1
|
Li Z, Yin B, Zhang S, Lan Z, Zhang L. Targeting protein kinases for the treatment of Alzheimer's disease: Recent progress and future perspectives. Eur J Med Chem 2023; 261:115817. [PMID: 37722288 DOI: 10.1016/j.ejmech.2023.115817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Alzheimer's disease (AD) is a serious neurodegenerative disease characterized by memory impairment, mental retardation, impaired motor balance, loss of self-care and even death. Among the complex and diverse pathological changes in AD, protein kinases are deeply involved in abnormal phosphorylation of Tau proteins to form intracellular neuronal fiber tangles, neuronal loss, extracellular β-amyloid (Aβ) deposits to form amyloid plaques, and synaptic disturbances. As a disease of the elderly, the growing geriatric population is directly driving the market demand for AD therapeutics, and protein kinases are potential targets for the future fight against AD. This perspective provides an in-depth look at the role of the major protein kinases (GSK-3β, CDK5, p38 MAPK, ERK1/2, and JNK3) in the pathogenesis of AD. At the same time, the development of different protein kinase inhibitors and the current state of clinical advancement are also outlined.
Collapse
Affiliation(s)
- Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Bo Yin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shuangqian Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhigang Lan
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
2
|
PCDH8 protects MPP+-induced neuronal injury in SH-SY5Y cells by inhibiting MAPK pathway. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Lai Q, Wang M, Hu C, Tang Y, Li Y, Hao S. Circular RNA regulates the onset and progression of cancer through the mitogen-activated protein kinase signaling pathway. Oncol Lett 2021; 22:817. [PMID: 34671431 PMCID: PMC8503804 DOI: 10.3892/ol.2021.13078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/27/2021] [Indexed: 01/04/2023] Open
Abstract
The rapid increase in cancer morbidity and mortality worldwide is a major challenge for public health providers. Therefore, there is an urgent need to explore the molecular mechanism of tumorigenesis and identify potential diagnostic biomarkers and therapeutic methods. Circular RNA (circRNA) is characterized by a stable structure and tissue-specific expression; these features are useful in medical research and clinical applications. In recent years, with the development of high-throughput sequencing technology, the potential use of circRNA in cancer prognosis and treatment has been extensively explored. Abnormal circRNA expression interferes with specific signaling pathways such as the MAPK pathway; this phenomenon may provide potential diagnostic biomarkers and new therapeutic targets. The present article discusses the research progress on the regulatory roles of MAPK/ERK pathway-related circRNA molecules in the development and progression of different types of tumors. This review may provide insight into the development of circRNA-based cancer management strategies.
Collapse
Affiliation(s)
- Qun Lai
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Min Wang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Chunmei Hu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yan Tang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yarong Li
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Shuhong Hao
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
4
|
Dudek J, Kutschka I, Maack C. Metabolic and Redox Regulation of Cardiovascular Stem Cell Biology and Pathology. Antioxid Redox Signal 2021; 35:163-181. [PMID: 33121253 DOI: 10.1089/ars.2020.8201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Cardiovascular stem cells are important for regeneration and repair of damaged tissue. Recent Advances: Pluripotent stem cells have a unique metabolism, which is adopted for their energetic and biosynthetic demand as rapidly proliferating cells. Stem cell differentiation requires an exceptional metabolic flexibility allowing for metabolic remodeling between glycolysis and oxidative phosphorylation. Critical Issues: Respiration is associated with the generation of reactive oxygen species (ROS) by the mitochondrial respiratory chain. But also the membrane-bound protein nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase, NOX) contributes to ROS levels. ROS not only play a significant role in stem cell differentiation and tissue renewal but also cause senescence and contribute to tissue aging. Future Directions: For utilization of stem cells in therapeutic approaches, a deep understanding of the molecular mechanisms how metabolism and the cellular redox state regulate stem cell differentiation is required. Modulating the redox state of stem cells using antioxidative agents may be suitable to enhance activity of endothelial progenitor cells. Antioxid. Redox Signal. 35, 163-181.
Collapse
Affiliation(s)
- Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Ilona Kutschka
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Mushtaq U, Bashir M, Nabi S, Khanday FA. Epidermal growth factor receptor and integrins meet redox signaling through P66shc and Rac1. Cytokine 2021; 146:155625. [PMID: 34157521 DOI: 10.1016/j.cyto.2021.155625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022]
Abstract
This review examines the concerted role of Epidermal Growth Factor Receptor (EGFR) and integrins in regulating Reactive oxygen species (ROS) production through different signaling pathways. ROS as such are not always deleterious to the cells but they also act as signaling molecules, that regulates numerous indespensible physiological fuctions of life. Many adaptor proteins, particularly Shc and Grb2, are involved in mediating the downstream signaling pathways stimulated by EGFR and integrins. Integrin-induced activation of EGFR and subsequent tyrosine phosphorylation of a class of acceptor sites on EGFR leads to alignment and tyrosine phosphorylation of Shc, PLCγ, the p85 subunit of PI-3 K, and Cbl, followed by activation of the downstream targets Erk and Akt/PKB. Functional interactions between these receptors result in the activation of Rac1 via these adaptor proteins, thereby leading to Reactive Oxygen Species. Both GF and integrin activation can produce oxidants independently, however synergistically there is increased ROS generation, suggesting a mutual cooperation between integrins and GFRs for redox signalling. The ROS produced further promotes feed-forward stimulation of redox signaling events such as MAPK activation and gene expression. This relationship has not been reviewed previously. The literature presented here can have multiple implications, ranging from looking at synergistic effects of integrin and EGFR mediated signaling mechanisms of different proteins to possible therapeutic interventions operated by these two receptors. Furthermore, such mutual redox regulation of crosstalk between EGFR and integrins not only add to the established models of pathological oxidative stress, but also can impart new avenues and opportunities for targeted antioxidant based therapeutics.
Collapse
Affiliation(s)
- Umar Mushtaq
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India; Department of Biotechnology, Central University of Kashmir, Ganderbal, JK 191201, India
| | - Muneesa Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India; Department of Higher Education, Government of Jammu & Kashmir, 190001, India
| | - Sumaiya Nabi
- Department of Biochemistry, University of Kashmir, Srinagar, JK 190006, India
| | - Firdous A Khanday
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India.
| |
Collapse
|
6
|
Zhang Y, Li H, Song L, Xue J, Wang X, Song S, Wang S. Polysaccharide from Ganoderma lucidum ameliorates cognitive impairment by regulating the inflammation of the brain-liver axis in rats. Food Funct 2021; 12:6900-6914. [PMID: 34338268 DOI: 10.1039/d1fo00355k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ganoderma lucidum (G. lucidum) polysaccharide-1 (GLP-1) is one of the polysaccharides isolated from the fruiting bodies of G. lucidum. Inflammation in the brain-liver axis plays a vital role in the progress of cognitive impairment. In this study, the beneficial effect of GLP-1 on d-galactose (d-gal) rats was carried out by regulating the inflammation of the brain-liver axis. A Morris water maze test was used to assess the cognitive ability of d-gal rats. ELISA and/or western blot analysis were used to detect the blood ammonia and inflammatory cytokines levels in the brain-liver axis. Metabolomic analysis was used to evaluate the changes of small molecule metabolomics between the brain and liver. As a result, GLP-1 could obviously ameliorate the cognitive impairment of d-gal rats. The mechanism was related to the decreasing levels of TNF-α, IL-6, phospho-p38MAPK, phospho-p53, and phospho-JNK1 + JNK2 + JNK3, the increasing levels of IL-10 and TGF-β1, and the regulation of the metabolic disorders of the brain-liver axis. Our study suggests that G. lucidum could be exploited as an effective food or health care product to prevent and delay cognitive impairment and improve the quality of life.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
7
|
Kang GG, Francis N, Hill R, Waters D, Blanchard C, Santhakumar AB. Dietary Polyphenols and Gene Expression in Molecular Pathways Associated with Type 2 Diabetes Mellitus: A Review. Int J Mol Sci 2019; 21:ijms21010140. [PMID: 31878222 PMCID: PMC6981492 DOI: 10.3390/ijms21010140] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder with various contributing factors including genetics, epigenetics, environment and lifestyle such as diet. The hallmarks of T2DM are insulin deficiency (also referred to as β-cell dysfunction) and insulin resistance. Robust evidence suggests that the major mechanism driving impaired β-cell function and insulin signalling is through the action of intracellular reactive oxygen species (ROS)-induced stress. Chronic high blood glucose (hyperglycaemia) and hyperlipidaemia appear to be the primary activators of these pathways. Reactive oxygen species can disrupt intracellular signalling pathways, thereby dysregulating the expression of genes associated with insulin secretion and signalling. Plant-based diets, containing phenolic compounds, have been shown to exhibit remedial benefits by ameliorating insulin secretion and insulin resistance. The literature also provides evidence that polyphenol-rich diets can modulate the expression of genes involved in insulin secretion, insulin signalling, and liver gluconeogenesis pathways. However, whether various polyphenols and phenolic compounds can target specific cellular signalling pathways involved in the pathogenesis of T2DM has not been elucidated. This review aims to evaluate the modulating effects of various polyphenols and phenolic compounds on genes involved in cellular signalling pathways (both in vitro and in vivo from human, animal and cell models) leading to the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Gideon Gatluak Kang
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
| | - Nidhish Francis
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Animal and Veterinary Sciences, Charles Sturt University, NSW 2650, Australia
| | - Rodney Hill
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
| | - Daniel Waters
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
| | - Christopher Blanchard
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
| | - Abishek Bommannan Santhakumar
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
- Correspondence: ; Tel.: +61-2-6933-2678
| |
Collapse
|
8
|
Kheiri G, Dolatshahi M, Rahmani F, Rezaei N. Role of p38/MAPKs in Alzheimer's disease: implications for amyloid beta toxicity targeted therapy. Rev Neurosci 2019; 30:9-30. [PMID: 29804103 DOI: 10.1515/revneuro-2018-0008] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/22/2018] [Indexed: 01/06/2023]
Abstract
A myriad of environmental and genetic factors, as well as the physiologic process of aging, contribute to Alzheimer's disease (AD) pathology. Neuroinflammation is and has been a focus of interest, as a common gateway for initiation of many of the underlying pathologies of AD. Amyloid beta (Aβ) toxicity, increasing RAGE expression, tau hyperphosphorylation, induction of apoptosis, and deregulated autophagy are among other mechanisms, partly entangled and being explained by activation of mitogen-activated protein kinase (MAPK) and MAPK signaling. p38 MAPK is the most essential regulator of Aβ induced toxicity from this family. p38 induces NF-κB activation, glutamate excitotoxicity, and disruption of synaptic plasticity, which are other implications of all justifying the p38 MAPK as a potential target to break the vicious Aβ toxicity cycle. Until recently, many in vivo and in vitro studies have investigated the effects of p38 MAPK inhibitors in AD. The pyridinyl imidazole compounds SB202190 and SB203580 have shown promising anti-apoptotic results in vivo. MW108 inhibits activation of p38 and is able to postpone cognitive decline in animal models. The PD169316, with anti-inflammatory, anti-oxidative, and anti-apoptotic features, has improved spatial memory in vivo. Natural compounds from Camellia sinensis (green tea), polyphenols from olive oil, pinocembrin from propolis, and the puerarine extract isoflavones, have shown strong anti-apoptotic features, mediated by p38 MAPK inhibition. Use of these drug targets is limited due to central nervous system side effects or cross-reactivity with other kinases, predicting the low efficacy of these drugs in clinical trials.
Collapse
Affiliation(s)
- Ghazaleh Kheiri
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, 1416753955 Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran
| | - Mahsa Dolatshahi
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, 1416753955 Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran
| | - Farzaneh Rahmani
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, 1416753955 Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran
| | - Nima Rezaei
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
| |
Collapse
|
9
|
Screening of a neuronal cell model of tau pathology for therapeutic compounds. Neurobiol Aging 2019; 76:24-34. [DOI: 10.1016/j.neurobiolaging.2018.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 11/20/2022]
|
10
|
Lee JK, Kim NJ. Recent Advances in the Inhibition of p38 MAPK as a Potential Strategy for the Treatment of Alzheimer's Disease. Molecules 2017; 22:molecules22081287. [PMID: 28767069 PMCID: PMC6152076 DOI: 10.3390/molecules22081287] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
P38 mitogen-activated protein kinase (MAPK) is a crucial target for chronic inflammatory diseases. Alzheimer’s disease (AD) is characterized by the presence of amyloid plaques and neurofibrillary tangles in the brain, as well as neurodegeneration, and there is no known cure. Recent studies on the underlying biology of AD in cellular and animal models have indicated that p38 MAPK is capable of orchestrating diverse events related to AD, such as tau phosphorylation, neurotoxicity, neuroinflammation and synaptic dysfunction. Thus, the inhibition of p38 MAPK is considered a promising strategy for the treatment of AD. In this review, we summarize recent advances in the targeting of p38 MAPK as a potential strategy for the treatment of AD and envision possibilities of p38 MAPK inhibitors as a fundamental therapeutics for AD.
Collapse
Affiliation(s)
- Jong Kil Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Nam-Jung Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
11
|
Adenosine kinase facilitated astrogliosis-induced cortical neuronal death in traumatic brain injury. J Mol Histol 2016; 47:259-71. [DOI: 10.1007/s10735-016-9670-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/11/2016] [Indexed: 12/20/2022]
|
12
|
Oxidative Stress in the Healthy and Wounded Hepatocyte: A Cellular Organelles Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:8327410. [PMID: 26788252 PMCID: PMC4691634 DOI: 10.1155/2016/8327410] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/10/2015] [Indexed: 02/06/2023]
Abstract
Accurate control of the cell redox state is mandatory for maintaining the structural integrity and physiological functions. This control is achieved both by a fine-tuned balance between prooxidant and anti-oxidant molecules and by spatial and temporal confinement of the oxidative species. The diverse cellular compartments each, although structurally and functionally related, actively maintain their own redox balance, which is necessary to fulfill specialized tasks. Many fundamental cellular processes such as insulin signaling, cell proliferation and differentiation and cell migration and adhesion, rely on localized changes in the redox state of signal transducers, which is mainly mediated by hydrogen peroxide (H2O2). Therefore, oxidative stress can also occur long before direct structural damage to cellular components, by disruption of the redox circuits that regulate the cellular organelles homeostasis. The hepatocyte is a systemic hub integrating the whole body metabolic demand, iron homeostasis and detoxification processes, all of which are redox-regulated processes. Imbalance of the hepatocyte's organelles redox homeostasis underlies virtually any liver disease and is a field of intense research activity. This review recapitulates the evolving concept of oxidative stress in the diverse cellular compartments, highlighting the principle mechanisms of oxidative stress occurring in the healthy and wounded hepatocyte.
Collapse
|
13
|
Zhu S, Li J, Bing Y, Yan W, Zhu Y, Xia B, Chen M. Diet-Induced Hyperhomocysteinaemia Increases Intestinal Inflammation in an Animal Model of Colitis. J Crohns Colitis 2015; 9:708-19. [PMID: 26071411 DOI: 10.1093/ecco-jcc/jjv094] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/22/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hyperhomocysteinaemia [HHcy] is a common phenomenon observed in patients with inflammatory bowel disease [IBD]. Homocysteine is a pro-inflammatory molecule and has been identified as a risk factor for cardiovascular and cerebral diseases. Whether HHcy contributes to the chronic inflammation of the colon in IBD has rarely been explored. The aim of this study was to investigate the effect of HHcy on dextran sulphate sodium [DSS]-induced colitis. METHODS Wistar rats were randomly divided into eight groups: [1] Control; [2] HHcy; [3] p38 inhibitor; [4] DSS; [5] HHcy + DSS; [6] HHcy + DSS+p38 inhibitor; [7] HHcy + DSS [21 days]; and [8] HHcy + DSS + folate [21 days]. Colitis was induced by 5% DSS. HHcy was induced by the normal rodent diet containing 1.7% methionine. The mRNA expression of interleukin 17 [IL-17] was detected by qRT-PCR. The protein expressions of IL-17, retinoid-related orphan nuclear receptor-γt [RORγt], p38 MAPK, phosphorylated-p38 MAPK, cytosolic phospolipaseA2 [cPLA2], phosphorylated-cPLA2, and cyclooxygenase 2 [COX2] were detected by immunoblot analysis. RESULTS The rats of the HHcy + DSS group had significantly higher myeloperoxidase [MPO] activity, DAI score, and histological score. HHcy significantly increased the plasma concentration, the colonic mRNA, and the protein levels of IL-17. HHcy also activated p38 MAPK and cPLA2, and increased the protein levels of COX2 and RORγt as well as the plasma level of prostaglandin E2 [PGE2]. Folate supplementation down-regulated homocysteine-induced IL-17 and RORγt expressions. CONCLUSIONS HHcy aggravated DSS-induced colitis by stimulating IL-17 expression via the p38/cPLA2/COX2/PGE2 signalling pathway. The folate supplementation may represent a novel approach to treating the chronic intestinal inflammation of IBD exacerbated by HHcy.
Collapse
Affiliation(s)
- Siying Zhu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, P.R. China
| | - Jin Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, P.R. China
| | - Yuntao Bing
- Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, P.R. China
| | - Wenfeng Yan
- Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, P.R. China
| | - Youqing Zhu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, P.R. China
| | - Bing Xia
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, P.R. China
| | - Min Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, P.R. China
| |
Collapse
|
14
|
Martínez-Reyes I, Cuezva JM. The H+-ATP synthase: A gate to ROS-mediated cell death or cell survival. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1099-112. [DOI: 10.1016/j.bbabio.2014.03.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/03/2014] [Accepted: 03/19/2014] [Indexed: 12/13/2022]
|
15
|
Experimental study of the effect of a new antioxidant agent on learning and memory. Bull Exp Biol Med 2014; 156:793-5. [PMID: 24824699 DOI: 10.1007/s10517-014-2452-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Indexed: 10/25/2022]
Abstract
This work presents the results of studying the effect of a new antioxidant compound enoxyphol on learning and memory in rats.
Collapse
|
16
|
Walsh TG, Berndt MC, Carrim N, Cowman J, Kenny D, Metharom P. The role of Nox1 and Nox2 in GPVI-dependent platelet activation and thrombus formation. Redox Biol 2014; 2:178-86. [PMID: 24494191 PMCID: PMC3909778 DOI: 10.1016/j.redox.2013.12.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 02/07/2023] Open
Abstract
Background Activation of the platelet-specific collagen receptor, glycoprotein (GP) VI, induces intracellular reactive oxygen species (ROS) production; however the relevance of ROS to GPVI-mediated platelet responses remains unclear. Objective The objective of this study was to explore the role of the ROS-producing NADPH oxidase (Nox)1 and 2 complexes in GPVI-dependent platelet activation and collagen-induced thrombus formation. Methods and results ROS production was measured by quantitating changes in the oxidation-sensitive dye, H2DCF-DA, following platelet activation with the GPVI-specific agonist, collagen related peptide (CRP). Using a pharmacological inhibitor specific for Nox1, 2-acetylphenothiazine (ML171), and Nox2 deficient mice, we show that Nox1 is the key Nox homolog regulating GPVI-dependent ROS production. Nox1, but not Nox2, was essential for CRP-dependent thromboxane (Tx)A2 production, which was mediated in part through p38 MAPK signaling; while neither Nox1 nor Nox2 was significantly involved in regulating CRP-induced platelet aggregation/integrin αIIbβ3 activation, platelet spreading, or dense granule and α-granule release (ATP release and P-selectin surface expression, respectively). Ex-vivo perfusion analysis of mouse whole blood revealed that both Nox1 and Nox2 were involved in collagen-mediated thrombus formation at arterial shear. Conclusion Together these results demonstrate a novel role for Nox1 in regulating GPVI-induced ROS production, which is essential for optimal p38 activation and subsequent TxA2 production, providing an explanation for reduced thrombus formation following Nox1 inhibition. Nox1, but not Nox2 mediates GPVI-induced ROS production. GPVI-specific, CRP-activated platelet aggregation, spreading, secretion and αIIbβ3 activation is Nox1/2-independent. GPVI-induced thromboxane A2 production is ROS-dependent, which is mediated by p38 signaling. Collagen-induced ROS production and aggregation is Nox1-dependent. Both Nox1 and Nox2 regulate collagen-induced thrombus formation at arterial shear.
Collapse
Affiliation(s)
- T G Walsh
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - M C Berndt
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland ; Faculty of Health Sciences, Curtin University, Perth, Australia
| | - N Carrim
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - J Cowman
- Department of Molecular Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - D Kenny
- Department of Molecular Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - P Metharom
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland ; Faculty of Health Sciences, Curtin University, Perth, Australia
| |
Collapse
|
17
|
Nguyen CN, Kim HE, Lee SG. Caffeoylserotonin protects human keratinocyte HaCaT cells against H2 O2 -induced oxidative stress and apoptosis through upregulation of HO-1 expression via activation of the PI3K/Akt/Nrf2 pathway. Phytother Res 2013; 27:1810-8. [PMID: 23418094 DOI: 10.1002/ptr.4931] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/20/2012] [Accepted: 01/04/2013] [Indexed: 12/30/2022]
Abstract
Caffeoylserotonin (CaS) has strong radical scavenging activity as well as antioxidant activities, protecting cells from lipid peroxidation, intracellular reactive oxygen species generation, DNA damage, and cell death. The molecular mechanism by which CaS protects against oxidative stress is not well understood. Here, we analyzed the cytoprotective activity of CaS in hydrogen peroxide (H2 O2 )-treated keratinocyte HaCaT cells. H2 O2 induced apoptosis in the cells through activation of pro-apoptotic p21, Bax, and caspase-3. Pretreatment with CaS inhibited apoptotic gene expression and activated the anti-apoptotic gene, Bcl-xL. Although CaS did not directly affect heme oxygenase-1 (HO-1) expression, pretreatment with CaS augmented HO-1 expression through an increase in NF-E2-related factor (Nrf2) stability and stimulation of Nrf2 translocation to the nucleus upon H2 O2 exposure. H2 O2 also induced the phosphorylation and subsequent activation of ERK, p38 MAPK, and Akt. Analysis using specific inhibitors of p38 MAPK and Akt demonstrated that only Akt activation was involved in HO-1 and Nrf2 expressions. In addition, PI3K and PKC inhibitors suppressed HO-1/Nrf2 expression and Akt phosphorylation. These results demonstrate that CaS protects against oxidative stress-induced keratinocyte cell death in part through the activation of Nrf2-mediated HO-1 induction via the PI3K/Akt and/or PKC pathways, but not MAPK signaling.
Collapse
Affiliation(s)
- Cam Ngoc Nguyen
- Department of Biotechnology, Chonnam National University, 300 Yongbong-Dong, Buk-Gu, Gwangju, 500-757, Korea; Bioenergy Research Center, Chonnam National University, 300 Yongbong-Dong, Buk-Gu, Gwangju, 500-757, Korea
| | | | | |
Collapse
|
18
|
Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation. Neurochem Int 2013; 62:418-24. [PMID: 23411410 DOI: 10.1016/j.neuint.2013.02.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 01/29/2023]
Abstract
Even though the inducing effect of electromagnetic fields (EMF) on the neural differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) is a distinctive, the underlying mechanism of differentiation remains unclear. To find out the signaling pathways involved in the neural differentiation of BM-MSCs by EMF, we examined the CREB phosphorylation and Akt or ERK activation as an upstream of CREB. In hBM-MSCs treated with ELF-EMF (50 Hz, 1 mT), the expression of neural markers such as NF-L, MAP2, and NeuroD1 increased at 6 days and phosphorylation of Akt and CREB but not ERK increased at 90 min in BM-MSCs. Moreover, EMF increased phosphorylation of epidermal growth factor receptor (EGFR) as an upstream receptor tyrosine kinase of PI3K/Akt at 90 min. It has been well documented that ELF-MF exposure may alter cellular processes by increasing intracellular reactive oxygen species (ROS) concentrations. Thus, we examined EMF-induced ROS production in BM-MSCs. Moreover, pretreatment with a ROS scavenger, N-acetylcystein, and an EGFR inhibitor, AG-1478, prevented the phosphorylation of EGFR and downstream molecules. These results suggest that EMF induce neural differentiation through activation of EGFR signaling and mild generation of ROS.
Collapse
|
19
|
Santoro R, Mori F, Marani M, Grasso G, Cambria MA, Blandino G, Muti P, Strano S. Blockage of melatonin receptors impairs p53-mediated prevention of DNA damage accumulation. Carcinogenesis 2013; 34:1051-61. [PMID: 23354312 DOI: 10.1093/carcin/bgt025] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Melatonin has been known to be a chemopreventive agent since its levels inversely correlate with the risk of developing cancer. We have recently shown that melatonin induces p38-dependent phosphorylation of both p53 and histone H2AX. This is associated with a p53-mediated increase in repair of both endogenous and chemotherapy-induced DNA damage. In addition, the inhibition of p38 activities impairs melatonin's capability to induce a p53-dependent DNA damage response and thus its ability to maintain genome integrity. Since melatonin-induced p53 phosphorylation requires an intact p38 phosphorylation cascade and p38 can be activated by G proteins, we supposed that melatonin's activities could be mediated by its G-protein-coupled membrane receptors, MT1 and MT2. Here, we show that the activation of the p53-dependent DNA damage response by melatonin is indeed mediated by MT1 and MT2. As a result, the absence of either receptor impairs melatonin's ability to reduce both cell proliferation and clonogenic potential of cancer cells. In addition, this causes an impairment of the p53-dependent DNA damage response. By providing molecular insight, our findings might have translational impact, suggesting the involvement of melatonin receptors in tumorigenesis.
Collapse
Affiliation(s)
- Raffaela Santoro
- Molecular Chemoprevention Group, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome 00144, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Niranjan R, Nath C, Shukla R. Melatonin attenuated mediators of neuroinflammation and alpha-7 nicotinic acetylcholine receptor mRNA expression in lipopolysaccharide (LPS) stimulated rat astrocytoma cells, C6. Free Radic Res 2012; 46:1167-77. [PMID: 22656125 DOI: 10.3109/10715762.2012.697626] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Melatonin has been known to affect a variety of astrocytes functions in many neurological disorders but its mechanism of action on neuroinflammatory cascade and alpha-7 nicotinic acetylcholine receptor (α7-nAChR) expression are still not properly understood. Present study demonstrated that treatment of C6 cells with melatonin for 24 hours significantly decreased lipopolysaccharide (LPS) induced nitrative and oxidative stress, expressions of cyclooxigenase-2 (COX-2), inducible nitric-oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP). Melatonin also modulated LPS-induced mRNA expressions of α7-nAChR and inflammatory cytokine genes. Furthermore, melatonin reversed LPS-induced changes in C/EBP homologous protein 10 (CHOP), microsomal prostaglandin E synthase-1(mPGES-1) and phosphorylated p38 mitogen activated protein kinase (P-p38). Treatment with pyrrolidine dithiocarbamate (PDTC) inhibited α7-nAChR mRNA expression in LPS-induced C6 cells. Our findings explored anti-neuroinflammatory action of melatonin, which may suggests its beneficial roles in the neuroinflammation associated disorders.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
| | | | | |
Collapse
|
21
|
Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012; 24:981-90. [PMID: 22286106 DOI: 10.1016/j.cellsig.2012.01.008] [Citation(s) in RCA: 2912] [Impact Index Per Article: 242.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 01/13/2012] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are generated during mitochondrial oxidative metabolism as well as in cellular response to xenobiotics, cytokines, and bacterial invasion. Oxidative stress refers to the imbalance due to excess ROS or oxidants over the capability of the cell to mount an effective antioxidant response. Oxidative stress results in macromolecular damage and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging. Paradoxically, accumulating evidence indicates that ROS also serve as critical signaling molecules in cell proliferation and survival. While there is a large body of research demonstrating the general effect of oxidative stress on signaling pathways, less is known about the initial and direct regulation of signaling molecules by ROS, or what we term the "oxidative interface." Cellular ROS sensing and metabolism are tightly regulated by a variety of proteins involved in the redox (reduction/oxidation) mechanism. This review focuses on the molecular mechanisms through which ROS directly interact with critical signaling molecules to initiate signaling in a broad variety of cellular processes, such as proliferation and survival (MAP kinases, PI3 kinase, PTEN, and protein tyrosine phosphatases), ROS homeostasis and antioxidant gene regulation (thioredoxin, peroxiredoxin, Ref-1, and Nrf-2), mitochondrial oxidative stress, apoptosis, and aging (p66Shc), iron homeostasis through iron-sulfur cluster proteins (IRE-IRP), and ATM-regulated DNA damage response.
Collapse
|
22
|
Floyd RA, Towner RA, He T, Hensley K, Maples KR. Translational research involving oxidative stress and diseases of aging. Free Radic Biol Med 2011; 51:931-41. [PMID: 21549833 PMCID: PMC3156308 DOI: 10.1016/j.freeradbiomed.2011.04.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/28/2011] [Accepted: 04/07/2011] [Indexed: 01/01/2023]
Abstract
There is ample mounting evidence that reactive oxidant species are exacerbated in inflammatory processes, many pathological conditions, and underlying processes of chronic age-related diseases. Therefore there is increased expectation that therapeutics can be developed that act in some fashion to suppress reactive oxidant species and ameliorate the condition. This has turned out to be more difficult than at first expected. Developing therapeutics for indications in which reactive oxidant species are an important consideration presents some unique challenges. We discuss important questions including whether reactive oxidant species should be a therapeutic target, the need to recognize the fact that an antioxidant in a defined chemical system may be a poor antioxidant operationally in a biological system, and the importance of considering that reactive oxidant species may accompany the disease or pathological system rather than being a causative factor. We also discuss the value of having preclinical models to determine if the processes that are important in causing the disease under study are critically dependent on reactive oxidant species events and if the therapeutic under consideration quells these processes. In addition we discuss measures of success that must be met in commercial research and development and in preclinical and clinical trials and discuss as examples our translational research effort in developing nitrones for the treatment of acute ischemic stroke and as anti-cancer agents.
Collapse
Affiliation(s)
- Robert A Floyd
- Experimental Therapeutics, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | | | | | | | | |
Collapse
|
23
|
Runchel C, Matsuzawa A, Ichijo H. Mitogen-activated protein kinases in mammalian oxidative stress responses. Antioxid Redox Signal 2011; 15:205-18. [PMID: 21050144 DOI: 10.1089/ars.2010.3733] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
All aerobic organisms are exposed to oxidative stress during their lifetime and are required to respond appropriately for maintenance of their survival and homeostasis. Sustained exposure to oxidative stress has devastating effects in organisms, and, not surprisingly, oxidative stress has been implicated in numerous human diseases. Therefore, an understanding of how mammals respond to oxidative stress is crucial both biologically and clinically. Intracellular signaling pathways, which are activated in response to excessive oxygen radicals, play essential roles in overcoming oxidative stress. The mitogen-activated protein kinase (MAPK) signaling pathways are involved in diverse physiological processes, and are critical for induction of oxidative stress responses. In this review, we will discuss the physiological roles of MAPKs in oxidative stress, the upstream signaling pathways leading to MAPK activation, their regulation, and the MAPK downstream substrates, with a focus on mammalian systems.
Collapse
Affiliation(s)
- Christopher Runchel
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | | | | |
Collapse
|
24
|
Abstract
AIMS to summarize present knowledge regarding the relation between oxidative stress and development of bronchopulmonary dysplasia (BPD). METHODS relevant literature searched at Pubmed and other sources. RESULTS Oxidative stress is generated in a number of conditions and by a number of causes such as inflammation and hyperoxia. Ontogenic aspects are discussed. Oxidative stress as physiological regulators, its relation to transcription factors and inflammation is summarized. The role of oxygen and antioxidant therapy and newborn resuscitation for development and prevention of BPD as well as new therapeutic modes especially the use of growth factors, gene therapy and stem cells, are briefly discussed. CONCLUSION oxidative stress and BPD are associated. A better understanding of this association is necessary in order to reduce the severity and the incidence of the condition.
Collapse
Affiliation(s)
- Ola Didrik Saugstad
- Department of Pediatric Research, Oslo University Hospital, Rikshospitalet, University of Oslo, Norway.
| |
Collapse
|
25
|
Maron JL, Johnson KL, Parkin C, Iyer L, Davis JM, Bianchi DW. Cord blood genomic analysis highlights the role of redox balance. Free Radic Biol Med 2010; 49:992-6. [PMID: 20566327 PMCID: PMC2921475 DOI: 10.1016/j.freeradbiomed.2010.05.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/17/2010] [Accepted: 05/28/2010] [Indexed: 12/12/2022]
Abstract
Neonates are exposed to elevated levels of reactive oxygen species as they transition from a hypoxic intrauterine to a normoxic extrauterine environment at birth. This increased oxidative stress is associated with neonatal morbidity. Current antioxidant supplementation treatment strategies have yet to translate into improved neonatal outcomes. Our understanding of a newborn's intricate redox balance, particularly at the genomic level, remains limited. Here, we performed genomic microarray analyses (approximately 14,500 genes) on extracted mRNA from umbilical cord whole blood at term gestation (n=10). Bioinformatic analyses identified 282 genes (2.0%) that were consistently present within the highest quintile of expressed genes. These genes were highly associated with oxidant stress and included superoxide dismutase 1, catalase, peroxiredoxins, and uncoupling proteins. Pathway analyses identified statistically significantly overrepresented functional pathways including "oxidative stress," "oxidative stress response mediated by nuclear factor-erythroid 2-related factor," "hypoxia-inducible factor signaling," and "mitochondrial dysfunction" (p<0.05). These results suggest that neonates require high levels of antioxidants and an intricate cellular redox balance to ensure a successful transition to the extrauterine environment. Understanding the genes necessary to maintain this delicate redox balance may lead to the development of alternative treatment strategies.
Collapse
Affiliation(s)
- Jill L Maron
- Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, MA 02111, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Mill CP, Chester JA, Riese DJ. EGFR may couple moderate alcohol consumption to increased breast cancer risk. BREAST CANCER-TARGETS AND THERAPY 2009; 1:31-8. [PMID: 24367161 DOI: 10.2147/bctt.s6254] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alcohol consumption is an established risk factor for breast cancer. Nonetheless, the mechanism by which alcohol contributes to breast tumor initiation or progression has yet to be definitively established. Studies using cultured human tumor cell lines have identified signaling molecules that may contribute to the effects of alcohol, including reactive oxygen species and other ethanol metabolites, matrix metalloproteases, the ErbB2/Her2/Neu receptor tyrosine kinase, cytoplasmic protein kinases, adenylate cyclase, E-cadherins, estrogen receptor, and a variety of transcription factors. Emerging data suggest that the epidermal growth factor receptor (EGFR) tyrosine kinase may contribute to breast cancer genesis and progression. Here we integrate these findings and propose three mechanisms by which alcohol contributes to breast cancer. A common feature of these mechanisms is increased EGFR signaling. Finally, we discuss how these mechanisms suggest strategies for addressing the risks associated with alcohol consumption.
Collapse
Affiliation(s)
- Christopher P Mill
- Purdue University School of Pharmacy, Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Julia A Chester
- Purdue University Department of Psychological Sciences, West Lafayette, IN, USA
| | - David J Riese
- Purdue University School of Pharmacy, Purdue University Center for Cancer Research, West Lafayette, IN, USA
| |
Collapse
|
27
|
RUNX1 and its fusion oncoprotein derivative, RUNX1-ETO, induce senescence-like growth arrest independently of replicative stress. Oncogene 2009; 28:2502-12. [PMID: 19448675 PMCID: PMC4847638 DOI: 10.1038/onc.2009.101] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A role for the RUNX genes in cancer failsafe processes has been suggested by their induction of senescence-like growth arrest in primary murine fibroblasts and the failure of RAS-induced senescence in Runx2 deficient cells. We now show that RUNX1 induces senescence in human primary fibroblasts. High affinity DNA binding is necessary but not sufficient, as shown by the functional attenuation of the truncated RUNX1/AML1a isoform and the TEL-RUNX1 fusion oncoprotein. However, a similar phenotype was potently induced by the RUNX1-ETO (AML1-ETO) oncoprotein, despite its dominant negative potential. Detailed comparison of H-RASV12, RUNX1 and RUNX1-ETO senescent phenotypes showed that the RUNX effectors induce earlier growth stasis with only low levels of DNA damage signalling and a lack of chromatin condensation, a marker of irreversible growth arrest. In human fibroblasts, all effectors induced p53 in the absence of detectable p14ARF, while only RUNX1-ETO induced senescence in p16INK4a null cells. Correlation was noted between induction of p53, reactive oxygen species and phospho-p38, while p38MAPK inhibition rescued cell growth markedly. These findings reveal a role for replication-independent pathways in RUNX and RUNX1-ETO senescence, and show that the context-specific oncogenic activity of RUNX1 fusion proteins are mirrored in their distinctive interactions with failsafe responses.
Collapse
|
28
|
Coffman JA, Coluccio A, Planchart A, Robertson AJ. Oral-aboral axis specification in the sea urchin embryo III. Role of mitochondrial redox signaling via H2O2. Dev Biol 2009; 330:123-30. [PMID: 19328778 DOI: 10.1016/j.ydbio.2009.03.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 02/21/2009] [Accepted: 03/18/2009] [Indexed: 10/21/2022]
Abstract
In sea urchin embryos, specification of the secondary (oral-aboral) axis occurs via nodal, expression of which is entirely zygotic and localized to prospective oral ectoderm at blastula stage. The initial source of this spatial anisotropy is not known. Previous studies have shown that oral-aboral (OA) polarity correlates with a mitochondrial gradient, and that nodal activity is dependent both on mitochondrial respiration and p38 stress-activated protein kinase. Here we show that the spatial pattern of nodal activity also correlates with the mitochondrial gradient, and that the latter correlates with inhomogeneous levels of intracellular reactive oxygen species. To test whether mitochondrial H(2)O(2) functions as a redox signal to activate nodal, zygotes were injected with mRNA encoding either mitochondrially-targeted catalase, which quenches mitochondrial H(2)O(2) and down-regulates p38, or superoxide dismutase, which augments mitochondrial H(2)O(2) and up-regulates p38. Whereas the former treatment inhibits the initial activation of nodal and entrains OA polarity toward aboral when confined to half of the embryo via 2-cell stage blastomere injections, the latter does not produce the opposite effects. We conclude that mitochondrial H(2)O(2) is rate-limiting for the initial activation of nodal, but that additional rate-limiting factors, likely also involving mitochondria, contribute to the asymmetry in nodal expression.
Collapse
Affiliation(s)
- James A Coffman
- Mount Desert Island Biological Laboratory, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA.
| | | | | | | |
Collapse
|
29
|
Pinteaux E, Trotter P, Simi A. Cell-specific and concentration-dependent actions of interleukin-1 in acute brain inflammation. Cytokine 2008; 45:1-7. [PMID: 19026559 DOI: 10.1016/j.cyto.2008.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/15/2008] [Accepted: 10/10/2008] [Indexed: 01/03/2023]
Abstract
Interleukin (IL)-1 is a pivotal pro-inflammatory cytokine and an important mediator of both acute and chronic central nervous system (CNS) injuries. Despite intense research in CNS IL-1 biology over the past two decades, its precise mechanism of action in inflammatory responses to acute brain disorders remains largely unknown. In particular, much effort has been focussed on using in vitro approaches to better understand the cellular and signalling mechanisms of actions of IL-1, yet some discrepancies in the literature regarding the effects produced by IL-1beta in in vitro paradigms of injury still exist, particularly as to whether IL-1 exerts neurotoxic or neuroprotective effects. Here we aim to review the cell-specific and concentration-dependent actions of IL-1 in brain cells, to depict the mechanism by which this cytokine induces neurotoxicity or neuroprotection in acute brain injury.
Collapse
Affiliation(s)
- Emmanuel Pinteaux
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
30
|
Traore K, Sharma R, Thimmulappa RK, Watson WH, Biswal S, Trush MA. Redox-regulation of Erk1/2-directed phosphatase by reactive oxygen species: role in signaling TPA-induced growth arrest in ML-1 cells. J Cell Physiol 2008; 216:276-85. [PMID: 18270969 DOI: 10.1002/jcp.21403] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Extracellular signal-regulated kinase (Erk)1/2 activity signals myeloid cell differentiation induced by 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Previously, we reported that Erk1/2 activation (phosphorylation) induced by TPA required reactive oxygen species (ROS) as a second messenger. Here, we hypothesized that ROS generated in response to TPA inhibit Erk1/2-directed phosphatase activity, which leads to an increase phosphorylation of Erk1/2 to signal p21(WAF1/Cip1)-mediated growth arrest in ML-1 cells. Incubation of ML-1 cells with TPA resulted in a marked accumulation of phosphorylated Erk1/2, and is subsequent to H2O2 generation. Interestingly, post-TPA-treatment with N-acetylcysteine (NAC) stimulated a marked and a rapid dephosphorylation of Erk1/2, suggesting a regeneration of Erk1/2-directed phospahatase activity by NAC. ROS generation in ML-1 cells induced by TPA was suggested to occur in the mitochondrial electron transport chain (METC) based on the following observations: (i) undifferentiated ML-1 cells not only lack p67-phox and but also express a low level of p47-phox key components required for NADPH oxidase enzymatic activity, (ii) pretreatment with DPI, an inhibitor of NADH- and NADPH-dependent enzymes, or rhein, an inhibitor of complex I, blocked the ROS generation, and (iii) examination of the microarray analysis data and Western blot analysis data revealed an induction of MnSOD expression at both mRNA and protein levels in response to TPA. MnSOD is a key member of the mitochondrial defense system against mitochondrial-derived superoxide. Together, this study suggested that TPA stimulated ROS generation as a second messenger to activate Erk1/2 via a redox-mediated inhibition of Erk1/2-directed phosphatase in ML-1 cells.
Collapse
Affiliation(s)
- Kassim Traore
- Department of Environmental Health Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Heo HJ, Choi SJ, Choi SG, Shin DH, Lee JM, Lee CY. Effects of banana, orange, and apple on oxidative stress-induced neurotoxicity in PC12 cells. J Food Sci 2008; 73:H28-32. [PMID: 18298733 DOI: 10.1111/j.1750-3841.2007.00632.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Banana, orange, and apple are the major fruits in Western and Asian diets. In order to find the effects of these fruits, neuron like PC12 cells were exposed to the extracts of these fruits before H(2)O(2) treatment. We found a significant viability of PC12 cells by the MTT reduction test, which indicated that the phenolics of banana, orange, and apple fruits prevented oxidative stress-induced neurotoxicity. Additional tests by lactate dehydrogenase and trypan blue exclusion assays showed that the extracts reduced oxidative stress-induced neuronal cell membrane damage. These results suggest that fresh apples, banana, and orange in our daily diet along with other fruits may protect neuron cells against oxidative stress-induced neurotoxicity and may play an important role in reducing the risk of neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- H J Heo
- Div. of Applied Life Science, Inst. of Agriculture and Life Sciences, Gyeongsang Natl. Univ., Jinju, Gyeongnam 660-701, Korea
| | | | | | | | | | | |
Collapse
|
32
|
MKP-1 inhibits high NaCl-induced activation of p38 but does not inhibit the activation of TonEBP/OREBP: opposite roles of p38alpha and p38delta. Proc Natl Acad Sci U S A 2008; 105:5620-5. [PMID: 18367666 DOI: 10.1073/pnas.0801453105] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
High NaCl rapidly activates p38 MAPK by phosphorylating it, the phosphorylation presumably being regulated by a balance of kinases and phosphatases. Kinases are known, but the phosphatases are uncertain. Our initial purpose was to identify the phosphatases. We find that in HEK293 cells transient overexpression of MAPK phosphatase-1 (MKP-1), a dual-specificity phosphatase, inhibits high NaCl-induced phosphorylation of p38, and that overexpression of a dominant negative mutant of MKP-1 does the opposite. High NaCl lowers MKP-1 activity by increasing reactive oxygen species, which directly inhibit MKP-1, and by reducing binding of MKP-1 to p38. Because inhibition of p38 is reported to reduce hypertonicity-induced activation of the osmoprotective transcription factor, TonEBP/OREBP, we anticipated that MKP-1 expression might also. However, overexpression of MKP-1 has no significant effect on Ton EBP/OREBP activity. This paradox is explained by opposing effects of p38alpha and p38delta, both of which are activated by high NaCl and inhibited by MKP-1. Thus, we find that overexpression of p38alpha increases high NaCl-induced TonEBP/OREBP activity, but overexpression of p38delta reduces it. Also, siRNA-mediated knockdown of p38delta enhances the activation of TonEBP/OREBP. We conclude that high NaCl inhibits MKP-1, which contributes to the activation of p38. However, opposing actions of p38alpha and p38delta negate any effect on TonEBP/OREBP activity. Thus, activation of p38 isoforms by hypertonicity does not contribute to activation of TonEBP/OREBP because of opposing effects of p38alpha and p38delta, and effects of inhibitors of p38 depend on which isoform is affected, which can be misleading.
Collapse
|
33
|
Abstract
Alzheimer disease (AD) is defined by progressive impairments in memory and cognition and by the presence of extracellular neuritic plaques and intracellular neurofibrillary tangles. However, oxidative stress and impaired mitochondrial function always accompany AD. Mitochondria are a major site of production of free radicals [ie, reactive oxygen species (ROS)] and primary targets of ROS. ROS are cytotoxic, and evidence of ROS-induced damage to cell membranes, proteins, and DNA in AD is overwhelming. Nevertheless, therapies based on antioxidants have been disappointing. Thus, alternative strategies are necessary. ROS also act as signaling molecules including for transcription. Thus, chronic exposure to ROS in AD could activate cascades of genes. Although initially protective, prolonged activation may be damaging. Thus, therapeutic approaches based on modulation of these gene cascades may lead to effective therapies. Genes involved in several pathways including antioxidant defense, detoxification, inflammation, etc, are induced in response to oxidative stress and in AD. However, genes that are associated with energy metabolism, which is necessary for normal brain function, are mostly down-regulated. Redox-sensitive transcription factors such as activator protein-1, nuclear factor-kappaB, specificity protein-1, and hypoxia-inducible factor are important in redox-dependent gene regulation. Peroxisome proliferators-activated receptor-gamma coactivator (PGC-1alpha) is a coactivator of several transcription factors and is a potent stimulator of mitochondrial biogenesis and respiration. Down-regulated expression of PGC-1alpha has been implicated in Huntington disease and in several Huntington disease animal models. PGC-1alpha role in regulation of ROS metabolism makes it a potential candidate player between ROS, mitochondria, and neurodegenerative diseases. This review summarizes the current progress on how oxidative stress regulates the expression of genes that might contribute to AD pathophysiology and the implications of the transcriptional modifications for AD. Finally, potential therapeutic strategies based on the updated understandings of redox state-dependent gene regulation in AD are proposed to overcome the lack of efficacy of antioxidant therapies.
Collapse
|
34
|
Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J Neurosci 2008; 27:13781-92. [PMID: 18077690 DOI: 10.1523/jneurosci.2042-07.2007] [Citation(s) in RCA: 385] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Astrocytes have a role in maintaining normal neuronal functions, some of which depend on connexins, protein subunits of gap junction channels and hemichannels. Under inflammatory conditions, microglia release cytokines, including interleukin-1beta and tumor necrosis factor-alpha, that reduce intercellular communication via gap junctions. Now, we demonstrate that either conditioned medium harvested from activated microglia or a mixture of these two cytokines enhances the cellular exchange with the extracellular milieu via Cx43 hemichannels. These changes in membrane permeability were not detected in astrocytes cultured from Cx43 knock-out mice and were abrogated by connexin hemichannel blockers, including La3+, mimetic peptides, and niflumic acid. Both the reduction in gap junctional communication and the increase in membrane permeability were mediated by a p38 mitogen-activated protein kinase-dependent pathway. However, the increase in membrane permeability, but not the gap junction inhibition, was rapidly reversed by the sulfhydryl reducing agent dithiothreitol, indicating that final regulatory mechanisms are different. Treatment with proinflammatory cytokines reduced the total and cell surface Cx43 levels, suggesting that the increase in membrane permeability was attributable to an increase in hemichannels activity. Indeed, unitary events of approximately 220 pS corresponding to Cx43 hemichannels were much more frequent in astrocytes treated with microglia conditioned medium than under control conditions. Finally, the effect of cytokines enhanced the uptake and reduced the intercellular diffusion of glucose, which might explain changes in the metabolic status of astrocytes under inflammatory conditions. Accordingly, this opposite regulation may affect glucose trafficking and certainly will modify the metabolic status of astrocytes involved in brain inflammation.
Collapse
|
35
|
Hyperosmotic stress-induced caspase-3 activation is mediated by p38 MAPK in the hippocampus. Brain Res 2007; 1186:1-11. [DOI: 10.1016/j.brainres.2007.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 10/02/2007] [Accepted: 10/05/2007] [Indexed: 01/13/2023]
|
36
|
Coffman JA, Denegre JM. Mitochondria, redox signaling and axis specification in metazoan embryos. Dev Biol 2007; 308:266-80. [PMID: 17586486 DOI: 10.1016/j.ydbio.2007.05.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 05/30/2007] [Accepted: 05/30/2007] [Indexed: 11/29/2022]
Abstract
Mitochondria are not only the major energy generators of the eukaryotic cell but they are also sources of signals that control gene expression and cell fate. While mitochondria are often asymmetrically distributed in early embryos, little is known about how they contribute to axial patterning. Here we review studies of mitochondrial distribution in metazoan eggs and embryos and the mechanisms of redox signaling, and speculate on the role that mitochondrial anisotropies might play in the developmental specification of cell fate during embryogenesis of sea urchins and other animals.
Collapse
Affiliation(s)
- James A Coffman
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA.
| | | |
Collapse
|
37
|
Pfeiffer ZA, Guerra AN, Hill LM, Gavala ML, Prabhu U, Aga M, Hall DJ, Bertics PJ. Nucleotide receptor signaling in murine macrophages is linked to reactive oxygen species generation. Free Radic Biol Med 2007; 42:1506-16. [PMID: 17448897 PMCID: PMC1934340 DOI: 10.1016/j.freeradbiomed.2007.02.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2006] [Revised: 02/03/2007] [Accepted: 02/08/2007] [Indexed: 12/19/2022]
Abstract
Macrophage activation is critical in the innate immune response and can be regulated by the nucleotide receptor P2X7. In this regard, P2X7 signaling is not well understood but has been implicated in controlling reactive oxygen species (ROS) generation by various leukocytes. Although ROS can contribute to microbial killing, the role of ROS in nucleotide-mediated cell signaling is unclear. In this study, we report that the P2X7 agonists ATP and 3'-O-(4-benzoyl) benzoic ATP (BzATP) stimulate ROS production by RAW 264.7 murine macrophages. These effects are potentiated in lipopolysaccharide-primed cells, demonstrating an important interaction between extracellular nucleotides and microbial products in ROS generation. In terms of nucleotide receptor specificity, RAW 264.7 macrophages that are deficient in P2X7 are greatly reduced in their capacity to generate ROS in response to BzATP treatment (both with and without LPS priming), thus supporting a role for P2X7 in this process. Because MAP kinase activation is key for nucleotide regulation of macrophage function, we also tested the hypothesis that P2X7-mediated MAP kinase activation is dependent on ROS production. We observed that BzATP stimulates MAP kinase (ERK1/ERK2, p38, and JNK1/JNK2) phosphorylation and that the antioxidants N-acetylcysteine and ascorbic acid strongly attenuate BzATP-mediated JNK1/JNK2 and p38 phosphorylation but only slightly reduce BzATP-induced ERK1/ERK2 phosphorylation. These studies reveal that P2X7 can contribute to macrophage ROS production, that this effect is potentiated upon lipopolysaccharide exposure, and that ROS are important participants in the extracellular nucleotide-mediated activation of several MAP kinase systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paul J. Bertics
- *Address correspondence to: Paul J. Bertics, Department of Biomolecular Chemistry, University of Wisconsin, 1300 University Avenue, Madison, WI 53706-0450, Tel: 608-262-8667; Fax: 608-263-5253;
| |
Collapse
|
38
|
Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal 2007; 19:1807-19. [PMID: 17570640 DOI: 10.1016/j.cellsig.2007.04.009] [Citation(s) in RCA: 364] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Accepted: 04/23/2007] [Indexed: 01/20/2023]
Abstract
Oxidative stress is an increase in the reduction potential or a large decrease in the reducing capacity of the cellular redox couples. A particularly destructive aspect of oxidative stress is the production of reactive oxygen species (ROS), which include free radicals and peroxides. Some of the less reactive of these species can be converted by oxidoreduction reactions with transition metals into more aggressive radical species that can cause extensive cellular damage. In animals, ROS may influence cell proliferation, cell death (either apoptosis or necrosis) and the expression of genes, and may be involved in the activation of several signalling pathways, activating cell signalling cascades, such as those involving mitogen-activated protein kinases. Most of these oxygen-derived species are produced at a low level by normal aerobic metabolism and the damage they cause to cells is constantly repaired. The cellular redox environment is preserved by enzymes and antioxidants that maintain the reduced state through a constant input of metabolic energy. This review summarizes current studies that have been regarding the production of ROS and the general redox-sensitive targets of cell signalling cascades.
Collapse
Affiliation(s)
- Marcelo Genestra
- Department of Immunology, Oswaldo Cruz Institute/FIOCRUZ, Avenida Brasil, 4365-Manguinhos, Rio de Janeiro, CEP 21045-900, RJ-Brazil.
| |
Collapse
|
39
|
Olmos A, Giner RM, Recio MC, Ríos JL, Máñez S. Modulation of protein tyrosine nitration and inflammatory mediators by isoprenylhydroquinone glucoside. Eur J Pharm Sci 2007; 30:220-8. [PMID: 17161592 DOI: 10.1016/j.ejps.2006.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 11/02/2006] [Accepted: 11/03/2006] [Indexed: 10/23/2022]
Abstract
The nitration of tyrosine caused by peroxynitrite and other reactive nitrogen species is clearly detrimental for some physiological processes; however, its signalling role is still open to controversy. Among the natural phenolics known for their ability to oppose free tyrosine nitration, isoprenylhydroquinone glucoside is investigated due to its unusual structure, which contains a simple hydroxybenzene alkylated by a hemiterpenoid moiety. This hydroquinone was shown to be an effective inhibitor of peroxynitrite-induced protein tyrosine nitration in 3T3 fibroblasts. When tested on bovine seroalbumin nitration, however, the potency was reduced by half and the effect was almost abolished in the presence of bicarbonate. In contrast, addition of this anion had no effect on the nitrite/hydrogen peroxide/hemin system. Isoprenylhydroquinone glucoside was also active in the microM range on intra- and extracellular protein-bound tyrosine nitration by phorbol 12-myristate 13-acetate-stimulated neutrophils. The effects on nitric oxide synthase expression, interleukin-1beta and tumor necrosis factor-alpha production by lipopolysaccharide-stimulated macrophages were quite moderate. Thus, isoprenylhydroquinone glucoside is an inhibitor of protein nitration in situ, but lacks effect on the generation of either nitric oxide or inflammatory cytokines.
Collapse
Affiliation(s)
- Ana Olmos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | | | | | | | | |
Collapse
|
40
|
Hensley K, Abdel-Moaty H, Hunter J, Mhatre M, Mou S, Nguyen K, Potapova T, Pye QN, Qi M, Rice H, Stewart C, Stroukoff K, West M. Primary glia expressing the G93A-SOD1 mutation present a neuroinflammatory phenotype and provide a cellular system for studies of glial inflammation. J Neuroinflammation 2006; 3:2. [PMID: 16436205 PMCID: PMC1360663 DOI: 10.1186/1742-2094-3-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 01/25/2006] [Indexed: 11/30/2022] Open
Abstract
Detailed study of glial inflammation has been hindered by lack of cell culture systems that spontaneously demonstrate the "neuroinflammatory phenotype". Mice expressing a glycine → alanine substitution in cytosolic Cu, Zn-superoxide dismutase (G93A-SOD1) associated with familial amyotrophic lateral sclerosis (ALS) demonstrate age-dependent neuroinflammation associated with broad-spectrum cytokine, eicosanoid and oxidant production. In order to more precisely study the cellular mechanisms underlying glial activation in the G93A-SOD1 mouse, primary astrocytes were cultured from 7 day mouse neonates. At this age, G93A-SOD1 mice demonstrated no in vivo hallmarks of neuroinflammation. Nonetheless astrocytes cultured from G93A-SOD1 (but not wild-type human SOD1-expressing) transgenic mouse pups demonstrated a significant elevation in either the basal or the tumor necrosis alpha (TNFα)-stimulated levels of proinflammatory eicosanoids prostaglandin E2 (PGE2) and leukotriene B4 (LTB4); inducible nitric oxide synthase (iNOS) and •NO (indexed by nitrite release into the culture medium); and protein carbonyl products. Specific cytokine- and TNFα death-receptor-associated components were similarly upregulated in cultured G93A-SOD1 cells as assessed by multiprobe ribonuclease protection assays (RPAs) for their mRNA transcripts. Thus, endogenous glial expression of G93A-SOD1 produces a metastable condition in which glia are more prone to enter an activated neuroinflammatory state associated with broad-spectrum increased production of paracrine-acting substances. These findings support a role for active glial involvement in ALS and may provide a useful cell culture tool for the study of glial inflammation.
Collapse
Affiliation(s)
- Kenneth Hensley
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
- Department of Cell Biology, University of Oklahoma Health Science Center (OUHSC), Oklahoma City, OK, 73104, USA
| | - Haitham Abdel-Moaty
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
- University of Oklahoma College of Engineering, Bioengineering Program, Norman, OK, USA
| | - Jerrod Hunter
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
| | - Molina Mhatre
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
| | - Shenyun Mou
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
| | - Kim Nguyen
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
| | - Tamara Potapova
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
| | - Quentin N Pye
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
| | - Min Qi
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
| | - Heather Rice
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
| | - Charles Stewart
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
| | - Katharine Stroukoff
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
| | - Melinda West
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
| |
Collapse
|
41
|
Leoncini G, Bruzzese D, Signorello MG. Activation of p38 MAPKinase/cPLA2 pathway in homocysteine-treated platelets. J Thromb Haemost 2006; 4:209-16. [PMID: 16409471 DOI: 10.1111/j.1538-7836.2005.01708.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hyperhomocysteinemia is considered a risk factor in arterial and venous thrombosis. The mechanism by which homocysteine (HCy) supports atherothrombosis is still unknown and may be multifactorial. Earlier in vitro studies demonstrated that HCy induced arachidonic acid release and increased thromboxane B2 (TXB2) formation. In this work, we found that HCy stimulated the rapid and sustained phosphorylation of platelet p38 mitogen-activated protein kinase (p38 MAPK). The effect was time- and dose-dependent. The HCy effect on p38 MAPK phosphorylation was prevented by N-acetyl-L-cysteine and iloprost and was partially inhibited by nordihydroguaiaretic acid. Moreover, the incubation of platelets with HCy led to the phosphorylation of cytosolic phospholipase A2 (cPLA2). In addition HCy promoted cPLA2 activation, assessed as arachidonic acid release. The cPLA2 phosphorylation and activation were both impaired by the inhibition of p38 MAPK through SB203580. This effect was not complete, reaching at the most the 50% of the total. In FURA 2-loaded platelets, HCy induced a dose-dependent intracellular calcium rise suggesting that the calcium elevation promoted by HCy could participate in the cPLA2 activation, leading to arachidonic acid release and TXB2 formation. In conclusion, our data provide insight into the mechanisms of platelet activation induced by HCy, suggesting that the p38 MAPK/cPLA2 pathway could play a relevant role in platelet hyperactivity described in hyperhomocysteinemia.
Collapse
Affiliation(s)
- G Leoncini
- Department of Experimental Medicine, Biochemistry Section, University of Genoa, Genova, Italy.
| | | | | |
Collapse
|
42
|
Lee YJ, Choi B, Lee EH, Choi KS, Sohn S. Immobilization stress induces cell death through production of reactive oxygen species in the mouse cerebral cortex. Neurosci Lett 2006; 392:27-31. [PMID: 16203091 DOI: 10.1016/j.neulet.2005.08.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 08/26/2005] [Accepted: 08/29/2005] [Indexed: 11/28/2022]
Abstract
Prolonged stress has been shown to impair brain function and increase vulnerability to neuronal injury. To elucidate the in vivo response of neuronal cells to induced stress, we immobilized mice by binding their legs. Levels of reactive oxygen species (ROS) in the cerebral cortex were increased after stress induction. NADPH oxidase, interleukin-1beta (IL-1beta) and cyclooxygenase 2 mRNA (COX-2) expression levels were upregulated, and Fas levels were also increased. The increased expression of these factors was associated with neuronal death, which was confirmed by TUNEL and NeuN staining. OX42 staining was also evident around the TUNEL-stained lesions. From these findings, it appears that immobilization stress induces neuronal death in the mouse cerebral cortex, a process mediated by NADPH oxidase, IL-1beta, COX-2, ROS and Fas. However, this could be inhibited by pretreating the animals with antioxidants such as ebselen or pyrrolidine dithiocarbamate.
Collapse
Affiliation(s)
- Young Jun Lee
- Laboratory of Cell Biology, Ajou University Institute for Medical Sciences, Suwon 442-721, South Korea
| | | | | | | | | |
Collapse
|
43
|
Zhou X, Ferraris JD, Burg MB. Mitochondrial reactive oxygen species contribute to high NaCl-induced activation of the transcription factor TonEBP/OREBP. Am J Physiol Renal Physiol 2005; 290:F1169-76. [PMID: 16303854 DOI: 10.1152/ajprenal.00378.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypertonicity activates the transcription factor tonicity-responsive enhancer/osmotic response element binding protein (TonEBP/OREBP), resulting in increased expression of genes involved in osmoprotective accumulation of organic osmolytes, including glycine betaine, and in increased expression of osmoprotective heat shock proteins. Our previous studies showed that high NaCl increases reactive oxygen species (ROS), which contribute to activation of TonEBP/OREBP. Mitochondria are a major source of ROS. The purpose of the present study was to examine whether mitochondria produce the ROS that contribute to activation of TonEBP/OREBP. We inhibited mitochondrial ROS production in HEK293 cells with rotenone and myxothiazol, which inhibit mitochondrial complexes I and III, respectively. Rotenone (250 nM) and myxothiazol (12 nM) reduce high NaCl-induced ROS over 40%, whereas apocynin (100 microM), an inhibitor of NADPH oxidase, and allopurinol (100 microM), an inhibitor of xanthine oxidase, have no significant effect. Rotenone and myxothiazol reduce high NaCl-induced increases in TonEBP/OREBP transcriptional activity (ORE/TonE reporter assay) and BGT1 (betaine transporter) mRNA abundance ranging from 53 to 69%. They inhibit high NaCl-induced TonEBP/OREBP transactivating activity, but not its nuclear translocation. Release of ATP into the medium on hypertonic stress has been proposed to be a signal that triggers cellular osmotic responses. However, we do not detect release of ATP into the medium or inhibition of high NaCl-induced ORE/TonE reporter activity by an ATPase, apyrase (20 U/ml), indicating that high NaCl-induced activation of TonEBP/OREBP is not mediated by release of ATP. We conclude that high NaCl increases mitochondrial ROS production, which contributes to the activation of TonEBP/OREBP by increasing its transactivating activity.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Div. of Nephrology, Uniformed Services Univ. of the Health Sciences, Bethesda, MD 20814, USA.
| | | | | |
Collapse
|
44
|
|
45
|
Posen Y, Kalchenko V, Seger R, Brandis A, Scherz A, Salomon Y. Manipulation of redox signaling in mammalian cells enabled by controlled photogeneration of reactive oxygen species. J Cell Sci 2005; 118:1957-69. [PMID: 15840654 DOI: 10.1242/jcs.02323] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species (ROS) comprise a group of noxious byproducts of oxidative processes which participate in the induction of many common diseases. However, understanding their role in the regulation of normal physiological redox signaling is currently evolving. Detailed study of the dynamic functions of ROS within the biological milieu is difficult because of their high chemical reactivity, short lifetime, minute concentrations and cytotoxicity at high concentrations. In this study, we show that increasing intracellular ROS levels, set off by controlled in situ photogeneration of a nontoxic bacteriochlorophyll-based sensitizer initiate responses in cultured melanoma cells. Using hydroethidine as detector, we determined light-dependent generation of superoxide and hydroxyl radicals in cell-free and cell culture models. Monitoring the ROS-induced responses revealed individual and differential behavior of protein kinases [p38, mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and Akt] as well as effects on the subcellular distribution of phosphorylated p38. Furthermore, alterations in morphology and motility and effects on cell viability as a function of time and photosensitizer doses were observed. Following mild ROS challenge, enzymatic and cellular changes were observed in the majority of the cells, without inducing extensive cell death. However, upon vigorous ROS challenge, a similar profile of the overall responses was observed, terminating in cell death. This study shows that precisely controlled photogeneration of ROS can provide simple, fine-tuned, noninvasive manipulation of ROS-sensitive cellular responses ranging from individual enzymes to gross behavior of target cells. The observations made with this tool enable a dynamic and causal correlation, presenting a new alternative for studying the role of ROS in cellular redox signaling.
Collapse
Affiliation(s)
- Yehudit Posen
- Department of Biological Regulation, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
46
|
Heo HJ, Lee CY. Strawberry and its anthocyanins reduce oxidative stress-induced apoptosis in PC12 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:1984-1989. [PMID: 15769124 DOI: 10.1021/jf048616l] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Because strawberries are known to contain higher concentrations of phytochemicals and have higher antioxidant capacity among common fruits, their neuroprotective activity was tested in vitro on PC12 cells treated with H2O2. Their protective effect and antioxidant capacity were also compared with those of banana and orange, which are the fresh fruits consumed at highest levels in the United States. The cell viability test using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay showed that strawberry phenolics significantly reduced oxidative stress-induced neurotoxicity. Because oxidative stress is also known to increase neuronal cell membrane breakdown, lactate dehydrogenase (LDH) and trypan blue exclusion assays were also performed. Strawberry showed the highest cell protective effects among the samples. The overall relative neuronal cell protective activity of three fruits by three tests followed the decreasing order strawberry > banana > orange. The protective effects appeared to be due to the higher phenolic contents including anthocyanins, and anthocyanins in strawberries seemed to be the major contributors.
Collapse
Affiliation(s)
- Ho Jin Heo
- Department of Food Science and Technology, Cornell University, Geneva, New York 14456, USA
| | | |
Collapse
|
47
|
Zhou X, Ferraris JD, Cai Q, Agarwal A, Burg MB. Increased reactive oxygen species contribute to high NaCl-induced activation of the osmoregulatory transcription factor TonEBP/OREBP. Am J Physiol Renal Physiol 2005; 289:F377-85. [PMID: 15769933 DOI: 10.1152/ajprenal.00463.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The signaling pathways leading to high NaCl-induced activation of the transcription factor tonicity-responsive enhancer binding protein/osmotic response element binding protein (TonEBP/OREBP) remain incompletely understood. High NaCl has been reported to produce oxidative stress. Reactive oxygen species (ROS), which are a component of oxidative stress, contribute to regulation of transcription factors. The present study was undertaken to test whether the high NaCl-induced increase in ROS contributes to tonicity-dependent activation of TonEBP/OREBP. Human embryonic kidney 293 cells were used as a model. We find that raising NaCl increases ROS, including superoxide. N-acetylcysteine (NAC), an antioxidant, and MnTBAP, an inhibitor of superoxide, reduce high NaCl-induced superoxide activity and suppress both high NaCl-induced increase in TonEBP/OREBP transcriptional activity and high NaCl-induced increase in expression of BGT1mRNA, a transcriptional target of TonEBP/OREBP. Catalase, which decomposes hydrogen peroxide, does not have these effects, whether applied exogenously or overexpressed within the cells. Furthermore, NAC and MnTBAP, but not catalase, blunt high NaCl-induced increase in TonEBP/OREBP transactivation. N(G)-monomethyl-l-arginine, a general inhibitor of nitric oxide synthase, has no significant effect on either high NaCl-induced increase in superoxide or TonEBP/OREBP transcriptional activity, suggesting that the effects of ROS do not involve nitric oxide. Ouabain, an inhibitor of Na-K-ATPase, attenuates high NaCl-induced superoxide activity and inhibits TonEBP/OREBP transcriptional activity. We conclude that the high NaCl-induced increase in ROS, including superoxide, contributes to activation of TonEBP/OREBP by increasing its transactivation.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Division of Nephrology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | |
Collapse
|
48
|
Haddad JJ. Hypoxia and the regulation of mitogen-activated protein kinases: gene transcription and the assessment of potential pharmacologic therapeutic interventions. Int Immunopharmacol 2005; 4:1249-85. [PMID: 15313426 DOI: 10.1016/j.intimp.2004.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2004] [Revised: 06/09/2004] [Accepted: 06/15/2004] [Indexed: 12/20/2022]
Abstract
Oxygen is an environmental/developmental signal that regulates cellular energetics, growth, and differentiation processes. Despite its central role in nearly all higher life processes, the molecular mechanisms for sensing oxygen levels and the pathways involved in transducing this information are still being elucidated. Altering gene expression is the most fundamental and effective way for a cell to respond to extracellular signals and/or changes in its microenvironment. During development, the expression of specific sets of genes is regulated spatially (by position/morphogenetic gradients) and temporally, presumably via the sensing of molecular oxygen available within the microenvironment. Regulation of signaling responses is governed by transcription factors that bind to control regions (consensus sequences) of target genes and alter their expression in response to specific signals. Complex signal transduction during hypoxia (deficiency of oxygen in inspired gases or in arterial blood and/or in tissues) involves the coupling of ligand-receptor interactions to many intracellular events. These events basically include phosphorylations by tyrosine kinases and/or serine/threonine kinases, such as those of mitogen-activated protein kinases (MAPKs), a superfamily of kinases responsive to stress nonhomeostatic conditions. Protein phosphorylations imposed during hypoxia change enzyme activities and protein conformations, and the eventual outcome is rather complex, comprising of an alteration in cellular activity and changes in the programming of genes expressed within the responding cells. These molecular changes serve as signals that are crucial for cell survival under contingent conditions imposed during hypoxia. This review correlates current concepts of hypoxic sensing pathways with hypoxia-related phosphorylation mechanisms mediated by MAPKs via the genetic and pharmacologic regulation/manipulation of specific transcription factors and related cofactors.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Laboratories, University of California, San Francisco, CA, USA.
| |
Collapse
|
49
|
Gorina R, Petegnief V, Chamorro A, Planas AM. AG490 prevents cell death after exposure of rat astrocytes to hydrogen peroxide or proinflammatory cytokines: involvement of the Jak2/STAT pathway. J Neurochem 2005; 92:505-18. [PMID: 15659221 DOI: 10.1111/j.1471-4159.2004.02878.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Janus kinases/STAT pathway mediates cellular responses to certain oxidative stress stimuli and cytokines. Here we examine the activation of Stat1 and Stat3 in rat astrocyte cultures and its involvement in cell death. H(2)O(2), interferon (INF)-gamma and interleukin (IL)-6 but not IL-10 caused cell death. Stat1 was phosphorylated on tyrosine (Tyr)-701 after exposure to H(2)O(2), INF-gamma or IL-6 but not IL-10. Tyr-705 pStat3 was observed after H(2)O(2), IL-6 and IL-10. Also, H(2)O(2) induced serine (Ser)-727 phosphorylation of Stat1 but not Stat3. The degree of Tyr-701 pStat1 by the different treatments positively correlated with the corresponding reduction of cell viability. AG490, a Jak2 inhibitor, prevented Tyr-701 but not Ser-727, Stat1 phosphorylation. Also, AG490 inhibited Tyr-705 Stat3 phosphorylation induced by H(2)O(2) and IL-6 but did not prevent that induced by IL-10. Furthermore, AG490 conferred strong protection against cell death induced by INF-gamma, IL-6 and H(2)O(2). These results suggest that Jak2/Stat1 activation mediates cell death induced by proinflammatory cytokines and peroxides. However, we found evidence suggesting that AG490 reduces oxidative stress induced by H(2)O(2), which further shows that H(2)O(2) and/or derived reactive oxygen species directly activate Jak2/Stat1, but masks the actual involvement of this pathway in H(2)O(2)-induced cell death.
Collapse
Affiliation(s)
- Roser Gorina
- Departament de Farmacologia i Toxicologia, IIBB-CSIC, IDIBAPS, Rosselló 161, Planta 6, 08036 Barcelona, Spain
| | | | | | | |
Collapse
|
50
|
Choi JW, Shin CY, Yoo BK, Choi MS, Lee WJ, Han BH, Kim WK, Kim HC, Ko KH. Glucose deprivation increases hydrogen peroxide level in immunostimulated rat primary astrocytes. J Neurosci Res 2004; 75:722-31. [PMID: 14991848 DOI: 10.1002/jnr.20009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activated astrocytes produce a large amount of bioactive molecules, including reactive oxygen and nitrogen species. Astrocytes are in general resistant to those reactive species. However, we previously reported that immunostimulated astrocytes became highly vulnerable to metabolic insults, such as glucose deprivation. In this study, we investigated whether H(2)O(2) production was associated with the increased vulnerability. Glucose deprivation for up to 8 hr did not change the intracellular level of H(2)O(2) in astrocytes. Treatment with lipopolysaccharide plus interferon-gamma for 48 hr evoked astroglial H(2)O(2) production; however, no apparent death or injury was observed in immunostimulated astrocytes. Glucose deprivation after 48 hr of immunostimulation markedly increased H(2)O(2) level, depleted adenosine triphosphate (ATP), and enhanced lactate dehydrogenase (LDH) release. The ATP depletion and LDH release were in part prevented by catalase, mannitol, and N-acetyl-L-cysteine. The enhanced level of H(2)O(2) in glucose-deprived immunostimulated astrocytes appeared to be secondary to the depletion of reduced glutathione. 4-(2-Aminoethyl)bebzenesulfonyl fluoride (AEBSF), an inhibitor of NADPH oxidase, reduced H(2)O(2) level and LDH release in glucose-deprived immunostimulated astrocytes. H(2)O(2), either endogenously produced or exogenously added, depolarized mitochondrial transmembrane potential in glucose-deprived astrocytes, leading to their ATP depletion and death. The present results strongly indicate that glucose deprivation causes deterioration of immunostimulated astrocytes by increasing the intracellular concentration of H(2)O(2).
Collapse
Affiliation(s)
- Ji Woong Choi
- Department of Pharmacology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|