1
|
Li Q, Xu Z, Qin J, Yang Z. Epilepsy and Developmental Delay in Pediatric Patients With PTEN Variants and a Literature Review. Pediatr Neurol 2025; 163:35-44. [PMID: 39644587 DOI: 10.1016/j.pediatrneurol.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Epilepsy is not common in pediatric patients with phosphatase and tensin homolog (PTEN) variants. The characteristics of epilepsy, reactions to antiseizure medications, and prognosis in these patients are not fully understood. The aim of this study was to elucidate the characteristics of epilepsy and developmental outcomes in pediatric patients with PTEN variants. METHODS We collected data from pediatric patients followed in Peking University People's Hospital from July 2018 to April 2024. RESULTS Thirteen children harboring PTEN variants were identified (mean age, 4.1 years). All the children (100%) with PTEN variants exhibited macrocephaly, 92.3% (12 of 13) had developmental delays, and 38.5% (five of 13) were diagnosed with autism spectrum disorder. Among the 13 children, 15.4% (two of 13) had epilepsy, and both responded well to antiseizure medications. Furthermore, we reviewed published articles on PTEN variants and epilepsy. We found seven studies of 665 pediatric patients with PTEN variants, including 26 patients with epilepsy. Among the 26 epileptic patients, information about the number and response to antiseizure medications was available for only 14 patients, and 15 patients had information about seizure types. Focal seizures were the most common seizure type (10 of 15, 66.7%). Only 28.6% (four of 14) of patients were diagnosed with drug-resistant epilepsy, and all patients (four of four) had abnormal brain magnetic resonance imaging findings. CONCLUSIONS In summary, a high proportion of pediatric patients with PTEN variants have developmental delay. Among epileptic patients, the most common seizure type is focal seizures, and these patients are more likely to respond to antiseizure medications if their brain imaging results are normal. Further large-scale studies are necessary to characterize the clinical characteristics of pediatric patients with epilepsy harboring PTEN variants and establish standard treatments.
Collapse
Affiliation(s)
- Qinrui Li
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Zhao Xu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China.
| | - Zhixian Yang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
2
|
Wei R, Hitomi M, Sadler T, Yehia L, Calvetti D, Scott J, Eng C. Quantitative evaluation of DNA damage repair dynamics to elucidate predictors of autism vs. cancer in individuals with germline PTEN variants. PLoS Comput Biol 2024; 20:e1012449. [PMID: 39356721 PMCID: PMC11472915 DOI: 10.1371/journal.pcbi.1012449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/14/2024] [Accepted: 08/31/2024] [Indexed: 10/04/2024] Open
Abstract
Persons with germline variants in the tumor suppressor gene phosphatase and tensin homolog, PTEN, are molecularly diagnosed with PTEN hamartoma tumor syndrome (PHTS). PHTS confers high risks of specific malignancies, and up to 23% of the patients are diagnosed with autism spectrum disorder (ASD) and/or developmental delay (DD). The accurate prediction of these two seemingly disparate phenotypes (cancer vs. ASD/DD) for PHTS at the individual level remains elusive despite the available statistical prevalence of specific phenotypes of the syndrome at the population level. The pleiotropy of the syndrome may, in part, be due to the alterations of the key multi-functions of PTEN. Maintenance of genome integrity is one of the key biological functions of PTEN, but no integrative studies have been conducted to quantify the DNA damage response (DDR) in individuals with PHTS and to relate to phenotypes and genotypes. In this study, we used 43 PHTS patient-derived lymphoblastoid cell lines (LCLs) to investigate the associations between DDR and PTEN genotypes and/or clinical phenotypes ASD/DD vs. cancer. The dynamics of DDR of γ-irradiated LCLs were analyzed using the exponential decay mathematical model to fit temporal changes in γH2AX levels which report the degree of DNA damage. We found that PTEN nonsense variants are associated with less efficient DNA damage repair ability resulting in higher DNA damage levels at 24 hours after irradiation compared to PTEN missense variants. Regarding PHTS phenotypes, LCLs from PHTS individuals with ASD/DD showed faster DNA damage repairing rate than those from patients without ASD/DD or cancer. We also applied the reaction-diffusion partial differential equation (PDE) mathematical model, a cell growth model with a DNA damage term, to accurately describe the DDR process in the LCLs. For each LCL, we can derive parameters of the PDE. Then we averaged the numerical results by PHTS phenotypes. By performing simple subtraction of two subgroup average results, we found that PHTS-ASD/DD is associated with higher live cell density at lower DNA damage level but lower cell density level at higher DNA damage level compared to LCLs from individuals with PHTS-cancer and PHTS-neither.
Collapse
Affiliation(s)
- Ruipeng Wei
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Nutrition and Systems Biology and Bioinformatics Program, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Masahiro Hitomi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Tammy Sadler
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Daniela Calvetti
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University College of Arts and Sciences, Cleveland, Ohio, United States of America
| | - Jacob Scott
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, United States of America
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
3
|
Liu D, Yehia L, Dhawan A, Ni Y, Eng C. Cell-free DNA fragmentomics and second malignant neoplasm risk in patients with PTEN hamartoma tumor syndrome. Cell Rep Med 2024; 5:101384. [PMID: 38242121 PMCID: PMC10897513 DOI: 10.1016/j.xcrm.2023.101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Individuals with PTEN hamartoma tumor syndrome (PHTS) harbor pathogenic germline PTEN variants that confer a significantly increased lifetime risk of various organ-specific cancers including second primary malignant neoplasms (SMNs). Currently, there are no reliable biomarkers that can predict individual-level cancer risk. Despite the highly promising value of cell-free DNA (cfDNA) as a biomarker for underlying sporadic cancers, the utility of cfDNA in individuals with known cancer-associated germline variants and subclinical cancers remains poorly understood. We perform ultra-low-pass whole-genome sequencing (ULP-WGS) of cfDNA from plasma samples from patients with PHTS and cancer as well as those without cancer. Analysis of cfDNA reveals that patients with PHTS and SMNs have distinct cfDNA size distribution, aberrant genome-wide fragmentation, and differential fragment end motif frequencies. Our work provides evidence that cfDNA profiles may be used as a marker for SMN risk in patients with PHTS.
Collapse
Affiliation(s)
- Darren Liu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrew Dhawan
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ying Ni
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA; Center for Immunotherapy and Precision Immuno-oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA; Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
4
|
Eng C, Kim A, Yehia L. Genomic diversity in functionally relevant genes modifies neurodevelopmental versus neoplastic risks in individuals with germline PTEN variants. RESEARCH SQUARE 2023:rs.3.rs-3734368. [PMID: 38168271 PMCID: PMC10760312 DOI: 10.21203/rs.3.rs-3734368/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Individuals with germline PTEN variants (PHTS) have increased risks of the seemingly disparate phenotypes of cancer and neurodevelopmental disorders (NDD), including autism spectrum disorder (ASD). Etiology of the phenotypic variability remains elusive. Here, we hypothesized that decreased genomic diversity, manifested by increased homozygosity, may be one etiology. Comprehensive analyses of 376 PHTS patients of European ancestry revealed significant enrichment of homozygous common variants in genes involved in inflammatory processes in the PHTS-NDD group and in genes involved in differentiation and chromatin structure regulation in the PHTS-ASD group. Pathway analysis revealed pathways germane to NDD/ASD, including neuroinflammation and synaptogenesis. Collapsing analysis of the homozygous variants identified suggestive modifier NDD/ASD genes. In contrast, we found enrichment of homozygous ultra-rare variants in genes modulating cell death in the PHTS-cancer group. Finally, homozygosity burden as a predictor of ASD versus cancer outcomes in our validated prediction model for NDD/ASD performed favorably.
Collapse
|
5
|
Hitomi M, Venegas J, Kang SC, Eng C. Differential cell cycle checkpoint evasion by PTEN germline mutations associated with dichotomous phenotypes of cancer versus autism spectrum disorder. Oncogene 2023; 42:3698-3707. [PMID: 37907589 DOI: 10.1038/s41388-023-02867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
Individuals with a PTEN germline mutation receive the molecular diagnosis of PTEN hamartoma tumor syndrome (PHTS). PHTS displays a complex spectrum of clinical phenotypes including harmartomas, predisposition to cancers, and autism spectrum disorder (ASD). Clear-cut genotype-phenotype correlations are yet to be established due to insufficient information on the PTEN function being impacted by mutations. To fill this knowledge gap, we compared functional impacts of two selected missense PTEN mutant alleles, G132D and M134R, each respectively being associated with distinct clinical phenotype, ASD or thyroid cancer without ASD using gene-edited human induced pluripotent stem cells (hiPSCs). In homozygous hiPSCs, PTEN expression was severely reduced by M134R mutation due to shortened protein half-life. G132D suppressed PTEN expression to a lesser extent than Μ134R mutation without altering protein half-life. When challenged with γ-irradiation, G132D heterozygous cells exited radiation-induced G2 arrest earlier than wildtype and M134R heterozygous hiPSCs despite the similar DNA damage levels as the latter two. Immunoblotting analyses suggested that γ-irradiation induced apoptosis in G132D heterozygous cells to lesser degrees than in the hiPSCs of other genotypes. These data suggest that ASD-associated G132D allele promotes genome instability by premature cell cycle reentry with incomplete DNA repair.
Collapse
Affiliation(s)
- Masahiro Hitomi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, The Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Juan Venegas
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Shin Chung Kang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, The Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
- Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Genetics and Genome Science, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA.
| |
Collapse
|
6
|
Wei R, Yehia L, Ni Y, Eng C. The mitochondrial genome as a modifier of autism versus cancer phenotypes in PTEN hamartoma tumor syndrome. HGG ADVANCES 2023; 4:100199. [PMID: 37216009 PMCID: PMC10193119 DOI: 10.1016/j.xhgg.2023.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Cancer and autism spectrum disorder/developmental delay (ASD/DD) are two common clinical phenotypes in individuals with germline PTEN variants (PTEN hamartoma tumor syndrome, PHTS). Burgeoning studies have shown that genomic and metabolomic factors may act as modifiers of ASD/DD versus cancer in PHTS. Recently, we showed copy number variations to be associated with ASD/DD versus cancer in these PHTS individuals. We also found that mitochondrial complex II variants occurring in 10% of PHTS individuals modify breast cancer risk and thyroid cancer histology. These studies suggest that mitochondrial pathways could act as important factors in PHTS phenotype development. However, the mitochondrial genome (mtDNA) has never been systematically studied in PHTS. We therefore investigated the mtDNA landscape extracted from whole-genome sequencing data from 498 PHTS individuals, including 164 with ASD/DD (PHTS-onlyASD/DD), 184 with cancer (PHTS-onlyCancer), 132 with neither ASD/DD nor cancer (PHTS-neither), and 18 with both ASD/DD and cancer (PHTS-ASDCancer). We demonstrate that PHTS-onlyASD/DD has significantly higher mtDNA copy number than PHTS-onlyCancer group (p = 9.2 × 10-3 in all samples; p = 4.2 × 10-3 in the H haplogroup). PHTS-neither group has significantly higher mtDNA variant burden than PHTS-ASDCancer group (p = 4.6 × 10-2); the PHTS-noCancer group (PHTS-onlyASD/DD and PHTS-neither groups) also shows higher variant burden than the PHTS-Cancer group (PHTS-onlyCancer and PHTS-ASD/Cancer groups; p = 3.3 × 10-2). Our study implicates the mtDNA as a modifier of ASD/DD versus cancer phenotype development in PHTS.
Collapse
Affiliation(s)
- Ruipeng Wei
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ying Ni
- Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Yehia L, Plitt G, Tushar AM, Joo J, Burke CA, Campbell SC, Heiden K, Jin J, Macaron C, Michener CM, Pederson HJ, Radhakrishnan K, Shin J, Tamburro J, Patil S, Eng C. Longitudinal Analysis of Cancer Risk in Children and Adults With Germline PTEN Variants. JAMA Netw Open 2023; 6:e239705. [PMID: 37093598 PMCID: PMC10126871 DOI: 10.1001/jamanetworkopen.2023.9705] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/10/2023] [Indexed: 04/25/2023] Open
Abstract
Importance Identifying hereditary cancer predisposition facilitates high-risk organ-specific cancer surveillance and prevention. In PTEN hamartoma tumor syndrome (PHTS), longitudinal studies remain lacking, and there are insufficient data on cancers in children and young adults, as well as individuals with neurodevelopmental disorders (NDD). Objective To evaluate lifetime cancer risks, including second malignant neoplasms (SMN), among patients with PHTS. Design, Setting, and Participants Prospective longitudinal cohort study (September 1, 2005, through January 6, 2022). General population risks from the Surveillance, Epidemiology, and End Results database. Patients with PHTS, molecularly defined as carrying germline PTEN variants, were accrued from community and academic medical centers throughout North America, South America, Europe, Australia, and Asia. Data were analyzed from July 2022 to February 2023. Exposures Review of physical and electronic medical records, and follow-up through clinical visits or telephone interviews. Main Outcomes and Measures Lifetime cancer risks in PHTS relative to the general population. Results A total of 7302 patients were prospectively accrued, 701 of whom had germline PTEN variants (median [IQR] age at consent, 38 [12-52] years; 413 female patients [59%]). Longitudinal follow-up data could be obtained for 260 patients (37%), with a median (IQR) follow-up of 4 (2-8) years. Of the 701 patients, 341 (49%) received at least 1 cancer diagnosis, with 144 (42%) of those having SMN. The study found significantly elevated lifetime risks for breast (91%), endometrial (48%), thyroid (33%), kidney (30%), and colorectal cancers (17%), as well as melanoma (5%). Cancer diagnoses were also observed in children and young adults with PHTS (15%) and in patients with PHTS with neurodevelopmental disorders (11%). Elevated risks (P < .001) of thyroid (age-adjusted standardized incidence ratios [SIR], 32.1; 95% CI, 26.0-39.0), kidney (SIR, 26.5; 95% CI, 18.8-36.3), endometrial (SIR, 26.0; 95% CI, 19.5-34.1), breast (SIR, 20.3; 95% CI, 17.3-23.7), and colorectal (SIR, 7.9; 95% CI, 5.2-11.7) cancers, and melanoma (SIR, 6.3; 95% CI, 3.5-10.5) were observed. Of the 341 patients with PHTS with cancer, 51 (15%) had 1 or more cancers diagnosed at age 29 years or younger, and 16 (31.4%) of those developed SMN at final follow-up. Twenty-three patients with PHTS with NDD and cancer were identified, with 5 (22%) having developed SMN at final follow-up. Individuals with PHTS and NDD showed higher lifetime cancer risks compared with individuals with PHTS but without NDD (hazard ratio, 2.7; 95% CI, 1.7-4.2; P < .001). Conclusions and Relevance This cohort study found consistently elevated lifetime cancer risks in PHTS. Organ-specific surveillance should continue in patients with PHTS. Additional study is required to ascertain elevated cancer risks in patients with PHTS with NDD.
Collapse
Affiliation(s)
- Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Gilman Plitt
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ann M. Tushar
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Julia Joo
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Carol A. Burke
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
- Sanford R. Weiss MD Center for Hereditary Colorectal Neoplasia, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Colorectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
- PTEN Multidisciplinary Clinic and Center of Excellence, Cleveland Clinic, Cleveland, Ohio
| | - Steven C. Campbell
- PTEN Multidisciplinary Clinic and Center of Excellence, Cleveland Clinic, Cleveland, Ohio
- Department of Urology, Cleveland Clinic, Cleveland, Ohio
| | - Katherine Heiden
- PTEN Multidisciplinary Clinic and Center of Excellence, Cleveland Clinic, Cleveland, Ohio
- Center for Endocrine Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Judy Jin
- PTEN Multidisciplinary Clinic and Center of Excellence, Cleveland Clinic, Cleveland, Ohio
- Center for Endocrine Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Carole Macaron
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
- Sanford R. Weiss MD Center for Hereditary Colorectal Neoplasia, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
- PTEN Multidisciplinary Clinic and Center of Excellence, Cleveland Clinic, Cleveland, Ohio
| | - Chad M. Michener
- PTEN Multidisciplinary Clinic and Center of Excellence, Cleveland Clinic, Cleveland, Ohio
- Division of Gynecologic Oncology, Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Cleveland, Ohio
| | - Holly J. Pederson
- Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
- PTEN Multidisciplinary Clinic and Center of Excellence, Cleveland Clinic, Cleveland, Ohio
| | - Kadakkal Radhakrishnan
- PTEN Multidisciplinary Clinic and Center of Excellence, Cleveland Clinic, Cleveland, Ohio
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic, Cleveland, Ohio
| | - Joyce Shin
- PTEN Multidisciplinary Clinic and Center of Excellence, Cleveland Clinic, Cleveland, Ohio
- Center for Endocrine Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Joan Tamburro
- PTEN Multidisciplinary Clinic and Center of Excellence, Cleveland Clinic, Cleveland, Ohio
- Department of Dermatology, Cleveland Clinic, Cleveland, Ohio
| | - Sujata Patil
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, Ohio
- PTEN Multidisciplinary Clinic and Center of Excellence, Cleveland Clinic, Cleveland, Ohio
- Center for Personalized Genetic Healthcare, Community Care, Cleveland Clinic, Cleveland, Ohio
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
8
|
The interaction between intestinal bacterial metabolites and phosphatase and tensin homolog in autism spectrum disorder. Mol Cell Neurosci 2023; 124:103805. [PMID: 36592799 DOI: 10.1016/j.mcn.2022.103805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/17/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023] Open
Abstract
Intestinal bacteria-associated para-cresyl sulfate (pCS) and 4-ethylphenyl sulfate (4EPS) are elevated in autism spectrum disorder (ASD). Both metabolites can induce ASD-like behaviors in mice, but the molecular mechanisms are not known. Phosphatase and tensin homolog (PTEN) is a susceptibility gene for ASD. The present study investigated the relation between pCS and 4EPS and PTEN in ASD in a valproic acid (VPA)-induced murine ASD model and an in vitro LPS-activated microglial model. The VPA-induced intestinal inflammation and compromised permeability in the distal ileum was not associated with changes of PTEN expression and phosphorylation. In contrast, VPA reduced PTEN expression in the hippocampus of mice. In vitro results show that pCS and 4EPS reduced PTEN expression and derailed innate immune response of BV2 microglial cells. The PTEN inhibitor VO-OHpic did not affect innate immune response of microglial cells. In conclusion, PTEN does not play a role in intestinal inflammation and compromised permeability in VPA-induced murine model for ASD. Although pCS and 4EPS reduced PTEN expression in microglial cells, PTEN is not involved in the pCS and 4EPS-induced derailed innate immune response of microglial cells. Further studies are needed to investigate the possible involvement of reduced PTEN expression in the ASD brain regarding synapse function and neuronal connectivity.
Collapse
|
9
|
Cummings S, Alfonso A, Hughes E, Kucera M, Mabey B, Singh N, Eng C. Cancer Risk Associated With PTEN Pathogenic Variants Identified Using Multigene Hereditary Cancer Panel Testing. JCO Precis Oncol 2023; 7:e2200415. [PMID: 36634299 PMCID: PMC9928870 DOI: 10.1200/po.22.00415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
PURPOSE PTEN-associated clinical syndromes such as Cowden syndrome (CS) increase cancer risk and have historically been diagnosed based upon phenotypic criteria. Because not all patients clinically diagnosed with CS have PTEN pathogenic variants (PVs), and not all patients with PTEN PVs have been clinically diagnosed with CS, the cancer risk conferred by PTEN PVs calculated from cohorts of patients with clinical diagnoses of CS/CS-like phenotypes may be inaccurate. METHODS We assessed a consecutive cohort of 727,091 individuals tested clinically for hereditary cancer risk, with a multigene panel between September 2013 and February 2022. Multivariable logistic regression models accounting for personal and family cancer history, age, sex, and ancestry were used to quantify disease risks associated with PTEN PVs. RESULTS PTEN PVs were detected in 0.027% (193/727,091) of the study population, and were associated with a high risk of female breast cancer (odds ratio [OR], 7.88; 95% CI, 5.57 to 11.16; P = 2.3 × 10-31), endometrial cancer (OR, 13.51; 95% CI, 8.77 to 20.83; P = 4.2 × 10-32), thyroid cancer (OR, 4.88; 95% CI, 2.64 to 9.01; P = 4.0 × 10-7), and colon polyposis (OR, 31.60; CI, 15.60 to 64.02; P = 9.0 × 10-22). We observed modest evidence suggesting that PTEN PVs may be associated with ovarian cancer risk (OR, 3.77; 95% CI, 1.71 to 8.32; P = 9.9 × 10-4). Among patients with similar personal/family history and ancestry, every 5-year increase in age of diagnosis decreased the likelihood of detecting a PTEN PV by roughly 60%. CONCLUSION We demonstrate that PTEN PVs are associated with significantly increased risk for a range of cancers. Together with the observation that PTEN PV carriers had earlier disease onset relative to otherwise comparable noncarriers, our results may guide screening protocols, inform risk-management strategies, and warrant enhanced surveillance approaches that improve clinical outcomes for PTEN PV carriers, regardless of their clinical presentation.
Collapse
Affiliation(s)
- Shelly Cummings
- Myriad Genetics Inc, Salt Lake City, UT,Shelly Cummings, MS, 320 Wakara Way, Salt Lake City, UT 84108; e-mail:
| | | | | | | | | | | | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH,Center for Personalized Genetic Healthcare, Cleveland Clinic Community Care, Cleveland, OH,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH,Department of Genetics and Genome Sciences, and CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
10
|
Gingival Overgrowths Revealing PTEN Hamartoma Tumor Syndrome: Report of Novel PTEN Pathogenic Variants. Biomedicines 2022; 11:biomedicines11010081. [PMID: 36672590 PMCID: PMC9855721 DOI: 10.3390/biomedicines11010081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
PTEN hamartoma tumor syndrome (PHTS), is a spectrum of disorders caused by mutations of PTEN, in which non-cancerous growths, called hamartomas, develop in different areas of the body, often including the oral mucosa. PHTS also implies a recognized increased risk of malignancies, as PTEN is a tumor suppressor gene capable of inhibiting progression of several cancers. One of the main and most common clinical manifestation of PHTS are gingival overgrowths presenting as warty lumps. The current study describes patients with gingival or mucosal enlargements leading to the diagnosis of PHTS associated to novel PTEN pathogenic variants. Patients referred to us for gingival lumps suggestive of PHTS associated overgrowths were submitted to genetic analysis in the PTEN gene. Two related and two unrelated patients were investigated. PTEN novel pathogenic variant was found in all of them. Two patients also fulfilled diagnostic criteria of Cowden syndrome (CS). Mucocutaneous lesions, and particularly diffuse gingival overgrowths, are both early and major clinical signs revealing a potential diagnosis of PHTS. Further genetic and clinical assessments are needed in order to confirm and clarify the diagnosis within the PHTS spectrum, including, among others, the CS. A correct interpretation of oral clinical features potentially associated to PHTS is mandatory for diagnosis and a surgical approach can be useful just in case of impairment of periodontal health or for aesthetic needs. The increased risk of malignancies associated to PHTS makes a correct diagnosis pivotal to set up an appropriate lifelong surveillance, aiming at secondary cancer prevention.
Collapse
|
11
|
Hendricks LA, Hoogerbrugge N, Venselaar H, Aretz S, Spier I, Legius E, Brems H, de Putter R, Claes KB, Evans DG, Woodward ER, Genuardi M, Brugnoletti F, van Ierland Y, Dijke K, Tham E, Tesi B, Schuurs-Hoeijmakers JH, Branchaud M, Salvador H, Jahn A, Schnaiter S, Anastasiadou VC, Brunet J, Oliveira C, Roht L, Blatnik A, Irmejs A, Mensenkamp AR, Vos JR, Duijkers F, Giltay JC, van Hest LP, Kleefstra T, Leter EM, Nielsen M, Nijmeijer SW, Olderode-Berends MJ. Genotype-phenotype associations in a large PTEN Hamartoma Tumor Syndrome (PHTS) patient cohort. Eur J Med Genet 2022; 65:104632. [DOI: 10.1016/j.ejmg.2022.104632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/05/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022]
|
12
|
Balagué-Dobón L, Cáceres A, González JR. Fully exploiting SNP arrays: a systematic review on the tools to extract underlying genomic structure. Brief Bioinform 2022; 23:bbac043. [PMID: 35211719 PMCID: PMC8921734 DOI: 10.1093/bib/bbac043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) are the most abundant type of genomic variation and the most accessible to genotype in large cohorts. However, they individually explain a small proportion of phenotypic differences between individuals. Ancestry, collective SNP effects, structural variants, somatic mutations or even differences in historic recombination can potentially explain a high percentage of genomic divergence. These genetic differences can be infrequent or laborious to characterize; however, many of them leave distinctive marks on the SNPs across the genome allowing their study in large population samples. Consequently, several methods have been developed over the last decade to detect and analyze different genomic structures using SNP arrays, to complement genome-wide association studies and determine the contribution of these structures to explain the phenotypic differences between individuals. We present an up-to-date collection of available bioinformatics tools that can be used to extract relevant genomic information from SNP array data including population structure and ancestry; polygenic risk scores; identity-by-descent fragments; linkage disequilibrium; heritability and structural variants such as inversions, copy number variants, genetic mosaicisms and recombination histories. From a systematic review of recently published applications of the methods, we describe the main characteristics of R packages, command-line tools and desktop applications, both free and commercial, to help make the most of a large amount of publicly available SNP data.
Collapse
|
13
|
He B, Zhang K, Han X, Su C, Zhao J, Wang G, Wang G, Zhang L, Hu W. Extracellular Vesicle-Derived miR-105-5p Promotes Malignant Phenotypes of Esophageal Squamous Cell Carcinoma by Targeting SPARCL1 via FAK/AKT Signaling Pathway. Front Genet 2022; 13:819699. [PMID: 35309127 PMCID: PMC8927724 DOI: 10.3389/fgene.2022.819699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Esophageal squamous cell carcinoma (ESCC) presents high morbidity and mortality. It was demonstrated that blood-derived vesicles can facilitate ESCC development and transmit regulating signals. However, the molecular mechanism of vesicle miRNA secreted by tumor cells affecting ESCC progression has not been explored. Methods: The mRNA-related signaling pathways and differentially expressed genes were screened out in TCGA dataset. The levels of miRNA-105-5p and SPARCL1 were determined by qRT-PCR. Protein level determination was processed using Western blot. The interaction between the two genes was verified with the dual-luciferase method. A transmission electron microscope was utilized to further identify extracellular vesicles (EVs), and co-culture assay was performed to validate the intake of EVs. In vitro experiments were conducted to evaluate cell function changes in ESCC. A mice tumor formation experiment was carried out to observe tumor growth in vivo. Results: MiRNA-105-5p expression was increased in ESCC, while SPARCL1 was less expressed. MiRNA-105-5p facilitated cell behaviors in ESCC through targeting SPARCL1 and regulating the focal adhesion kinase (FAK)/Akt signaling pathway. Blood-derived external vesicles containing miRNA-105-5p and EVs could be internalized by ESCC cells. Then, miRNA-105-5p could be transferred to ESCC cells to foster tumorigenesis as well as cell behaviors. Conclusion: EV-carried miRNA-105-5p entered ESCC cells and promoted tumor-relevant functions by mediating SPARCL1 and the FAK/Akt signaling pathway, which indicated that the treatment of ESCC via serum EVs might be a novel therapy and that miRNA-105-5p can be a molecular target for ESCC therapy.
Collapse
Affiliation(s)
- Binjun He
- Department of Thoracic Surgery, Shaoxing People’s Hospital (Zhejiang University School of Medicine), Shaoxing, China
- Department of Thoracic Surgery, Affiliated Hospital of Shaoxing University /Shaoxing Municipal Hospital, Shaoxing, China
| | - Kang Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Shaoxing University /Shaoxing Municipal Hospital, Shaoxing, China
| | - Xiaoliang Han
- Department of Thoracic Surgery, Affiliated Hospital of Shaoxing University /Shaoxing Municipal Hospital, Shaoxing, China
| | - Chao Su
- Department of Thoracic Surgery, Affiliated Hospital of Shaoxing University /Shaoxing Municipal Hospital, Shaoxing, China
| | - Jiaming Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Shaoxing University /Shaoxing Municipal Hospital, Shaoxing, China
| | - Guoxia Wang
- Department of Thoracic Surgery, Affiliated Hospital of Shaoxing University /Shaoxing Municipal Hospital, Shaoxing, China
| | - Guzong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Shaoxing University /Shaoxing Municipal Hospital, Shaoxing, China
| | - Liuya Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Shaoxing University /Shaoxing Municipal Hospital, Shaoxing, China
- *Correspondence: Wenbin Hu, ; Liuya Zhang,
| | - Wenbin Hu
- Department of Thoracic Surgery, Affiliated Hospital of Shaoxing University /Shaoxing Municipal Hospital, Shaoxing, China
- *Correspondence: Wenbin Hu, ; Liuya Zhang,
| |
Collapse
|
14
|
Yehia L, Ni Y, Sadler T, Frazier TW, Eng C. Distinct metabolic profiles associated with autism spectrum disorder versus cancer in individuals with germline PTEN mutations. NPJ Genom Med 2022; 7:16. [PMID: 35241692 PMCID: PMC8894426 DOI: 10.1038/s41525-022-00289-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022] Open
Abstract
PTEN hamartoma tumor syndrome (PHTS), caused by germline PTEN mutations, has been associated with organ-specific cancers and autism spectrum disorder (ASD) and/or developmental delay (DD). Predicting precise clinical phenotypes in any one PHTS individual remains impossible. We conducted an untargeted metabolomics study on an age- and sex-matched series of PHTS individuals with ASD/DD, cancer, or both phenotypes. Using agnostic metabolomic-analyses from patient-derived lymphoblastoid cells and their spent media, we found 52 differentially abundant individual metabolites, 69 cell/media metabolite ratios, and 327 pair-wise metabotype (shared metabolic phenotype) ratios clearly distinguishing PHTS individuals based on phenotype. Network analysis based on significant metabolites pointed to hubs converging on PTEN-related insulin, MAPK, AMPK, and mTOR signaling cascades. Internal cross-validation of significant metabolites showed optimal overall accuracy in distinguishing PHTS individuals with ASD/DD versus those with cancer. Such metabolomic markers may enable more accurate risk predictions and prevention in individual PHTS patients at highest risk.
Collapse
Affiliation(s)
- Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ying Ni
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tammy Sadler
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Thomas W Frazier
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Autism Speaks, Cleveland, OH, USA.,Department of Psychology, John Carroll University, University Heights, OH, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA. .,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,Germline High Risk Cancer Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
15
|
Leite Rocha D, Ashton-Prolla P, Rosset C. Reviewing the occurrence of large genomic rearrangements in patients with inherited cancer predisposing syndromes: importance of a comprehensive molecular diagnosis. Expert Rev Mol Diagn 2022; 22:319-346. [PMID: 35234551 DOI: 10.1080/14737159.2022.2049247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hereditary cancer predisposition syndromes are caused by germline pathogenic or likely pathogenic variants in cancer predisposition genes (CPG). The majority of pathogenic variants in CPGs are point mutations, but large gene rearrangements (LGRs) are present in several CPGs. LGRs can be much more difficult to characterize and perhaps they may have been neglected in molecular diagnoses. AREAS COVERED We aimed to evaluate the frequencies of germline LGRs in studies conducted in different populations worldwide through a qualitative systematic review based on an online literature research in PubMed. Two reviewers independently extracted data from published studies between 2009 and 2020. In total, 126 studies from 37 countries and 5 continents were included in the analysis. The number of studies in different continents ranged from 3 to 48 and for several countries there was an absolute lack of information. Asia and Europe represented most of the studies, and LGR frequencies varied from 3.04 to 15.06% in different continents. MLPA was one of the methods of choice in most studies (93%). EXPERT OPINION The LGR frequencies found in this review reinforce the need for comprehensive molecular testing regardless of the population of origin and should be considered by genetic counseling providers.
Collapse
Affiliation(s)
- Débora Leite Rocha
- Laboratório de Medicina Genômica, Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patrícia Ashton-Prolla
- Laboratório de Medicina Genômica, Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil. Av. Bento Gonçalves, 9500 - Prédio 43312 M, CEP: 91501-970, Caixa Postal 1505, Porto Alegre, Rio Grande do Sul, Brazil.,Serviço de Genética Médica, HCPA, Rio Grande do Sul, Brazil. Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil
| | - Clévia Rosset
- Laboratório de Medicina Genômica, Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
16
|
Cummings K, Watkins A, Jones C, Dias R, Welham A. Behavioural and psychological features of PTEN mutations: a systematic review of the literature and meta-analysis of the prevalence of autism spectrum disorder characteristics. J Neurodev Disord 2022; 14:1. [PMID: 34983360 PMCID: PMC8903687 DOI: 10.1186/s11689-021-09406-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Phosphatase and tensin homologue (PTEN) is a cancer suppressor gene. Constitutional mutations affecting this gene are associated with several conditions, collectively termed PTEN hamartoma tumour syndromes (PHTS). In addition to hamartomas, PTEN aberrations have been associated with a range of non-tumoural phenotypes such as macrocephaly, and research indicates possibly increased rates of developmental delay and autism spectrum disorder (ASD) for people with germline mutations affecting PTEN. METHOD A systematic review of literature reporting behavioural and psychological variables for people with constitutional PTEN mutations/PHTS was conducted using four databases. Following in-depth screening, 25 articles met the inclusion criteria and were used in the review. Fourteen papers reported the proportion of people with PTEN mutations/PTHS meeting criteria for or having characteristics of ASD and were thus used in a pooled prevalence meta-analysis. RESULTS Meta-analysis using a random effects model estimated pooled prevalence of ASD characteristics at 25% (95% CI 16-33%), although this should be interpreted cautiously due to possible biases in existing literature. Intellectual disability and developmental delay (global, motor and speech and language) were also reported frequently. Emotional difficulties and impaired cognitive functioning in specific domains were noted but assessed/reported less frequently. Methods of assessment of psychological/behavioural factors varied widely (with retrospective examination of medical records common). CONCLUSIONS Existing research suggests approximately 25% of people with constitutional PTEN mutations may meet criteria for or have characteristics of ASD. Studies have also begun to establish a range of possible cognitive impairments in affected individuals, especially when ASD is also reported. However, further large-scale studies are needed to elucidate psychological/behavioural corollaries of this mutation, and how they may relate to physiological/physical characteristics.
Collapse
Affiliation(s)
- Katherine Cummings
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Lancaster Road, Leicester, LE1 7HA UK
| | - Alice Watkins
- Neuropsychology Service, Great Ormond Street Hospital, London, WC1N 3JH UK
- Department of Psychology, University of Birmingham, Birmingham, B15 2TT UK
| | - Chris Jones
- Department of Psychology, University of Birmingham, Birmingham, B15 2TT UK
| | - Renuka Dias
- Department of Endocrinology and Diabetes, Birmingham Children’s Hospital, Birmingham Women’s, and Children’s NHS Foundation Trust, Steelhouse Lane, Birmingham, UK B4 6NH
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston Birmingham, UK B15 2TT
| | - Alice Welham
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Lancaster Road, Leicester, LE1 7HA UK
- Department of Psychology, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
17
|
Stefanski A, Pérez-Palma E, Mrdjen M, McHugh M, Leu C, Lal D. Identification and quantification of oligogenic loss-of-function disorders. Genet Med 2021; 24:729-735. [PMID: 34906500 DOI: 10.1016/j.gim.2021.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Monogenic disorders can present clinically heterogeneous symptoms. We hypothesized that in patients with a monogenic disorder caused by a large deletion, frequently additional loss-of-function (LOF)-intolerant genes are affected, potentially contributing to the phenotype. METHODS We investigated the LOF-intolerant gene distribution across the genome and its association with benign population and pathogenic classified deletions from individuals with presumably monogenic disorders. For people with presumably monogenic epilepsy, we compared Human Phenotype Ontology terms in people with large and small deletions. RESULTS We identified LOF-intolerant gene dense regions that were enriched for ClinVar and depleted for population copy number variants. Analysis of data from >143,000 individuals with a suspected monogenic disorder showed that 2.5% of haploinsufficiency disorder-associated deletions can affect at least 1 other LOF-intolerant gene. Focusing on epilepsy, we observed that 13.1% of pathogenic and likely pathogenic ClinVar deletions <3 megabase pair, covering the diagnostically most relevant genes, affected at least 1 additional LOF-intolerant gene. Those patients have potentially more complex phenotypes with increasing deletion size. CONCLUSION We could systematically show that large deletions frequently affected admditional LOF-intolerant genes in addition to the established disease gene. Further research is needed to understand how additional potential disease-relevant genes influence monogenic disorders to improve clinical care and the efficacy of targeted therapies.
Collapse
Affiliation(s)
- Arthur Stefanski
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Eduardo Pérez-Palma
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH; Universidad del Desarrollo, Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Santiago, Chile
| | - Marko Mrdjen
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Megan McHugh
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Costin Leu
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Dennis Lal
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA; Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany.
| |
Collapse
|
18
|
Loureiro LO, Howe JL, Reuter MS, Iaboni A, Calli K, Roshandel D, Pritišanac I, Moses A, Forman-Kay JD, Trost B, Zarrei M, Rennie O, Lau LYS, Marshall CR, Srivastava S, Godlewski B, Buttermore ED, Sahin M, Hartley D, Frazier T, Vorstman J, Georgiades S, Lewis SME, Szatmari P, Bradley CAL, Tabet AC, Willems M, Lumbroso S, Piton A, Lespinasse J, Delorme R, Bourgeron T, Anagnostou E, Scherer SW. A recurrent SHANK3 frameshift variant in Autism Spectrum Disorder. NPJ Genom Med 2021; 6:91. [PMID: 34737294 PMCID: PMC8568906 DOI: 10.1038/s41525-021-00254-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/23/2021] [Indexed: 01/22/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is genetically complex with ~100 copy number variants and genes involved. To try to establish more definitive genotype and phenotype correlations in ASD, we searched genome sequence data, and the literature, for recurrent predicted damaging sequence-level variants affecting single genes. We identified 18 individuals from 16 unrelated families carrying a heterozygous guanine duplication (c.3679dup; p.Ala1227Glyfs*69) occurring within a string of 8 guanines (genomic location [hg38]g.50,721,512dup) affecting SHANK3, a prototypical ASD gene (0.08% of ASD-affected individuals carried the predicted p.Ala1227Glyfs*69 frameshift variant). Most probands carried de novo mutations, but five individuals in three families inherited it through somatic mosaicism. We scrutinized the phenotype of p.Ala1227Glyfs*69 carriers, and while everyone (17/17) formally tested for ASD carried a diagnosis, there was the variable expression of core ASD features both within and between families. Defining such recurrent mutational mechanisms underlying an ASD outcome is important for genetic counseling and early intervention.
Collapse
Affiliation(s)
- Livia O Loureiro
- Genetics and Genome Biology and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jennifer L Howe
- Genetics and Genome Biology and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Miriam S Reuter
- Canada's Genomics Enterprise (CGEn), The Hospital for Sick Children, Toronto, ON, Canada
| | - Alana Iaboni
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Kristina Calli
- Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Delnaz Roshandel
- Genetics and Genome Biology and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Iva Pritišanac
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Alan Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Brett Trost
- Genetics and Genome Biology and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mehdi Zarrei
- Genetics and Genome Biology and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Olivia Rennie
- Genetics and Genome Biology and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lynette Y S Lau
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Christian R Marshall
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Siddharth Srivastava
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brianna Godlewski
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth D Buttermore
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Thomas Frazier
- Autism Speaks and Department of Psychology, John Carroll University, Cleveland, OH, USA
| | - Jacob Vorstman
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Suzanne M E Lewis
- Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Peter Szatmari
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Clarrisa A Lisa Bradley
- Genetics and Genome Biology and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anne-Claude Tabet
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, F-75015, Paris, France
- Genetics Department, Cytogenetic Unit, Robert Debré Hospital, APHP, F-75019, Paris, France
| | | | - Serge Lumbroso
- Biochimie et Biologie Moléculaire, CHU Nimes, Univ. Montpellier, Nimes, France
| | - Amélie Piton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, Illkirch, France
- Unité de Génétique Moléculaire, IGMA, Hôpitaux Universitaire de Strasbourg, Strasbourg, France
- Institut Universitaire de France, Paris, France
| | | | - Richard Delorme
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, F-75015, Paris, France
- Child and Adolescent Psychiatry Department, Robert Debré Hospital, APHP, F-75019, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, F-75015, Paris, France
| | - Evdokia Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Stephen W Scherer
- Genetics and Genome Biology and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics and the McLaughlin Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
19
|
Frazier TW, Jaini R, Busch RM, Wolf M, Sadler T, Klaas P, Hardan AY, Martinez-Agosto JA, Sahin M, Eng C. Cross-level analysis of molecular and neurobehavioral function in a prospective series of patients with germline heterozygous PTEN mutations with and without autism. Mol Autism 2021; 12:5. [PMID: 33509259 PMCID: PMC7841880 DOI: 10.1186/s13229-020-00406-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/15/2020] [Indexed: 01/13/2023] Open
Abstract
Background PTEN is a well-established risk gene for autism spectrum disorder (ASD). Yet, little is known about how PTEN mutations and associated molecular processes influence neurobehavioral function in mutation carriers with (PTEN-ASD) and without ASD (PTEN no-ASD). The primary aim of the present study was to examine group differences in peripheral blood-derived PTEN pathway protein levels between PTEN-ASD, PTEN no-ASD, and idiopathic macrocephalic ASD patients (macro-ASD). Secondarily, associations between protein levels and neurobehavioral functions were examined in the full cohort.
Methods Patients were recruited at four tertiary medical centers. Peripheral blood-derived protein levels from canonical PTEN pathways (PI3K/AKT and MAPK/ERK) were analyzed using Western blot analyses blinded to genotype and ASD status. Neurobehavioral measures included standardized assessments of global cognitive ability and multiple neurobehavioral domains. Analysis of variance models examined group differences in demographic, neurobehavioral, and protein measures. Bivariate correlations, structural models, and statistical learning procedures estimated associations between molecular and neurobehavioral variables. To complement patient data, Western blots for downstream proteins were generated to evaluate canonical PTEN pathways in the PTEN-m3m4 mouse model.
Results Participants included 61 patients (25 PTEN-ASD, 16 PTEN no-ASD, and 20 macro-ASD). Decreased PTEN and S6 were observed in both PTEN mutation groups. Reductions in MnSOD and increases in P-S6 were observed in ASD groups. Elevated neural P-AKT/AKT and P-S6/S6 from PTEN murine models parallel our patient observations. Patient PTEN and AKT levels were independently associated with global cognitive ability, and p27 expression was associated with frontal sub-cortical functions. As a group, molecular measures added significant predictive value to several neurobehavioral domains over and above PTEN mutation status. Limitations Sample sizes were small, precluding within-group analyses. Protein and neurobehavioral data were limited to a single evaluation. A small number of patients were excluded with invalid protein data, and cognitively impaired patients had missing data on some assessments. Conclusions Several canonical PTEN pathway molecules appear to influence the presence of ASD and modify neurobehavioral function in PTEN mutation patients. Protein assays of the PTEN pathway may be useful for predicting neurobehavioral outcomes in PTEN patients. Future longitudinal analyses are needed to replicate these findings and evaluate within-group relationships between protein and neurobehavioral measures. Trial registration ClinicalTrials.gov Identifier NCT02461446
Collapse
Affiliation(s)
- Thomas W Frazier
- Department of Psychology, John Carroll University, University Heights, OH, 44118, USA. .,Autism Speaks, Cleveland, OH, USA. .,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Ritika Jaini
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Robyn M Busch
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Neurology and Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Matthew Wolf
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Tammy Sadler
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Patricia Klaas
- Department of Neurology and Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Antonio Y Hardan
- Department of Child Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Mustafa Sahin
- Translational Neurosciences Center, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Center for Personalized Genetic Healthcare, Cleveland Clinic Community Care and Population Health, Cleveland, OH, 44195, USA. .,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA. .,Cleveland Clinic Genomic Medicine Institute, 9500 Euclid Avenue, NE-50, Cleveland, OH, 44195, USA.
| | | |
Collapse
|
20
|
Finucane BM, Myers SM, Martin CL, Ledbetter DH. Long overdue: including adults with brain disorders in precision health initiatives. Curr Opin Genet Dev 2020; 65:47-52. [PMID: 32544666 PMCID: PMC7736248 DOI: 10.1016/j.gde.2020.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/24/2020] [Accepted: 05/01/2020] [Indexed: 02/08/2023]
Abstract
Developmental brain disorders (DBD), including autism spectrum disorder, intellectual disability, and schizophrenia, are clinically defined and etiologically heterogeneous conditions with a wide range of outcomes. Rare pathogenic copy number and single nucleotide genomic variants are among the most common known etiologies, with diagnostic yields approaching for some DBD cohorts. Incorporating genetic testing into the care of adult patients with DBD, paired with targeted genetic counseling and family cascade testing, may increase self-advocacy and decrease stigma. In the long-term, breakthroughs in the understanding of DBD pathophysiology will hinge on the identification, engagement, and study of individuals with rare genetic DBD etiologies, consistent with successful precision medicine approaches to the treatment of cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Brenda M Finucane
- Autism & Developmental Medicine Institute, Geisinger, United States.
| | - Scott M Myers
- Autism & Developmental Medicine Institute, Geisinger, United States
| | - Christa L Martin
- Autism & Developmental Medicine Institute, Geisinger, United States
| | | |
Collapse
|