1
|
Gaire BP, Koronyo Y, Fuchs DT, Shi H, Rentsendorj A, Danziger R, Vit JP, Mirzaei N, Doustar J, Sheyn J, Hampel H, Vergallo A, Davis MR, Jallow O, Baldacci F, Verdooner SR, Barron E, Mirzaei M, Gupta VK, Graham SL, Tayebi M, Carare RO, Sadun AA, Miller CA, Dumitrascu OM, Lahiri S, Gao L, Black KL, Koronyo-Hamaoui M. Alzheimer's disease pathophysiology in the Retina. Prog Retin Eye Res 2024; 101:101273. [PMID: 38759947 PMCID: PMC11285518 DOI: 10.1016/j.preteyeres.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
The retina is an emerging CNS target for potential noninvasive diagnosis and tracking of Alzheimer's disease (AD). Studies have identified the pathological hallmarks of AD, including amyloid β-protein (Aβ) deposits and abnormal tau protein isoforms, in the retinas of AD patients and animal models. Moreover, structural and functional vascular abnormalities such as reduced blood flow, vascular Aβ deposition, and blood-retinal barrier damage, along with inflammation and neurodegeneration, have been described in retinas of patients with mild cognitive impairment and AD dementia. Histological, biochemical, and clinical studies have demonstrated that the nature and severity of AD pathologies in the retina and brain correspond. Proteomics analysis revealed a similar pattern of dysregulated proteins and biological pathways in the retina and brain of AD patients, with enhanced inflammatory and neurodegenerative processes, impaired oxidative-phosphorylation, and mitochondrial dysfunction. Notably, investigational imaging technologies can now detect AD-specific amyloid deposits, as well as vasculopathy and neurodegeneration in the retina of living AD patients, suggesting alterations at different disease stages and links to brain pathology. Current and exploratory ophthalmic imaging modalities, such as optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy, and hyperspectral imaging, may offer promise in the clinical assessment of AD. However, further research is needed to deepen our understanding of AD's impact on the retina and its progression. To advance this field, future studies require replication in larger and diverse cohorts with confirmed AD biomarkers and standardized retinal imaging techniques. This will validate potential retinal biomarkers for AD, aiding in early screening and monitoring.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ron Danziger
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jean-Philippe Vit
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jonah Doustar
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ousman Jallow
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Filippo Baldacci
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | | | - Ernesto Barron
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia; Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Roxana O Carare
- Department of Clinical Neuroanatomy, University of Southampton, Southampton, UK
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Carol A Miller
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Shouri Lahiri
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Liang Gao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Adhikari S, Qiao Y, Singer M, Sagare A, Jiang X, Shi Y, Ringman JM, Kashani AH. Retinotopic degeneration of the retina and optic tracts in autosomal dominant Alzheimer's disease. Alzheimers Dement 2023; 19:5103-5113. [PMID: 37102308 PMCID: PMC10603214 DOI: 10.1002/alz.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023]
Abstract
INTRODUCTION We investigated the correlation between retinal thickness and optic tract integrity in subjects with autosomal dominant Alzheimer's disease (ADAD) causing mutations. METHODS Retinal thicknesses and diffusion tensor images (DTI) were obtained using optical coherence tomography and magnetic resonance imaging, respectively. The association between retinal thickness and DTI measures was adjusted for age, sex, retinotopy, and correlation between eyes. RESULTS Optic tract mean diffusivity and axial diffusivity were negatively correlated with retinotopically defined ganglion cell inner plexiform thickness (GCIPL). Fractional anisotropy was negatively correlated with retinotopically defined retinal nerve fiber layer thickness. There was no correlation between outer nuclear layer (ONL) thickness and any DTI measure. DISCUSSION In ADAD, GCIPL thickness is significantly associated with retinotopic optic tract DTI measures even in minimally symptomatic subjects. Similar associations were not present with ONL thickness or when ignoring retinotopy. We provide in vivo evidence for optic tract changes resulting from ganglion cell pathology in ADAD.
Collapse
Affiliation(s)
- Suman Adhikari
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuchuan Qiao
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Maxwell Singer
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Abhay Sagare
- Zilkha Neurogenetics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Neurology, Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Xuejuan Jiang
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yonggang Shi
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - John M Ringman
- Department of Neurology, Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Amir H Kashani
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Amin E, Elgammal YM, Zahran MA, Abdelsalam MM. Alzheimer's disease: new insight in assessing of amyloid plaques morphologies using multifractal geometry based on Naive Bayes optimized by random forest algorithm. Sci Rep 2023; 13:18568. [PMID: 37903890 PMCID: PMC10616199 DOI: 10.1038/s41598-023-45972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/26/2023] [Indexed: 11/01/2023] Open
Abstract
Alzheimer's disease (AD) is a physical illness, which damages a person's brain; it is the most common cause of dementia. AD can be characterized by the formation of amyloid-beta (Aβ) deposits. They exhibit diverse morphologies that range from diffuse to dense-core plaques. Most of the histological images cannot be described precisely by traditional geometry or methods. Therefore, this study aims to employ multifractal geometry in assessing and classifying amyloid plaque morphologies. The classification process is based on extracting the most descriptive features related to the amyloid-beta (Aβ) deposits using the Naive Bayes classifier. To eliminate the less important features, the Random Forest algorithm has been used. The proposed methodology has achieved an accuracy of 99%, sensitivity of 100%, and specificity of 98.5%. This study employed a new dataset that had not been widely used before.
Collapse
Affiliation(s)
- Elshaimaa Amin
- Future Higher Institute of Engineering and Technology, Mansoura, Egypt
- Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Yasmina M Elgammal
- Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - M A Zahran
- Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohamed M Abdelsalam
- Computers Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
4
|
Gomez-Sequeda N, Mendivil-Perez M, Jimenez-Del-Rio M, Lopera F, Velez-Pardo C. Cholinergic-like neurons and cerebral spheroids bearing the PSEN1 p.Ile416Thr variant mirror Alzheimer's disease neuropathology. Sci Rep 2023; 13:12833. [PMID: 37553376 PMCID: PMC10409854 DOI: 10.1038/s41598-023-39630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
Familial Alzheimer's disease (FAD) is a complex neurodegenerative disorder for which there are no therapeutics to date. Several mutations in presenilin 1 (PSEN 1), which is the catalytic component of γ-secretase complex, are causal of FAD. Recently, the p.Ile416Thr (I416T) PSEN 1 mutation has been reported in large kindred in Colombia. However, cell and molecular information from I416T mutation is scarce. Here, we demonstrate that menstrual stromal cells (MenSCs)-derived planar (2D) PSEN 1 I416T cholinergic-like cells (ChLNS) and (3D) cerebral spheroids (CSs) reproduce the typical neuropathological markers of FAD in 4 post-transdifferentiating or 11 days of transdifferentiating, respectively. The models produce intracellular aggregation of APPβ fragments (at day 4 and 11) and phosphorylated protein TAU at residue Ser202/Thr205 (at day 11) suggesting that iAPPβ fragments precede p-TAU. Mutant ChLNs and CSs displayed DJ-1 Cys106-SO3 (sulfonic acid), failure of mitochondria membrane potential (ΔΨm), and activation of transcription factor c-JUN and p53, expression of pro-apoptotic protein PUMA, and activation of executer protein caspase 3 (CASP3), all markers of cell death by apoptosis. Moreover, we found that both mutant ChLNs and CSs produced high amounts of extracellular eAβ42. The I416T ChLNs and CSs were irresponsive to acetylcholine induced Ca2+ influx compared to WT. The I416T PSEN 1 mutation might work as dominant-negative PSEN1 mutation. These findings might help to understanding the recurring failures of clinical trials of anti-eAβ42, and support the view that FAD is triggered by the accumulation of other intracellular AβPP metabolites, rather than eAβ42.
Collapse
Affiliation(s)
- Nicolas Gomez-Sequeda
- Grupo de Neurociencias de Antioquia, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratorio 412, Medellín, Colombia
| | - Miguel Mendivil-Perez
- Grupo de Neurociencias de Antioquia, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratorio 412, Medellín, Colombia
| | - Marlene Jimenez-Del-Rio
- Grupo de Neurociencias de Antioquia, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratorio 412, Medellín, Colombia
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratorio 412, Medellín, Colombia
| | - Carlos Velez-Pardo
- Grupo de Neurociencias de Antioquia, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratorio 412, Medellín, Colombia.
| |
Collapse
|
5
|
López-Cuenca I, Sánchez-Puebla L, Salobrar-García E, Álvarez-Gutierrez M, Elvira-Hurtado L, Barabash A, Ramírez-Toraño F, Fernández-Albarral JA, Matamoros JA, Nebreda A, García-Colomo A, Ramírez AI, Salazar JJ, Gil P, Maestú F, Ramírez JM, de Hoz R. Exploratory Longitudinal Study of Ocular Structural and Visual Functional Changes in Subjects at High Genetic Risk of Developing Alzheimer's Disease. Biomedicines 2023; 11:2024. [PMID: 37509663 PMCID: PMC10377092 DOI: 10.3390/biomedicines11072024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
This study aimed to analyze the evolution of visual changes in cognitively healthy individuals at risk for Alzheimer's disease (AD). Participants with a first-degree family history of AD (FH+) and carrying the Ε4+ allele for the ApoE gene (ApoE ε4+) underwent retinal thickness analysis using optical coherence tomography (OCT) and visual function assessments, including visual acuity (VA), contrast sensitivity (CS), color perception, perception digital tests, and visual field analysis. Structural analysis divided participants into FH+ ApoE ε4+ and FH- ApoE ε4- groups, while functional analysis further categorized them by age (40-60 years and over 60 years). Over the 27-month follow-up, the FH+ ApoE ε4+ group exhibited thickness changes in all inner retinal layers. Comparing this group to the FH- ApoE ε4- group at 27 months revealed progressing changes in the inner nuclear layer. In the FH+ ApoE ε4+ 40-60 years group, no progression of visual function changes was observed, but an increase in VA and CS was maintained at 3 and 12 cycles per degree, respectively, compared to the group without AD risk at 27 months. In conclusion, cognitively healthy individuals at risk for AD demonstrated progressive retinal structural changes over the 27-month follow-up, while functional changes remained stable.
Collapse
Affiliation(s)
- Inés López-Cuenca
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
| | - Elena Salobrar-García
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
| | - María Álvarez-Gutierrez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
| | - Ana Barabash
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
- Centre for Biomedical Research Network on Diabetes and Associated Metabolic Diseases (CIBERMED), 28029 Madrid, Spain
- Department of Medicine II, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Federico Ramírez-Toraño
- Center for Cognitive and Computational Neuroscience Laboratory of Cognitive and Computational Neurscience, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain; (F.R.-T.); (A.N.); (A.G.-C.)
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain
| | - José A. Fernández-Albarral
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
| | - José A. Matamoros
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
| | - Alberto Nebreda
- Center for Cognitive and Computational Neuroscience Laboratory of Cognitive and Computational Neurscience, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain; (F.R.-T.); (A.N.); (A.G.-C.)
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Alejandra García-Colomo
- Center for Cognitive and Computational Neuroscience Laboratory of Cognitive and Computational Neurscience, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain; (F.R.-T.); (A.N.); (A.G.-C.)
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Ana I. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
| | - Pedro Gil
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Memory Unit, Geriatrics Service, Hospital Clínico San Carlos, 28040 Madrid, Spain
- Department of Medicine, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Fernando Maestú
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Center for Cognitive and Computational Neuroscience Laboratory of Cognitive and Computational Neurscience, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain; (F.R.-T.); (A.N.); (A.G.-C.)
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, 28029 Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
| |
Collapse
|
6
|
Vig V, Garg I, Tuz-Zahra F, Xu J, Tripodis Y, Nicks R, Xia W, Alvarez VE, Alosco ML, Stein TD, Subramanian ML. Vitreous Humor Biomarkers Reflect Pathological Changes in the Brain for Alzheimer's Disease and Chronic Traumatic Encephalopathy. J Alzheimers Dis 2023:JAD230167. [PMID: 37182888 DOI: 10.3233/jad-230167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Patients with eye disease have an increased risk for developing neurodegenerative disease. Neurodegenerative proteins can be measured in the eye; however, correlations between biomarker levels in eye fluid and neuropathological diagnoses have not been established. OBJECTIVE This exploratory, retrospective study examined vitreous humor from 41 postmortem eyes and brain tissue with neuropathological diagnoses of Alzheimer's disease (AD, n = 7), chronic traumatic encephalopathy (CTE, n = 15), both AD + CTE (n = 10), and without significant neuropathology (controls, n = 9). METHODS Protein biomarkers i.e., amyloid-β (Aβ 40,42), total tau (tTau), phosphorylated tau (pTau181,231), neurofilament light chain (NfL), and eotaxin-1 were quantitatively measured by immunoassay. Non-parametric tests were used to compare vitreous biomarker levels between groups. Spearman's rank correlation tests were used to correlate biomarker levels in vitreous and cortical tissue. The level of significance was set to α= 0.10. RESULTS In pairwise comparisons, tTau levels were significantly increased in AD and CTE groups versus controls (p = 0.08 for both) as well as AD versus AD+CTE group and CTE versus AD+CTE group (p = 0.049 for both). Vitreous NfL levels were significantly increased in low CTE (Stage I/II) versus no CTE (p = 0.096) and in low CTE versus high CTE stage (p = 0.03). Vitreous and cortical tissue levels of pTau 231 (p = 0.02, r = 0.38) and t-Tau (p = 0.04, r = -0.34) were significantly correlated. CONCLUSION The postmortem vitreous humor biomarker levels significantly correlate with AD and CTE pathology in corresponding brains, while vitreous NfL was correlated with the CTE staging. This exploratory study indicates that biomarkers in the vitreous humor may serve as a proxy for neuropathological disease.
Collapse
Affiliation(s)
- Viha Vig
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Itika Garg
- Department of Ophthalmology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Fatima Tuz-Zahra
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jia Xu
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Raymond Nicks
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Weiming Xia
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Geriatric Research Education and Clinical Center, Bedford Veterans Affairs Medical Center, Bedford, MA, USA
| | - Victor E Alvarez
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA USA
- VA Bedford Healthcare System, Bedford, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA USA
- VA Bedford Healthcare System, Bedford, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Manju L Subramanian
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
7
|
Koronyo Y, Rentsendorj A, Mirzaei N, Regis GC, Sheyn J, Shi H, Barron E, Cook-Wiens G, Rodriguez AR, Medeiros R, Paulo JA, Gupta VB, Kramerov AA, Ljubimov AV, Van Eyk JE, Graham SL, Gupta VK, Ringman JM, Hinton DR, Miller CA, Black KL, Cattaneo A, Meli G, Mirzaei M, Fuchs DT, Koronyo-Hamaoui M. Retinal pathological features and proteome signatures of Alzheimer's disease. Acta Neuropathol 2023; 145:409-438. [PMID: 36773106 PMCID: PMC10020290 DOI: 10.1007/s00401-023-02548-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
Alzheimer's disease (AD) pathologies were discovered in the accessible neurosensory retina. However, their exact nature and topographical distribution, particularly in the early stages of functional impairment, and how they relate to disease progression in the brain remain largely unknown. To better understand the pathological features of AD in the retina, we conducted an extensive histopathological and biochemical investigation of postmortem retina and brain tissues from 86 human donors. Quantitative examination of superior and inferior temporal retinas from mild cognitive impairment (MCI) and AD patients compared to those with normal cognition (NC) revealed significant increases in amyloid β-protein (Aβ42) forms and novel intraneuronal Aβ oligomers (AβOi), which were closely associated with exacerbated retinal macrogliosis, microgliosis, and tissue atrophy. These pathologies were unevenly distributed across retinal layers and geometrical areas, with the inner layers and peripheral subregions exhibiting most pronounced accumulations in the MCI and AD versus NC retinas. While microgliosis was increased in the retina of these patients, the proportion of microglial cells engaging in Aβ uptake was reduced. Female AD patients exhibited higher levels of retinal microgliosis than males. Notably, retinal Aβ42, S100 calcium-binding protein B+ macrogliosis, and atrophy correlated with severity of brain Aβ pathology, tauopathy, and atrophy, and most retinal pathologies reflected Braak staging. All retinal biomarkers correlated with the cognitive scores, with retinal Aβ42, far-peripheral AβOi and microgliosis displaying the strongest correlations. Proteomic analysis of AD retinas revealed activation of specific inflammatory and neurodegenerative processes and inhibition of oxidative phosphorylation/mitochondrial, and photoreceptor-related pathways. This study identifies and maps retinopathy in MCI and AD patients, demonstrating the quantitative relationship with brain pathology and cognition, and may lead to reliable retinal biomarkers for noninvasive retinal screening and monitoring of AD.
Collapse
Affiliation(s)
- Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Giovanna C Regis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Ernesto Barron
- Doheny Eye Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Galen Cook-Wiens
- Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Anthony R Rodriguez
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rodrigo Medeiros
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, USA
| | - Veer B Gupta
- School of Medicine, Deakin University, Victoria, Australia
| | - Andrei A Kramerov
- Department of Biomedical Sciences and Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences and Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Departments of Neurology and Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, USA
| | - Jennifer E Van Eyk
- Departments of Neurology and Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, USA
- Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stuart L Graham
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - John M Ringman
- Department of Neurology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - David R Hinton
- Departments of Pathology and Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Carol A Miller
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Antonino Cattaneo
- European Brain Research Institute (EBRI), Viale Regina Elena, Rome, Italy
| | - Giovanni Meli
- European Brain Research Institute (EBRI), Viale Regina Elena, Rome, Italy
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.
- Departments of Neurology and Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, USA.
| |
Collapse
|
8
|
Xia X, Qin Q, Peng Y, Wang M, Yin Y, Tang Y. Retinal Examinations Provides Early Warning of Alzheimer's Disease. J Alzheimers Dis 2022; 90:1341-1357. [PMID: 36245377 DOI: 10.3233/jad-220596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with Alzheimer's disease have difficulty maintaining independent living abilities as the disease progresses, causing an increased burden of care on family caregivers and the healthcare system and related financial strain. This patient group is expected to continue to expand as life expectancy climbs. Current diagnostics for Alzheimer's disease are complex, unaffordable, and invasive without regard to diagnosis quality at early stages, which urgently calls for more technical improvements for diagnosis specificity. Optical coherence tomography or tomographic angiography has been shown to identify retinal thickness loss and lower vascular density present earlier than symptom onset in these patients. The retina is an extension of the central nervous system and shares anatomic and functional similarities with the brain. Ophthalmological examinations can be an efficient tool to offer a window into cerebral pathology with the merit of easy operation. In this review, we summarized the latest observations on retinal pathology in Alzheimer's disease and discussed the feasibility of retinal imaging in diagnostic prediction, as well as limitations in current retinal examinations for Alzheimer's disease diagnosis.
Collapse
Affiliation(s)
- Xinyi Xia
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yankun Peng
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Meng Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yunsi Yin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Dementia is a term for loss of memory, language, problem-solving, and other thinking abilities, which significantly interferes with daily life. Certain dementing conditions may also affect visual function. The eye is an accessible window to the brain that can provide valuable information for the early diagnosis of people who suffer from Alzheimer's disease, Parkinson's disease, dementia with Lewy bodies as well as from more rare causes of dementias, such as Creutzfeldt-Jacob and Huntington's diseases. Herein, we present the ocular manifestations of neurocognitive disorders focusing on the neuro-ophthalmic ones and further discuss potential ocular biomarkers that could help in early detection of these disorders. RECENT FINDINGS Ophthalmic examination along with the recent developments in in-vivo testing have provided a strong foundation of useful knowledge about brain disorder in neurodegenerative diseases without the need for invasive studies. Currently, a number of visual measures, such as visual acuity, contrast sensitivity, pupil response, and saccades in addition to various ophthalmic tests, such as electroretinogram, visual evoked potential, optical coherence tomography (OCT), and OCT-angiography have been widely used and evaluated as potential biomarkers for different stages of dementia. SUMMARY Ophthalmologic and neuro-ophthalmic evaluation is evolving as an important part of the early diagnosis and management of people with dementia. A particular focus on ocular biomarkers in dementing illnesses has arisen over the past few years and there are several promising measures and imaging tools that have been proposed as potential biomarkers for these diseases.
Collapse
Affiliation(s)
- Vivian Paraskevi Douglas
- Division of Neuro-ophthalmology, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
10
|
Liu K, Li J, Raghunathan R, Zhao H, Li X, Wong STC. The Progress of Label-Free Optical Imaging in Alzheimer's Disease Screening and Diagnosis. Front Aging Neurosci 2021; 13:699024. [PMID: 34366828 PMCID: PMC8341907 DOI: 10.3389/fnagi.2021.699024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/02/2021] [Indexed: 01/13/2023] Open
Abstract
As the major neurodegenerative disease of dementia, Alzheimer's disease (AD) has caused an enormous social and economic burden on society. Currently, AD has neither clear pathogenesis nor effective treatments. Positron emission tomography (PET) and magnetic resonance imaging (MRI) have been verified as potential tools for diagnosing and monitoring Alzheimer's disease. However, the high costs, low spatial resolution, and long acquisition time limit their broad clinical utilization. The gold standard of AD diagnosis routinely used in research is imaging AD biomarkers with dyes or other reagents, which are unsuitable for in vivo studies owing to their potential toxicity and prolonged and costly process of the U.S. Food and Drug Administration (FDA) approval for human use. Furthermore, these exogenous reagents might bring unwarranted interference to mechanistic studies, causing unreliable results. Several label-free optical imaging techniques, such as infrared spectroscopic imaging (IRSI), Raman spectroscopic imaging (RSI), optical coherence tomography (OCT), autofluorescence imaging (AFI), optical harmonic generation imaging (OHGI), etc., have been developed to circumvent this issue and made it possible to offer an accurate and detailed analysis of AD biomarkers. In this review, we present the emerging label-free optical imaging techniques and their applications in AD, along with their potential and challenges in AD diagnosis.
Collapse
Affiliation(s)
- Kai Liu
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jiasong Li
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Raksha Raghunathan
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Hong Zhao
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
| | - Xuping Li
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Stephen T. C. Wong
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
11
|
Past, present and future role of retinal imaging in neurodegenerative disease. Prog Retin Eye Res 2021; 83:100938. [PMID: 33460813 PMCID: PMC8280255 DOI: 10.1016/j.preteyeres.2020.100938] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Retinal imaging technology is rapidly advancing and can provide ever-increasing amounts of information about the structure, function and molecular composition of retinal tissue in humans in vivo. Most importantly, this information can be obtained rapidly, non-invasively and in many cases using Food and Drug Administration-approved devices that are commercially available. Technologies such as optical coherence tomography have dramatically changed our understanding of retinal disease and in many cases have significantly improved their clinical management. Since the retina is an extension of the brain and shares a common embryological origin with the central nervous system, there has also been intense interest in leveraging the expanding armamentarium of retinal imaging technology to understand, diagnose and monitor neurological diseases. This is particularly appealing because of the high spatial resolution, relatively low-cost and wide availability of retinal imaging modalities such as fundus photography or OCT compared to brain imaging modalities such as magnetic resonance imaging or positron emission tomography. The purpose of this article is to review and synthesize current research about retinal imaging in neurodegenerative disease by providing examples from the literature and elaborating on limitations, challenges and future directions. We begin by providing a general background of the most relevant retinal imaging modalities to ensure that the reader has a foundation on which to understand the clinical studies that are subsequently discussed. We then review the application and results of retinal imaging methodologies to several prevalent neurodegenerative diseases where extensive work has been done including sporadic late onset Alzheimer's Disease, Parkinson's Disease and Huntington's Disease. We also discuss Autosomal Dominant Alzheimer's Disease and cerebrovascular small vessel disease, where the application of retinal imaging holds promise but data is currently scarce. Although cerebrovascular disease is not generally considered a neurodegenerative process, it is both a confounder and contributor to neurodegenerative disease processes that requires more attention. Finally, we discuss ongoing efforts to overcome the limitations in the field and unmet clinical and scientific needs.
Collapse
|