1
|
Saunders LJ, Nichols JW, Arnot JA, Armitage JM, Wania F. An amended in vitro- in vivo extrapolation model that accounts for first pass clearance effects on chemical bioaccumulation in fish. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:741-754. [PMID: 36876637 DOI: 10.1039/d2em00522k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Measured rates of in vitro intrinsic clearance for fish may be extrapolated to the whole animal as a means of estimating a whole-body biotransformation rate constant (kB; d-1). This estimate of kB can then be used as an input to existing bioaccumulation prediction models. Most in vitro-in vivo extrapolation/bioaccumulation (IVIVE/B) modeling efforts to date have focused on predicting the chemical bioconcentration in fish (aqueous only exposure), with less attention paid to dietary exposures. Following dietary uptake, biotransformation in the gut lumen, intestinal epithelia, and liver can reduce chemical accumulation; however, current IVIVE/B models do not consider these first pass clearance effects on dietary uptake. Here we present an amended IVIVE/B model that accounts for first pass clearance. The model is then used to examine how biotransformation in the liver and intestinal epithelia (alone or combined) may impact chemical accumulation that occurs during dietary exposure. First pass clearance by the liver can greatly reduce dietary uptake of contaminants, but these effects are only apparent at rapid rates of in vitro biotransformation (first order depletion rate constant kDEP ≥ 10 h-1). The impact of first pass clearance becomes more pronounced when biotransformation in the intestinal epithelia is included in the model. Modelled results suggest that biotransformation in the liver and intestinal epithelia cannot entirely explain reduced dietary uptake reported in several in vivo bioaccumulation tests. This unexplained reduction in dietary uptake is attributed to chemical degradation in the gut lumen. These findings underscore the need for research to directly investigate luminal biotransformation in fish.
Collapse
Affiliation(s)
- Leslie J Saunders
- Department of Physical and Environmental Science, University of Toronto Scarborough, Toronto, Ontario, Canada.
| | - John W Nichols
- United States Environmental Protection Agency, Duluth, MN, USA
| | - Jon A Arnot
- Department of Physical and Environmental Science, University of Toronto Scarborough, Toronto, Ontario, Canada.
- ARC Arnot Research and Consulting, Toronto, Ontario, Canada
| | - James M Armitage
- AES Armitage Environmental Sciences Inc., Ottawa, Ontario, Canada
| | - Frank Wania
- Department of Physical and Environmental Science, University of Toronto Scarborough, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Bischof I, Arnot JA, Jürling H, Knipschild G, Schlechtriem C, Schauerte A, Segner H. In vitro biotransformation assays using fish liver cells: Comparing rainbow trout and carp hepatocytes. FRONTIERS IN TOXICOLOGY 2022; 4:1021880. [PMID: 36211196 PMCID: PMC9538944 DOI: 10.3389/ftox.2022.1021880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Biotransformation assays using primary hepatocytes from rainbow trout, Oncorhynchus mykiss, were validated as a reliable in vitro tool to predict in vivo bioconcentration factors (BCF) of chemicals in fish. Given the pronounced interspecies differences of chemical biotransformation, the present study aimed to compare biotransformation rate values and BCF predictions obtained with hepatocytes from the cold-water species, rainbow trout, to data obtained with hepatocytes of the warm-water species, common carp (Cyprinus carpio). In a first step, we adapted the protocol for the trout hepatocyte assay, including the cryopreservation method, to carp hepatocytes. The successful adaptation serves as proof of principle that the in vitro hepatocyte biotransformation assays can be technically transferred across fish species. In a second step, we compared the in vitro intrinsic clearance rates (CLin vitro, int) of two model xenobiotics, benzo[a]pyrene (BaP) and methoxychlor (MXC), in trout and carp hepatocytes. The in vitro data were used to predict in vivo biotransformation rate constants (kB) and BCFs, which were then compared to measured in vivo kB and BCF values. The CLin vitro, int values of BaP and MXC did not differ significantly between trout and carp hepatocytes, but the predicted BCF values were significantly higher in trout than in carp. In contrast, the measured in vivo BCF values did not differ significantly between the two species. A possible explanation of this discrepancy is that the existing in vitro-in vivo prediction models are parameterized only for trout but not for carp. Therefore, future research needs to develop species-specific extrapolation models.
Collapse
Affiliation(s)
- Ina Bischof
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
- *Correspondence: Ina Bischof,
| | - Jon A. Arnot
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- ARC Arnot Research and Consulting, Toronto, ON, Canada
| | - Heinrich Jürling
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Georg Knipschild
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | | | - Anna Schauerte
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Kropf C, Begnaud F, Gimeno S, Berthaud F, Debonneville C, Segner H. In Vitro Biotransformation Assays Using Liver S9 Fractions and Hepatocytes from Rainbow Trout (Oncorhynchus mykiss): Overcoming Challenges with Difficult to Test Fragrance Chemicals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2396-2408. [PMID: 32915480 DOI: 10.1002/etc.4872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/02/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
In vitro metabolic stability assays using rainbow trout (Oncorhynchus mykiss) isolated hepatocytes (RT-HEP) or hepatic S9 fractions (RT-S9) were introduced to provide biotransformation rate data for the assessment of chemical bioaccumulation in fish. The present study explored the suitability of the RT-HEP and RT-S9 assays for difficult test chemicals, and the in vitro-based predictions were compared to in silico-based predictions and in vivo-measured bioconcentration factors (BCFs). The results show that volatile or reactive chemicals can be tested with minor modifications of the in vitro protocols. For hydrophobic chemicals, a passive dosing technique was developed. Finally, a design-of-experiment approach was used to identify optimal in vitro assay conditions. The modified assay protocols were applied to 10 fragrances with diverse physicochemical properties. The in vitro intrinsic clearance rates were higher in the S9 than in the hepatocyte assay, but the in vitro-in vivo (IVIV) predictions were comparable between the 2 assays. The IVIV predictions classified the test chemicals as nonbioaccumulative (BCF < 2000), which was in agreement with the in vivo data but in contrast to the in silico-based predictions. The findings from the present study provide strong evidence that the RT-HEP and RT-S9 assays can provide reliable estimates of in vivo biotransformation rates for test chemicals with difficult physicochemical properties. Environ Toxicol Chem 2020;39:2396-2408. © 2020 SETAC.
Collapse
Affiliation(s)
- Christian Kropf
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Frédéric Begnaud
- Corporate R&D Division/Analytical Innovation, Firmenich International, Geneva, Switzerland
| | - Sylvia Gimeno
- Legal and Compliance, Firmenich Belgium, Louvain-La-Neuve, Belgium
| | - Fabienne Berthaud
- Corporate R&D Division/Analytical Innovation, Firmenich International, Geneva, Switzerland
| | - Christian Debonneville
- Corporate R&D Division/Analytical Innovation, Firmenich International, Geneva, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Laue H, Hostettler L, Badertscher RP, Jenner KJ, Sanders G, Arnot JA, Natsch A. Examining Uncertainty in In Vitro-In Vivo Extrapolation Applied in Fish Bioconcentration Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9483-9494. [PMID: 32633948 DOI: 10.1021/acs.est.0c01492] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In vitro biotransformation rates were determined for 30 chemicals, mostly fragrance ingredients, using trout liver S9 fractions (RT-S9) and incorporated into in vitro-in vivo extrapolation (IVIVE) models to predict bioconcentration factors (BCFs). Predicted BCFs were compared against empirical BCFs to explore potential major uncertainties involved in the in vitro methods and IVIVE models: (i) in vitro chemical test concentrations; (ii) different gill uptake rate constant calculations (k1); (iii) protein binding (different calculations and measurement of the fraction of unbound chemical, fU); (iv) species differences; and (v) extrahepatic biotransformation. Predicted BCFs were within 0.5 log units for 44% of the chemicals compared to empirical BCFs, whereas 56% were overpredicted by >0.5 log units. This trend of overprediction was reduced by alternative k1 calculations to 32% of chemicals being overpredicted. Moreover, hepatic in vitro rates scaled to whole body biotransformation rates (kB) were compared against in vivo kB estimates. In vivo kB was underestimated for 79% of the chemicals. Neither lowering the test concentration, nor incorporation of new measured fU values, nor species matching avoided the tendency to overpredict BCFs indicating that further improvements to the IVIVE models are needed or extrahepatic biotransformation plays an underestimated role.
Collapse
Affiliation(s)
- Heike Laue
- Givaudan Schweiz AG, Fragrances S&T, 8310 Kemptthal, Switzerland
| | - Lu Hostettler
- Givaudan Schweiz AG, Fragrances S&T, 8310 Kemptthal, Switzerland
| | | | - Karen J Jenner
- Givaudan UK Ltd, Regulatory Affairs and Product Safety, Ashford, Kent TN24 OLT, United Kingdom
| | - Gordon Sanders
- Givaudan International SA, Regulatory Affairs and Product Safety, 1214 Vernier, Switzerland
| | - Jon A Arnot
- ARC Arnot Research and Consulting, Toronto, Ontario M4M 1W4, Canada
| | - Andreas Natsch
- Givaudan Schweiz AG, Fragrances S&T, 8310 Kemptthal, Switzerland
| |
Collapse
|
5
|
Nichols J, Fay K, Bernhard MJ, Bischof I, Davis J, Halder M, Hu J, Johanning K, Laue H, Nabb D, Schlechtriem C, Segner H, Swintek J, Weeks J, Embry M. Reliability of In Vitro Methods Used to Measure Intrinsic Clearance of Hydrophobic Organic Chemicals by Rainbow Trout: Results of an International Ring Trial. Toxicol Sci 2018; 164:563-575. [PMID: 29767801 PMCID: PMC6061802 DOI: 10.1093/toxsci/kfy113] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In vitro assays are widely employed to obtain intrinsic clearance estimates used in toxicokinetic modeling efforts. However, the reliability of these methods is seldom reported. Here we describe the results of an international ring trial designed to evaluate two in vitro assays used to measure intrinsic clearance in rainbow trout. An important application of these assays is to predict the effect of biotransformation on chemical bioaccumulation. Six laboratories performed substrate depletion experiments with cyclohexyl salicylate, fenthion, 4-n-nonylphenol, deltamethrin, methoxychlor, and pyrene using cryopreserved hepatocytes and liver S9 fractions from trout. Variability within and among laboratories was characterized as the percent coefficient of variation (CV) in measured in vitro intrinsic clearance rates (CLIN VITRO, INT; ml/h/mg protein or 106 cells) for each chemical and test system. Mean intralaboratory CVs for each test chemical averaged 18.9% for hepatocytes and 14.1% for S9 fractions, whereas interlaboratory CVs (all chemicals and all tests) averaged 30.1% for hepatocytes and 22.4% for S9 fractions. When CLIN VITRO, INT values were extrapolated to in vivo intrinsic clearance estimates (CLIN VIVO, INT; l/d/kg fish), both assays yielded similar levels of activity (<4-fold difference for all chemicals). Hepatic clearance rates (CLH; l/d/kg fish) calculated using data from both assays exhibited even better agreement. These findings show that both assays are highly reliable and suggest that either may be used to inform chemical bioaccumulation assessments for fish. This study highlights several issues related to the demonstration of assay reliability and may provide a template for evaluating other in vitro biotransformation assays.
Collapse
Affiliation(s)
- John Nichols
- ORD, NHEERL, Mid-Continent Ecology Division, U.S. Environmental Protection Agency, Duluth, Minnesota
| | - Kellie Fay
- Biology Department, University of Minnesota, Duluth, Minnesota, 55804
- CSRA Inc, Duluth, Minnesota
| | | | - Ina Bischof
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany, 57392
| | - John Davis
- The Dow Chemical Company, Midland, Michigan, 48674
| | - Marlies Halder
- European Commission, Joint Research Centre, Ispra, Italy, I-21027
| | - Jing Hu
- The Dow Chemical Company, Midland, Michigan, 48674
| | | | - Heike Laue
- Givaudan Schweiz AG, Dübendorf, Switzerland, 8600
| | - Diane Nabb
- DuPont Haskell Global Centers for Health and Environmental Sciences, Newark, Delaware
| | - Christian Schlechtriem
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany, 57392
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland, 3001
| | - Joe Swintek
- Badger Technical Services, Duluth, Minnesota, 55804
| | - John Weeks
- Weeks Entox, Knoxville, Tennessee, 37931
| | - Michelle Embry
- Health and Environmental Sciences Institute, Washington, District of Columbia 20005
| |
Collapse
|
6
|
Rehberger K, Kropf C, Segner H. In vitro or not in vitro: a short journey through a long history. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:23. [PMID: 30009109 PMCID: PMC6018605 DOI: 10.1186/s12302-018-0151-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/06/2018] [Indexed: 05/19/2023]
Abstract
The aim of ecotoxicology is to study toxic effects on constituents of ecosystems, with the protection goal being populations and communities rather than individual organisms. In this ecosystem perspective, the use of in vitro methodologies measuring cellular and subcellular endpoints at a first glance appears to be odd. Nevertheless, more recently in vitro approaches gained momentum in ecotoxicology. In this article, we will discuss important application domains of in vitro methods in ecotoxicology. One area is the use of in vitro assays to replace, reduce, and refine (3R) in vivo tests. Research in this field has focused mainly on the use of in vitro cytotoxicity assays with fish cells as non-animal alternative to the in vivo lethality test with fish and on in vitro biotransformation assays as part of an alternative testing strategy for bioaccumulation testing with fish. Lessons learned from this research include the importance of a critical evaluation of the sensitivity, specificity and exposure conditions of in vitro assays, as well as the availability of appropriate in vitro-in vivo extrapolation models. In addition to this classical 3R application, other application domains of in vitro assays in ecotoxicology include the screening and prioritization of chemical hazards, the categorization of chemicals according to their modes of action and the provision of mechanistic information for the pathway-based prediction of adverse outcomes. The applications discussed in this essay may highlight the potential of in vitro technologies to enhance the environmental hazard assessment of single chemicals and complex mixtures at a reduced need of animal testing.
Collapse
Affiliation(s)
- Kristina Rehberger
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, P O Box, 3001 Bern, Switzerland
| | - Christian Kropf
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, P O Box, 3001 Bern, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, P O Box, 3001 Bern, Switzerland
| |
Collapse
|
7
|
Bischof I, Köster J, Segner H, Schlechtriem C. Hepatocytes as in vitro test system to investigate metabolite patterns of pesticides in farmed rainbow trout and common carp: Comparison between in vivo and in vitro and across species. Comp Biochem Physiol C Toxicol Pharmacol 2016; 187:62-73. [PMID: 27185525 DOI: 10.1016/j.cbpc.2016.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 12/31/2022]
Abstract
In vitro tools using isolated primary fish hepatocytes have been proposed as a useful model to study the hepatic metabolism of xenobiotics in fish. In order to evaluate the potential of in vitro fish hepatocyte assays to provide information on in vivo metabolite patterns of pesticides in farmed fish, the present study addressed the following questions: Are in vitro and in vivo metabolite patterns comparable? Are species specific differences of metabolite patterns in vivo reflected in vitro? Are metabolite patterns obtained from cryopreserved hepatocytes comparable to those from freshly isolated cells? Rainbow trout and common carp were dosed orally with feed containing the pesticide methoxychlor (MXC) for 14days. In parallel, in vitro incubations using suspensions of freshly isolated or cryopreserved primary hepatocytes obtained from both species were performed. In vivo and in vitro samples were analyzed by thin-layer chromatography with authentic standards supported by HPLC-MS. Comparable metabolite patterns from a qualitative perspective were observed in liver in vivo and in hepatocyte suspensions in vitro. Species specific differences of MXC metabolite patterns observed between rainbow trout and common carp in vivo were well reflected by experiments with hepatocytes in vitro. Finally, cryopreserved hepatocytes produced comparable metabolite patterns to freshly isolated cells. The results of this study indicate that the in vitro hepatocyte assay could be used to identify metabolite patterns of pesticides in farmed fish and could thus serve as a valuable tool to support in vivo studies as required for pesticides approval according to the EU regulation 1107.
Collapse
Affiliation(s)
- Ina Bischof
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, 57392 Schmallenberg, Germany; Centre for Fish and Wildlife Health, University of Bern, Switzerland.
| | - Jessica Köster
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Switzerland
| | - Christian Schlechtriem
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| |
Collapse
|