were recorded (53.75%), with 590 (23.30%) ascribable to CVD. Individuals with the lengthiest DNAmTL exhibited a 36% lower risk of all-cause mortality (hazard ratio (HR): 0.64, 95% CI: 0.49-0.85, P = 0.002) and a 35% decrease in CVD mortality (HR: 0.65, 95% CI: 0.43-0.98, P = 0.044) compared to those with shortest DNAmTL. Notably, a stronger association with age was observed for DNAmTL compared to qPCRTL (r = -0.58 vs. r = - 0.25). Analysis of receiver operating characteristic (ROC) curves suggested superior predictive performance of DNAmTL over qPCRTL for CVD (area under curve (AUC): 0.63 vs. 0.55, P < 0.001), all-cause (AUC: 0.74 vs. 0.62, P < 0.001), and CVD mortality (AUC: 0.75 vs. 0.64, P < 0.001). CONCLUSION Longer DNAmTL was positively correlated with reduced CVD risk and long-term mortality in middle-aged and elderly cohorts. Notably, DNAmTL outperformed qPCRTL as an aging biomarker in the stratification of CVD risks and mortality.
Collapse
Affiliation(s)
- Qianhui Wang
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuanfeng Gao
- Department of Heart Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jie Song
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dilare Taiwaikuli
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Huanhuan Ding
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xinchun Yang
- Department of Heart Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Baopeng Tang
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xianhui Zhou
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
3
|
Jin YJ, Wu XY, An ZY. The Application of Mendelian Randomization in Cardiovascular Disease Risk Prediction: Current Status and Future Prospects. Rev Cardiovasc Med 2024; 25:262. [PMID: 39139440 PMCID: PMC11317336 DOI: 10.31083/j.rcm2507262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 08/15/2024] Open
Abstract
Cardiovascular disease (CVD), a leading cause of death and disability worldwide, and is associated with a wide range of risk factors, and genetically associated conditions. While many CVDs are preventable and early detection alongside treatment can significantly mitigate complication risks, current prediction models for CVDs need enhancements for better accuracy. Mendelian randomization (MR) offers a novel approach for estimating the causal relationship between exposure and outcome by using genetic variation in quasi-experimental data. This method minimizes the impact of confounding variables by leveraging the random allocation of genes during gamete formation, thereby facilitating the integration of new predictors into risk prediction models to refine the accuracy of prediction. In this review, we delve into the theory behind MR, as well as the strengths, applications, and limitations behind this emerging technology. A particular focus will be placed on MR application to CVD, and integration into CVD prediction frameworks. We conclude by discussing the inclusion of various populations and by offering insights into potential areas for future research and refinement.
Collapse
Affiliation(s)
- Yi-Jing Jin
- Peking University Health Science Center, 100191 Beijing, China
- Department of Cardiology, Peking University First Hospital, 100034
Beijing, China
| | - Xing-Yuan Wu
- Peking University Health Science Center, 100191 Beijing, China
| | - Zhuo-Yu An
- Peking University Health Science Center, 100191 Beijing, China
- Peking University Institute of Hematology, Peking University People's
Hospital, 100044 Beijing, China
| |
Collapse
|
4
|
Zhu L, Zhu C, Jin J, Wang J, Zhao X, Yang R. Identification of an association between coronary heart disease and ITGB2 methylation in peripheral blood by a case-control study. Clin Chim Acta 2024; 552:117627. [PMID: 37923103 DOI: 10.1016/j.cca.2023.117627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Blood DNA methylation was associated with coronary heart disease (CHD) risk in Caucasians. We investigated the association between DNA methylation in peripheral blood at the reported loci and CHD in the Chinese population. METHODS The integrin subunit beta 2 (ITGB2) gene was identified in 196 CHD cases and 184 controls, and its methylation level was determined by mass spectrometry. Logistic regression was used to assess the association. RESULTS Hypomethylation of ITGB2 was significantly associated with heart failure CHD and NYHA Ⅰ&Ⅱ CHD patients with minor to medium cardiac function impairment (ITGB2_CpG_11/cg08422803, OR per -10 % methylation = 1.15 and 1.16; p = 0.012 and 0.018 by Bonferroni correction, respectively). Hypomethylation of ITGB2_CpG_11/cg08422803 was a risk factor for CHD in people < 65 years and males (p < 0.05 after Bonferroni correction). The combination of ITGB2 methylation and conventional CHD risk factors could efficiently discriminate CHD, heart failure CHD, NYHA I&II CHD, and myocardial infarction CHD patients from controls (AUC = 0.78, 0.81, 0.80, and 0.81, respectively). CONCLUSION Blood-based ITGB2 methylation has the potential as a biomarker for CHD. The combination of ITGB2 methylation and conventional CHD risk factors may improve the risk assessment and detection of CHD.
Collapse
Affiliation(s)
- Liya Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Kunshan Center for Disease Control and Prevention, Kunshan, 215300, China
| | - Chao Zhu
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, West District, Beijing, 100050, China
| | - Jialie Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jinxin Wang
- Department of Cardiology, the Second Medical Center, Chinese PLA General Hospital, 100853 Beijing, China
| | - Xiaojing Zhao
- Military translational medicine lab, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Rongxi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Nanjing TANTICA Biotechnology Co. Ltd, Nanjing, 210000, China.
| |
Collapse
|
5
|
Broyles D, Philibert R. Precision epigenetics provides a scalable pathway for improving coronary heart disease care globally. Epigenomics 2023; 15:805-818. [PMID: 37702023 DOI: 10.2217/epi-2023-0233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Coronary heart disease (CHD) is the world's leading cause of death. Up to 90% of all CHD deaths are preventable, but effective prevention of this mortality requires more scalable, precise methods for assessing CHD status and monitoring treatment response. Unfortunately, current diagnostic methods have barriers to implementation, particularly in rural areas and lower-income countries. This gap may be bridged by highly scalable advances in DNA methylation testing methods and artificial intelligence. Herein, we review prior studies of CHD related to methylation alone and in combination with other biovariables. We compare these new methods with established methods for diagnosing CHD. Finally, we outline pathways through which methylation-based testing methods may allow the democratization of improved methods for assessing CHD globally.
Collapse
Affiliation(s)
- Damon Broyles
- Mercy Technology Services, St. Louis, MO 63127, USA
- Mercy Precision Medicine, Chesterfield, MO 63017, USA
| | - Robert Philibert
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA
- Cardio Diagnostics Inc, Chicago, IL 60642, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Jin J, Zhao X, Zhu C, Li M, Wang J, Fan Y, Liu C, Shen C, Yang R. Hypomethylation of ABCG1 in peripheral blood as a potential marker for the detection of coronary heart disease. Clin Epigenetics 2023; 15:120. [PMID: 37507725 PMCID: PMC10375639 DOI: 10.1186/s13148-023-01533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Novel molecular biomarkers for the risk assessment and early detection of coronary heart disease (CHD) are urgently needed for disease prevention. Altered methylation of ATP-binding cassette subfamily G member 1 (ABCG1) has been implicated in CHD but was mostly studied in Caucasians. Exploring the potential relationship between ABCG1 methylation in blood and CHD among the Chinese population would yield valuable insights. METHODS Peripheral blood samples were obtained from a case-control study (287 CHD patients vs. 277 controls) and a prospective nested case-control study (171 CHD patients and 197 matched controls). DNA extraction and bisulfite-specific PCR amplification techniques were employed for sample processing. Quantitative assessment of methylation levels was conducted using mass spectrometry. Statistical analyses involved the utilization of logistic regression and nonparametric tests. RESULTS We found hypomethylation of ABCG1 in whole blood was associated with the risk of CHD in both studies, which was enhanced in heart failure (HF) patients, female and younger subjects. When combined with baseline characteristics, altered ABCG1 methylation showed improved predictive effect for differentiating CHD cases, ischemic cardiomyopathy (ICM) cases, younger than 60 years CHD cases, and female CHD cases from healthy controls (area under the curve (AUC) = 0.68, 0.71, 0.74, and 0.73, respectively). CONCLUSIONS We demonstrated a robust link between ABCG1 hypomethylation in whole blood and CHD risk in the Chinese population and provided novel evidence indicating that aberrant ABCG1 methylation in peripheral blood can serve as an early detection biomarker for CHD patients.
Collapse
Affiliation(s)
- Jialie Jin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, People's Republic of China
| | - Xiaojing Zhao
- Military Translational Medicine Lab, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100000, People's Republic of China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100000, People's Republic of China
| | - Chao Zhu
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100000, People's Republic of China
| | - Mengxia Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, People's Republic of China
| | - Jinxin Wang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, Beijing, 100000, People's Republic of China
| | - Yao Fan
- Division of Clinical Epidemiology, Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, 210000, People's Republic of China
| | - Chunlan Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, People's Republic of China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, People's Republic of China.
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.
| | - Rongxi Yang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, People's Republic of China.
| |
Collapse
|
7
|
Guo F, He M, Hu B, Li G. Levels and clinical significance of the m6A methyltransferase METTL14 in patients with coronary heart disease. Front Cardiovasc Med 2023; 10:1167132. [PMID: 37441706 PMCID: PMC10333499 DOI: 10.3389/fcvm.2023.1167132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Objective To investigate the association of methyltransferase-like protein 14 (METTL14) expression with coronary heart disease (CHD). Methods Three hundred and sixteen patients who attended Henan Provincial People's Hospital between June 2019 and February 2021 with principal symptoms of pain or tightness in the chest and who underwent coronary angiography for definitive diagnosis were enrolled. The uric acid, TG, TC, LDL-C, HDL-C, apolipoprotein A1, free fatty acid, lipoprotein a, homocysteine, CRP, and SAA levels were examined. The levels of METTL14, TNF-α, MCP-1, VCAM-1, ICAM-1, and IL-6 were evaluated by ELISA. Results Patients with CHD had significantly higher m6A methyltransferase activity. In addition, the incidence of diabetes and hypertension, as well as the concentrations of TC, CRP, and SAA were higher in CHD patients. Patients with coronary lesion branches also had significantly increased TG, LDL-C, CRP, and SAA levels. TNF-α, MCP-1, VCAM-1, ICAM-1, and IL-6 expression was also markedly increased in the CHD group (P < 0.001) as was the expression of METTL14 (P < 0.001). The METTL14 expression levels also differed significantly in relation to the number of branches with lesions (P < 0.01) and were correlated with SAA, VCAM-1, ICAM-1, IL-6, and the Gensini score. ROC curve analyses of METTL14 in CHD indicated an AUC of 0.881 (0.679, 0.894) with a cut-off value of 342.37, a sensitivity of 77%, and a specificity of 84%. MCP-1, VCAM-1, IL-6, SAA, and METTL14 were found to independently predict CHD risk. Conclusions METTL14 levels were found to be positively associated with inflammatory markers and to be an independent predictor of CHD risk.
Collapse
Affiliation(s)
- Fengxia Guo
- Department of Clinical Laboratory, Henan Provincial People’s Hospital; People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Mei He
- Zhengzhou Key Laboratory, Zhengzhou No. 7 People’s Hospital, Zhengzhou, China
| | - Bing Hu
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang Li
- Department of Clinical Laboratory, Henan Provincial People’s Hospital; People’s Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Colicino E, Fiorito G. DNA methylation-based biomarkers for cardiometabolic-related traits and their importance for risk stratification. CURRENT OPINION IN EPIDEMIOLOGY AND PUBLIC HEALTH 2023; 2:25-31. [PMID: 38601732 PMCID: PMC11003758 DOI: 10.1097/pxh.0000000000000020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Recent findings The prevalence of cardiometabolic syndrome in adults is increasing worldwide, highlighting the importance of biomarkers for individuals' classification based on their health status. Although cardiometabolic risk scores and diagnostic criteria have been developed aggregating adverse health effects of individual conditions on the overall syndrome, none of them has gained unanimous acceptance. Therefore, novel molecular biomarkers have been developed to better understand the risk, onset and progression of both individual conditions and the overall cardiometabolic syndrome. Summary Consistent associations between whole blood DNA methylation (DNAm) levels at several single genomic (i.e. CpG) sites and both individual and aggregated cardiometabolic conditions supported the creation of second-generation DNAm-based cardiometabolic-related biomarkers. These biomarkers linearly combine individual DNAm levels from key CpG sites, selected by a two-step machine learning procedures. They can be used, even retrospectively, in populations with extant whole blood DNAm levels and without observed cardiometabolic phenotypes. Purpose of review Here we offer an overview of the second-generation DNAm-based cardiometabolic biomarkers, discussing methodological advancements and implications on the interpretation and generalizability of the findings. We finally emphasize the contribution of DNAm-based biomarkers for risk stratification beyond traditional factors and discuss limitations and future directions of the field.
Collapse
Affiliation(s)
- Elena Colicino
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
9
|
Krolevets M, Cate VT, Prochaska JH, Schulz A, Rapp S, Tenzer S, Andrade-Navarro MA, Horvath S, Niehrs C, Wild PS. DNA methylation and cardiovascular disease in humans: a systematic review and database of known CpG methylation sites. Clin Epigenetics 2023; 15:56. [PMID: 36991458 PMCID: PMC10061871 DOI: 10.1186/s13148-023-01468-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/19/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of death worldwide and considered one of the most environmentally driven diseases. The role of DNA methylation in response to the individual exposure for the development and progression of CVD is still poorly understood and a synthesis of the evidence is lacking. RESULTS A systematic review of articles examining measurements of DNA cytosine methylation in CVD was conducted in accordance with PRISMA (preferred reporting items for systematic reviews and meta-analyses) guidelines. The search yielded 5,563 articles from PubMed and CENTRAL databases. From 99 studies with a total of 87,827 individuals eligible for analysis, a database was created combining all CpG-, gene- and study-related information. It contains 74,580 unique CpG sites, of which 1452 CpG sites were mentioned in ≥ 2, and 441 CpG sites in ≥ 3 publications. Two sites were referenced in ≥ 6 publications: cg01656216 (near ZNF438) related to vascular disease and epigenetic age, and cg03636183 (near F2RL3) related to coronary heart disease, myocardial infarction, smoking and air pollution. Of 19,127 mapped genes, 5,807 were reported in ≥ 2 studies. Most frequently reported were TEAD1 (TEA Domain Transcription Factor 1) and PTPRN2 (Protein Tyrosine Phosphatase Receptor Type N2) in association with outcomes ranging from vascular to cardiac disease. Gene set enrichment analysis of 4,532 overlapping genes revealed enrichment for Gene Ontology molecular function "DNA-binding transcription activator activity" (q = 1.65 × 10-11) and biological processes "skeletal system development" (q = 1.89 × 10-23). Gene enrichment demonstrated that general CVD-related terms are shared, while "heart" and "vasculature" specific genes have more disease-specific terms as PR interval for "heart" or platelet distribution width for "vasculature." STRING analysis revealed significant protein-protein interactions between the products of the differentially methylated genes (p = 0.003) suggesting that dysregulation of the protein interaction network could contribute to CVD. Overlaps with curated gene sets from the Molecular Signatures Database showed enrichment of genes in hemostasis (p = 2.9 × 10-6) and atherosclerosis (p = 4.9 × 10-4). CONCLUSION This review highlights the current state of knowledge on significant relationship between DNA methylation and CVD in humans. An open-access database has been compiled of reported CpG methylation sites, genes and pathways that may play an important role in this relationship.
Collapse
Affiliation(s)
- Mykhailo Krolevets
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Systems Medicine, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Vincent Ten Cate
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jürgen H Prochaska
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Schulz
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Steffen Rapp
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
| | - Stefan Tenzer
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Miguel A Andrade-Navarro
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Christof Niehrs
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Philipp S Wild
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
- Systems Medicine, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
10
|
Li X, Qi L. Epigenetics in Precision Nutrition. J Pers Med 2022; 12:jpm12040533. [PMID: 35455649 PMCID: PMC9027461 DOI: 10.3390/jpm12040533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Precision nutrition is an emerging area of nutrition research, with primary focus on the individual variability in response to dietary and lifestyle factors, which are mainly determined by an individual’s intrinsic variations, such as those in genome, epigenome, and gut microbiome. The current research on precision nutrition is heavily focused on genome and gut microbiome, while epigenome (DNA methylation, non-coding RNAs, and histone modification) is largely neglected. The epigenome acts as the interface between the human genome and environmental stressors, including diets and lifestyle. Increasing evidence has suggested that epigenetic modifications, particularly DNA methylation, may determine the individual variability in metabolic health and response to dietary and lifestyle factors and, therefore, hold great promise in discovering novel markers for precision nutrition and potential targets for precision interventions. This review summarized recent studies on DNA methylation with obesity, diabetes, and cardiovascular disease, with more emphasis put in the relations of DNA methylation with nutrition and diet/lifestyle interventions. We also briefly reviewed other epigenetic events, such as non-coding RNAs, in relation to human health and nutrition, and discussed the potential role of epigenetics in the precision nutrition research.
Collapse
Affiliation(s)
- Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-504-988-7259
| |
Collapse
|
11
|
Indumathi B, Oruganti SS, Sreenu B, Kutala VK. Association of Promoter Methylation and Expression of Inflammatory Genes IL-6 and TNF-α with the Risk of Coronary Artery Disease in Diabetic and Obese Subjects among Asian Indians. Indian J Clin Biochem 2022; 37:29-39. [PMID: 35125691 PMCID: PMC8799818 DOI: 10.1007/s12291-020-00932-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/20/2020] [Indexed: 01/03/2023]
Abstract
The inflammatory cytokines such as interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) are considered as the most important contributors to the endothelial dysfunction in subjects with type 2 diabetes mellitus (T2DM) and obesity. The hypomethylation of CpG sites in the promoter region of the IL-6 and TNF-α have shown to be associated with the increased expression of IL-6 and TNF-α. However, there are no studies on the methylation and expression of IL-6 and TNF-α with the risk of coronary artery disease (CAD) in subjects with T2DM and obesity in Asian Indians. Hence, the present study was aimed to investigate whether the IL-6, TNF-α promoter methylation and expression in blood leukocyte DNA is associated with the risk of CAD in diabetic and obese subjects in Asian Indians. For this study, we recruited 574 subjects which includes, 207 angiographically confirmed CAD patients, 100 T2DM patients, 82 obese subjects and 185 healthy controls. The methylation status of IL-6 and TNF-α gene loci was determined by methylation specific PCR (MPCR) and gene expression was determined by qPCR. We found significant hypomethylation of IL-6 in CAD and T2DM subjects (OR 1.98 95% CI: 1.32-2.97, p = 0.001, OR: 2.23 95% CI:1.34-3.76, p = 0.001, respectively). Further, a significant increase in the expression of IL-6 in CAD and T2DM subjects (fold change: 26.39 & 14.7, p = 0.0001) compared to the control subjects was observed. A significant increase in the hypomethylation of TNF-α in CAD, T2DM and obese subjects was observed as compared to the control (OR: 2.04 95% CI: 1.36-3.05, p = 0.0005, OR: 1.81 95% CI 1.10-2.96, p = 0.01, and OR: 2.1 95% CI 1.24-3.57, p = 0.007, respectively).We also found an increased expression of TNF-α in CAD, T2DM and obese subjects as compared to controls. In addition, presence of low folate, and hyperhomocysteinemia was observed in the present study, may be the contributing factors for the hypomethylation of IL-6 and TNF-α and oxidative stress. In conclusion, increased expression of IL-6 and TNF-α due to hypomethylation in T2DM and obese individuals may contribute to CAD risk in these subjects. The presence of hyperhomocysteinemia and increased oxidative risk may enhance the CAD risk further.
Collapse
Affiliation(s)
- Bobbala Indumathi
- Department of Clinical Pharmacology& Therapeutics, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad, India
| | - Sai Satish Oruganti
- Department of Cardiology, Nizam’s Institute of Medical Sciences, Hyderabad, India
| | - Boddupally Sreenu
- Department of Clinical Pharmacology& Therapeutics, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad, India
| | - Vijay Kumar Kutala
- Department of Clinical Pharmacology& Therapeutics, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad, India
| |
Collapse
|
12
|
Xia Y, Brewer A, Bell JT. DNA methylation signatures of incident coronary heart disease: findings from epigenome-wide association studies. Clin Epigenetics 2021; 13:186. [PMID: 34627379 PMCID: PMC8501606 DOI: 10.1186/s13148-021-01175-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
Coronary heart disease (CHD) is a type of cardiovascular disease (CVD) that affects the coronary arteries, which provide oxygenated blood to the heart. It is a major cause of mortality worldwide. Various prediction methods have been developed to assess the likelihood of developing CHD, including those based on clinical features and genetic variation. Recent epigenome-wide studies have identified DNA methylation signatures associated with the development of CHD, indicating that DNA methylation may play a role in predicting future CHD. This narrative review summarises recent findings from DNA methylation studies of incident CHD (iCHD) events from epigenome-wide association studies (EWASs). The results suggest that DNA methylation signatures may identify new mechanisms involved in CHD progression and could prove a useful adjunct for the prediction of future CHD.
Collapse
Affiliation(s)
- Yujing Xia
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH, UK
| | - Alison Brewer
- School of Cardiovascular Medicine and Sciences, James Black Centre, King's College London British Heart Foundation Centre of Excellence, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH, UK.
| |
Collapse
|
13
|
Gharipour M, Mani A, Amini Baghbahadorani M, de Souza Cardoso CK, Jahanfar S, Sarrafzadegan N, de Oliveira C, Silveira EA. How Are Epigenetic Modifications Related to Cardiovascular Disease in Older Adults? Int J Mol Sci 2021; 22:9949. [PMID: 34576113 PMCID: PMC8470616 DOI: 10.3390/ijms22189949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
The rate of aging has increased globally during recent decades and has led to a rising burden of age-related diseases such as cardiovascular disease (CVD). At the molecular level, epigenetic modifications have been shown recently to alter gene expression during the life course and impair cellular function. In this regard, several CVD risk factors, such as lifestyle and environmental factors, have emerged as key factors in epigenetic modifications within the cardiovascular system. In this study, we attempted to summarized recent evidence related to epigenetic modification, inflammation response, and CVD in older adults as well as the effect of lifestyle modification as a preventive strategy in this age group. Recent evidence showed that lifestyle and environmental factors may affect epigenetic mechanisms, such as DNA methylation, histone acetylation, and miRNA expression. Several substances or nutrients such as selenium, magnesium, curcumin, and caffeine (present in coffee and some teas) could regulate epigenetics. Similarly, physical inactivity, alcohol consumption, air pollutants, psychological stress, and shift working are well-known modifiers of epigenetic patterns. Understanding the exact ways that lifestyle and environmental factors could affect the expression of genes could help to influence the time of incidence and severity of aging-associated diseases. This review highlighted that a healthy lifestyle throughout the life course, such as a healthy diet rich in fibers, vitamins, and essential elements, and specific fatty acids, adequate physical activity and sleep, smoking cessation, and stress control, could be useful tools in preventing epigenetic changes that lead to impaired cardiovascular function.
Collapse
Affiliation(s)
- Mojgan Gharipour
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Arya Mani
- Cardiovascular Research Center, Department of Internal Medicine, and Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Mona Amini Baghbahadorani
- Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Camila Kellen de Souza Cardoso
- School of Social Sciences and Health, Nutrition Course, Pontifical Catholic University of Goias, Goiânia 74605-010, Brazil;
| | - Shayesteh Jahanfar
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MI 02111, USA;
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
- Faculty of Medicine, School of Population and Public Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cesar de Oliveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College London, London WC1E 6BT, UK;
| | - Erika Aparecida Silveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College London, London WC1E 6BT, UK;
- Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Brazil
| |
Collapse
|
14
|
Association between ABO and Duffy blood types and circulating chemokines and cytokines. Genes Immun 2021; 22:161-171. [PMID: 34103707 PMCID: PMC8185309 DOI: 10.1038/s41435-021-00137-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 02/08/2023]
Abstract
Blood group antigens are inherited traits that may play a role in immune and inflammatory processes. We investigated associations between blood groups and circulating inflammation-related molecules in 3537 non-Hispanic white participants selected from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Whole-genome scans were used to infer blood types for 12 common antigen systems based on well-characterized single-nucleotide polymorphisms. Serum levels of 96 biomarkers were measured on multiplex fluorescent bead-based panels. We estimated marker associations with blood type using weighted linear or logistic regression models adjusted for age, sex, smoking status, and principal components of population substructure. Bonferroni correction was used to control for multiple comparisons, with two-sided p values < 0.05 considered statistically significant. Among the 1152 associations tested, 10 were statistically significant. Duffy blood type was associated with levels of CXCL6/GCP2, CXCL5/ENA78, CCL11/EOTAXIN, CXCL1/GRO, CCL2/MCP1, CCL13/MCP4, and CCL17/TARC, whereas ABO blood type was associated with levels of sVEGFR2, sVEGFR3, and sGP130. Post hoc pairwise t-tests showed that individuals with type Fy(a+b−) had the lowest mean levels of all Duffy-associated markers, while individuals with type A blood had the lowest mean levels of all ABO-associated markers. Additional work is warranted to explore potential clinical implications of these differences.
Collapse
|
15
|
Framingham Heart Study: JACC Focus Seminar, 1/8. J Am Coll Cardiol 2021; 77:2680-2692. [PMID: 34045026 DOI: 10.1016/j.jacc.2021.01.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 01/12/2023]
Abstract
The Framingham Heart Study is the longest-running cardiovascular epidemiological study, starting in 1948. This paper gives an overview of the various cohorts, collected data, and most important research findings to date. In brief, the Framingham Heart Study, funded by the National Institutes of Health and managed by Boston University, spans 3 generations of well phenotyped White persons and 2 cohorts comprised of racial and ethnic minority groups. These cohorts are densely phenotyped, with extensive longitudinal follow-up, and they continue to provide us with important information on human cardiovascular and noncardiovascular physiology over the lifespan, as well as to identify major risk factors for cardiovascular disease. This paper also summarizes some of the more recent progress in molecular epidemiology and discusses the future of the study.
Collapse
|
16
|
Chilunga FP, Henneman P, Venema A, Meeks KAC, Gonzalez JR, Ruiz-Arenas C, Requena-Méndez A, Beune E, Spranger J, Smeeth L, Bahendeka S, Owusu-Dabo E, Klipstein-Grobusch K, Adeyemo A, Mannens MMAM, Agyemang C. DNA methylation as the link between migration and the major noncommunicable diseases: the RODAM study. Epigenomics 2021; 13:653-666. [PMID: 33890479 PMCID: PMC8173498 DOI: 10.2217/epi-2020-0329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/29/2021] [Indexed: 01/19/2023] Open
Abstract
Aim: We assessed epigenome-wide DNA methylation (DNAm) differences between migrant and non-migrant Ghanaians. Materials & methods: We used the Illumina Infinium® HumanMethylation450 BeadChip to profile DNAm of 712 Ghanaians in whole blood. We used linear models to detect differentially methylated positions (DMPs) associated with migration. We performed multiple post hoc analyses to validate our findings. Results: We identified 13 DMPs associated with migration (delta-beta values: 0.2-4.5%). Seven DMPs in CPLX2, EIF4E3, MEF2D, TLX3, ST8SIA1, ANG and CHRM3 were independent of extrinsic genomic influences in public databases. Two DMPs in NLRC5 were associated with duration of stay in Europe among migrants. All DMPs were biologically linked to migration-related factors. Conclusion: Our findings provide the first insights into DNAm differences between migrants and non-migrants.
Collapse
Affiliation(s)
- Felix P Chilunga
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Peter Henneman
- Department of Clinical Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Andrea Venema
- Department of Clinical Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Karlijn AC Meeks
- Center for Research on Genomics & Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Juan R Gonzalez
- Barcelona Institute for Global Health (ISGlobal, University of Barcelona), 08003 Barcelona, Spain
| | - Carlos Ruiz-Arenas
- Barcelona Institute for Global Health (ISGlobal, University of Barcelona), 08003 Barcelona, Spain
| | - Ana Requena-Méndez
- Barcelona Institute for Global Health (ISGlobal, University of Barcelona), 08003 Barcelona, Spain
- Department of Global Public Health, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Erik Beune
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Joachim Spranger
- Department of Endocrinology, Diabetes & Metabolism, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Liam Smeeth
- Department of Non-communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, 1E 7HT, UK
| | - Silver Bahendeka
- Department of Medicine, MKPGMS-Uganda Martyrs University, 8H33+5M Kampala, Uganda
| | - Ellis Owusu-Dabo
- School of Public Health, Kwame Nkrumah University of Science & Technology, MCFH+R9 Kumasi, Ghana
| | - Kerstin Klipstein-Grobusch
- Julius Global Health, Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of The Witwatersrand, 2193 Johannesburg, South Africa
| | - Adebowale Adeyemo
- Center for Research on Genomics & Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Marcel MAM Mannens
- Department of Clinical Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Charles Agyemang
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
17
|
Abstract
Atherosclerotic cardiovascular disease (ASCVD) proceeds through a series of stages: initiation, progression (or regression), and complications. By integrating known biology regarding molecular signatures of each stage with recent advances in high-dimensional molecular data acquisition platforms (to assay the genome, epigenome, transcriptome, proteome, metabolome, and gut microbiome), snapshots of each phase of atherosclerotic cardiovascular disease development can be captured. In this review, we will summarize emerging approaches for assessment of atherosclerotic cardiovascular disease risk in humans using peripheral blood molecular signatures and molecular imaging approaches. We will then discuss the potential (and challenges) for these snapshots to be integrated into a personalized movie providing dynamic readouts of an individual's atherosclerotic cardiovascular disease risk status throughout the life course.
Collapse
Affiliation(s)
- Matthew Nayor
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Kemar J. Brown
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ramachandran S. Vasan
- Sections of Preventive Medicine & Epidemiology, and Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA; Department of Epidemiology, Boston University School of Public Health; Boston University Center for Computing and Data Sciences
| |
Collapse
|
18
|
Juarez PD, Hood DB, Song MA, Ramesh A. Use of an Exposome Approach to Understand the Effects of Exposures From the Natural, Built, and Social Environments on Cardio-Vascular Disease Onset, Progression, and Outcomes. Front Public Health 2020; 8:379. [PMID: 32903514 PMCID: PMC7437454 DOI: 10.3389/fpubh.2020.00379] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity, diabetes, and hypertension have increased by epidemic proportions in recent years among African Americans in comparison to Whites resulting in significant adverse cardiovascular disease (CVD) disparities. Today, African Americans are 30% more likely to die of heart disease than Whites and twice as likely to have a stroke. The causes of these disparities are not yet well-understood. Improved methods for identifying underlying risk factors is a critical first step toward reducing Black:White CVD disparities. This article will focus on environmental exposures in the external environment and how they can lead to changes at the cellular, molecular, and organ level to increase the personal risk for CVD and lead to population level CVD racial disparities. The external environment is defined in three broad domains: natural (air, water, land), built (places you live, work, and play) and social (social, demographic, economic, and political). We will describe how environmental exposures in the natural, built, and social environments "get under the skin" to affect gene expression though epigenetic, pan-omics, and related mechanisms that lead to increased risk for adverse CVD health outcomes and population level disparities. We also will examine the important role of metabolomics, proteomics, transcriptomics, genomics, and epigenomics in understanding how exposures in the natural, built, and social environments lead to CVD disparities with implications for clinical, public health, and policy interventions. In this review, we apply an exposome approach to Black:White CVD racial disparities. The exposome is a measure of all the exposures of an individual across the life course and the relationship of those exposures to health effects. The exposome represents the totality of exogenous (external) and endogenous (internal) exposures from conception onwards, simultaneously distinguishing, characterizing, and quantifying etiologic, mediating, moderating, and co-occurring risk and protective factors and their relationship to disease. Specifically, it assesses the biological mechanisms and underlying pathways through which chemical and non-chemical environmental exposures are associated with CVD onset, progression and outcomes. The exposome is a promising approach for understanding the complex relationships among environment, behavior, biology, genetics, and disease phenotypes that underlie population level, Black: White CVD disparities.
Collapse
Affiliation(s)
- Paul D Juarez
- Meharry Medical College, Nashville, TN, United States
| | - Darryl B Hood
- College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Min-Ae Song
- College of Public Health, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
19
|
Colicino E, Marioni R, Ward-Caviness C, Gondalia R, Guan W, Chen B, Tsai PC, Huan T, Xu G, Golareh A, Schwartz J, Vokonas P, Just A, Starr JM, McRae AF, Wray NR, Visscher PM, Bressler J, Zhang W, Tanaka T, Moore AZ, Pilling LC, Zhang G, Stewart JD, Li Y, Hou L, Castillo-Fernandez J, Spector T, Kiel DP, Murabito JM, Liu C, Mendelson M, Assimes T, Absher D, Tsaho PS, Lu AT, Ferrucci L, Wilson R, Waldenberger M, Prokisch H, Bandinelli S, Bell JT, Levy D, Deary IJ, Horvath S, Pankow J, Peters A, Whitsel EA, Baccarelli A. Blood DNA methylation sites predict death risk in a longitudinal study of 12, 300 individuals. Aging (Albany NY) 2020; 12:14092-14124. [PMID: 32697766 PMCID: PMC7425458 DOI: 10.18632/aging.103408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/25/2020] [Indexed: 12/22/2022]
Abstract
DNA methylation has fundamental roles in gene programming and aging that may help predict mortality. However, no large-scale study has investigated whether site-specific DNA methylation predicts all-cause mortality. We used the Illumina-HumanMethylation450-BeadChip to identify blood DNA methylation sites associated with all-cause mortality for 12, 300 participants in 12 Cohorts of the Heart and Aging Research in Genetic Epidemiology (CHARGE) Consortium. Over an average 10-year follow-up, there were 2,561 deaths across the cohorts. Nine sites mapping to three intergenic and six gene-specific regions were associated with mortality (P < 9.3x10-7) independently of age and other mortality predictors. Six sites (cg14866069, cg23666362, cg20045320, cg07839457, cg07677157, cg09615688)-mapping respectively to BMPR1B, MIR1973, IFITM3, NLRC5, and two intergenic regions-were associated with reduced mortality risk. The remaining three sites (cg17086398, cg12619262, cg18424841)-mapping respectively to SERINC2, CHST12, and an intergenic region-were associated with increased mortality risk. DNA methylation at each site predicted 5%-15% of all deaths. We also assessed the causal association of those sites to age-related chronic diseases by using Mendelian randomization, identifying weak causal relationship between cg18424841 and cg09615688 with coronary heart disease. Of the nine sites, three (cg20045320, cg07839457, cg07677157) were associated with lower incidence of heart disease risk and two (cg20045320, cg07839457) with smoking and inflammation in prior CHARGE analyses. Methylation of cg20045320, cg07839457, and cg17086398 was associated with decreased expression of nearby genes (IFITM3, IRF, NLRC5, MT1, MT2, MARCKSL1) linked to immune responses and cardiometabolic diseases. These sites may serve as useful clinical tools for mortality risk assessment and preventative care.
Collapse
Affiliation(s)
- Elena Colicino
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Riccardo Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Cavin Ward-Caviness
- US Environmental Protection Agency, Chapel Hill, NC 27514, USA
- Institute for Epidemiology II, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg D-85764, Germany
| | - Rahul Gondalia
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian Chen
- Longitudinal Study Section, Translational Gerontology Branch, National Institute of Aging, Bethesda, MD 20892, USA
| | - Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Tianxiao Huan
- National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Gao Xu
- Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Agha Golareh
- Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Joel Schwartz
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Pantel Vokonas
- VA Boston Healthcare System and Boston University Schools of Public Health and Medicine, Boston, MA 02115, USA
| | - Allan Just
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John M. Starr
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Allan F. McRae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Naomi R. Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Peter M. Visscher
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Jan Bressler
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wen Zhang
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Toshiko Tanaka
- Longitudinal Study Section, Translational Gerontology Branch, National Institute of Aging, Bethesda, MD 20892, USA
| | - Ann Zenobia Moore
- Longitudinal Study Section, Translational Gerontology Branch, National Institute of Aging, Bethesda, MD 20892, USA
| | - Luke C. Pilling
- Epidemiology and Public Health Group, University of Exeter Medical School, Exeter, UK
| | - Guosheng Zhang
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - James D. Stewart
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Yun Li
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Lifang Hou
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Juan Castillo-Fernandez
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Tim Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Douglas P. Kiel
- Hebrew SeniorLife Institute for Aging Research and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA 02215, USA
| | - Joanne M. Murabito
- Section General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02215, USA
| | - Chunyu Liu
- Boston University School of Public Health, Boston, MA 02215, USA
| | - Mike Mendelson
- Boston University School of Medicine, Boston, MA 02215, USA
| | - Tim Assimes
- Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Devin Absher
- Hudson Alpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Phil S. Tsaho
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Rory Wilson
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg D-85764, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg D-85764, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg S-85764, Germany
| | | | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA 01702, USA
| | - Ian J. Deary
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jim Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Annette Peters
- Institute for Epidemiology II, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg D-85764, Germany
| | - Eric A. Whitsel
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Andrea Baccarelli
- Columbia University Mailman School of Public Health, New York, NY 10032, USA
| |
Collapse
|
20
|
Bain CR, Ziemann M, Kaspi A, Khan AW, Taylor R, Trahair H, Khurana I, Kaipananickal H, Wallace S, El-Osta A, Myles PS, Bozaoglu K. DNA methylation patterns from peripheral blood separate coronary artery disease patients with and without heart failure. ESC Heart Fail 2020; 7:2468-2478. [PMID: 32618141 PMCID: PMC7524212 DOI: 10.1002/ehf2.12810] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/11/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023] Open
Abstract
Aims Natriuretic peptides are useful for diagnosis and prognostication of heart failure of any cause. Now, research aims to discover novel biomarkers that will more specifically define the heart failure phenotype. DNA methylation plays a critical role in the development of cardiovascular disease with the potential to predict fundamental pathogenic processes. There is a lack of data relating DNA methylation in heart failure that specifically focuses on patients with severe multi‐vessel coronary artery disease. To begin to address this, we conducted a pilot study uniquely exploring the utility of powerful whole‐genome methyl‐binding domain‐capture sequencing in a cohort of cardiac surgery patients, matched for the severity of their coronary artery disease, aiming to identify candidate peripheral blood DNA methylation markers of ischaemic cardiomyopathy and heart failure. Methods and results We recruited a cohort of 20 male patients presenting for coronary artery bypass graft surgery with phenotypic extremes of heart failure but who otherwise share a similar coronary ischaemic burden, age, sex, and ethnicity. Methylation profiling in patient blood samples was performed using methyl‐binding domain‐capture sequencing. Differentially methylated regions were validated using targeted bisulfite sequencing. Gene set enrichment analysis was performed to identify differences in methylation at or near gene promoters in certain known Reactome pathways. We detected 567 188 methylation peaks of which our general linear model identified 68 significantly differentially methylated regions in heart failure with a false discovery rate <0.05. Of these regions, 48 occurred within gene bodies and 25 were located near enhancer elements, some within coding genes and some in non‐coding genes. Gene set enrichment analyses identified 103 significantly enriched gene sets (false discovery rate <0.05) in heart failure. Validation analysis of regions with the strongest differential methylation data was performed for two genes: HDAC9 and the uncharacterized miRNA gene MIR3675. Genes of particular interest as novel candidate markers of the heart failure phenotype with reduced methylation were HDAC9, JARID2, and GREM1 and with increased methylation PDSS2. Conclusions We demonstrate the utility of methyl‐binding domain‐capture sequencing to evaluate peripheral blood DNA methylation markers in a cohort of cardiac surgical patients with severe multi‐vessel coronary artery disease and phenotypic extremes of heart failure. The differential methylation status of specific coding genes identified are candidates for larger longitudinal studies. We have further demonstrated the value and feasibility of examining DNA methylation during the perioperative period to highlight biological pathways and processes contributing to complex phenotypes.
Collapse
Affiliation(s)
- Chris R Bain
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Anaesthesiology and Perioperative Medicine, The Alfred Hospital and Monash University, The Alfred Centre, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia.,Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Mark Ziemann
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.,Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.,Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.,School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Melbourne, VIC, Australia
| | - Antony Kaspi
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.,Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.,Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | - Rachael Taylor
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Hugh Trahair
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Ishant Khurana
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.,Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.,Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Harikrishnan Kaipananickal
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.,Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.,Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Sophie Wallace
- Department of Anaesthesiology and Perioperative Medicine, The Alfred Hospital and Monash University, The Alfred Centre, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia.,Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Assam El-Osta
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.,Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.,Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Faculty of Health, Department of Technology, Biomedical Laboratory Science, University College Copenhagen, Copenhagen, Denmark
| | - Paul S Myles
- Department of Anaesthesiology and Perioperative Medicine, The Alfred Hospital and Monash University, The Alfred Centre, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia.,Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Kiymet Bozaoglu
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.,Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW DNA methylation is an epigenetic mark that reflects both genetic and environmental influences over the life course and has the potential to be a robust biomarker for cardiovascular disease (CVD) risk. However, standard association studies linking DNA methylation and CVD are susceptible to reverse causation and may not directly translate into useful biomarkers of future disease. Studies of incident CVD represent a crucial tool for improving this evidence base. RECENT FINDINGS Recent investigations have started to provide links between DNA methylation and incident CVD. Epigenome-wide association studies have suggested individual genetic loci in which differential methylation exists prior to disease onset, while multivariate predictive modeling approaches have made progress towards realizing the potential for DNA methylation as a predictive biomarker of CVD risk. Meanwhile, complementary analysis strategies such as Mendelian randomization have provided clues as to the causality of these epigenomic associations. SUMMARY Taken together, this wave of studies provides the basis for a better understanding of CVD pathophysiology and the development of more confident biomarkers of CVD risk.
Collapse
Affiliation(s)
- Kenneth E Westerman
- Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital
| | - José M Ordovás
- Jean Mayer-United States Department of Agriculture Human Nutrition Research Center on Aging, Boston, Massachusetts, USA
- Research Institute on Food & Health Sciences, Nutritional Genomics and Epigenomics Group, Madrid Institute for Advanced Studies, Madrid, Spain
| |
Collapse
|
22
|
Ikram MA, Brusselle G, Ghanbari M, Goedegebure A, Ikram MK, Kavousi M, Kieboom BCT, Klaver CCW, de Knegt RJ, Luik AI, Nijsten TEC, Peeters RP, van Rooij FJA, Stricker BH, Uitterlinden AG, Vernooij MW, Voortman T. Objectives, design and main findings until 2020 from the Rotterdam Study. Eur J Epidemiol 2020; 35:483-517. [PMID: 32367290 PMCID: PMC7250962 DOI: 10.1007/s10654-020-00640-5] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022]
Abstract
The Rotterdam Study is an ongoing prospective cohort study that started in 1990 in the city of Rotterdam, The Netherlands. The study aims to unravel etiology, preclinical course, natural history and potential targets for intervention for chronic diseases in mid-life and late-life. The study focuses on cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, otolaryngological, locomotor, and respiratory diseases. As of 2008, 14,926 subjects aged 45 years or over comprise the Rotterdam Study cohort. Since 2016, the cohort is being expanded by persons aged 40 years and over. The findings of the Rotterdam Study have been presented in over 1700 research articles and reports. This article provides an update on the rationale and design of the study. It also presents a summary of the major findings from the preceding 3 years and outlines developments for the coming period.
Collapse
Affiliation(s)
- M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Guy Brusselle
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - André Goedegebure
- Department of Otorhinolaryngology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Brenda C T Kieboom
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert J de Knegt
- Department of Gastroenterology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Annemarie I Luik
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Tamar E C Nijsten
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Westerman K, Fernández‐Sanlés A, Patil P, Sebastiani P, Jacques P, Starr JM, J. Deary I, Liu Q, Liu S, Elosua R, DeMeo DL, Ordovás JM. Epigenomic Assessment of Cardiovascular Disease Risk and Interactions With Traditional Risk Metrics. J Am Heart Assoc 2020; 9:e015299. [PMID: 32308120 PMCID: PMC7428544 DOI: 10.1161/jaha.119.015299] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022]
Abstract
Background Epigenome-wide association studies for cardiometabolic risk factors have discovered multiple loci associated with incident cardiovascular disease (CVD). However, few studies have sought to directly optimize a predictor of CVD risk. Furthermore, it is challenging to train multivariate models across multiple studies in the presence of study- or batch effects. Methods and Results Here, we analyzed existing DNA methylation data collected using the Illumina HumanMethylation450 microarray to create a predictor of CVD risk across 3 cohorts: Women's Health Initiative, Framingham Heart Study Offspring Cohort, and Lothian Birth Cohorts. We trained Cox proportional hazards-based elastic net regressions for incident CVD separately in each cohort and used a recently introduced cross-study learning approach to integrate these individual scores into an ensemble predictor. The methylation-based risk score was associated with CVD time-to-event in a held-out fraction of the Framingham data set (hazard ratio per SD=1.28, 95% CI, 1.10-1.50) and predicted myocardial infarction status in the independent REGICOR (Girona Heart Registry) data set (odds ratio per SD=2.14, 95% CI, 1.58-2.89). These associations remained after adjustment for traditional cardiovascular risk factors and were similar to those from elastic net models trained on a directly merged data set. Additionally, we investigated interactions between the methylation-based risk score and both genetic and biochemical CVD risk, showing preliminary evidence of an enhanced performance in those with less traditional risk factor elevation. Conclusions This investigation provides proof-of-concept for a genome-wide, CVD-specific epigenomic risk score and suggests that DNA methylation data may enable the discovery of high-risk individuals who would be missed by alternative risk metrics.
Collapse
Affiliation(s)
- Kenneth Westerman
- JM‐USDA Human Nutrition Research Center on Aging at Tufts UniversityBostonMA
| | - Alba Fernández‐Sanlés
- Cardiovascular Epidemiology and Genetics Research GroupREGICOR Study GroupIMIM (Hospital del Mar Medical Research Institute)BarcelonaCataloniaSpain
- Pompeu Fabra University (UPF)BarcelonaCataloniaSpain
| | - Prasad Patil
- Department of BiostatisticsBoston University School of Public HealthBostonMA
| | - Paola Sebastiani
- Department of BiostatisticsBoston University School of Public HealthBostonMA
| | - Paul Jacques
- JM‐USDA Human Nutrition Research Center on Aging at Tufts UniversityBostonMA
| | - John M. Starr
- Department of PsychologyUniversity of EdinburghUnited Kingdom
- Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghUnited Kingdom
| | - Ian J. Deary
- Department of PsychologyUniversity of EdinburghUnited Kingdom
- Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghUnited Kingdom
| | - Qing Liu
- Department of EpidemiologyBrown University School of Public HealthProvidenceRI
| | - Simin Liu
- Department of EpidemiologyBrown University School of Public HealthProvidenceRI
| | - Roberto Elosua
- Cardiovascular Epidemiology and Genetics Research GroupREGICOR Study GroupIMIM (Hospital del Mar Medical Research Institute)BarcelonaCataloniaSpain
- CIBER Cardiovascular Diseases (CIBERCV)MadridSpain
- Medicine DepartmentMedical SchoolUniversity of Vic‐Central University of Catalonia (UVic‐UCC)VicCataloniaSpain
| | - Dawn L. DeMeo
- Channing Division of Network MedicineDepartment of MedicineBrigham and Women’s HospitalBostonMA
| | - José M. Ordovás
- JM‐USDA Human Nutrition Research Center on Aging at Tufts UniversityBostonMA
- IMDEA AlimentaciónCEIUAMMadridSpain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| |
Collapse
|
24
|
Salameh Y, Bejaoui Y, El Hajj N. DNA Methylation Biomarkers in Aging and Age-Related Diseases. Front Genet 2020; 11:171. [PMID: 32211026 PMCID: PMC7076122 DOI: 10.3389/fgene.2020.00171] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
Recent research efforts provided compelling evidence of genome-wide DNA methylation alterations in aging and age-related disease. It is currently well established that DNA methylation biomarkers can determine biological age of any tissue across the entire human lifespan, even during development. There is growing evidence suggesting epigenetic age acceleration to be strongly linked to common diseases or occurring in response to various environmental factors. DNA methylation based clocks are proposed as biomarkers of early disease risk as well as predictors of life expectancy and mortality. In this review, we will summarize key advances in epigenetic clocks and their potential application in precision health. We will also provide an overview of progresses in epigenetic biomarker discovery in Alzheimer's, type 2 diabetes, and cardiovascular disease. Furthermore, we will highlight the importance of prospective study designs to identify and confirm epigenetic biomarkers of disease.
Collapse
Affiliation(s)
| | | | - Nady El Hajj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
25
|
Zaghlool SB, Kühnel B, Elhadad MA, Kader S, Halama A, Thareja G, Engelke R, Sarwath H, Al-Dous EK, Mohamoud YA, Meitinger T, Wilson R, Strauch K, Peters A, Mook-Kanamori DO, Graumann J, Malek JA, Gieger C, Waldenberger M, Suhre K. Epigenetics meets proteomics in an epigenome-wide association study with circulating blood plasma protein traits. Nat Commun 2020; 11:15. [PMID: 31900413 PMCID: PMC6941977 DOI: 10.1038/s41467-019-13831-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
DNA methylation and blood circulating proteins have been associated with many complex disorders, but the underlying disease-causing mechanisms often remain unclear. Here, we report an epigenome-wide association study of 1123 proteins from 944 participants of the KORA population study and replication in a multi-ethnic cohort of 344 individuals. We identify 98 CpG-protein associations (pQTMs) at a stringent Bonferroni level of significance. Overlapping associations with transcriptomics, metabolomics, and clinical endpoints suggest implication of processes related to chronic low-grade inflammation, including a network involving methylation of NLRC5, a regulator of the inflammasome, and associated pQTMs implicating key proteins of the immune system, such as CD48, CD163, CXCL10, CXCL11, LAG3, FCGR3B, and B2M. Our study links DNA methylation to disease endpoints via intermediate proteomics phenotypes and identifies correlative networks that may eventually be targeted in a personalized approach of chronic low-grade inflammation.
Collapse
Affiliation(s)
- Shaza B Zaghlool
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
- Computer Engineering Department, Virginia Tech, Blacksburg, VA, USA
| | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
| | - Mohamed A Elhadad
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Sara Kader
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Anna Halama
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Gaurav Thareja
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Rudolf Engelke
- Proteomics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Hina Sarwath
- Proteomics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Eman K Al-Dous
- Genomics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Thomas Meitinger
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Rory Wilson
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Johannes Graumann
- Scientific Service Group Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Rhine-Main, Max Planck Institute of Heart and Lung Research, Bad Nauheim, Germany
| | - Joel A Malek
- Genomics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar.
| |
Collapse
|
26
|
Abdulrahim JW, Kwee LC, Grass E, Siegler IC, Williams R, Karra R, Kraus WE, Gregory SG, Shah SH. Epigenome-Wide Association Study for All-Cause Mortality in a Cardiovascular Cohort Identifies Differential Methylation in Castor Zinc Finger 1 ( CASZ1). J Am Heart Assoc 2019; 8:e013228. [PMID: 31642367 PMCID: PMC6898816 DOI: 10.1161/jaha.119.013228] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
Background DNA methylation is implicated in many chronic diseases and may contribute to mortality. Therefore, we conducted an epigenome-wide association study (EWAS) for all-cause mortality with whole-transcriptome data in a cardiovascular cohort (CATHGEN [Catheterization Genetics]). Methods and Results Cases were participants with mortality≥7 days postcatheterization whereas controls were alive with≥2 years of follow-up. The Illumina Human Methylation 450K and EPIC arrays (Illumina, San Diego, CA) were used for the discovery and validation sets, respectively. A linear model approach with empirical Bayes estimators adjusted for confounders was used to assess difference in methylation (Δβ). In the discovery set (55 cases, 49 controls), 25 629 (6.5%) probes were differently methylated (P<0.05). In the validation set (108 cases, 108 controls), 3 probes were differentially methylated with a false discovery rate-adjusted P<0.10: cg08215811 (SLC4A9; log2 fold change=-0.14); cg17845532 (MATK; fold change=-0.26); and cg17944110 (castor zinc finger 1 [CASZ1]; FC=0.26; P<0.0001; false discovery rate-adjusted P=0.046-0.080). Meta-analysis identified 6 probes (false discovery rate-adjusted P<0.05): the 3 above, cg20428720 (intergenic), cg17647904 (NCOR2), and cg23198793 (CAPN3). Messenger RNA expression of 2 MATK isoforms was lower in cases (fold change=-0.24 [P=0.007] and fold change=-0.61 [P=0.009]). The CASZ1, NCOR2, and CAPN3 transcripts did not show differential expression (P>0.05); the SLC4A9 transcript did not pass quality control. The cg17944110 probe is located within a potential regulatory element; expression of predicted targets (using GeneHancer) of the regulatory element, UBIAD1 (P=0.01) and CLSTN1 (P=0.03), were lower in cases. Conclusions We identified 6 novel methylation sites associated with all-cause mortality. Methylation in CASZ1 may serve as a regulatory element associated with mortality in cardiovascular patients. Larger studies are necessary to confirm these observations.
Collapse
Affiliation(s)
- Jawan W. Abdulrahim
- Duke Molecular Physiology InstituteDuke University School of MedicineDuke UniversityDurhamNC
| | - Lydia Coulter Kwee
- Duke Molecular Physiology InstituteDuke University School of MedicineDuke UniversityDurhamNC
| | - Elizabeth Grass
- Duke Molecular Physiology InstituteDuke University School of MedicineDuke UniversityDurhamNC
| | - Ilene C. Siegler
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNC
| | - Redford Williams
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNC
| | - Ravi Karra
- Division of CardiologyDepartment of MedicineDuke University School of MedicineDurhamNC
| | - William E. Kraus
- Duke Molecular Physiology InstituteDuke University School of MedicineDuke UniversityDurhamNC
- Division of CardiologyDepartment of MedicineDuke University School of MedicineDurhamNC
| | - Simon G. Gregory
- Duke Molecular Physiology InstituteDuke University School of MedicineDuke UniversityDurhamNC
| | - Svati H. Shah
- Duke Molecular Physiology InstituteDuke University School of MedicineDuke UniversityDurhamNC
- Division of CardiologyDepartment of MedicineDuke University School of MedicineDurhamNC
| |
Collapse
|
27
|
Westerman K, Sebastiani P, Jacques P, Liu S, DeMeo D, Ordovás JM. DNA methylation modules associate with incident cardiovascular disease and cumulative risk factor exposure. Clin Epigenetics 2019; 11:142. [PMID: 31615550 PMCID: PMC6792327 DOI: 10.1186/s13148-019-0705-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Epigenome-wide association studies using DNA methylation have the potential to uncover novel biomarkers and mechanisms of cardiovascular disease (CVD) risk. However, the direction of causation for these associations is not always clear, and investigations to-date have often failed to replicate at the level of individual loci. METHODS Here, we undertook module- and region-based DNA methylation analyses of incident CVD in the Women's Health Initiative (WHI) and Framingham Heart Study Offspring Cohort (FHS) in order to find more robust epigenetic biomarkers for cardiovascular risk. We applied weighted gene correlation network analysis (WGCNA) and the Comb-p algorithm to find methylation modules and regions associated with incident CVD in the WHI dataset. RESULTS We discovered two modules whose activation correlated with CVD risk and replicated across cohorts. One of these modules was enriched for development-related processes and overlaps strongly with epigenetic aging sites. For the other, we showed preliminary evidence for monocyte-specific effects and statistical links to cumulative exposure to traditional cardiovascular risk factors. Additionally, we found three regions (associated with the genes SLC9A1, SLC1A5, and TNRC6C) whose methylation associates with CVD risk. CONCLUSIONS In sum, we present several epigenetic associations with incident CVD which reveal disease mechanisms related to development and monocyte biology. Furthermore, we show that epigenetic modules may act as a molecular readout of cumulative cardiovascular risk factor exposure, with implications for the improvement of clinical risk prediction.
Collapse
Affiliation(s)
- Kenneth Westerman
- JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Paola Sebastiani
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Paul Jacques
- JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Simin Liu
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Dawn DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - José M Ordovás
- JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
- IMDEA Alimentación, CEI, UAM, Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
28
|
Libby P. Biologically-Based Therapies for Aortic Diseases: Why the Long Lag in Translation? J Am Coll Cardiol 2018; 72:58-61. [PMID: 29957232 DOI: 10.1016/j.jacc.2018.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
29
|
|