1
|
Jia T, Yang F, Qin F, He Y, Han F, Zhang C. Identification of Common Brain Protein and Genetic Loci Between Parkinson's Disease and Lewy Body Dementia. CNS Neurosci Ther 2025; 31:e70370. [PMID: 40202048 PMCID: PMC11979625 DOI: 10.1111/cns.70370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 02/25/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD) and Lewy body dementia (LBD) have many common features, including clinical manifestations, neurochemistry, and pathology, but little is known about their shared brain proteins and genetic factors. METHODS To identify susceptibility-related brain proteins that are shared between PD and LBD patients, proteome-wide association studies (PWASs) were conducted by integrating human brain protein quantitative trait loci (pQTLs) with large-scale genome-wide association studies (GWASs) of both diseases. Subsequently, pleiotropy-informed conditional false discovery rate (pleioFDR) analysis was performed to identify common risk genetic loci between PD and LBD. Finally, the downregulation of these risk genes in different disease states was validated by differential gene expression analysis. RESULTS PWASs identified 12 PD risk proteins and nine LBD risk proteins, among which TMEM175 (zPD = -7.25, PPD = 4.12E-13; zLBD = -6.02, PLBD = 1.75E-09) and DOC2A (zPD = -4.13, PPD = 3.71E-05; zLBD = -3.91, PLBD = 9.08E-05) were shared. PleioFDR analysis revealed that five genetic risk loci mapped to eight genes associated with PD and LBD, including the proteome-wide significant risk gene TMEM175 (ConjFDR = 5.74E-03). Differential expression analysis verified that TMEM175 was significantly downregulated in the midbrains of PD patients (p = 1.19E-02), and further exploration revealed that TMEM175 was also dramatically downregulated in the substantia nigra of PD patients (p = 1.16E-02) and incidental Lewy body disease patients (p = 7.52E-03). Moreover, TMEM175 was significantly downregulated in induced pluripotent stem cell-derived dopaminergic neurons from PD patients (p = 4.60E-02). CONCLUSION Dysregulation of TMEM175 may confer PD and LBD risk and may be partly responsible for their comorbidity. Our results revealed the common genetic risk factors between PD and LBD, which elucidated the shared genetic basis of these diseases.
Collapse
Affiliation(s)
- Tingting Jia
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Department of Gastroenterology and Hepatology and Sichuan University‐University of Oxford Huaxi Joint Centre for Gastrointestinal CancerWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Fuhua Yang
- Department of NephrologyThe Sixth People's Hospital of ChengduChengduSichuanChina
| | - Fengqin Qin
- Department of NeurologyThe 3rd Affiliated Hospital of Chengdu Medical CollegeChengduSichuanChina
| | - Yongji He
- Clinical Trial Center, National Medical Products Administration key Laboratory for Clinical Research and Evaluation of Innovative DrugsWest China Hospital Sichuan UniversityChengduChina
| | - Feng Han
- Department of Emergency MedicineHainan General Hospital, Hainan Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Chengcheng Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduSichuanChina
| |
Collapse
|
2
|
Banse P, Luiselli J, Parsons DP, Grohens T, Foley M, Trujillo L, Rouzaud‐Cornabas J, Knibbe C, Beslon G. Forward-in-time simulation of chromosomal rearrangements: The invisible backbone that sustains long-term adaptation. Mol Ecol 2024; 33:e17234. [PMID: 38078552 PMCID: PMC11628651 DOI: 10.1111/mec.17234] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/11/2024]
Abstract
While chromosomal rearrangements are ubiquitous in all domains of life, very little is known about their evolutionary significance, mostly because, apart from a few specifically studied and well-documented mechanisms (interaction with recombination, gene duplication, etc.), very few models take them into account. As a consequence, we lack a general theory to account for their direct and indirect contributions to evolution. Here, we propose Aevol, a forward-in-time simulation platform specifically dedicated to unravelling the evolutionary significance of chromosomal rearrangements (CR) compared to local mutations (LM). Using the platform, we evolve populations of organisms in four conditions characterized by an increasing diversity of mutational operators-from substitutions alone to a mix of substitutions, InDels and CR-but with a constant global mutational rate. Despite being almost invisible in the phylogeny owing to the scarcity of their fixation in the lineages, we show that CR make a decisive contribution to the evolutionary dynamics by comparing the outcome in these four conditions. As expected, chromosomal rearrangements allow fast expansion of the gene repertoire through gene duplication, but they also reduce the effect of diminishing-returns epistasis, hence sustaining adaptation on the long-run. At last, we show that chromosomal rearrangements tightly regulate the size of the genome through indirect selection for reproductive robustness. Overall, these results confirm the need to improve our theoretical understanding of the contribution of chromosomal rearrangements to evolution and show that dedicated platforms like Aevol can efficiently contribute to this agenda.
Collapse
Affiliation(s)
- Paul Banse
- Université de Lyon, INSA‐Lyon, Inria, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205LyonFrance
| | - Juliette Luiselli
- Université de Lyon, INSA‐Lyon, Inria, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205LyonFrance
| | - David P. Parsons
- Université de Lyon, INSA‐Lyon, Inria, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205LyonFrance
| | - Théotime Grohens
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Marco Foley
- Université de Lyon, INSA‐Lyon, Inria, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205LyonFrance
| | - Leonardo Trujillo
- Université de Lyon, INSA‐Lyon, Inria, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205LyonFrance
| | - Jonathan Rouzaud‐Cornabas
- Université de Lyon, INSA‐Lyon, Inria, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205LyonFrance
| | - Carole Knibbe
- Université de Lyon, INSA‐Lyon, Inria, Université Claude Bernard Lyon 1, Inserm, INRAE, CarMeN laboratoryPierre‐BéniteFrance
| | - Guillaume Beslon
- Université de Lyon, INSA‐Lyon, Inria, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205LyonFrance
| |
Collapse
|
3
|
Yuan Y, Wang Y, Liu M, Luo H, Liu X, Li L, Mao C, Yang T, Li S, Zhang X, Gao Y, Xu Y, Yang J. Peripheral cutaneous synucleinopathy characteristics in genetic Parkinson's disease. Front Neurol 2024; 15:1404492. [PMID: 38751879 PMCID: PMC11094647 DOI: 10.3389/fneur.2024.1404492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Background Cutaneous phosphorylated alpha-synuclein (p-α-syn) deposition is an important biomarker of idiopathic Parkinson's disease (iPD). Recent studies have reported synucleinopathies in patients with common genetic forms of PD. Objective This study aimed to detect p-α-syn deposition characteristic in rare genetic PD patients with CHCHD2 or RAB39B mutations. Moreover, this study also aimed to describe peripheral alpha-synuclein prion-like activity in genetic PD patients, and acquire whether the cutaneous synucleinopathy characteristics of genetic PD are consistent with central neuropathologies. Methods We performed four skin biopsy samples from the distal leg (DL) and proximal neck (C7) of 161 participants, including four patients with CHCHD2 mutations, two patients with RAB39B mutations, 16 patients with PRKN mutations, 14 patients with LRRK2 mutations, five patients with GBA mutations, 100 iPD patients, and 20 healthy controls. We detected cutaneous synucleinopathies using immunofluorescence staining and a seeding amplification assay (SAA). A systematic literature review was also conducted, involving 64 skin biopsies and 205 autopsies of genetic PD patients with synucleinopathy. Results P-α-syn was deposited in the peripheral cutaneous nerves of PD patients with CHCHD2, LRRK2, or GBA mutations but not in those with RAB39B or PRKN mutations. There were no significant differences in the location or rate of α-syn-positive deposits between genetic PD and iPD patients. Peripheral cutaneous synucleinopathy appears to well represent brain synucleinopathy of genetic PD, especially autosomal dominant PD (AD-PD). Cutaneous α-synuclein SAA analysis of iPD and LRRK2 and GBA mutation patients revealed prion-like activity. Conclusion P-α-syn deposition in peripheral cutaneous nerves, detected using SAA and immunofluorescence staining, may serve as an accurate biomarker for genetic PD and iPD in the future.
Collapse
Affiliation(s)
- Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yangyang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Minglei Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| | - Xiaojing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Lanjun Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| | - Ting Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuo Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyun Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Odongo R, Bellur O, Abdik E, Çakır T. Brain-wide transcriptome-based metabolic alterations in Parkinson's disease: human inter-region and human-experimental model correlations. Mol Omics 2023; 19:522-537. [PMID: 36928892 DOI: 10.1039/d2mo00343k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Alterations in brain metabolism are closely associated with the molecular hallmarks of Parkinson's disease (PD). A clear understanding of the main metabolic perturbations in PD is therefore important. Here, we retrospectively analysed the expression of metabolic genes from 34 PD-control post-mortem human brain transcriptome data comparisons from literature, spanning multiple brain regions. We found high metabolic correlations between the Substantia nigra (SN)- and cerebral cortex-derived tissues. Moreover, three clusters of PD patient cohorts were identified based on perturbed metabolic processes in the SN - each characterised by perturbations in (a) bile acid metabolism (b) omega-3 fatty acid metabolism, and (c) lipoic acid and androgen metabolism - metabolic themes not comprehensively addressed in PD. These perturbations were supported by concurrence between transcriptome and proteome changes in the expression patterns for CBR1, ECI2, BDH2, CYP27A1, ALDH1B1, ALDH9A1, ADH5, ALDH7A1, L1CAM, and PLXNB3 genes, providing a valuable resource for drug targeting and diagnosis. Also, we analysed 58 PD-control transcriptome data comparisons from in vivo/in vitro disease models and identified experimental PD models with significant correlations to matched human brain regions. Collectively, our findings suggest metabolic alterations in several brain regions, heterogeneity in metabolic alterations between study cohorts for the SN tissues and the need to optimize current experimental models to advance research on metabolic aspects of PD.
Collapse
Affiliation(s)
- Regan Odongo
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| | - Orhan Bellur
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| | - Ecehan Abdik
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| |
Collapse
|
5
|
Canever JB, Soares ES, de Avelar NCP, Cimarosti HI. Targeting α-synuclein post-translational modifications in Parkinson's disease. Behav Brain Res 2023; 439:114204. [PMID: 36372243 DOI: 10.1016/j.bbr.2022.114204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the nigrostriatal pathway. Although the exact mechanisms underlying PD are still not completely understood, it is well accepted that α-synuclein plays key pathophysiological roles as the main constituent of the cytoplasmic inclusions known as Lewy bodies. Several post-translational modifications (PTMs), such as the best-known phosphorylation, target α-synuclein and are thus implicated in its physiological and pathological functions. In this review, we present (1) an overview of the pathophysiological roles of α-synuclein, (2) a descriptive analysis of α-synuclein PTMs, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, truncation, and O-GlcNAcylation, as well as (3) a brief summary on α-synuclein PTMs as potential biomarkers for PD. A better understanding of α-synuclein PTMs is of paramount importance for elucidating the mechanisms underlying PD and can thus be expected to improve early detection and monitoring disease progression, as well as identify promising new therapeutic targets.
Collapse
Affiliation(s)
- Jaquelini B Canever
- Post-Graduate Program in Neuroscience, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil; Laboratory of Aging, Resources and Rheumatology, UFSC, Araranguá, Santa Catarina, Brazil
| | - Ericks Sousa Soares
- Post-Graduate Program in Pharmacology, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Núbia C P de Avelar
- Laboratory of Aging, Resources and Rheumatology, UFSC, Araranguá, Santa Catarina, Brazil
| | - Helena I Cimarosti
- Post-Graduate Program in Neuroscience, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil; Post-Graduate Program in Pharmacology, UFSC, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
6
|
Miao G, Zhuo D, Han X, Yao W, Liu C, Liu H, Cao H, Sun Y, Chen Z, Feng T. From degenerative disease to malignant tumors: Insight to the function of ApoE. Biomed Pharmacother 2023; 158:114127. [PMID: 36516696 DOI: 10.1016/j.biopha.2022.114127] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein E (ApoE) is a multifunctional protein involved in lipid transport and lipoprotein metabolism, mediating lipid distribution/redistribution in tissues and cells. It can also regulate inflammation and immune function, maintain cytoskeleton stability, and improve neural tissue Function. Due to genetic polymorphisms of ApoE (ε2, ε3, and ε4), its three common structural isoforms (ApoE2, ApoE3, ApoE4) are also associated with the risk of many diseases, especially degenerative diseases, such as vascular degenerative diseases including atherosclerosis (AS), coronary heart disease (CHD), and neurodegenerative disease like Alzheimer's disease (AD). The frequency of the ε4 allele and APOE variants were significantly higher than that of the ε2 and ε3 alleles in the patients with CHD or AD. In recent years, ApoE has frequently appeared in tumor research and become a tumor biomarker gradually. It has been found that ApoE is highly expressed in most solid tumor tissues, such as glioblastoma, gastric cancer, pancreatic ductal cell carcinoma, etc. Studies illustrated that ApoE could regulate the polarization changes of macrophages, participate in the construction of tumor immune microenvironment, regulate tumor inflammation and immune response and play a role in tumor progression, invasion, and metastasis. Of course, many functions of ApoE and its relationship with diseases are still under research. By reviewing the structure and function of ApoE from degeneration diseases to tumor neoplasms, we hope to better understand such a biomarker and further explore the value of ApoE in later studies.
Collapse
Affiliation(s)
- Ganggang Miao
- Department of General Surgery, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu, China; Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danping Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue Han
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Chuan Liu
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hanyuan Liu
- Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongyong Cao
- Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yangbai Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhiqiang Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Tingting Feng
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V. Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol 2022; 22:657-673. [PMID: 35246670 PMCID: PMC8895080 DOI: 10.1038/s41577-022-00684-6] [Citation(s) in RCA: 640] [Impact Index Per Article: 213.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 01/18/2023]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative disease that affects peripheral organs as well as the central nervous system and involves a fundamental role of neuroinflammation in its pathophysiology. Neurohistological and neuroimaging studies support the presence of ongoing and end-stage neuroinflammatory processes in PD. Moreover, numerous studies of peripheral blood and cerebrospinal fluid from patients with PD suggest alterations in markers of inflammation and immune cell populations that could initiate or exacerbate neuroinflammation and perpetuate the neurodegenerative process. A number of disease genes and risk factors have been identified as modulators of immune function in PD and evidence is mounting for a role of viral or bacterial exposure, pesticides and alterations in gut microbiota in disease pathogenesis. This has led to the hypothesis that complex gene-by-environment interactions combine with an ageing immune system to create the 'perfect storm' that enables the development and progression of PD. We discuss the evidence for this hypothesis and opportunities to harness the emerging immunological knowledge from patients with PD to create better preclinical models with the long-term goal of enabling earlier identification of at-risk individuals to prevent, delay and more effectively treat the disease.
Collapse
Affiliation(s)
- Malú Gámez Tansey
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA.
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA.
| | - Rebecca L Wallings
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
| | - Madelyn C Houser
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Mary K Herrick
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
| | - Cody E Keating
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
| | - Valerie Joers
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
8
|
Kielb S, Kisanuki YY, Dawson E. Neuropsychological profile associated with an alpha-synuclein gene ( SNCA) duplication. Clin Neuropsychol 2022; 36:1787-1798. [PMID: 33983072 DOI: 10.1080/13854046.2021.1914735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Objective: The alpha-synuclein gene (SNCA) is implicated in both Parkinson's disease (PD) and dementia with Lewy bodies (DLB). The purpose of this case study was to describe the neuropsychological profile, clinical trajectory, and treatment course of an individual with a known SNCA gene duplication who was followed over the course of three years. Methods: The patient was a healthy man who developed olfactory changes in early adulthood followed by parkinsonism and cognitive concerns around age 40. He underwent serial neurologic and neuropsychological evaluations and neuroimaging, as well as genetic testing for PD gene mutations. He consented to share his medical information to increase awareness of his condition. Results: Initial neuropsychological evaluation (age 44) revealed mild cognitive impairment primarily affecting executive and frontal/subcortical functions. Follow-up evaluations showed rapid cognitive decline that far surpassed the patient's Parkinsonism, which responded well to carbidopa-levodopa. As symptoms progressed, he also developed features characteristic of DLB, including cognitive fluctuations, rapid eye movement sleep behavior disorder, and visual hallucinations. Conclusion: SNCA gene duplication has classically been associated with a slowly progressive syndrome closely resembling idiopathic PD, but less frequently it can cause rapidly progressive dementia. This case study is the first to describe this rare phenotype in terms of its full neuropsychological profile and trajectory. The case highlights the value of a transdisciplinary evaluation and treatment and brings up important ethical and practical issues that should be considered when working with patients who have suspected or known genetic disorders.
Collapse
Affiliation(s)
- Stephanie Kielb
- Section of Neurobehavioral Health, Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Yaz Y Kisanuki
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Erica Dawson
- Section of Neurobehavioral Health, Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
9
|
Wang J, Yang X, Zeng W, Zhang X, Yang X, Xu Y, Liu K, Zhang Z, Xu Y, Cao X. Dual Effects: Intrastriatal Injection of α-syn N103/tau N368 Preformed Fibrils Promotes Endogenous α-synuclein Aggregates in the Proximal Colon. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2097-2116. [PMID: 35912751 DOI: 10.3233/jpd-223294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Pathological changes in the brain can affect the gastrointestinal tract, whereas there is less evidence regarding the brain-gut axis. OBJECTIVE To identify whether cerebral endogenous phosphorylated α-synuclein induces gastrointestinal dysfunction via the brain-gut axis, mediated by the vagus nerve. METHODS α-syn N103/tau N368 preformed fibrils were injected into the dorsal lateral striatum of rodents, and the cerebral and colonic synucleinopathies and changes in the enteric nervous system were analyzed. Moreover, subdiaphragmatic vagotomy was conducted to confirm the role of the vagus nerve in brain-gut propagation. RESULTS An anterograde propagation of phosphorylated α-synuclein from the brain to the proximal colon mainly via the vagus nerve was observed at one month. The accumulation of phosphorylated α-synuclein was detected in the proximal colon over time, accompanied by infiltration of macrophages and eosinophils in the mucosa and submucosa. Upon injection with lower doses of preformed fibrils, the accumulation of phosphorylated α-synuclein and dopaminergic neuron loss was reduced to levels consistent with control at six months, while the expression levels of GFAP, Iba-1, and IL-6 increased. Under high preformed fibrils dose conditions, fecal traits and gastrointestinal motility were significantly reduced at six months, and aggregations of phosphorylated α-synuclein and an increasing level of IL-1β appeared. CONCLUSION Induced endogenous α-synuclein can quickly propagate into the proximal colon mainly via the vagus nerve. Injections of low doses of preformed fibrils can elicit recovery of the enteric nervous system and degradation of α-synuclein aggregates whereas high doses cause accumulation of pathological α-synuclein, enteric inflammation, and prominent gastrointestinal dysfunction.
Collapse
Affiliation(s)
- Jialing Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqi Zeng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomei Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoyuan Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Van Den Berge N, Ulusoy A. Animal models of brain-first and body-first Parkinson's disease. Neurobiol Dis 2022; 163:105599. [DOI: 10.1016/j.nbd.2021.105599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
|
11
|
Cognitive Impairment in Genetic Parkinson's Disease. PARKINSON'S DISEASE 2022; 2021:8610285. [PMID: 35003622 PMCID: PMC8739522 DOI: 10.1155/2021/8610285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022]
Abstract
Cognitive impairment is common in idiopathic Parkinson's disease (PD). Knowledge of the contribution of genetics to cognition in PD is increasing in the last decades. Monogenic forms of genetic PD show distinct cognitive profiles and rate of cognitive decline progression. Cognitive impairment is higher in GBA- and SNCA-associated PD, lower in Parkin- and PINK1-PD, and possibly milder in LRRK2-PD. In this review, we summarize data regarding cognitive function on clinical studies, neuroimaging, and biological markers of cognitive decline in autosomal dominant PD linked to mutations in LRRK2 and SNCA, autosomal recessive PD linked to Parkin and PINK1, and also PD linked to GBA mutations.
Collapse
|
12
|
Guadagnolo D, Piane M, Torrisi MR, Pizzuti A, Petrucci S. Genotype-Phenotype Correlations in Monogenic Parkinson Disease: A Review on Clinical and Molecular Findings. Front Neurol 2021; 12:648588. [PMID: 34630269 PMCID: PMC8494251 DOI: 10.3389/fneur.2021.648588] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 12/30/2022] Open
Abstract
Parkinson disease (PD) is a complex neurodegenerative disorder, usually with multifactorial etiology. It is characterized by prominent movement disorders and non-motor symptoms. Movement disorders commonly include bradykinesia, rigidity, and resting tremor. Non-motor symptoms can include behavior disorders, sleep disturbances, hyposmia, cognitive impairment, and depression. A fraction of PD cases instead is due to Parkinsonian conditions with Mendelian inheritance. The study of the genetic causes of these phenotypes has shed light onto common pathogenetic mechanisms underlying Parkinsonian conditions. Monogenic Parkinsonisms can present autosomal dominant, autosomal recessive, or even X-linked inheritance patterns. Clinical presentations vary from forms indistinguishable from idiopathic PD to severe childhood-onset conditions with other neurological signs. We provided a comprehensive description of each condition, discussing current knowledge on genotype-phenotype correlations. Despite the broad clinical spectrum and the many genes involved, the phenotype appears to be related to the disrupted cell function and inheritance pattern, and several assumptions about genotype-phenotype correlations can be made. The interest in these assumptions is not merely speculative, in the light of novel promising targeted therapies currently under development.
Collapse
Affiliation(s)
- Daniele Guadagnolo
- Department of Experimental Medicine, Policlinico Umberto i Hospital, Sapienza University of Rome, Rome, Italy
| | - Maria Piane
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Medical Genetics and Advanced Cell Diagnostics Unit, S. Andrea University Hospital, Rome, Italy
| | - Maria Rosaria Torrisi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Medical Genetics and Advanced Cell Diagnostics Unit, S. Andrea University Hospital, Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Policlinico Umberto i Hospital, Sapienza University of Rome, Rome, Italy
| | - Simona Petrucci
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Medical Genetics and Advanced Cell Diagnostics Unit, S. Andrea University Hospital, Rome, Italy
| |
Collapse
|
13
|
Brazdis RM, Alecu JE, Marsch D, Dahms A, Simmnacher K, Lörentz S, Brendler A, Schneider Y, Marxreiter F, Roybon L, Winner B, Xiang W, Prots I. Demonstration of brain region-specific neuronal vulnerability in human iPSC-based model of familial Parkinson's disease. Hum Mol Genet 2021; 29:1180-1191. [PMID: 32160287 PMCID: PMC7206857 DOI: 10.1093/hmg/ddaa039] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by protein inclusions mostly composed of aggregated forms of α-synuclein (α-Syn) and by the progressive degeneration of midbrain dopaminergic neurons (mDANs), resulting in motor symptoms. While other brain regions also undergo pathologic changes in PD, the relevance of α-Syn aggregation for the preferential loss of mDANs in PD pathology is not completely understood yet. To elucidate the mechanisms of the brain region-specific neuronal vulnerability in PD, we modeled human PD using human-induced pluripotent stem cells (iPSCs) from familial PD cases with a duplication (Dupl) of the α-Syn gene (SNCA) locus. Human iPSCs from PD Dupl patients and a control individual were differentiated into mDANs and cortical projection neurons (CPNs). SNCA dosage increase did not influence the differentiation efficiency of mDANs and CPNs. However, elevated α-Syn pathology, as revealed by enhanced α-Syn insolubility and phosphorylation, was determined in PD-derived mDANs compared with PD CPNs. PD-derived mDANs exhibited higher levels of reactive oxygen species and protein nitration levels compared with CPNs, which might underlie elevated α-Syn pathology observed in mDANs. Finally, increased neuronal death was observed in PD-derived mDANs compared to PD CPNs and to control mDANs and CPNs. Our results reveal, for the first time, a higher α-Syn pathology, oxidative stress level, and neuronal death rate in human PD mDANs compared with PD CPNs from the same patient. The finding implies the contribution of pathogenic α-Syn, probably induced by oxidative stress, to selective vulnerability of substantia nigra dopaminergic neurons in human PD.
Collapse
Affiliation(s)
- Razvan-Marius Brazdis
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Julian E Alecu
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Daniel Marsch
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Annika Dahms
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Katrin Simmnacher
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Sandra Lörentz
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Anna Brendler
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Yanni Schneider
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Franz Marxreiter
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, Lund University, Lund 22184, Sweden
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Iryna Prots
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| |
Collapse
|
14
|
A new alpha-synuclein missense variant (Thr72Met) in two Turkish families with Parkinson's disease. Parkinsonism Relat Disord 2021; 89:63-72. [PMID: 34229155 PMCID: PMC8607441 DOI: 10.1016/j.parkreldis.2021.06.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/14/2021] [Accepted: 06/26/2021] [Indexed: 11/03/2022]
Abstract
Introduction: Missense variants and multiplications of the alpha-synuclein gene (SNCA) are established as rare causes of autosomal dominant forms of Parkinson’s Disease (PD). Methods: Two families of Turkish origins with PD were studied; the SNCA coding region was analyzed by Sanger sequencing, and by whole exome sequencing (WES) in the index patient of the first and the second family, respectively. Co-segregation studies and haplotype analysis across the SNCA locus were carried out. Functional studies included in vitro thioflavin-T aggregation assay and in silico structural modelling of the alpha-synuclein (α-syn) protein. Results: We identified a novel heterozygous SNCA variant, c.215C > T (p.Thr72Met), segregating with PD in a total of four members in the two families. A shared haplotype across the SNCA locus was found among variant carriers, suggestive of a common ancestor. We next showed that the Thr72Met α-syn displays enhanced aggregation in-vitro, compared to the wild-type species. In silico analysis of a tetrameric α-syn structural model revealed that Threonine 72 lies in the tetrameric interface, and substitution with the much larger methionine residue could potentially destabilize the tetramer. Conclusion: We present clinical, genetic, and functional data supporting a causative role of the SNCA c.215C > T (p.Thr72Met) variant in familial PD. Testing for this variant in patients with PD, especially of Turkish origin, might detect additional carriers. Further functional analyses might offer new insights into the shared biochemical properties of the PD-causing SNCA missense variants, and how they lead to neurodegeneration.
Collapse
|
15
|
Lu JS, Chen QY, Chen X, Li XH, Zhou Z, Liu Q, Lin Y, Zhou M, Xu PY, Zhuo M. Cellular and synaptic mechanisms for Parkinson's disease-related chronic pain. Mol Pain 2021; 17:1744806921999025. [PMID: 33784837 PMCID: PMC8020085 DOI: 10.1177/1744806921999025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease is the second most common neurodegenerative disorder after
Alzheimer’s disease. Chronic pain is experienced by the vast majority of
patients living with Parkinson’s disease. The degeneration of dopaminergic
neuron acts as the essential mechanism of Parkinson’s disease in the midbrain
dopaminergic pathway. The impairment of dopaminergic neurons leads to
dysfunctions of the nociceptive system. Key cortical areas, such as the anterior
cingulate cortex (ACC) and insular cortex (IC) that receive the dopaminergic
projections are involved in pain transmission. Dopamine changes synaptic
transmission via several pathway, for example the D2-adenly cyclase (AC)-cyclic
AMP (cAMP)-protein kinase A (PKA) pathway and D1-G protein-coupled receptor
kinase 2 (GRK2)-fragile X mental retardation protein (FMRP) pathway. The
management of Parkinson’s disease-related pain implicates maintenance of stable
level of dopaminergic drugs and analgesics, however a more selective drug
targeting at key molecules in Parkinson’s disease-related pain remains to be
investigated.
Collapse
Affiliation(s)
- Jing-Shan Lu
- Institute for Brain Research, Qingdao International Academician Park, Qingdao, China.,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qi-Yu Chen
- Institute for Brain Research, Qingdao International Academician Park, Qingdao, China.,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Xiang Chen
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xu-Hui Li
- Institute for Brain Research, Qingdao International Academician Park, Qingdao, China.,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Zhaoxiang Zhou
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qin Liu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuwan Lin
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Miaomiao Zhou
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ping-Yi Xu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Zhuo
- Institute for Brain Research, Qingdao International Academician Park, Qingdao, China.,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Liu X, Le W. Profiling Non-motor Symptoms in Monogenic Parkinson's Disease. Front Aging Neurosci 2020; 12:591183. [PMID: 33192488 PMCID: PMC7661846 DOI: 10.3389/fnagi.2020.591183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease in the elder population, pathologically characterized by the progressive loss of dopaminergic neurons in the substantia nigra. While the precise mechanisms underlying the pathogenesis of PD remain unknown, various genetic factors have been proved to be associated with PD. To date, at least 23 loci and 19 disease-causing genes for PD have been identified. Although monogenic (often familial) cases account for less than 5% of all PD patients, exploring the phenotypes of monogenic PD can help us understand the disease pathogenesis and progression. Primary motor symptoms are important for PD diagnosis but only detectable at a relatively late stage. Despite typical motor symptoms, various non-motor symptoms (NMS) including sensory complaints, mental disorders, autonomic dysfunction, and sleep disturbances also have negative impacts on the quality of life in PD patients and pose major challenges for disease management. NMS is common in all stages of the PD course. NMS can occur long before the onset of PD motor symptoms or can present in the middle or late stage of the disease accompanied by motor symptoms. Therefore, the profiling and characterization of NMS in monogenic PD may help the diagnosis and differential diagnosis of PD, which thereby can execute early intervention to delay the disease progression. In this review, we summarize the characteristics, clinical phenotypes, especially the NMS of monogenic PD patients carrying mutations of SNCA, LRRK2, VPS35, Parkin, PINK1, DJ-1, and GBA. The clinical implications of this linkage between NMS and PD-related genes are also discussed.
Collapse
Affiliation(s)
- Xinyao Liu
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weidong Le
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Chengdu, China
| |
Collapse
|
17
|
SNCA Rep1 microsatellite length influences non-motor symptoms in early Parkinson's disease. Aging (Albany NY) 2020; 12:20880-20887. [PMID: 33082300 PMCID: PMC7655210 DOI: 10.18632/aging.104111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/09/2020] [Indexed: 11/25/2022]
Abstract
Long alpha-synuclein gene (SNCA) promoter (Rep1) allele-carriers are linked to higher risk for Parkinson's disease (PD) and faster motor progression. Non-motor symptoms including autonomic, neuropsychiatric, and sleep disorders are common in PD. However, the relationship between SNCA Rep1 microsatellite lengths and non-motor symptoms in early PD remains to be elucidated. 171 consecutive early PD patients were recruited from tertiary clinics and genotyped for Rep1. Multivariable regression analyses were performed to examine associations between Rep1 alleles and non-motor outcome scores. Longer Rep1 alleles significantly associated with higher total Non-Motor Symptom Scale (NMSS) scores (p=.006) and Hospital Anxiety and Depression Scale (HADS) depression subscale scores (p=.002), after adjusting for covariates and Bonferroni correction. We demonstrated that SNCA Rep1 allele length influences overall non-motor symptom burden and depression in early PD patients. Further functional studies to evaluate the role of Rep1 in non-dopaminergic systems may unravel new therapeutic targets for non-motor symptoms in PD.
Collapse
|
18
|
Mancini A, Mazzocchetti P, Sciaccaluga M, Megaro A, Bellingacci L, Beccano-Kelly DA, Di Filippo M, Tozzi A, Calabresi P. From Synaptic Dysfunction to Neuroprotective Strategies in Genetic Parkinson's Disease: Lessons From LRRK2. Front Cell Neurosci 2020; 14:158. [PMID: 32848606 PMCID: PMC7399363 DOI: 10.3389/fncel.2020.00158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis of Parkinson’s disease (PD) is thought to rely on a complex interaction between the patient’s genetic background and a variety of largely unknown environmental factors. In this scenario, the investigation of the genetic bases underlying familial PD could unveil key molecular pathways to be targeted by new disease-modifying therapies, still currently unavailable. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are responsible for the majority of inherited familial PD cases and can also be found in sporadic PD, but the pathophysiological functions of LRRK2 have not yet been fully elucidated. Here, we will review the evidence obtained in transgenic LRRK2 experimental models, characterized by altered striatal synaptic transmission, mitochondrial dysfunction, and α-synuclein aggregation. Interestingly, the processes triggered by mutant LRRK2 might represent early pathological phenomena in the pathogenesis of PD, anticipating the typical neurodegenerative features characterizing the late phases of the disease. A comprehensive view of LRRK2 neuronal pathophysiology will support the possible clinical application of pharmacological compounds targeting this protein, with potential therapeutic implications for patients suffering from both familial and sporadic PD.
Collapse
Affiliation(s)
- Andrea Mancini
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Petra Mazzocchetti
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Miriam Sciaccaluga
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Alfredo Megaro
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Laura Bellingacci
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Dayne A Beccano-Kelly
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Alessandro Tozzi
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Paolo Calabresi
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Neuroscience Department, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
19
|
Zhou H, Li S, Li C, Yang X, Li H, Zhong H, Lu JH, Lee SMY. Oxyphylla A Promotes Degradation of α-Synuclein for Neuroprotection via Activation of Immunoproteasome. Aging Dis 2020; 11:559-574. [PMID: 32489702 PMCID: PMC7220298 DOI: 10.14336/ad.2019.0612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/12/2019] [Indexed: 11/23/2022] Open
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disorder, is neuropathologically characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and the presence of Lewy bodies in surviving neurons. α-synuclein (α-syn) is the major component of Lewy bodies and its deposition in neurons is critical pathological event in the pathogenesis of PD. Herein, we reported that Oxyphylla A, a novel lead compound from the fruit of Alpinia oxyphylla, significantly promoted α-syn degradation in a cellular PD model. When exploring the molecular pathways, we found that Oxyphylla A promoted α-syn degradation in a ubiquitin proteasome system (UPS)-dependent and autophagy-independent manner. We further confirmed that Oxyphylla A enhanced UPS activity by upregulating 20S subunit PSMB8 expression. A mechanism study revealed that Oxyphylla A activated the PKA/Akt/mTOR pathway to trigger PSMB8 expression and enhance UPS activity. Finally, we illustrated that Oxyphylla A alleviated the accumulation of both Triton-soluble and Triton-insoluble forms of α-syn and protected against α-syn-induced neurotoxicity in A53T α-syn transgenic mice. These findings suggest that the activation of UPS, via small molecular UPS enhancers including Oxyphylla A, may be a therapeutic strategy for intervention against PD and related diseases.
Collapse
Affiliation(s)
- Hefeng Zhou
- 1State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shengnan Li
- 1State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chuwen Li
- 1State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xuanjun Yang
- 1State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.,2Department of Biology, South University of Science and Technology, Shenzhen, China
| | - Haitao Li
- 1State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hanbing Zhong
- 2Department of Biology, South University of Science and Technology, Shenzhen, China
| | - Jia-Hong Lu
- 1State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Simon Ming-Yuen Lee
- 1State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
20
|
Perez-Rodriguez D, Kalyva M, Leija-Salazar M, Lashley T, Tarabichi M, Chelban V, Gentleman S, Schottlaender L, Franklin H, Vasmatzis G, Houlden H, Schapira AHV, Warner TT, Holton JL, Jaunmuktane Z, Proukakis C. Investigation of somatic CNVs in brains of synucleinopathy cases using targeted SNCA analysis and single cell sequencing. Acta Neuropathol Commun 2019; 7:219. [PMID: 31870437 PMCID: PMC6929293 DOI: 10.1186/s40478-019-0873-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Synucleinopathies are mostly sporadic neurodegenerative disorders of partly unexplained aetiology, and include Parkinson's disease (PD) and multiple system atrophy (MSA). We have further investigated our recent finding of somatic SNCA (α-synuclein) copy number variants (CNVs, specifically gains) in synucleinopathies, using Fluorescent in-situ Hybridisation for SNCA, and single-cell whole genome sequencing for the first time in a synucleinopathy. In the cingulate cortex, mosaicism levels for SNCA gains were higher in MSA and PD than controls in neurons (> 2% in both diseases), and for MSA also in non-neurons. In MSA substantia nigra (SN), we noted SNCA gains in > 3% of dopaminergic (DA) neurons (identified by neuromelanin) and neuromelanin-negative cells, including olig2-positive oligodendroglia. Cells with CNVs were more likely to have α-synuclein inclusions, in a pattern corresponding to cell categories mostly relevant to the disease: DA neurons in Lewy-body cases, and other cells in the striatonigral degeneration-dominant MSA variant (MSA-SND). Higher mosaicism levels in SN neuromelanin-negative cells may correlate with younger onset in typical MSA-SND, and in cingulate neurons with younger death in PD. Larger sample sizes will, however, be required to confirm these putative findings. We obtained genome-wide somatic CNV profiles from 169 cells from the substantia nigra of two MSA cases, and pons and putamen of one. These showed somatic CNVs in ~ 30% of cells, with clonality and origins in segmental duplications for some. CNVs had distinct profiles based on cell type, with neurons having a mix of gains and losses, and other cells having almost exclusively gains, although control data sets will be required to determine possible disease relevance. We propose that somatic SNCA CNVs may contribute to the aetiology and pathogenesis of synucleinopathies, and that genome-wide somatic CNVs in MSA brain merit further study.
Collapse
Affiliation(s)
- Diego Perez-Rodriguez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Maria Kalyva
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Melissa Leija-Salazar
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological disorders, UCL Queen Square Institute of Neurology, 1 Wakefield street, London, WC1N 1PJ, UK
| | - Maxime Tarabichi
- The Francis Crick Institute, Midland Road 1, London, NW1 1AT, UK
| | - Viorica Chelban
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | | | - Lucia Schottlaender
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Hannah Franklin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - George Vasmatzis
- Center for Individualized Medicine, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas T Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological disorders, UCL Queen Square Institute of Neurology, 1 Wakefield street, London, WC1N 1PJ, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Janice L Holton
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological disorders, UCL Queen Square Institute of Neurology, 1 Wakefield street, London, WC1N 1PJ, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological disorders, UCL Queen Square Institute of Neurology, 1 Wakefield street, London, WC1N 1PJ, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
21
|
Animal Models for Parkinson's Disease Research: Trends in the 2000s. Int J Mol Sci 2019; 20:ijms20215402. [PMID: 31671557 PMCID: PMC6862023 DOI: 10.3390/ijms20215402] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is a chronic and progressive movement disorder and the second most common neurodegenerative disease. Although many studies have been conducted, there is an unmet clinical need to develop new treatments because, currently, only symptomatic therapies are available. To achieve this goal, clarification of the pathology is required. Attempts have been made to emulate human PD and various animal models have been developed over the decades. Neurotoxin models have been commonly used for PD research. Recently, advances in transgenic technology have enabled the development of genetic models that help to identify new approaches in PD research. However, PD animal model trends have not been investigated. Revealing the trends for PD research will be valuable for increasing our understanding of the positive and negative aspects of each model. In this article, we clarified the trends for animal models that were used to research PD in the 2000s, and we discussed each model based on these trends.
Collapse
|
22
|
Coon EA, Singer W, Low PA. Pure Autonomic Failure. Mayo Clin Proc 2019; 94:2087-2098. [PMID: 31515103 PMCID: PMC6826339 DOI: 10.1016/j.mayocp.2019.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 12/17/2022]
Abstract
Pure autonomic failure (PAF) is a neurodegenerative disorder of the autonomic nervous system clinically characterized by orthostatic hypotension. The disorder has also been known as Bradbury-Eggleston syndrome, named for the authors of the 1925 seminal description. Patients typically present in midlife or later with orthostatic hypotension or syncope. Autonomic failure may also manifest as genitourinary, bowel, and thermoregulatory dysfunction. With widespread involvement, patients may present to a variety of different specialties and require multidisciplinary treatment approaches. Pathologically, PAF is characterized by predominantly peripheral deposition of α-synuclein. However, patients with PAF may progress into other synucleinopathies with central nervous system involvement.
Collapse
|
23
|
Du YJ, Shen Y, Wang YX, Sun YM, Liu FT, Chen C, Chen K, Zuo CT, Wu JJ, Wang J, An Y, Yu H. Clinical variability in Chinese families with Parkinson disease and SNCA duplication, including the shortest 139kb duplication. Parkinsonism Relat Disord 2019; 68:60-62. [PMID: 31621621 DOI: 10.1016/j.parkreldis.2019.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Yu-Jie Du
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yan Shen
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yi-Xuan Wang
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yi-Min Sun
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Feng-Tao Liu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Chen Chen
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Kui Chen
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Chuan-Tao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200235, China
| | - Jian-Jun Wu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jian Wang
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yu An
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, 201203, China.
| | - Huan Yu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
24
|
Chelban V, Vichayanrat E, Schottlaende L, Iodice V, Houlden H. Autonomic dysfunction in genetic forms of synucleinopathies. Mov Disord 2019; 33:359-371. [PMID: 29508456 DOI: 10.1002/mds.27343] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/01/2018] [Accepted: 01/19/2018] [Indexed: 12/31/2022] Open
Abstract
The discovery of genetic links between alpha-synuclein and PD has opened unprecedented opportunities for research into a new group of diseases, now collectively known as synucleinopathies. Autonomic dysfunction, including cardiac sympathetic denervation, has been reported in familial forms of synucleinopathies that have Lewy bodies at the core of their pathogenesis. SNCA mutations and multiplications, LRRK2 disease with Lewy bodies as well as other common, sporadic forms of idiopathic PD, MSA, pure autonomic failure, and dementia with Lewy bodies have all been associated with dysautonomia. By contrast, in familial cases of parkinsonism without Lewy bodies, such as in PARK2, the autonomic profile remains normal throughout the course of the disease. The degeneration of the central and peripheral autonomic systems in genetic as well as sporadic forms of neurodegenerative synucleinopathies correlates with the accumulation of alpha-synuclein immunoreactive-containing inclusions. Given that dysautonomia has a significant impact on the quality of life of sufferers and autonomic symptoms are generally treatable, a prompt diagnostic testing and treatment should be provided. Moreover, new evidence suggests that autonomic dysfunction can be used as an outcome prediction factor in some forms of synucleinopathies or premotor diagnostic markers that could be used in the future to define further research avenues. In this review, we describe the autonomic dysfunction of genetic synucleinopathies in comparison to the dysautonomia of sporadic forms of alpha-synuclein accumulation and provide the reader with an up-to-date overview of the current understanding in this fast-growing field. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Viorica Chelban
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom, and National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Department of Neurology and Neurosurgery, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Ekawat Vichayanrat
- Autonomic Unit, National Hospital for Neurology and Neurosurgery, UCL NHS Trust, London, United Kingdom
| | - Lucia Schottlaende
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom, and National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Valeria Iodice
- Autonomic Unit, National Hospital for Neurology and Neurosurgery, UCL NHS Trust, London, United Kingdom.,Institute of Neurology, University College London, London, United Kingdom
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom, and National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
25
|
Outeiro TF, Koss DJ, Erskine D, Walker L, Kurzawa-Akanbi M, Burn D, Donaghy P, Morris C, Taylor JP, Thomas A, Attems J, McKeith I. Dementia with Lewy bodies: an update and outlook. Mol Neurodegener 2019; 14:5. [PMID: 30665447 PMCID: PMC6341685 DOI: 10.1186/s13024-019-0306-8] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/08/2019] [Indexed: 01/17/2023] Open
Abstract
Dementia with Lewy bodies (DLB) is an age-associated neurodegenerative disorder producing progressive cognitive decline that interferes with normal life and daily activities. Neuropathologically, DLB is characterised by the accumulation of aggregated α-synuclein protein in Lewy bodies and Lewy neurites, similar to Parkinson’s disease (PD). Extrapyramidal motor features characteristic of PD, are common in DLB patients, but are not essential for the clinical diagnosis of DLB. Since many PD patients develop dementia as disease progresses, there has been controversy about the separation of DLB from PD dementia (PDD) and consensus reports have put forward guidelines to assist clinicians in the identification and management of both syndromes. Here, we present basic concepts and definitions, based on our current understanding, that should guide the community to address open questions that will, hopefully, lead us towards improved diagnosis and novel therapeutic strategies for DLB and other synucleinopathies.
Collapse
Affiliation(s)
- Tiago Fleming Outeiro
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK. .,Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany. .,Max Planck Institute for Experimental Medicine, Göttingen, Germany.
| | - David J Koss
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Daniel Erskine
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Lauren Walker
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Marzena Kurzawa-Akanbi
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - David Burn
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Paul Donaghy
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Christopher Morris
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - John-Paul Taylor
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Alan Thomas
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Johannes Attems
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Ian McKeith
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| |
Collapse
|
26
|
La Cognata V, Morello G, Gentile G, Cavalcanti F, Cittadella R, Conforti FL, De Marco EV, Magariello A, Muglia M, Patitucci A, Spadafora P, D’Agata V, Ruggieri M, Cavallaro S. NeuroArray: A Customized aCGH for the Analysis of Copy Number Variations in Neurological Disorders. Curr Genomics 2018; 19:431-443. [PMID: 30258275 PMCID: PMC6128384 DOI: 10.2174/1389202919666180404105451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/02/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neurological disorders are a highly heterogeneous group of pathological conditions that affect both the peripheral and the central nervous system. These pathologies are characterized by a complex and multifactorial etiology involving numerous environmental agents and genetic susceptibility factors. For this reason, the investigation of their pathogenetic basis by means of traditional methodological approaches is rather arduous. High-throughput genotyping technologies, including the microarray-based comparative genomic hybridization (aCGH), are currently replacing classical detection methods, providing powerful molecular tools to identify genomic unbalanced structural rearrangements and explore their role in the pathogenesis of many complex human diseases. METHODS In this report, we comprehensively describe the design method, the procedures, validation, and implementation of an exon-centric customized aCGH (NeuroArray 1.0), tailored to detect both single and multi-exon deletions or duplications in a large set of multi- and monogenic neurological diseases. This focused platform enables a targeted measurement of structural imbalances across the human genome, targeting the clinically relevant genes at exon-level resolution. CONCLUSION An increasing use of the NeuroArray platform may offer new insights in investigating potential overlapping gene signatures among neurological conditions and defining genotype-phenotype relationships.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Sebastiano Cavallaro
- Address correspondence to this author at the Institute of Neurological Sciences, National Research Council, Via Paolo Gaifami 18, 95125, Catania, Italy; Tel: +39-095-7338111; E-mail:
| |
Collapse
|
27
|
Orme T, Guerreiro R, Bras J. The Genetics of Dementia with Lewy Bodies: Current Understanding and Future Directions. Curr Neurol Neurosci Rep 2018; 18:67. [PMID: 30097731 PMCID: PMC6097049 DOI: 10.1007/s11910-018-0874-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Dementia with Lewy bodies (DLB) is a neurodegenerative disease that can be clinically and pathologically similar to Parkinson's disease (PD) and Alzheimer's disease (AD). Current understanding of DLB genetics is insufficient and has been limited by sample size and difficulty in diagnosis. The first genome-wide association study (GWAS) in DLB was performed in 2017; a time at which the post-GWAS era has been reached in many diseases. RECENT FINDINGS DLB shares risk loci with AD, in the APOE E4 allele, and with PD, in variation at GBA and SNCA. Interestingly, the GWAS suggested that DLB may also have genetic risk factors that are distinct from those in AD and PD. Although off to a slow start, recent studies have reinvigorated the field of DLB genetics and these results enable us to start to have a more complete understanding of the genetic architecture of this disease.
Collapse
Affiliation(s)
- Tatiana Orme
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, Institute of Neurology, Wing 1.2, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Rita Guerreiro
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, Institute of Neurology, Wing 1.2, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jose Bras
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.
- UK Dementia Research Institute at UCL, Institute of Neurology, Wing 1.2, The Cruciform Building, Gower Street, London, WC1E 6BT, UK.
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
28
|
Mokretar K, Pease D, Taanman JW, Soenmez A, Ejaz A, Lashley T, Ling H, Gentleman S, Houlden H, Holton JL, Schapira AHV, Nacheva E, Proukakis C. Somatic copy number gains of α-synuclein (SNCA) in Parkinson’s disease and multiple system atrophy brains. Brain 2018; 141:2419-2431. [DOI: 10.1093/brain/awy157] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/16/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Katya Mokretar
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
- Department of Academic Haematology, University College London, UK
| | - Daniel Pease
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Jan-Willem Taanman
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Aynur Soenmez
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Ayesha Ejaz
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurodegenerative diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Helen Ling
- Queen Square Brain Bank for Neurodegenerative diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurodegenerative diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Anthony H V Schapira
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | | | - Christos Proukakis
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|
29
|
Vicario M, Cieri D, Brini M, Calì T. The Close Encounter Between Alpha-Synuclein and Mitochondria. Front Neurosci 2018; 12:388. [PMID: 29930495 PMCID: PMC5999749 DOI: 10.3389/fnins.2018.00388] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/22/2018] [Indexed: 01/02/2023] Open
Abstract
The presynaptic protein alpha-synuclein (α-syn) is unequivocally linked to the development of Parkinson’s disease (PD). Not only it is the major component of amyloid fibrils found in Lewy bodies but mutations and duplication/triplication in its gene are responsible for the onset of familial autosomal dominant forms of PD. Nevertheless, the precise mechanisms leading to neuronal degeneration are not fully understood. Several lines of evidence suggest that impaired autophagy clearance and mitochondrial dysfunctions such as bioenergetics and calcium handling defects and alteration in mitochondrial morphology might play a pivotal role in the etiology and progression of PD, and indicate the intriguing possibility that α-syn could be involved in the control of mitochondrial function both in physiological and pathological conditions. In favor of this, it has been shown that a fraction of cellular α-syn can selectively localize to mitochondrial sub-compartments upon specific stimuli, highlighting possible novel routes for α-syn action. A plethora of mitochondrial processes, including cytochrome c release, calcium homeostasis, control of mitochondrial membrane potential and ATP production, is directly influenced by α-syn. Eventually, α-syn localization within mitochondria may also account for its aggregation state, making the α-syn/mitochondria intimate relationship a potential key for the understanding of PD pathogenesis. Here, we will deeply survey the recent literature in the field by focusing our attention on the processes directly controlled by α-syn within mitochondrial sub-compartments and its potential partners providing possible hints for future therapeutic targets.
Collapse
Affiliation(s)
- Mattia Vicario
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Domenico Cieri
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marisa Brini
- Department of Biology, University of Padova, Padova, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
30
|
Piper DA, Sastre D, Schüle B. Advancing Stem Cell Models of Alpha-Synuclein Gene Regulation in Neurodegenerative Disease. Front Neurosci 2018; 12:199. [PMID: 29686602 PMCID: PMC5900030 DOI: 10.3389/fnins.2018.00199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022] Open
Abstract
Alpha-synuclein (non A4 component of amyloid precursor, SNCA, NM_000345.3) plays a central role in the pathogenesis of Parkinson's disease (PD) and related Lewy body disorders such as Parkinson's disease dementia, Lewy body dementia, and multiple system atrophy. Since its discovery as a disease-causing gene in 1997, alpha-synuclein has been a central point of scientific interest both at the protein and gene level. Mutations, including copy number variants, missense mutations, short structural variants, and single nucleotide polymorphisms, can be causative for PD and affect conformational changes of the protein, can contribute to changes in expression of alpha-synuclein and its isoforms, and can influence regulation of temporal as well as spatial levels of alpha-synuclein in different tissues and cell types. A lot of progress has been made to understand both the physiological transcriptional and epigenetic regulation of the alpha-synuclein gene and whether changes in transcriptional regulation could lead to disease and neurodegeneration in PD and related alpha-synucleinopathies. Although the histopathological changes in these neurodegenerative disorders are similar, the temporal and spatial presentation and progression distinguishes them which could be in part due to changes or disruption of transcriptional regulation of alpha-synuclein. In this review, we describe different genetic alterations that contribute to PD and neurodegenerative conditions and review aspects of transcriptional regulation of the alpha-synuclein gene in the context of the development of PD. New technologies, advanced gene engineering and stem cell modeling, are on the horizon to shed further light on a better understanding of gene regulatory processes and exploit them for therapeutic developments.
Collapse
Affiliation(s)
- Desiree A Piper
- Parkinson's Institute and Clinical Center, Sunnyvale, CA, United States
| | - Danuta Sastre
- Parkinson's Institute and Clinical Center, Sunnyvale, CA, United States
| | - Birgitt Schüle
- Parkinson's Institute and Clinical Center, Sunnyvale, CA, United States
| |
Collapse
|
31
|
Zhang S, Eitan E, Wu TY, Mattson MP. Intercellular transfer of pathogenic α-synuclein by extracellular vesicles is induced by the lipid peroxidation product 4-hydroxynonenal. Neurobiol Aging 2018; 61:52-65. [PMID: 29035751 PMCID: PMC5705257 DOI: 10.1016/j.neurobiolaging.2017.09.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/04/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is characterized by accumulations of toxic α-synuclein aggregates in vulnerable neuronal populations in the brainstem, midbrain, and cerebral cortex. Recent findings suggest that α-synuclein pathology can be propagated transneuronally, but the underlying molecular mechanisms are unknown. Advances in the genetics of rare early-onset familial PD indicate that increased production and/or reduced autophagic clearance of α-synuclein can cause PD. The cause of the most common late-onset PD is unclear, but may involve metabolic compromise and oxidative stress upstream of α-synuclein accumulation. As evidence, the lipid peroxidation product 4-hydroxynonenal (HNE) is elevated in the brain during normal aging and moreso in brain regions afflicted with α-synuclein pathology. Here, we report that HNE increases aggregation of endogenous α-synuclein in primary neurons and triggers the secretion of extracellular vesicles (EVs) containing cytotoxic oligomeric α-synuclein species. EVs released from HNE-treated neurons are internalized by healthy neurons which as a consequence degenerate. Levels of endogenously generated HNE are elevated in cultured cells overexpressing human α-synuclein, and EVs released from those cells are toxic to neurons. The EV-associated α-synuclein is located both inside the vesicles and on their surface, where it plays a role in EV internalization by neurons. On internalization, EVs harboring pathogenic α-synuclein are transported both anterogradely and retrogradely within axons. Focal injection of EVs containing α-synuclein into the striatum of wild-type mice results in spread of synuclein pathology to anatomically connected brain regions. Our findings suggest a scenario for late-onset PD in which lipid peroxidation promotes intracellular accumulation and then extrusion of EVs containing toxic α-synuclein species; the EVs are then internalized by adjacent neurons, so propagating the neurodegenerative process.
Collapse
Affiliation(s)
- Shi Zhang
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, BRC 5C214, Baltimore, MD, USA
| | - Erez Eitan
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, BRC 5C214, Baltimore, MD, USA
| | - Tsung-Yu Wu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, BRC 5C214, Baltimore, MD, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, BRC 5C214, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
32
|
Breza M, Koutsis G, Karadima G, Potagas C, Kartanou C, Papageorgiou SG, Paraskevas GP, Kapaki E, Stefanis L, Panas M. The different faces of the p. A53T alpha-synuclein mutation: A screening of Greek patients with parkinsonism and/or dementia. Neurosci Lett 2017; 672:136-139. [PMID: 29233723 DOI: 10.1016/j.neulet.2017.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/18/2017] [Accepted: 12/06/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND The p. A53T mutation in the alpha-synuclein (SNCA) gene is a rare cause of autosomal dominant Parkinson's disease (PD). Although generally rare, it is particularly common in the Greek population due to a founder effect. A53T-positive PD patients often develop dementia during disease course and may very rarely present with dementia. METHODS We screened for the p. A53T SNCA mutation a total of 347 cases of Greek origin with parkinsonism and/or dementia, collected over 15 years at the Neurogenetics Unit, Eginition Hospital, University of Athens. Cases were classified into: "pure parkinsonism", "pure dementia" and "parkinsonism plus dementia". RESULTS In total, 4 p. A53T SNCA mutation carriers were identified. All had autosomal dominant family history and early onset. Screening of the "pure parkinsonism" category revealed 2 cases with typical PD. The other two mutation carriers were identified in the "parkinsonism plus dementia" category. One had a diagnosis of PD dementia and the other of behavioral variant frontotemporal dementia. Screening of patients with "pure dementia" failed to identify any further A53T-positive cases. CONCLUSIONS Our results confirm that the p. A53T SNCA mutation is relatively common in Greek patients with PD or PD plus dementia, particularly in cases with early onset and/or autosomal dominant family history.
Collapse
Affiliation(s)
- Marianthi Breza
- 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Georgios Koutsis
- 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Karadima
- 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantin Potagas
- 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrisoula Kartanou
- 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Sokratis G Papageorgiou
- 2nd Department of Neurology, Attikon Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Paraskevas
- 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Kapaki
- 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marios Panas
- 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
33
|
Lu J, Xu Y, Quan Z, Chen Z, Sun Z, Qing H. Dysregulated microRNAs in neural system: Implication in pathogenesis and biomarker development in Parkinson’s disease. Neuroscience 2017; 365:70-82. [DOI: 10.1016/j.neuroscience.2017.09.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/03/2023]
|
34
|
Bengoa-Vergniory N, Roberts RF, Wade-Martins R, Alegre-Abarrategui J. Alpha-synuclein oligomers: a new hope. Acta Neuropathol 2017; 134:819-838. [PMID: 28803412 PMCID: PMC5663814 DOI: 10.1007/s00401-017-1755-1] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 01/22/2023]
Abstract
Alpha-synuclein is a protein implicated in Parkinson’s disease and thought to be one of the main pathological drivers in the disease, although it remains unclear how this protein elicits its neurotoxic effects. Recent findings indicate that the assembly of toxic oligomeric species of alpha-synuclein may be one of the key processes for the pathology and spread of the disease. The absence of a sensitive in situ detection method has hindered the study of these oligomeric species and the role they play in the human brain until recently. In this review, we assess the evidence for the toxicity and prion-like activity of oligomeric forms of alpha-synuclein and discuss the advances in our understanding of the role of alpha-synuclein in Parkinson’s disease that may be brought about by the specific and sensitive detection of distinct oligomeric species in post-mortem patient brain. Finally, we discuss current approaches being taken to therapeutically target alpha-synuclein oligomers and their implications.
Collapse
Affiliation(s)
- Nora Bengoa-Vergniory
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK
| | - Rosalind F Roberts
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, H3A 2B4, Canada
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK.
| | - Javier Alegre-Abarrategui
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
35
|
Whittaker HT, Qui Y, Bettencourt C, Houlden H. Multiple system atrophy: genetic risks and alpha-synuclein mutations. F1000Res 2017; 6:2072. [PMID: 29225795 PMCID: PMC5710304 DOI: 10.12688/f1000research.12193.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2017] [Indexed: 12/28/2022] Open
Abstract
Multiple system atrophy (MSA) is one of the few neurodegenerative disorders where we have a significant understanding of the clinical and pathological manifestations but where the aetiology remains almost completely unknown. Research to overcome this hurdle is gaining momentum through international research collaboration and a series of genetic and molecular discoveries in the last few years, which have advanced our knowledge of this rare synucleinopathy. In MSA, the discovery of α-synuclein pathology and glial cytoplasmic inclusions remain the most significant findings. Families with certain types of α-synuclein mutations develop diseases that mimic MSA, and the spectrum of clinical and pathological features in these families suggests a spectrum of severity, from late-onset Parkinson's disease to MSA. Nonetheless, controversies persist, such as the role of common α-synuclein variants in MSA and whether this disorder shares a common mechanism of spreading pathology with other protein misfolding neurodegenerative diseases. Here, we review these issues, specifically focusing on α-synuclein mutations.
Collapse
Affiliation(s)
- Heather T Whittaker
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Yichen Qui
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - Conceição Bettencourt
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK.,Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK.,MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK.,Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
36
|
Schneider SA, Alcalay RN. Neuropathology of genetic synucleinopathies with parkinsonism: Review of the literature. Mov Disord 2017; 32:1504-1523. [PMID: 29124790 PMCID: PMC5726430 DOI: 10.1002/mds.27193] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/18/2017] [Accepted: 09/13/2017] [Indexed: 12/27/2022] Open
Abstract
Clinical-pathological studies remain the gold-standard for the diagnosis of Parkinson's disease (PD). However, mounting data from genetic PD autopsies challenge the diagnosis of PD based on Lewy body pathology. Most of the confirmed genetic risks for PD show heterogenous neuropathology, even within kindreds, which may or may not include Lewy body pathology. We review the literature of genetic PD autopsies from cases with molecularly confirmed PD or parkinsonism and summarize main findings on SNCA (n = 25), Parkin (n = 20, 17 bi-allelic and 3 heterozygotes), PINK1 (n = 5, 1 bi-allelic and 4 heterozygotes), DJ-1 (n = 1), LRRK2 (n = 55), GBA (n = 10 Gaucher disease patients with parkinsonism), DNAJC13, GCH1, ATP13A2, PLA2G6 (n = 8 patients, 2 with PD), MPAN (n = 2), FBXO7, RAB39B, and ATXN2 (SCA2), as well as on 22q deletion syndrome (n = 3). Findings from autopsies of heterozygous mutation carriers of genes that are traditionally considered recessively inherited are also discussed. Lewy bodies may be present in syndromes clinically distinctive from PD (eg, MPAN-related neurodegeneration) and absent in patients with clinical PD syndrome (eg, LRRK2-PD or Parkin-PD). Therefore, the authors can conclude that the presence of Lewy bodies are not specific to the diagnosis of PD and that PD can be diagnosed even in the absence of Lewy body pathology. Interventions that reduce alpha-synuclein load may be more justified in SNCA-PD or GBA-PD than in other genetic forms of PD. The number of reported genetic PD autopsies remains small, and there are limited genotype-clinical-pathological-phenotype studies. Therefore, larger series of autopsies from genetic PD patients are required. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Susanne A Schneider
- Department of Neurology, Ludwig-Maximilians-University of München, Munich, Germany
| | - Roy N. Alcalay
- Department of Neurology, Columbia University Medical Center, New York, New York
| |
Collapse
|
37
|
|
38
|
Koros C, Simitsi A, Stefanis L. Genetics of Parkinson's Disease: Genotype-Phenotype Correlations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 132:197-231. [PMID: 28554408 DOI: 10.1016/bs.irn.2017.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the first discovery of a specific genetic defect in the SNCA gene, encoding for α-synuclein, as a causative factor for Parkinson's disease 20 years ago, a multitude of other genes have been linked to this disease in rare cases with Mendelian inheritance. Furthermore, the genetic contribution to the much more common sporadic disease has been demonstrated through case control association studies and, more recently, genome-wide association studies. Interestingly, some of the genes with Mendelian inheritance, such as SNCA, are also relevant to the sporadic disease, suggesting common pathogenetic mechanisms. In this review, we place an emphasis on Mendelian forms, and in particular genetic defects which present predominantly with Parkinsonism. We provide details into the particular phenotypes associated with each genetic defect, with a particular emphasis on nonmotor symptoms. For genetic defects for whom a sufficient number of patients has been assessed, there are evident genotype-phenotype correlations. However, it should be noted that patients with the same causative mutation may present with distinctly divergent phenotypes. This phenotypic variability may be due to genetic, epigenetic or environmental factors. From a clinical and genetic point of view, it will be especially interesting in the future to identify genetic factors that modify disease penetrance, the age of onset or other specific phenotypic features.
Collapse
Affiliation(s)
- Christos Koros
- National and Kapodistrian University of Athens Medical School, "Attikon" Hospital, Athens, Greece
| | - Athina Simitsi
- National and Kapodistrian University of Athens Medical School, "Attikon" Hospital, Athens, Greece
| | - Leonidas Stefanis
- National and Kapodistrian University of Athens Medical School, "Attikon" Hospital, Athens, Greece.
| |
Collapse
|
39
|
Kasten M, Marras C, Klein C. Nonmotor Signs in Genetic Forms of Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:129-178. [DOI: 10.1016/bs.irn.2017.05.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Seidel G, Meierhofer D, Şen NE, Guenther A, Krobitsch S, Auburger G. Quantitative Global Proteomics of Yeast PBP1 Deletion Mutants and Their Stress Responses Identifies Glucose Metabolism, Mitochondrial, and Stress Granule Changes. J Proteome Res 2016; 16:504-515. [PMID: 27966978 DOI: 10.1021/acs.jproteome.6b00647] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The yeast protein PBP1 is implicated in very diverse pathways. Intriguingly, its deletion mitigates the toxicity of human neurodegeneration factors. Here, we performed label-free quantitative global proteomics to identify crucial downstream factors, either without stress or under cell stress conditions (heat and NaN3). Compared to the wildtype BY4741 strain, PBP1 deletion always triggered downregulation of the key bioenergetics enzyme KGD2 and the prion protein RNQ1 as well as upregulation of the leucine biosynthesis enzyme LEU1. Without stress, enrichment of stress response factors was consistently detected for both deletion mutants; upon stress, these factors were more pronounced. The selective analysis of components of stress granules and P-bodies revealed a prominent downregulation of GIS2. Our yeast data are in good agreement with a global proteomics and metabolomics publication that the PBP1 ortholog ATAXIN-2 (ATXN2) knockout (KO) in mouse results in mitochondrial deficits in leucine/fatty acid catabolism and bioenergetics, with an obesity phenotype. Furthermore, our data provide the completely novel insight that PBP1 mutations in stress periods involve GIS2, a plausible scenario in view of previous data that both PBP1 and GIS2 relocalize from ribosomes to stress granules, interact with poly(A)-binding protein in translation regulation and prevent mitochondrial precursor overaccumulation stress (mPOS). This may be relevant for human diseases like spinocerebellar ataxias, amyotrophic lateral sclerosis, and the metabolic syndrome.
Collapse
Affiliation(s)
- Gunnar Seidel
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Nesli-Ece Şen
- Experimental Neurology, Goethe University Medical School , Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Anika Guenther
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Sylvia Krobitsch
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School , Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
41
|
Bougea A, Koros C, Stamelou M, Simitsi A, Papagiannakis N, Antonelou R, Papadimitriou D, Breza M, Tasios K, Fragkiadaki S, Geronicola Trapali X, Bourbouli M, Koutsis G, Papageorgiou SG, Kapaki E, Paraskevas GP, Stefanis L. Frontotemporal dementia as the presenting phenotype of p.A53T mutation carriers in the alpha-synuclein gene. Parkinsonism Relat Disord 2016; 35:82-87. [PMID: 28012952 DOI: 10.1016/j.parkreldis.2016.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/14/2016] [Accepted: 12/03/2016] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The p.A53T point mutation in SNCA, the alpha-synuclein gene, has been linked to a rare dominant form of Parkinson's disease (PD). METHODS Here, we describe two apparently unrelated cases of p.A53T (G209A) SNCA mutation carriers with an atypical initial manifestation and disease course. Moreover, cerebrospinal fluid (CSF) levels of tau, p-tau and amyloid Aβ42 were measured in these patients and in an additional cohort of 5 symptomatic and 2 asymptomatic p.A53T carriers without an initial manifestation of dementia. RESULTS Both patients exhibited an early onset frontal-dysexecutive dysfunction with apathy and emotional blunting resembling frontotemporal dementia (FTD). Motor symptoms typical of Parkinson's disease appeared only later in the disease course and were less prominent than cognitive ones, which included language impairment. Autonomic dysfunction and myoclonus also emerged in a more advanced disease stage. In both patients, Brain Magnetic Resonance Imaging showed fronto-temporo-parietal atrophy, and CSF analysis showed elevated tau protein levels. In contrast, tau protein levels were normal in a cohort of 7 other p.A53T mutation carriers (5 symptomatic/2 asymptomatic). A screen of Greek patients presenting with frontotemporal dementia failed to identify any additional subjects with the p.A53T SNCA mutation. CONCLUSION Although cognitive decline has been recognized as a feature of the full-blown clinical picture of p.A53T related parkinsonism, a predominant frontotemporal dementia-like phenotype at presentation has not been previously described. This may represent a subtype of this disorder, with distinctive clinical, imaging and CSF biochemical characteristics, in which additional genetic or epigenetic factors may play a role.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Koros
- 2nd Department of Neurology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Stamelou
- 2nd Department of Neurology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Neurology, Philipps University, Marburg, Germany
| | - Athina Simitsi
- 2nd Department of Neurology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Papagiannakis
- 2nd Department of Neurology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Roubina Antonelou
- 2nd Department of Neurology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Marianthi Breza
- Neurogenetics Unit, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Tasios
- 2nd Department of Neurology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stella Fragkiadaki
- 2nd Department of Neurology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Xenia Geronicola Trapali
- Nuclear Medicine Unit, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mara Bourbouli
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Koutsis
- Neurogenetics Unit, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sokratis G Papageorgiou
- 2nd Department of Neurology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Kapaki
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Paraskevas
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas Stefanis
- 2nd Department of Neurology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
42
|
Copy number variability in Parkinson's disease: assembling the puzzle through a systems biology approach. Hum Genet 2016; 136:13-37. [PMID: 27896429 PMCID: PMC5214768 DOI: 10.1007/s00439-016-1749-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023]
Abstract
Parkinson’s disease (PD), the second most common progressive neurodegenerative disorder of aging, was long believed to be a non-genetic sporadic origin syndrome. The proof that several genetic loci are responsible for rare Mendelian forms has represented a revolutionary breakthrough, enabling to reveal molecular mechanisms underlying this debilitating still incurable condition. While single nucleotide polymorphisms (SNPs) and small indels constitute the most commonly investigated DNA variations accounting for only a limited number of PD cases, larger genomic molecular rearrangements have emerged as significant PD-causing mutations, including submicroscopic Copy Number Variations (CNVs). CNVs constitute a prevalent source of genomic variations and substantially participate in each individual’s genomic makeup and phenotypic outcome. However, the majority of genetic studies have focused their attention on single candidate-gene mutations or on common variants reaching a significant statistical level of acceptance. This gene-centric approach is insufficient to uncover the genetic background of polygenic multifactorial disorders like PD, and potentially masks rare individual CNVs that all together might contribute to disease development or progression. In this review, we will discuss literature and bioinformatic data describing the involvement of CNVs on PD pathobiology. We will analyze the most frequent copy number changes in familiar PD genes and provide a “systems biology” overview of rare individual rearrangements that could functionally act on commonly deregulated molecular pathways. Assessing the global genome-wide burden of CNVs in PD patients may reveal new disease-related molecular mechanisms, and open the window to a new possible genetic scenario in the unsolved PD puzzle.
Collapse
|
43
|
López de Maturana R, Lang V, Zubiarrain A, Sousa A, Vázquez N, Gorostidi A, Águila J, López de Munain A, Rodríguez M, Sánchez-Pernaute R. Mutations in LRRK2 impair NF-κB pathway in iPSC-derived neurons. J Neuroinflammation 2016; 13:295. [PMID: 27863501 PMCID: PMC5116223 DOI: 10.1186/s12974-016-0761-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/09/2016] [Indexed: 12/31/2022] Open
Abstract
Background Mutations in leucine-rich repeat kinase 2 (LRRK2) contribute to both familial and idiopathic forms of Parkinson’s disease (PD). Neuroinflammation is a key event in neurodegeneration and aging, and there is mounting evidence of LRRK2 involvement in inflammatory pathways. In a previous study, we described an alteration of the inflammatory response in dermal fibroblasts from PD patients expressing the G2019S and R1441G mutations in LRRK2. Methods Taking advantage of cellular reprogramming, we generated induced pluripotent stem cell (iPSC) lines and neurons thereafter, harboring LRRK2G2019S and LRRK2R1441G mutations. We used gene silencing and functional reporter assays to characterize the effect of the mutations. We examined the temporal profile of TNFα-induced changes in proteins of the NF-κB pathway and optimized western blot analysis to capture α-synuclein dynamics. The effects of the mutations and interventions were analyzed by two-way ANOVA tests with respect to corresponding controls. Results LRRK2 silencing decreased α-synuclein protein levels in mutated neurons and modified NF-κB transcriptional targets, such as PTGS2 (COX-2) and TNFAIP3 (A20). We next tested whether NF-κB and α-synuclein pathways converged and found that TNFα modulated α-synuclein levels, although we could not detect an effect of LRRK2 mutations, partly because of the individual variability. Nevertheless, we confirmed NF-κB dysregulation in mutated neurons, as shown by a protracted recovery of IκBα and a clear impairment in p65 nuclear translocation in the LRRK2 mutants. Conclusions Altogether, our results show that LRRK2 mutations affect α-synuclein regulation and impair NF-κB canonical signaling in iPSC-derived neurons. TNFα modulated α-synuclein proteostasis but was not modified by the LRRK2 mutations in this paradigm. These results strengthen the link between LRRK2 and the innate immunity system underscoring the involvement of inflammatory pathways in the neurodegenerative process in PD. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0761-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rakel López de Maturana
- Laboratory of Stem Cells and Neural Repair, Inbiomed, Paseo Mikeletegi, 81, E-20009, San Sebastian, Spain
| | - Valérie Lang
- Laboratory of Ubiquitylation and Cancer Molecular Biology, Inbiomed, San Sebastian, Spain
| | - Amaia Zubiarrain
- Laboratory of Stem Cells and Neural Repair, Inbiomed, Paseo Mikeletegi, 81, E-20009, San Sebastian, Spain
| | - Amaya Sousa
- Laboratory of Stem Cells and Neural Repair, Inbiomed, Paseo Mikeletegi, 81, E-20009, San Sebastian, Spain
| | - Nerea Vázquez
- Laboratory of Stem Cells and Neural Repair, Inbiomed, Paseo Mikeletegi, 81, E-20009, San Sebastian, Spain
| | - Ana Gorostidi
- Genomics Platform and Neuroscience Area, Biodonostia Research Institute, San Sebastian, Spain
| | - Julio Águila
- Laboratory of Stem Cells and Neural Repair, Inbiomed, Paseo Mikeletegi, 81, E-20009, San Sebastian, Spain
| | - Adolfo López de Munain
- Neurology Department, Donostia Universitary Hospital, Neuroscience Area, Instituto Biodonostia, San Sebastián, Spain.,Center for Biomedical Research Network in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Department of Neurosciences, University of the Basque Country, UPV/EHU, San Sebastian, Spain
| | - Manuel Rodríguez
- Laboratory of Ubiquitylation and Cancer Molecular Biology, Inbiomed, San Sebastian, Spain
| | - Rosario Sánchez-Pernaute
- Laboratory of Stem Cells and Neural Repair, Inbiomed, Paseo Mikeletegi, 81, E-20009, San Sebastian, Spain.
| |
Collapse
|
44
|
Liu J, Zhu MW, Arzberger T, Wang LN. Frontotemporal Lobar Degeneration with Accumulation of Argyrophilic Grains and Lewy Bodies: A Clinicopathological Report. J Alzheimers Dis 2016; 48:55-8. [PMID: 26401927 DOI: 10.3233/jad-150225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A clinicopathological investigation was conducted on a case of an 89-year-old man with a 10-year history of progressive dementia who also suffered strokes, apathy, aphasia, dysarthria, weakness of both legs, and walking difficulties. At autopsy, we found an obvious atrophy of the frontal and temporal cortex. Lewy bodies (LBs) could be seen in brain stem, amygdala, and neocortex. Argyrophilic grains were observed in hippocampus, entorhinal cortex, neocortex, amygdala, and pons, as well as neurofibrillary tangles in the entorhinal cortex and hippocampus. The case presented here is a rare case of frontotemporal lobar degeneration with accumulation of argyrophilic grains and Lewy bodies.
Collapse
Affiliation(s)
- Jia Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ming-wei Zhu
- Department of Geriatric Neurology, Chinese PLA General Hospital, Beijing, China
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases, Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lu-ning Wang
- Department of Geriatric Neurology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
45
|
Multisystem Lewy body disease and the other parkinsonian disorders. Nat Genet 2016; 47:1378-84. [PMID: 26620112 DOI: 10.1038/ng.3454] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/28/2015] [Indexed: 12/12/2022]
Abstract
Here we prioritize as multisystem Lewy body disease (MLBD) those genetic forms of Parkinson's disease that point the way toward a mechanistic understanding of the majority of sporadic disease. Pathological diagnosis of genetic subtypes offers the prospect of distinguishing different mechanistic trajectories with a common mutational etiology, differing outcomes from varying allelic bases, and those disease-associated variants that can be used in gene-environment analysis. Clearly delineating parkinsonian disorders into subclasses on the basis of molecular mechanisms with well-characterized outcome expectations is the basis for refining these forms of neurodegeneration as research substrate through the use of cell models derived from affected individuals while ensuring that clinically collected data can be used for therapeutic decisions and research without increasing the noise and confusion engendered by the collection of data against a range of historically defined criteria.
Collapse
|
46
|
Tambasco N, Nigro P, Romoli M, Prontera P, Simoni S, Calabresi P. A53T in a parkinsonian family: a clinical update of the SNCA phenotypes. J Neural Transm (Vienna) 2016; 123:1301-1307. [PMID: 27250986 DOI: 10.1007/s00702-016-1578-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/21/2016] [Indexed: 01/04/2023]
Abstract
Approximately 15 % of PD patients with Parkinson Disease (PD) have the familial type and 5-10 % of these are known to have monogenic forms with either an autosomal dominant or a recessive inheritance pattern. Here, we report on a family carrying the A53T SNCA mutation and we review SNCA mutation phenotypes by comparing point mutations within each other as well as with duplication and triplication.
Collapse
Affiliation(s)
- Nicola Tambasco
- Clinica Neurologica, Azienda Ospedaliera e Universitaria di Perugia, S.Andrea delle Fratte, 06156, Perugia, Italy.
| | - Pasquale Nigro
- Clinica Neurologica, Azienda Ospedaliera e Universitaria di Perugia, S.Andrea delle Fratte, 06156, Perugia, Italy
| | - Michele Romoli
- Clinica Neurologica, Azienda Ospedaliera e Universitaria di Perugia, S.Andrea delle Fratte, 06156, Perugia, Italy
| | - Paolo Prontera
- Servizio di Genetica Medica, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Simone Simoni
- Clinica Neurologica, Azienda Ospedaliera e Universitaria di Perugia, S.Andrea delle Fratte, 06156, Perugia, Italy
| | - Paolo Calabresi
- Clinica Neurologica, Azienda Ospedaliera e Universitaria di Perugia, S.Andrea delle Fratte, 06156, Perugia, Italy.,I.R.C.C.S. Fondazione S.Lucia, Rome, Italy
| |
Collapse
|
47
|
Petrucci S, Ginevrino M, Valente EM. Phenotypic spectrum of alpha-synuclein mutations: New insights from patients and cellular models. Parkinsonism Relat Disord 2016; 22 Suppl 1:S16-20. [DOI: 10.1016/j.parkreldis.2015.08.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 01/09/2023]
|
48
|
Four Copies of SNCA Responsible for Autosomal Dominant Parkinson's Disease in Two Italian Siblings. PARKINSONS DISEASE 2015; 2015:546462. [PMID: 26635992 PMCID: PMC4655296 DOI: 10.1155/2015/546462] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 12/20/2022]
Abstract
Background. Parkinson's disease (PD) is mostly characterized by alpha-synuclein (SNCA) aggregation and loss of nigrostriatal dopamine-containing neurons. In this study a novel SNCA multiplication is described in two siblings affected by severe parkinsonism featuring early onset dyskinesia, psychiatric symptoms, and cognitive deterioration. Methods. SNCA dosage was performed using High-Density Comparative Genomic Hybridization Array (CGH-Array), Multiple Ligation Dependent Probe Amplification (MLPA), and Quantitative PCR (qPCR). Genetic analysis was associated with clinical evaluation. Results. Genetic analysis of siblings showed for the first time a 351 Kb triplication containing SNCA gene along with 6 exons of MMRN1 gene in 4q22.1 and a duplication of 1,29 Mb of a genomic region flanking the triplication. Conclusions. The identification of this family indicates a novel mechanism of SNCA gene multiplication, which confirms the genomic instability in this region and provides data on the genotype-phenotype correlation in PD patients.
Collapse
|
49
|
Ikonomov OC, Sbrissa D, Compton LM, Kumar R, Tisdale EJ, Chen X, Shisheva A. The Protein Complex of Neurodegeneration-related Phosphoinositide Phosphatase Sac3 and ArPIKfyve Binds the Lewy Body-associated Synphilin-1, Preventing Its Aggregation. J Biol Chem 2015; 290:28515-28529. [PMID: 26405034 DOI: 10.1074/jbc.m115.669929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 12/14/2022] Open
Abstract
The 5-phosphoinositide phosphatase Sac3, in which loss-of-function mutations are linked to neurodegenerative disorders, forms a stable cytosolic complex with the scaffolding protein ArPIKfyve. The ArPIKfyve-Sac3 heterodimer interacts with the phosphoinositide 5-kinase PIKfyve in a ubiquitous ternary complex that couples PtdIns(3,5)P2 synthesis with turnover at endosomal membranes, thereby regulating the housekeeping endocytic transport in eukaryotes. Neuron-specific associations of the ArPIKfyve-Sac3 heterodimer, which may shed light on the neuropathological mechanisms triggered by Sac3 dysfunction, are unknown. Here we conducted mass spectrometry analysis for brain-derived interactors of ArPIKfyve-Sac3 and unraveled the α-synuclein-interacting protein Synphilin-1 (Sph1) as a new component of the ArPIKfyve-Sac3 complex. Sph1, a predominantly neuronal protein that facilitates aggregation of α-synuclein, is a major component of Lewy body inclusions in neurodegenerative α-synucleinopathies. Modulations in ArPIKfyve/Sac3 protein levels by RNA silencing or overexpression in several mammalian cell lines, including human neuronal SH-SY5Y or primary mouse cortical neurons, revealed that the ArPIKfyve-Sac3 complex specifically altered the aggregation properties of Sph1-GFP. This effect required an active Sac3 phosphatase and proceeded through mechanisms that involved increased Sph1-GFP partitioning into the cytosol and removal of Sph1-GFP aggregates by basal autophagy but not by the proteasomal system. If uncoupled from ArPIKfyve elevation, overexpressed Sac3 readily aggregated, markedly enhancing the aggregation potential of Sph1-GFP. These data identify a novel role of the ArPIKfyve-Sac3 complex in the mechanisms controlling aggregate formation of Sph1 and suggest that Sac3 protein deficiency or overproduction may facilitate aggregation of aggregation-prone proteins, thereby precipitating the onset of multiple neuronal disorders.
Collapse
Affiliation(s)
- Ognian C Ikonomov
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Diego Sbrissa
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Lauren M Compton
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Rita Kumar
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201; Departments of Emergency Medicine, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Ellen J Tisdale
- Departments of Pharmacology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Xuequn Chen
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Assia Shisheva
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201.
| |
Collapse
|
50
|
Konno T, Ross OA, Puschmann A, Dickson DW, Wszolek ZK. Autosomal dominant Parkinson's disease caused by SNCA duplications. Parkinsonism Relat Disord 2015; 22 Suppl 1:S1-6. [PMID: 26350119 DOI: 10.1016/j.parkreldis.2015.09.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022]
Abstract
The discovery in 1997 that mutations in the SNCA gene cause Parkinson's disease (PD) greatly advanced our understanding of this illness. There are pathogenic missense mutations and multiplication mutations in SNCA. Thus, not only a mutant protein, but also an increased dose of wild-type protein can produce autosomal dominant parkinsonism. We review the literature on SNCA duplications and focus on pathologically-confirmed cases. We also report a newly-identified American family with SNCA duplication whose proband was autopsied. We found that over half of the reported cases with SNCA duplication had early-onset parkinsonism and non-motor features, such as dysautonomia, rapid eye movement sleep behavior disorder (RBD), hallucinations (usually visual) and cognitive deficits leading to dementia. Only a few cases have presented with typical features of PD. Our case presented with depression and RBD that preceded parkinsonism, and dysautonomia that led to an initial diagnosis of multiple system atrophy. Dementia and visual hallucinations followed. Our patient and the other reported cases with SNCA duplications had widespread cortical Lewy pathology. Neuronal loss in the hippocampal cornu ammonis 2/3 regions were seen in about half of the autopsied SNCA duplication cases. Similar pathology was also observed in SNCA missense mutation and triplication carriers.
Collapse
Affiliation(s)
- Takuya Konno
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Andreas Puschmann
- Lund University, Department of Clinical Sciences, Lund, Neurology, Getingevägen 4, 22185 Lund, Sweden
| | - Dennis W Dickson
- Department of Neuropathology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Zbigniew K Wszolek
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|