1
|
Heintz MM, Klaren WD, East AW, Haws LC, McGreal SR, Campbell RR, Thompson CM. Comparison of transcriptomic profiles between HFPO-DA and prototypical PPARα, PPARγ, and cytotoxic agents in mouse, rat, and pooled human hepatocytes. Toxicol Sci 2024; 200:165-182. [PMID: 38574381 PMCID: PMC11199992 DOI: 10.1093/toxsci/kfae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Like many per- or polyfluorinated alkyl substances (PFAS), toxicity studies with HFPO-DA (ammonium, 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate), a short-chain PFAS used in the manufacture of some types of fluorinated polymers, indicate that the liver is the primary target of toxicity in rodents following oral exposure. Although the current weight of evidence supports the PPARα mode of action (MOA) for liver effects in HFPO-DA-exposed mice, alternate MOAs have also been hypothesized including PPARγ or cytotoxicity. To further evaluate the MOA for HFPO-DA in rodent liver, transcriptomic analyses were conducted on samples from primary mouse, rat, and pooled human hepatocytes treated for 12, 24, or 72 h with various concentrations of HFPO-DA, or agonists of PPARα (GW7647), PPARγ (rosiglitazone), or cytotoxic agents (ie, acetaminophen or d-galactosamine). Concordance analyses of enriched pathways across chemicals within each species demonstrated the greatest concordance between HFPO-DA and PPARα agonist GW7647-treated hepatocytes compared with the other chemicals evaluated. These findings were supported by benchmark concentration modeling and predicted upstream regulator results. In addition, transcriptomic analyses across species demonstrated a greater transcriptomic response in rodent hepatocytes treated with HFPO-DA or agonists of PPARα or PPARγ, indicating rodent hepatocytes are more sensitive to HFPO-DA or PPARα/γ agonist treatment. These results are consistent with previously published transcriptomic analyses and further support that liver effects in HFPO-DA-exposed rodents are mediated through rodent-specific PPARα signaling mechanisms as part of the MOA for PPARα activator-induced rodent hepatocarcinogenesis. Thus, effects observed in mouse liver are not appropriate endpoints for toxicity value development for HFPO-DA in human health risk assessment.
Collapse
|
2
|
Al-Shakliah NS, Attwa MW, AlRabiah H, Kadi AA. Identification and characterization of in vitro, in vivo, and reactive metabolites of tandutinib using liquid chromatography ion trap mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:399-410. [PMID: 33410830 DOI: 10.1039/d0ay02106g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tandutinib (TND) is a novel, oral small molecule designed for treating acute myeloid leukemia (AML) by inhibiting type III receptor tyrosine kinases. This study reports the use of in silico, in vivo, and in vitro methods to investigate the metabolism and possible metabolic bioactivation of TND. First, in silico metabolism of TND was assessed using the WhichP450™ module of the StarDrop® software to determine labile sites of metabolism in the TND chemical structure. Second, the XenoSite reactivity model, a web-based metabolism prediction software, was used to determine probable bioactive centers. Based on the in silico outcomes, a list of predicted metabolites and reactive intermediates were prepared. Third, in vitro and in vivo experiments were performed. In vitro TND metabolites were generated through incubation of TND with rat liver microsomes (RLMs). Another incubation of TND with RLMs was separately performed in the presence of GSH and KCN to check for the generation of reactive intermediates (soft and hard electrophiles). In vitro phase II metabolism was assessed by incubation of TND with isolated perfused rat hepatocytes. In vivo metabolism was investigated by oral gavage of TND (37 mg kg-1) in Sprague Dawley rats. Five in vitro phase I metabolites, one in vitro phase II and five reactive iminium intermediates (cyano adducts), six in vivo phase I, and one in vivo phase II metabolites of TND were characterized. The in vitro and in vivo metabolic pathways involved were O-dealkylation, α-hydroxylation, α-carbonyl formation, reduction, glucuronide, and sulfate conjugation. No GSH conjugate or its catabolic products were detected either in vitro or in vivo. Two cyclic tertiary rings of TND (piperazine and piperidine) were metabolically bioactivated to generate reactive iminium intermediates forming cyano adducts with KCN. The formed reactive intermediates may be the reason behind TND toxicity. In silico toxicological studies were performed for TND and its related (in vitro and in vivo) metabolites were evaluated using the DEREK software tool.
Collapse
Affiliation(s)
- Nasser S Al-Shakliah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| | | | | | | |
Collapse
|
3
|
Shi C, Wang Q, Rao Z, Shi Y, Wei S, Wang H, Lu X, Wang P, Lu L, Zhou H, Cheng F. Diabetes induces hepatocyte pyroptosis by promoting oxidative stress-mediated NLRP3 inflammasome activation during liver ischaemia and reperfusion injury. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:739. [PMID: 32647664 PMCID: PMC7333130 DOI: 10.21037/atm-20-1839] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Although diabetes mellitus has been reported to aggravate liver ischaemia and reperfusion (IR) injury, the basic mechanism remains largely unknown. The object of the present study was to determine the role of oxidative stress and hepatocellular pyroptosis in liver IR injury in diabetic mice. Methods Db/db and C57BL/6 mice at 8 weeks of age were subjected to liver IR injury. Liver injury and hepatocyte cell death were analyzed. A NOD-like receptor family pyrin domain-containing 3 protein (NLRP3) inflammasome antagonist (CY09) and a reactive oxygen species (ROS) antagonist (N-Acetyl-L-cysteine, NAC) were used to determine the role of ROS-mediated hepatocellular pyroptosis in diabetic mice post-IR. Results Aggravated liver IR injury was found in db/db mice compared to C57BL/6 control mice, as demonstrated by increased serum alanine aminotransaminase (ALT) and aspartate aminotransaminase (AST) levels, liver architecture damage and Suzuki scores. Interestingly, IR induces the pyroptosis of hepatocytes in db/db mice, as evidenced by enhanced NLRP3 inflammasome activation, increased numbers of terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL)-positive hepatocytes and increased gene expression of interleukin-1β (IL-1β) and IL-18 in livers post-IR. The inhibitory effect of CY09, an NLRP3 antagonist, efficiently abrogated the exacerbation effects of diabetes on liver IR injury in db/db mice. Furthermore, increased ROS expression was detected in db/db mice compared to control mice after IR. ROS scavenging by NAC pretreatment markedly inhibited hepatocellular NLRP3 inflammasome activation and pyroptosis in the db/db mice post-IR, indicating that ROS play an essential role in mediating hepatocyte pyroptosis in the setting of diabetes mellitus. Conclusions Our results demonstrate that diabetes induces hepatocyte pyroptosis by promoting oxidative stress-mediated NLRP3 inflammasome activation during liver IR injury. Strategies targeting ROS and NLRP3 inflammasome activation would be beneficial for preventing liver IR injury in diabetic patients.
Collapse
Affiliation(s)
- Chengyu Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Qi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,School of Medical, Southeast University, Nanjing, China
| | - Zhuqing Rao
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Song Wei
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,School of Medical, Southeast University, Nanjing, China
| | - Hao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Xu Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Ping Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,School of Medical, Southeast University, Nanjing, China.,Department of General Surgery, People's Hospital of Qinghai Province, Xining, Qinghai, China
| | - Haoming Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Feng Cheng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| |
Collapse
|
4
|
Tsai T, Tam K, Chen S, Liou J, Tsai Y, Lee Y, Huang T, Shyue S. Deletion of caveolin-1 attenuates LPS/GalN-induced acute liver injury in mice. J Cell Mol Med 2018; 22:5573-5582. [PMID: 30134043 PMCID: PMC6201225 DOI: 10.1111/jcmm.13831] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/23/2018] [Accepted: 07/08/2018] [Indexed: 12/15/2022] Open
Abstract
Acute hepatic injury caused by inflammatory liver disease is associated with high mortality. This study examined the role of caveolin-1 (Cav-1) in lipopolysaccharide (LPS) and D-galactosamine (GalN)-induced fulminant hepatic injury in wild type and Cav-1-null (Cav-1-/- ) mice. Hepatic Cav-1 expression was induced post-LPS/GalN treatment in wild-type mice. LPS/GalN-treated Cav-1-/- mice showed reduced lethality and markedly attenuated liver damage, neutrophil infiltration and hepatocyte apoptosis as compared to wild-type mice. Cav-1 deletion significantly reduced LPS/GalN-induced caspase-3, caspase-8 and caspase-9 activation and pro-inflammatory cytokine and chemokine expression. Additionally, Cav-1-/- mice showed suppressed expression of Toll-like receptor 4 (TLR4) and CD14 in Kupffer cells and reduced expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 in liver cells. Cav-1 deletion impeded LPS/GalN-induced inducible nitric oxide synthase expression and nitric oxide production and hindered nuclear factor-κB (NF-κB) activation. Taken together, Cav-1 regulated the expression of mediators that govern LPS-induced inflammatory signalling in mouse liver. Thus, deletion of Cav-1 suppressed the inflammatory response mediated by the LPS-CD14-TLR4-NF-κb pathway and alleviated acute liver injury in mice.
Collapse
Affiliation(s)
| | - Kabik Tam
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| | - Shu‐Fen Chen
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| | - Jun‐Yang Liou
- Institute of Cellular and System MedicineNational Health Research InstitutesZhunanTaiwan
| | - Yi‐Chen Tsai
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| | - Yen‐Ming Lee
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
- Graduate Institute of Life ScienceNational Defense Medical CenterTaipeiTaiwan
| | - Tai‐Yu Huang
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| | - Song‐Kun Shyue
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| |
Collapse
|
5
|
Liu C, Sekine S, Song B, Ito K. Use of Primary Rat Hepatocytes for Prediction of Drug-Induced Mitochondrial Dysfunction. ACTA ACUST UNITED AC 2017; 72:14.16.1-14.16.10. [PMID: 28463418 DOI: 10.1002/cptx.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mitochondrial dysfunction plays a central role in drug-induced liver injury. To evaluate drug-induced mitochondrial impairment, several isolated mitochondria- or cell line-based assays have been reported. Among them, culturing HepG2 cells in galactose provides a remarkable method to assess mitochondrial toxicity by activating mitochondrial aerobic respiration. We applied this assay to primary rat hepatocytes by culturing cells in galactose and hyperoxia to enhance the evaluation of metabolism-related drug-induced mitochondrial toxicity. Conventional culture of primary hepatocytes under high-glucose and hypoxic conditions could force cells to switch energy generation to glycolysis. By contrast, cells cultured in galactose and hyperoxia could maintain energy generation from mitochondrial aerobic respiration, which is consistent with physiological conditions, and consequently improve the susceptibility of cells to mitochondrial toxicants. Measuring the toxicities of test compounds in primary rat hepatocytes cultured in modified conditions provides a useful model to identify mitochondrial dysfunction-mediated drug-induced hepatotoxicity. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Cong Liu
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Shuichi Sekine
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Binbin Song
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
6
|
Koen YM, Liu K, Shinogle H, Williams TD, Hanzlik RP. Comparative Toxicity and Metabolism of N-Acyl Homologues of Acetaminophen and Its Isomer 3'-Hydroxyacetanilide. Chem Res Toxicol 2016; 29:1857-1864. [PMID: 27680534 DOI: 10.1021/acs.chemrestox.6b00270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The hepatotoxicity of acetaminophen (APAP) is generally attributed to the formation of a reactive quinoneimine metabolite (NAPQI) that depletes glutathione and covalently binds to hepatocellular proteins. To explore the importance of the N-acyl group in APAP metabolism and toxicity, we synthesized 12 acyl side chain homologues of acetaminophen (APAP) and its 3'-regioisomer (AMAP), including the respective N-(4-pentynoyl) analogues PYPAP and PYMAP. Rat hepatocytes converted APAP, AMAP, PYPAP, and PYMAP extensively to O-glucuronide and O-sulfate conjugates in varying proportions, whereas glutathione or cysteine conjugates were observed only for APAP and PYPAP. PYPAP and PYMAP also underwent N-deacylation followed by O-sulfation and/or N-acetylation to a modest extent. The overall rates of metabolism in hepatocytes varied approximately 2-fold in the order APAP < AMAP ≈ PYPAP < PYMAP. Rat liver microsomes supplemented with NADPH and GSH converted APAP and PYPAP to their respective glutathione conjugates (formed via a reactive quinoneimine intermediate). With PYPAP only, a hydroxylated GSH conjugate was also observed. Thus, differences in biotransformation among these analogues were modest and mostly quantitative in nature. Cytotoxicity was evaluated in cultured hepatocytes by monitoring cell death using time-lapse photomicrography coupled with Hoechst 33342 and CellTox Green dyes to facilitate counting live cells vs dead cells, respectively. Progress curves for cell death and the areas under those curves showed that toxicity was markedly dependent on compound, concentration, and time. AMAP was essentially equipotent with APAP. Homologating the acyl side chain from C-2 to C-5 led to progressive increases in toxicity up to 80-fold in the para series. In conclusion, whereas N- or ring-substitution on APAP decrease metabolism and toxicity, homologating the N-acyl side chain increases metabolism about 2-fold, preserves the chemical reactivity of quinoneimine metabolites, and increases toxicity by up to 80-fold.
Collapse
Affiliation(s)
- Yakov M Koen
- Department of Medicinal Chemistry, ‡Microscopy and Analytical Imaging Laboratory, §Mass Spectrometry Laboratory, University of Kansas , Lawrence, Kansas 66045, United States
| | - Ke Liu
- Department of Medicinal Chemistry, ‡Microscopy and Analytical Imaging Laboratory, §Mass Spectrometry Laboratory, University of Kansas , Lawrence, Kansas 66045, United States
| | - Heather Shinogle
- Department of Medicinal Chemistry, ‡Microscopy and Analytical Imaging Laboratory, §Mass Spectrometry Laboratory, University of Kansas , Lawrence, Kansas 66045, United States
| | - Todd D Williams
- Department of Medicinal Chemistry, ‡Microscopy and Analytical Imaging Laboratory, §Mass Spectrometry Laboratory, University of Kansas , Lawrence, Kansas 66045, United States
| | - Robert P Hanzlik
- Department of Medicinal Chemistry, ‡Microscopy and Analytical Imaging Laboratory, §Mass Spectrometry Laboratory, University of Kansas , Lawrence, Kansas 66045, United States
| |
Collapse
|
7
|
Brina D, Miluzio A, Ricciardi S, Clarke K, Davidsen PK, Viero G, Tebaldi T, Offenhäuser N, Rozman J, Rathkolb B, Neschen S, Klingenspor M, Wolf E, Gailus-Durner V, Fuchs H, Hrabe de Angelis M, Quattrone A, Falciani F, Biffo S. eIF6 coordinates insulin sensitivity and lipid metabolism by coupling translation to transcription. Nat Commun 2015; 6:8261. [PMID: 26383020 PMCID: PMC4595657 DOI: 10.1038/ncomms9261] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 08/04/2015] [Indexed: 02/07/2023] Open
Abstract
Insulin regulates glycaemia, lipogenesis and increases mRNA translation. Cells with reduced eukaryotic initiation factor 6 (eIF6) do not increase translation in response to insulin. The role of insulin-regulated translation is unknown. Here we show that reduction of insulin-regulated translation in mice heterozygous for eIF6 results in normal glycaemia, but less blood cholesterol and triglycerides. eIF6 controls fatty acid synthesis and glycolysis in a cell autonomous fashion. eIF6 acts by exerting translational control of adipogenic transcription factors like C/EBPβ, C/EBPδ and ATF4 that have G/C rich or uORF sequences in their 5' UTR. The outcome of the translational activation by eIF6 is a reshaping of gene expression with increased levels of lipogenic and glycolytic enzymes. Finally, eIF6 levels modulate histone acetylation and amounts of rate-limiting fatty acid synthase (Fasn) mRNA. Since obesity, type 2 diabetes, and cancer require a Fasn-driven lipogenic state, we propose that eIF6 could be a therapeutic target for these diseases.
Collapse
Affiliation(s)
- Daniela Brina
- INGM, ‘Romeo ed Enrica Invernizzi', 20122 Milano, Italy
| | | | | | - Kim Clarke
- Centre for Computational Biology and Modeling, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Peter K. Davidsen
- Centre for Computational Biology and Modeling, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Gabriella Viero
- Institute of Biophysics, 38123 Trento, Italy
- Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Toma Tebaldi
- Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| | | | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilian-University, 81377 Munich, Germany
| | - Susanne Neschen
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Martin Klingenspor
- Else Kröner-Fresenius Center, Technische Universität München, 85354 Freising, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilian-University, 81377 Munich, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
| | | | - Francesco Falciani
- Centre for Computational Biology and Modeling, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Stefano Biffo
- INGM, ‘Romeo ed Enrica Invernizzi', 20122 Milano, Italy
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
8
|
Fay KA, Nabb DL, Mingoia RT, Bischof I, Nichols JW, Segner H, Johanning K, Han X. Determination of Metabolic Stability Using Cryopreserved Hepatocytes from Rainbow Trout (
Oncorhynchus mykiss
). ACTA ACUST UNITED AC 2015; 65:4.42.1-4.42.29. [DOI: 10.1002/0471140856.tx0442s65] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kellie A. Fay
- ORD/NHEERL/Mid‐Continent Ecology Division, U.S. EPA Duluth Minnesota
| | - Diane L. Nabb
- DuPont Haskell Global Centers for Health and Environmental Sciences Newark Delaware
| | - Robert T. Mingoia
- DuPont Haskell Global Centers for Health and Environmental Sciences Newark Delaware
| | - Ina Bischof
- Centre for Fish and Wildlife Health, University of Bern Bern Switzerland
- Fraunhofer Institute for Molecular Biology and Applied Ecology Schmallenberg Germany
| | - John W. Nichols
- ORD/NHEERL/Mid‐Continent Ecology Division, U.S. EPA Duluth Minnesota
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern Bern Switzerland
| | - Karla Johanning
- KJ Scientific LCC, Texas Life Sciences Collaboration Center Georgetown Texas
| | - Xing Han
- DuPont Haskell Global Centers for Health and Environmental Sciences Newark Delaware
| |
Collapse
|
9
|
Shimokawa Y, Sasahara K, Yoda N, Mizuno K, Umehara K. Delamanid does not inhibit or induce cytochrome p450 enzymes in vitro. Biol Pharm Bull 2015; 37:1727-35. [PMID: 25366478 DOI: 10.1248/bpb.b14-00311] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Delamanid is a new drug for the treatment of multidrug-resistant tuberculosis. Individuals who are co-infected with human immunodeficiency virus and Mycobacterium tuberculosis may require treatment with a number of medications that might interact significantly with the CYP enzyme system as inhibitors or inducers. It is therefore important to understand how drugs in development for the treatment of tuberculosis will affect CYP enzyme metabolism. The ability of delamanid to inhibit or induce CYP enzymes was investigated in vitro using human liver microsomes or human hepatocytes. Delamanid (100 µM) had little potential for mechanism-based inactivation on eight CYP isoforms (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4). Delamanid's metabolites were noted to inhibit the metabolism of some CYP isoforms, but these effects were observed only at metabolite concentrations that were well above those observed in human plasma during clinical trials. Delamanid (≤10 µM) did not induce CYP1A2, CYP2C9, and CYP3A4 activities in human hepatocytes, and there were no increases in CYP1A2, CYP2B6, CYP2C9, and CYP3A4 mRNA levels. Taken together, these data suggest that delamanid is unlikely to cause clinically relevant drug-drug interactions when co-administered with products that are metabolized by the CYP enzyme system.
Collapse
|
10
|
Koen YM, Hajovsky H, Liu K, Williams TD, Galeva NA, Staudinger JL, Hanzlik RP. Liver protein targets of hepatotoxic 4-bromophenol metabolites. Chem Res Toxicol 2012; 25:1777-86. [PMID: 22827705 PMCID: PMC3431021 DOI: 10.1021/tx3002675] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The hepatotoxicity of bromobenzene (BB) is directly related to the covalent binding of both initially formed epoxide and secondary quinone metabolites to at least 45 different liver proteins. 4-Bromophenol (4BP) is a significant BB metabolite and a precursor to reactive quinone metabolites; yet, when administered exogenously, it has negligible hepatotoxicity as compared to BB. The protein adducts of 4BP were thus labeled as nontoxic [Monks, T. J., Hinson, J. A., and Gillette, J. R. (1982) Life Sci. 30, 841-848]. To help identify which BB-derived adducts might be related to its cytotoxicity, we sought to identify the supposedly nontoxic adducts of 4BP and eliminate them from the BB target protein list. Administration of [(14)C]-4BP to phenobarbital-induced rats resulted in covalent binding of 0.25, 0.33, and 0.42 nmol equiv 4BP/mg protein in the mitochondrial, microsomal, and cytosolic fractions, respectively. These values may be compared to published values of 3-6 nmol/mg protein from a comparable dose of [(14)C]-BB. After subcellular fractionation and 2D electrophoresis, 47 radioactive spots on 2D gels of the mitochondrial, microsomal, and cytosolic fractions were excised, digested, and analyzed by LC-MS/MS. Twenty-nine of these spots contained apparently single proteins, of which 14 were nonredundant. Nine of the 14 are known BB targets. Incubating freshly isolated rat hepatocytes with 4BP (0.1-0.5 mM) produced time- and concentration-dependent increases in lactate dehydrogenase release and changes in cellular morphology. LC-MS/MS analysis of the cell culture medium revealed rapid and extensive sulfation and glucuronidation of 4BP as well as formation of a quinone-derived glutathione conjugate. Studies with 7-hydroxycoumarin, (-)-borneol, or D-(+)-galactosamine showed that inhibiting the glucuronidation/sulfation of 4BP increased the formation of a GSH-bromoquinone adduct, increased covalent binding of 4BP to hepatocyte proteins, and potentiated its cytotoxicity. Taken together, our data demonstrate that protein adduction by 4BP metabolites can be toxicologically consequential and provide a mechanistic explanation for the failure of exogenously administered 4BP to cause hepatotoxicity. Thus, the probable reason for the low toxicity of 4BP in vivo is that rapid conjugation limits its oxidation and covalent binding and thus its toxicity.
Collapse
Affiliation(s)
- Yakov M. Koen
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Heather Hajovsky
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Ke Liu
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Todd D. Williams
- Mass Spectrometry Laboratory, University of Kansas, Lawrence, Kansas 66045
| | - Nadezhda A. Galeva
- Mass Spectrometry Laboratory, University of Kansas, Lawrence, Kansas 66045
| | - Jeffrey L. Staudinger
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas 66045
| | - Robert P. Hanzlik
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
11
|
Hajovsky H, Hu G, Koen Y, Sarma D, Cui W, Moore DS, Staudinger JL, Hanzlik RP. Metabolism and toxicity of thioacetamide and thioacetamide S-oxide in rat hepatocytes. Chem Res Toxicol 2012; 25:1955-63. [PMID: 22867114 DOI: 10.1021/tx3002719] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hepatotoxicity of thioacetamide (TA) has been known since 1948. In rats, single doses cause centrolobular necrosis accompanied by increases in plasma transaminases and bilirubin. To elicit these effects, TA requires oxidative bioactivation, leading first to its S-oxide (TASO) and then to its chemically reactive S,S-dioxide (TASO(2)), which ultimately modifies amine-lipids and proteins. To generate a suite of liver proteins adducted by TA metabolites for proteomic analysis and to reduce the need for both animals and labeled compounds, we treated isolated hepatocytes directly with TA. Surprisingly, TA was not toxic at concentrations up to 50 mM for 40 h. On the other hand, TASO was highly toxic to isolated hepatocytes as indicated by LDH release, cellular morphology, and vital staining with Hoechst 33342/propidium iodide. TASO toxicity was partially blocked by the CYP2E1 inhibitors diallyl sulfide and 4-methylpyrazole and was strongly inhibited by TA. Significantly, we found that hepatocytes produce TA from TASO relatively efficiently by back-reduction. The covalent binding of [(14)C]-TASO is inhibited by unlabeled TA, which acts as a "cold-trap" for [(14)C]-TA and prevents its reoxidation to [(14)C]-TASO. This in turn increases the net consumption of [(14)C]-TASO despite the fact that its oxidation to TASO(2) is inhibited. The potent inhibition of TASO oxidation by TA, coupled with the back-reduction of TASO and its futile redox cycling with TA, may help explain phenomena previously interpreted as "saturation toxicokinetics" in the in vivo metabolism and toxicity of TA and TASO. The improved understanding of the metabolism and covalent binding of TA and TASO facilitates the use of hepatocytes to prepare protein adducts for target protein identification.
Collapse
Affiliation(s)
- Heather Hajovsky
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KA 66045, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Sarma D, Hajovsky H, Koen YM, Galeva NA, Williams TD, Staudinger JL, Hanzlik RP. Covalent modification of lipids and proteins in rat hepatocytes and in vitro by thioacetamide metabolites. Chem Res Toxicol 2012; 25:1868-77. [PMID: 22667464 DOI: 10.1021/tx3001658] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thioacetamide (TA) is a well-known hepatotoxin in rats. Acute doses cause centrilobular necrosis and hyperbilirubinemia while chronic administration leads to biliary hyperplasia and cholangiocarcinoma. Its acute toxicity requires its oxidation to a stable S-oxide (TASO) that is oxidized further to a highly reactive S,S-dioxide (TASO(2)). To explore possible parallels among the metabolism, covalent binding, and toxicity of TA and thiobenzamide (TB), we exposed freshly isolated rat hepatocytes to [(14)C]-TASO or [(13)C(2)D(3)]-TASO. TLC analysis of the cellular lipids showed a single major spot of radioactivity that mass spectral analysis showed to consist of N-acetimidoyl PE lipids having the same side chain composition as the PE fraction from untreated cells; no carbons or hydrogens from TASO were incorporated into the fatty acyl chains. Many cellular proteins contained N-acetyl- or N-acetimidoyl lysine residues in a 3:1 ratio (details to be reported separately). We also oxidized TASO with hydrogen peroxide in the presence of dipalmitoyl phosphatidylenthanolamine (DPPE) or lysozyme. Lysozyme was covalently modified at five of its six lysine side chains; only acetamide-type adducts were formed. DPPE in liposomes also gave only amide-type adducts, even when the reaction was carried out in tetrahydrofuran with only 10% water added. The exclusive formation of N-acetimidoyl PE in hepatocytes means that the concentration or activity of water must be extremely low in the region where TASO(2) is formed, whereas at least some of the TASO(2) can hydrolyze to acetylsulfinic acid before it reacts with cellular proteins. The requirement for two sequential oxidations to produce a reactive metabolite is unusual, but it is even more unusual that a reactive metabolite would react with water to form a new compound that retains a high degree of chemical reactivity toward biological nucleophiles. The possible contribution of lipid modification to the hepatotoxicity of TA/TASO remains to be determined.
Collapse
Affiliation(s)
- Diganta Sarma
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KA 66045, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Chen Y, Liu L, Laille E, Kumar G, Surapaneni S. In vitro assessment of cytochrome P450 inhibition and induction potential of azacitidine. Cancer Chemother Pharmacol 2010; 65:995-1000. [PMID: 20119716 PMCID: PMC2824119 DOI: 10.1007/s00280-010-1245-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 01/09/2010] [Indexed: 01/21/2023]
Abstract
PURPOSE To assess the potential inhibitory and inductive effects of azacitidine on cytochrome P450 isozymes in vitro. METHODS The inhibitory effects of azacitidine on various CYP isozymes were determined in human liver microsomes. In addition, the ability of azacitidine to induce CYP enzymes in cultured human hepatocytes was evaluated. RESULTS Azacitidine did not inhibit CYP2B6-, CYP2C8-, CYP2C9-, CYP2C19-, CYP2D6-, and CYP3A4-mediated activities in human liver microsomes up to a concentration of 100 microM, while weak inhibition (<30% inhibition) of CYP1A2 and CYP2E1 activities was observed at 100 microM azacitidine. In vitro azacitidine did not induce CYP1A2, CYP2C19, or CYP3A4/5 activities in cultured human hepatocytes. CONCLUSIONS Azacitidine is not an inhibitor or inducer of the cytochrome P450 isozymes tested; therefore, clinically relevant pharmacokinetic drug-drug interactions are unlikely to occur between azacitidine and co-administered substrates of these CYP isozymes.
Collapse
Affiliation(s)
- Yong Chen
- Non-Clinical Development, Celgene Corporation, Summit, NJ 07901 USA
| | - Lisa Liu
- Non-Clinical Development, Celgene Corporation, Summit, NJ 07901 USA
| | - Eric Laille
- Non-Clinical Development, Celgene Corporation, Summit, NJ 07901 USA
| | - Gondi Kumar
- Non-Clinical Development, Celgene Corporation, Summit, NJ 07901 USA
| | | |
Collapse
|