1
|
Ortuño-Costela MC, Pinzani M, Vallier L. Cell therapy for liver disorders: past, present and future. Nat Rev Gastroenterol Hepatol 2025:10.1038/s41575-025-01050-2. [PMID: 40102584 DOI: 10.1038/s41575-025-01050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 03/20/2025]
Abstract
The liver fulfils a plethora of vital functions and, due to their importance, liver dysfunction has life-threatening consequences. Liver disorders currently account for more than two million deaths annually worldwide and can be classified broadly into three groups, considering their onset and aetiology, as acute liver diseases, inherited metabolic disorders and chronic liver diseases. In the most advanced and severe forms leading to liver failure, liver transplantation is the only treatment available, which has many associated drawbacks, including a shortage of organ donors. Cell therapy via fully mature cell transplantation is an advantageous alternative that may be able to restore a damaged organ's functionality or serve as a bridge until regeneration can occur. Pioneering work has shown that transplanting adult hepatocytes can support liver recovery. However, primary hepatocytes cannot be grown extensively in vitro as they rapidly lose their metabolic activity. Therefore, different cell sources are currently being tested as alternatives to primary cells. Human pluripotent stem cell-derived cells, chemically induced liver progenitors, or 'liver' organoids, hold great promise for developing new cell therapies for acute and chronic liver diseases. This Review focuses on the advantages and drawbacks of distinct cell sources and the relative strategies to address different therapeutic needs in distinct liver diseases.
Collapse
Affiliation(s)
- M Carmen Ortuño-Costela
- Berlin Institute of Health, BIH Centre for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Massimo Pinzani
- University College London Institute for Liver and Digestive Health, Division of Medicine, Royal Free Hospital, London, UK
- University of Pittsburgh Medical Center-Mediterranean Institute for Transplantation and Highly Specialized Therapies (UPMC-ISMETT), Palermo, Italy
| | - Ludovic Vallier
- Berlin Institute of Health, BIH Centre for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
2
|
Ashmore-Harris C, Ayabe H, Yoshizawa E, Arisawa T, Takada Y, Takebe T, Fruhwirth GO. Gene editing enables non-invasive in vivo PET imaging of human induced pluripotent stem cell-derived liver bud organoids. Mol Ther Methods Clin Dev 2025; 33:101406. [PMID: 39927149 PMCID: PMC11803834 DOI: 10.1016/j.omtm.2025.101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025]
Abstract
Human induced pluripotent stem cell (hiPSC)-derived liver cell therapies such as hepatocyte-like cells and liver organoids could provide unlimited therapeutic cells for clinical transplantation, but an inadequate understanding of their in vivo fate impedes translation. Whole body in vivo imaging could enable monitoring of transplanted cell survival and/or expansion non-invasively over time, permitting robust comparisons between emerging therapies to identify those most effective. The human sodium iodide symporter (hNIS) is a radionuclide reporter gene facilitating whole body in vivo cell tracking by positron emission tomography (PET). We gene-edited a clinical Good Manufacturing Practice-compliant hiPSC line at the AAVS1 safe harbor locus enabling constitutive expression of a hNIS-monomeric(m)GFP fusion reporter in hiPSCs and their differentiated progeny. We confirmed reporter integration did not impact pluripotency or differentiation capacity, and radiotracer uptake capacity was retained post-differentiation. In vivo trackable liver bud (LB) organoids were generated from traceable hNIS fused to monomeric GFP (hNIS-mGFP)-hiPSCs and transplanted into healthy and liver-injured mice. LB were imaged quantitatively by 18FBF4 --PET with imaging results confirmed histologically. We report, for the first time, hNIS-mGFP-hiPSC progeny retain differentiated function and PET trackability in vivo using LB. In vivo monitoring could accelerate regenerative cell therapy development by identifying efficacious candidate cells, successful engraftment/survival strategies and addressing safety concerns.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 1UL, UK
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Hiroaki Ayabe
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Emi Yoshizawa
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Tetsu Arisawa
- Department of Physiology, Graduate School of Medicine, Yokohama City University, Yokohama, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Yuuki Takada
- Department of Physiology, Graduate School of Medicine, Yokohama City University, Yokohama, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Takanori Takebe
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
- Center for Stem Cell & Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition & Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), and Division of Stem Cell and Organoid Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Gilbert O. Fruhwirth
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 1UL, UK
| |
Collapse
|
3
|
Gantier M, Ménoret S, Fourrier A, Delbos F, Nguyen TH, Anegon I. Human pluripotent stem cell-derived hepatic progenitors exhibit a partially hypoimmunogenic phenotype and actively inhibit immune responses. Front Immunol 2025; 16:1507317. [PMID: 40070824 PMCID: PMC11893836 DOI: 10.3389/fimmu.2025.1507317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction GStemHep cells are human cryopreserved hepatic progenitors derived from pluripotent of stem cells (GStem cells) using a cGMP-compliant protocol. They were highly effective in rescuing mice from acute liver failure. Methods The objective of this study was to analyze the immunogenicity and immunoregulatory properties of GStemHep cells. Results As compared to GStem cells, GStemHep cells showed complete loss of HLA-I (ABC) and they lacked of expression of HLA-II, HLA-G, HLA-E and PD-L1. GStemHep cells also showed increased expression of CD47, maintained high expression of indoleamine 2,3-dioxygenase (IDO) and heme oxygenase-1 (HO-1) and reduced expression of CD200. In comparison with GStem cells, GStemHep cultured in inflammatory conditions increased the expression of PD-L1, CD200, HO-1, HLA-E, CD47 and HLA-I (ABC) as well as maintained expression of IDO and were negative for HLA-II and HLA-G. GStemHep culture in basal or inflammatory conditions has a low or absent immunogenic activity on T cells, associated to a suppressive effect on proliferation partially mediated by IDO. We observed phagocytosis of GStemHep by macrophages that was partially inhibited by CD47 expression. NK cells were activated by resting GStemHep cells. Upon culture in inflammatory conditions that induced expression of HLA-I molecules in GStemHep cells NK cell activation was reduced. Thus, GStemHep cells are partially hypoimmune cells due to the expression of several immune checkpoint inhibitors and the absence of HLA-I molecules. In inflammatory conditions, the expression of several of these molecules was increased but also of HLA-I that could be immunogenic for T cells but it was inhibitory for NK cells. Discussion GStemHep cells show a favorable immunological profile for their use as allogeneic off-the shelf treatment of liver diseases with loss of hepatocyte function.
Collapse
Affiliation(s)
| | - Séverine Ménoret
- Nantes Université, Inserm, CNRS, SFR Santé, Inserm UMS 016 CNRS UMS 3556, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | | | | | | | - Ignacio Anegon
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| |
Collapse
|
4
|
Wu H, Yang ASP, Stelloo S, Roos FJM, te Morsche RHM, Verkerk AH, Luna-Velez MV, Wingens L, de Wilt JHW, Sauerwein RW, Mulder KW, van Heeringen SJ, Verstegen MMA, van der Laan LJW, Marks H, Bártfai R. Multi-omics analysis reveals distinct gene regulatory mechanisms between primary and organoid-derived human hepatocytes. Dis Model Mech 2025; 18:dmm050883. [PMID: 39878507 PMCID: PMC11810045 DOI: 10.1242/dmm.050883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/25/2024] [Indexed: 01/31/2025] Open
Abstract
Hepatic organoid cultures are a powerful model to study liver development and diseases in vitro. However, hepatocyte-like cells differentiated from these organoids remain immature compared to primary human hepatocytes (PHHs), which are the benchmark in the field. Here, we applied integrative single-cell transcriptome and chromatin accessibility analysis to reveal gene regulatory mechanisms underlying these differences. We found that, in mature human hepatocytes, activator protein 1 (AP-1) factors co-occupy regulatory regions with hepatocyte-specific transcription factors, including HNF4A, suggesting their potential cooperation in governing hepatic gene expression. Comparative analysis identified distinct transcription factor sets that are specifically active in either PHHs or intrahepatic cholangiocyte organoid (ICO)-derived human hepatocytes. ELF3 was one of the factors uniquely expressed in ICO-derived hepatocytes, and its expression negatively correlated with hepatic marker gene expression. Functional analysis further revealed that ELF3 depletion increased the expression of key hepatic markers in ICO-derived hepatocytes. Our integrative analysis provides insights into the transcriptional regulatory networks of PHHs and hepatic organoids, thereby informing future strategies for developing improved hepatic models.
Collapse
Affiliation(s)
- Haoyu Wu
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Science, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Annie S. P. Yang
- Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Suzan Stelloo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Science, Radboud University, Nijmegen 6525GA, The Netherlands
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Science, Oncode Institute, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Floris J. M. Roos
- Department of Surgery, Erasmus University Medical Center Transplant Institute, University Medical Center Rotterdam,Rotterdam 3000CA, TheNetherlands
| | - René H. M. te Morsche
- Department of Gastroenterology and Hepatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Anne H. Verkerk
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Science, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Maria V. Luna-Velez
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Science, Radboud University, Nijmegen 6525GA, The Netherlands
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Science, Oncode Institute, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Laura Wingens
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Johannes H. W. de Wilt
- Department of Surgery, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Robert W. Sauerwein
- Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Klaas W. Mulder
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Simon J. van Heeringen
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Monique M. A. Verstegen
- Department of Surgery, Erasmus University Medical Center Transplant Institute, University Medical Center Rotterdam,Rotterdam 3000CA, TheNetherlands
| | - Luc J. W. van der Laan
- Department of Surgery, Erasmus University Medical Center Transplant Institute, University Medical Center Rotterdam,Rotterdam 3000CA, TheNetherlands
| | - Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Science, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Richárd Bártfai
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Science, Radboud University, Nijmegen 6525GA, The Netherlands
| |
Collapse
|
5
|
Ashmore-Harris C, Antonopoulou E, Aird RE, Man TY, Finney SM, Speel AM, Lu WY, Forbes SJ, Gadd VL, Waters SL. Utilising an in silico model to predict outcomes in senescence-driven acute liver injury. NPJ Regen Med 2024; 9:26. [PMID: 39349489 PMCID: PMC11442582 DOI: 10.1038/s41536-024-00371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 09/17/2024] [Indexed: 10/02/2024] Open
Abstract
Currently liver transplantation is the only treatment option for liver disease, but organ availability cannot meet patient demand. Alternative regenerative therapies, including cell transplantation, aim to modulate the injured microenvironment from inflammation and scarring towards regeneration. The complexity of the liver injury response makes it challenging to identify suitable therapeutic targets when relying on experimental approaches alone. Therefore, we adopted a combined in vivo-in silico approach and developed an ordinary differential equation model of acute liver disease able to predict the host response to injury and potential interventions. The Mdm2fl/fl mouse model of senescence-driven liver injury was used to generate a quantitative dynamic characterisation of the key cellular players (macrophages, endothelial cells, myofibroblasts) and extra cellular matrix involved in liver injury. This was qualitatively captured by the mathematical model. The mathematical model was then used to predict injury outcomes in response to milder and more severe levels of senescence-induced liver injury and validated with experimental in vivo data. In silico experiments using the validated model were then performed to interrogate potential approaches to enhance regeneration. These predicted that increasing the rate of macrophage phenotypic switch or increasing the number of pro-regenerative macrophages in the system will accelerate the rate of senescent cell clearance and resolution. These results showcase the potential benefits of mechanistic mathematical modelling for capturing the dynamics of complex biological systems and identifying therapeutic interventions that may enhance our understanding of injury-repair mechanisms and reduce translational bottlenecks.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | | | - Rhona E Aird
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Tak Yung Man
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Simon M Finney
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Annelijn M Speel
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Wei-Yu Lu
- Centre for Inflammation Research, Institute for Regeneration & Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Victoria L Gadd
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK.
| | - Sarah L Waters
- Mathematical Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Dudek MF, Wenz BM, Brown CD, Voight BF, Almasy L, Grant SF. Characterization of non-coding variants associated with transcription factor binding through ATAC-seq-defined footprint QTLs in liver. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614730. [PMID: 39386531 PMCID: PMC11463493 DOI: 10.1101/2024.09.24.614730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Non-coding variants discovered by genome-wide association studies (GWAS) are enriched in regulatory elements harboring transcription factor (TF) binding motifs, strongly suggesting a connection between disease association and the disruption of cis-regulatory sequences. Occupancy of a TF inside a region of open chromatin can be detected in ATAC-seq where bound TFs block the transposase Tn5, leaving a pattern of relatively depleted Tn5 insertions known as a "footprint". Here, we sought to identify variants associated with TF-binding, or "footprint quantitative trait loci" (fpQTLs) in ATAC-seq data generated from 170 human liver samples. We used computational tools to scan the ATAC-seq reads to quantify TF binding likelihood as "footprint scores" at variants derived from whole genome sequencing generated in the same samples. We tested for association between genotype and footprint score and observed 693 fpQTLs associated with footprint-inferred TF binding (FDR < 5%). Given that Tn5 insertion sites are measured with base-pair resolution, we show that fpQTLs can aid GWAS and QTL fine-mapping by precisely pinpointing TF activity within broad trait-associated loci where the underlying causal variant is unknown. Liver fpQTLs were strongly enriched across ChIP-seq peaks, liver expression QTLs (eQTLs), and liver-related GWAS loci, and their inferred effect on TF binding was concordant with their effect on underlying sequence motifs in 80% of cases. We conclude that fpQTLs can reveal causal GWAS variants, define the role of TF binding site disruption in disease and provide functional insights into non-coding variants, ultimately informing novel treatments for common diseases.
Collapse
Affiliation(s)
- Max F. Dudek
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brandon M. Wenz
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher D. Brown
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin F. Voight
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura Almasy
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Smith AR, Rizvi F, Everton E, Adeagbo A, Wu S, Tam Y, Muramatsu H, Pardi N, Weissman D, Gouon-Evans V. Transient growth factor expression via mRNA in lipid nanoparticles promotes hepatocyte cell therapy in mice. Nat Commun 2024; 15:5010. [PMID: 38866762 PMCID: PMC11169405 DOI: 10.1038/s41467-024-49332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Primary human hepatocyte (PHH) transplantation is a promising alternative to liver transplantation, whereby liver function could be restored by partial repopulation of the diseased organ with healthy cells. However, currently PHH engraftment efficiency is low and benefits are not maintained long-term. Here we refine two male mouse models of human chronic and acute liver diseases to recapitulate compromised hepatocyte proliferation observed in nearly all human liver diseases by overexpression of p21 in hepatocytes. In these clinically relevant contexts, we demonstrate that transient, yet robust expression of human hepatocyte growth factor and epidermal growth factor in the liver via nucleoside-modified mRNA in lipid nanoparticles, whose safety was validated with mRNA-based COVID-19 vaccines, drastically improves PHH engraftment, reduces disease burden, and improves overall liver function. This strategy may overcome the critical barriers to clinical translation of cell therapies with primary or stem cell-derived hepatocytes for the treatment of liver diseases.
Collapse
Affiliation(s)
- Anna R Smith
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Fatima Rizvi
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Elissa Everton
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Anisah Adeagbo
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Susan Wu
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | - Hiromi Muramatsu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Norbert Pardi
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Valerie Gouon-Evans
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA.
| |
Collapse
|
8
|
Ashmore-Harris C, Antonopoulou E, Finney SM, Vieira MR, Hennessy MG, Muench A, Lu WY, Gadd VL, El Haj AJ, Forbes SJ, Waters SL. Exploiting in silico modelling to enhance translation of liver cell therapies from bench to bedside. NPJ Regen Med 2024; 9:19. [PMID: 38724586 PMCID: PMC11081951 DOI: 10.1038/s41536-024-00361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Cell therapies are emerging as promising treatments for a range of liver diseases but translational bottlenecks still remain including: securing and assessing the safe and effective delivery of cells to the disease site; ensuring successful cell engraftment and function; and preventing immunogenic responses. Here we highlight three therapies, each utilising a different cell type, at different stages in their clinical translation journey: transplantation of multipotent mesenchymal stromal/signalling cells, hepatocytes and macrophages. To overcome bottlenecks impeding clinical progression, we advocate for wider use of mechanistic in silico modelling approaches. We discuss how in silico approaches, alongside complementary experimental approaches, can enhance our understanding of the mechanisms underlying successful cell delivery and engraftment. Furthermore, such combined theoretical-experimental approaches can be exploited to develop novel therapies, address safety and efficacy challenges, bridge the gap between in vitro and in vivo model systems, and compensate for the inherent differences between animal model systems and humans. We also highlight how in silico model development can result in fewer and more targeted in vivo experiments, thereby reducing preclinical costs and experimental animal numbers and potentially accelerating translation to the clinic. The development of biologically-accurate in silico models that capture the mechanisms underpinning the behaviour of these complex systems must be reinforced by quantitative methods to assess cell survival post-transplant, and we argue that non-invasive in vivo imaging strategies should be routinely integrated into transplant studies.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | | | - Simon M Finney
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
| | - Melissa R Vieira
- Healthcare Technologies Institute (HTI), Institute of Translational Medicine, University of Birmingham, Birmingham, B15 2TH, UK
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, B15 2TH, UK
| | - Matthew G Hennessy
- Department of Engineering Mathematics, University of Bristol, BS8 1TW, Bristol, UK
| | - Andreas Muench
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
| | - Wei-Yu Lu
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Victoria L Gadd
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Alicia J El Haj
- Healthcare Technologies Institute (HTI), Institute of Translational Medicine, University of Birmingham, Birmingham, B15 2TH, UK
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, B15 2TH, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sarah L Waters
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
| |
Collapse
|
9
|
Wang H, Wen L, Jiang F, Ren P, Yang Y, Song S, Yang Z, Wang Y. A comprehensive review of advances in hepatocyte microencapsulation: selecting materials and preserving cell viability. Front Immunol 2024; 15:1385022. [PMID: 38694507 PMCID: PMC11061843 DOI: 10.3389/fimmu.2024.1385022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Liver failure represents a critical medical condition with a traditionally grim prognosis, where treatment options have been notably limited. Historically, liver transplantation has stood as the sole definitive cure, yet the stark disparity between the limited availability of liver donations and the high demand for such organs has significantly hampered its feasibility. This discrepancy has necessitated the exploration of hepatocyte transplantation as a temporary, supportive intervention. In light of this, our review delves into the burgeoning field of hepatocyte transplantation, with a focus on the latest advancements in maintaining hepatocyte function, co-microencapsulation techniques, xenogeneic hepatocyte transplantation, and the selection of materials for microencapsulation. Our examination of hepatocyte microencapsulation research highlights that, to date, most studies have been conducted in vitro or using liver failure mouse models, with a notable paucity of experiments on larger mammals. The functionality of microencapsulated hepatocytes is primarily inferred through indirect measures such as urea and albumin production and the rate of ammonia clearance. Furthermore, research on the mechanisms underlying hepatocyte co-microencapsulation remains limited, and the practicality of xenogeneic hepatocyte transplantation requires further validation. The potential of hepatocyte microencapsulation extends beyond the current scope of application, suggesting a promising horizon for liver failure treatment modalities. Innovations in encapsulation materials and techniques aim to enhance cell viability and function, indicating a need for comprehensive studies that bridge the gap between small-scale laboratory success and clinical applicability. Moreover, the integration of bioengineering and regenerative medicine offers novel pathways to refine hepatocyte transplantation, potentially overcoming the challenges of immune rejection and ensuring the long-term functionality of transplanted cells. In conclusion, while hepatocyte microencapsulation and transplantation herald a new era in liver failure therapy, significant strides must be made to translate these experimental approaches into viable clinical solutions. Future research should aim to expand the experimental models to include larger mammals, thereby providing a clearer understanding of the clinical potential of these therapies. Additionally, a deeper exploration into the mechanisms of cell survival and function within microcapsules, alongside the development of innovative encapsulation materials, will be critical in advancing the field and offering new hope to patients with liver failure.
Collapse
Affiliation(s)
- Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Lebin Wen
- Department of Thyroid, Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fengdi Jiang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Pengyu Ren
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yixin Yang
- Department of Clinical Medicine, The First Clinical Medical College of Norman Bethune University of Medical Sciences, Jilin, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Zhengteng Yang
- Department of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
10
|
Abbas N, You K, Getachew A, Wu F, Hussain M, Huang X, Chen Y, Pan T, Li Y. Kupffer cells abrogate homing and repopulation of allogeneic hepatic progenitors in injured liver site. Stem Cell Res Ther 2024; 15:48. [PMID: 38378583 PMCID: PMC10877762 DOI: 10.1186/s13287-024-03656-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Allogeneic hepatocyte transplantation is an emerging approach to treat acute liver defects. However, durable engraftment of the transplanted cells remains a daunting task, as they are actively cleared by the recipient's immune system. Therefore, a detailed understanding of the innate or adaptive immune cells-derived responses against allogeneic transplanted hepatic cells is the key to rationalize cell-based therapies. METHODS Here, we induced an acute inflammatory regenerative niche (3-96 h) on the surface of the liver by the application of cryo-injury (CI) to systematically evaluate the innate immune response against transplanted allogeneic hepatic progenitors in a sustained micro-inflammatory environment. RESULTS The resulting data highlighted that the injured site was significantly repopulated by alternating numbers of innate immune cells, including neutrophils, monocytes and Kupffer cells (KCs), from 3 to 96 h. The transplanted allo-HPs, engrafted 6 h post-injury, were collectively eliminated by the innate immune response within 24 h of transplantation. Selective depletion of the KCs demonstrated a delayed recruitment of monocytes from day 2 to day 6. In addition, the intrasplenic engraftment of the hepatic progenitors 54 h post-transplantation was dismantled by KCs, while a time-dependent better survival and translocation of the transplanted cells into the injured site could be observed in samples devoid of KCs. CONCLUSION Overall, this study provides evidence that KCs ablation enables a better survival and integration of allo-HPs in a sustained liver inflammatory environment, having implications for rationalizing the cell-based therapeutic interventions against liver defects.
Collapse
Affiliation(s)
- Nasir Abbas
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health (CRMH), Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China
| | - Kai You
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Anteneh Getachew
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, USA
| | - Feima Wu
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Muzammal Hussain
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Xinping Huang
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yan Chen
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Tingcai Pan
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong Province, China
| | - Yinxiong Li
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China.
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou, 510530, China.
| |
Collapse
|
11
|
Duan M, Liu X, Yang Y, Zhang Y, Wu R, Lv Y, Lei H. Orchestrated regulation of immune inflammation with cell therapy in pediatric acute liver injury. Front Immunol 2023; 14:1194588. [PMID: 37426664 PMCID: PMC10323196 DOI: 10.3389/fimmu.2023.1194588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023] Open
Abstract
Acute liver injury (ALI) in children, which commonly leads to acute liver failure (ALF) with the need for liver transplantation, is a devastating life-threatening condition. As the orchestrated regulation of immune hemostasis in the liver is essential for resolving excess inflammation and promoting liver repair in a timely manner, in this study we focused on the immune inflammation and regulation with the functional involvement of both innate and adaptive immune cells in acute liver injury progression. In the context of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic, it was also important to incorporate insights from the immunological perspective for the hepatic involvement with SARS-CoV-2 infection, as well as the acute severe hepatitis of unknown origin in children since it was first reported in March 2022. Furthermore, molecular crosstalk between immune cells concerning the roles of damage-associated molecular patterns (DAMPs) in triggering immune responses through different signaling pathways plays an essential role in the process of liver injury. In addition, we also focused on DAMPs such as high mobility group box 1 (HMGB1) and cold-inducible RNA-binding protein (CIRP), as well as on macrophage mitochondrial DNA-cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway in liver injury. Our review also highlighted novel therapeutic approaches targeting molecular and cellular crosstalk and cell-based therapy, providing a future outlook for the treatment of acute liver injury.
Collapse
Affiliation(s)
- Mingyue Duan
- Department of Clinical Laboratory, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoguai Liu
- Department of Infectious Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ying Yang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yanmin Zhang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hong Lei
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
12
|
Ma H, Wang C, Liang S, Yu X, Yuan Y, Lv Z, Zhang J, Jin C, Zhu J, Wang C, Sun P, Li W. ROCK inhibition enhanced hepatocyte liver engraftment by retaining membrane CD59 and attenuating complement activation. Mol Ther 2023; 31:1846-1856. [PMID: 36860134 PMCID: PMC10277888 DOI: 10.1016/j.ymthe.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Hepatocyte transplantation can be an effective treatment for patients with certain liver-based metabolic disorders and liver injuries. Hepatocytes are usually infused into the portal vein, from which hepatocytes migrate into the liver and integrate into the liver parenchyma. However, early cell loss and poor liver engraftment represent major hurdles to sustaining the recovery of diseased livers after transplantation. In the present study, we found that ROCK (Rho-associated kinase) inhibitors significantly enhanced in vivo hepatocyte engraftment. Mechanistic studies suggested that the isolation of hepatocytes caused substantial degradation of cell membrane proteins, including the complement inhibitor CD59, probably due to shear stress-induced endocytosis. ROCK inhibition by ripasudil, a clinically used ROCK inhibitor, can protect transplanted hepatocytes by retaining cell membrane CD59 and blocking the formation of the membrane attack complex. Knockdown of CD59 in hepatocytes eliminates ROCK inhibition-enhanced hepatocyte engraftment. Ripasudil can accelerate liver repopulation of fumarylacetoacetate hydrolase-deficient mice. Our work reveals a mechanism underlying hepatocyte loss after transplantation and provides immediate strategies to enhance hepatocyte engraftment by inhibiting ROCK.
Collapse
Affiliation(s)
- Haoxin Ma
- Department of Cell Biology, Naval Medical University, Shanghai 200433, China
| | - Chao Wang
- Department of Cell Biology, Naval Medical University, Shanghai 200433, China
| | - Shulong Liang
- Department of Cell Biology, Naval Medical University, Shanghai 200433, China
| | - Xinlu Yu
- Department of Cell Biology, Naval Medical University, Shanghai 200433, China
| | - Yuan Yuan
- Department of Cell Biology, Naval Medical University, Shanghai 200433, China
| | - Zhuanman Lv
- Department of Cell Biology, Naval Medical University, Shanghai 200433, China
| | - Jiqianzhu Zhang
- Department of Health Toxicology, Naval Medical University, Shanghai 200433, China
| | - Caixia Jin
- Department of Regenerative Medicine, College of Medicine, Tongji University, Shanghai 200433, China
| | - Jiangbo Zhu
- Department of Health Toxicology, Naval Medical University, Shanghai 200433, China
| | - Chao Wang
- Department of Cell Biology, Naval Medical University, Shanghai 200433, China
| | - Pingxin Sun
- Department of Cell Biology, Naval Medical University, Shanghai 200433, China
| | - Wenlin Li
- Department of Cell Biology, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Cell Engineering, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
13
|
Hu XH, Chen L, Wu H, Tang YB, Zheng QM, Wei XY, Wei Q, Huang Q, Chen J, Xu X. Cell therapy in end-stage liver disease: replace and remodel. Stem Cell Res Ther 2023; 14:141. [PMID: 37231461 DOI: 10.1186/s13287-023-03370-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Liver disease is prevalent worldwide. When it reaches the end stage, mortality rises to 50% or more. Although liver transplantation has emerged as the most efficient treatment for end-stage liver disease, its application has been limited by the scarcity of donor livers. The lack of acceptable donor organs implies that patients are at high risk while waiting for suitable livers. In this scenario, cell therapy has emerged as a promising treatment approach. Most of the time, transplanted cells can replace host hepatocytes and remodel the hepatic microenvironment. For instance, hepatocytes derived from donor livers or stem cells colonize and proliferate in the liver, can replace host hepatocytes, and restore liver function. Other cellular therapy candidates, such as macrophages and mesenchymal stem cells, can remodel the hepatic microenvironment, thereby repairing the damaged liver. In recent years, cell therapy has transitioned from animal research to early human studies. In this review, we will discuss cell therapy in end-stage liver disease treatment, especially focusing on various cell types utilized for cell transplantation, and elucidate the processes involved. Furthermore, we will also summarize the practical obstacles of cell therapy and offer potential solutions.
Collapse
Affiliation(s)
- Xin-Hao Hu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lan Chen
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hao Wu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Yang-Bo Tang
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Qiu-Min Zheng
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Yong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qiang Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qi Huang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jian Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Xiao Xu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
14
|
Giuli L, Santopaolo F, Pallozzi M, Pellegrino A, Coppola G, Gasbarrini A, Ponziani FR. Cellular therapies in liver and pancreatic diseases. Dig Liver Dis 2023; 55:563-579. [PMID: 36543708 DOI: 10.1016/j.dld.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/21/2022] [Accepted: 11/22/2022] [Indexed: 04/29/2023]
Abstract
Over the past two decades, developments in regenerative medicine in gastroenterology have been greatly enhanced by the application of stem cells, which can self-replicate and differentiate into any somatic cell. The discovery of induced pluripotent stem cells has opened remarkable perspectives on tissue regeneration, including their use as a bridge to transplantation or as supportive therapy in patients with organ failure. The improvements in DNA manipulation and gene editing strategies have also allowed to clarify the physiopathology and to correct the phenotype of several monogenic diseases, both in vivo and in vitro. Further progress has been made with the development of three-dimensional cultures, known as organoids, which have demonstrated morphological and functional complexity comparable to that of a miniature organ. Hence, owing to its protean applications and potential benefits, cell and organoid transplantation has become a hot topic for the management of gastrointestinal diseases. In this review, we describe current knowledge on cell therapies in hepatology and pancreatology, providing insight into their future applications in regenerative medicine.
Collapse
Affiliation(s)
- Lucia Giuli
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Pallozzi
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Pellegrino
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gaetano Coppola
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
15
|
Xiang L, Wang X, Shao Y, Jiao Q, Cheng J, Zheng X, Zhou S, Chen Y. Folate Decoration Supports the Targeting of Camptothecin Micelles against Activated Hepatic Stellate Cells and the Suppression of Fibrogenesis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2030-2042. [PMID: 36571106 DOI: 10.1021/acsami.2c16616] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As the central cellular player in fibrogenesis, activated hepatic stellate cells (aHSCs) are the major target of antifibrotic nanomedicines. Based on our finding that activated HSCs increase the expression of folate receptor alpha (FRα), we tried to apply folic acid (FA) decoration to generate an active drug-targeting at aHSCs and suppress hepato-fibrogenesis. FA-conjugated poly(ethylene glycol)-poly(ε-caprolactone) copolymers (PEG-PCL) were synthesized and self-assembled into the spherical micelles that owned a uniform size distribution averaging at 60 nm, excellent hemo- and cyto-compatibility, and pH-sensitive stability. These FA-modified micelles were preferentially ingested by aHSCs as expected and accumulated more in acutely CCl4 injured mouse livers compared to nondecorated counterparts. Such an aHSC targetability facilitated the loaded medicinal camptothecin (CPT) to achieve a greater therapeutic efficacy and inhibition of MF phenotypic genes in aHSCs. Encouragingly, though free CPT and nontargeting CPT micelles produced negligible curative outcomes, FA-decorated CPT micelles yielded effectively remedial effects in chronically CCl4-induced fibrotic mice, as represented by a significant shrinkage of aHSC population, suppression of fibrogenesis, and recovery of liver structure and function, clearly indicating the success of the folate decoration-supported aHSC-targeted strategy for antifibrotic nanomedicines in fibrosis resolution.
Collapse
Affiliation(s)
- Li Xiang
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yaru Shao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutic Sciences, University of South China, Hengyang, Hunan 421001, China
| | - Qiangqiang Jiao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutic Sciences, University of South China, Hengyang, Hunan 421001, China
| | - Jiang Cheng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Xiaotong Zheng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yuping Chen
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutic Sciences, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
16
|
Liu J, Yuan Z, Wang Q. Pluripotent Stem Cell-derived Strategies to Treat Acute Liver Failure: Current Status and Future Directions. J Clin Transl Hepatol 2022; 10:692-699. [PMID: 36062278 PMCID: PMC9396313 DOI: 10.14218/jcth.2021.00353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/17/2022] [Accepted: 02/12/2022] [Indexed: 12/04/2022] Open
Abstract
Liver disease has long been a heavy health and economic burden worldwide. Once the disease is out of control and progresses to end-stage or acute organ failure, orthotopic liver transplantation (OLT) is the only therapeutic alternative, and it requires appropriate donors and aggressive administration of immunosuppressive drugs. Therefore, hepatocyte transplantation (HT) and bioartificial livers (BALs) have been proposed as effective treatments for acute liver failure (ALF) in clinics. Although human primary hepatocytes (PHs) are an ideal cell source to support these methods, the large demand and superior viability of PH is needed, which restrains its wide usage. Thus, a finding alternative to meet the quantity and quality of hepatocytes is urgent. In this context, human pluripotent stem cells (PSC), which have unlimited proliferative and differential potential, derived hepatocytes are a promising renewable cell source. Recent studies of the differentiation of PSC into hepatocytes has provided evidence that supports their clinical application. In this review, we discuss the recent status and future directions of the potential use of PSC-derived hepatocytes in treating ALF. We also discuss opportunities and challenges of how to promote such strategies in the common applications in clinical treatments.
Collapse
Affiliation(s)
- Jingfeng Liu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhiming Yuan
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qingwen Wang
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
17
|
Jindal A, Jagdish RK, Kumar A. Hepatic Regeneration in Cirrhosis. J Clin Exp Hepatol 2022; 12:603-616. [PMID: 35535091 PMCID: PMC9077225 DOI: 10.1016/j.jceh.2021.08.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/31/2021] [Indexed: 01/03/2023] Open
Abstract
End-stage liver disease is characterized by massive hepatocyte death resulting in clinical decompensation and organ failures. Clinical consequences in cirrhosis are the results of the loss of functional hepatocytes and excessive scarring. The only curative therapy in advanced cirrhosis is orthotropic liver transplantation, but the clinical demand outweighs the availability of acceptable donor organs. Moreover, this also necessitates lifelong immunosuppression and carries associated risks. The liver has a huge capability for regeneration. Self-replication of quiescent differentiated hepatocytes and cholangiocytes occurs in patients with acute liver injury. Due to limited hepatocyte self-renewal capacity in advanced cirrhosis, great interest has therefore been shown in characterizing the possible role of hepatic progenitor cells and bone marrow-derived stem cells to therapeutically aid this process. Transplantation of cells from various sources that can be properly differentiated into functional liver cells or use of growth factors for ex-vivo expansion of progenitor cells is needed at utmost priority. Multiple researches over the last two decades have aided researchers in refining proliferation, differentiation, and storage techniques and understand the functionality of these cells for use in clinical practice. However, these cell-based therapies are still experimental and have to be used in trial settings.
Collapse
Key Words
- Ang2, angiopoietin 2
- BM, Bone marrow
- BM-MNCs, bone marrow mononuclear cells
- BMSC, bone marrow stem cells
- DAMPs, Damage associated molecular patterns
- EPCs, endothelial progenitor cells
- ESRP2, epithelial splicing regulatory protein 2
- GCSF
- HGF, hepatocyte growth factor
- HPC, Hepatocyte progenitor cells
- HSCs, hematopoietic stem cells
- Hh, Hedgehog
- HybHP, hybrid periportal hepatocytes
- MMP, matrix metalloprotease
- MSCs, mesenchymal stromal cells
- OLT, Orthotropic liver transplantation
- PAMPs, Pathogen associated molecular patterns
- SAH, severe alcoholic hepatitis
- SDF1, stromal-derived factor 1
- TNFSF12, tumor necrosis factor ligand superfamily member 12
- Terthigh, high Telomerase reverse transcriptase
- [Hnf4a], Hepatocyte Nuclear Factor 4 Alpha
- [Mfsd2a], Major Facilitator Superfamily Domain containing 2A
- acute liver failure
- chronic liver diseases
- hepatocyte transplant
- liver regeneration
Collapse
Affiliation(s)
- Ankur Jindal
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | | | - Anupam Kumar
- Department of Research, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| |
Collapse
|
18
|
Xie Y, Yao J, Jin W, Ren L, Li X. Induction and Maturation of Hepatocyte-Like Cells In Vitro: Focus on Technological Advances and Challenges. Front Cell Dev Biol 2021; 9:765980. [PMID: 34901010 PMCID: PMC8662991 DOI: 10.3389/fcell.2021.765980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Limited by the poor proliferation and restricted sources of adult hepatocytes, there is an urgent need to find substitutes for proliferation and cultivation of mature hepatocytes in vitro for use in disease treatment, drug approval, and toxicity testing. Hepatocyte-like cells (HLCs), which originate from undifferentiated stem cells or modified adult cells, are considered good candidates because of their advantages in terms of cell source and in vitro expansion ability. However, the majority of induced HLCs are in an immature state, and their degree of differentiation is heterogeneous, diminishing their usability in basic research and limiting their clinical application. Therefore, various methods have been developed to promote the maturation of HLCs, including chemical approaches, alteration of cell culture systems, and genetic manipulation, to meet the needs of in vivo transplantation and in vitro model establishment. This review proposes different cell types for the induction of HLCs, and provide a comprehensive overview of various techniques to promote the generation and maturation of HLCs in vitro.
Collapse
Affiliation(s)
- Ye Xie
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jia Yao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Weilin Jin
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Institute of Cancer Neuroscience, The First Hospital of Lanzhou University, Lanzhou, China.,The Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Longfei Ren
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.,The Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China.,The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou, China
| |
Collapse
|
19
|
Role of the Microenvironment in Mesenchymal Stem Cell-Based Strategies for Treating Human Liver Diseases. Stem Cells Int 2021; 2021:5513309. [PMID: 34824587 PMCID: PMC8610645 DOI: 10.1155/2021/5513309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
Liver disease is a severe health problem that endangers human health worldwide. Mesenchymal stem cell (MSC) therapy is a novel treatment for patients with different liver diseases due to its vast expansion potential and distinctive immunomodulatory properties. Despite several preclinical trials having confirmed the considerable efficacy of MSC therapy in liver diseases, the questionable safety and efficacy still limit its application. As a precursor cell, MSCs can adjust their characteristics in response to the surrounding microenvironment. The microenvironment provides physical and chemical factors essential for stem cell survival, proliferation, and differentiation. However, the mechanisms are still not completely understood. We, therefore, summarized the mechanisms underlying the MSC immune response, especially the interaction between MSCs and the liver microenvironment, discussing how to achieve better therapeutic effects.
Collapse
|
20
|
Cell-Based Regeneration and Treatment of Liver Diseases. Int J Mol Sci 2021; 22:ijms221910276. [PMID: 34638617 PMCID: PMC8508969 DOI: 10.3390/ijms221910276] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
The liver, in combination with a functional biliary system, is responsible for maintaining a great number of vital body functions. However, acute and chronic liver diseases may lead to irreversible liver damage and, ultimately, liver failure. At the moment, the best curative option for patients suffering from end-stage liver disease is liver transplantation. However, the number of donor livers required by far surpasses the supply, leading to a significant organ shortage. Cellular therapies play an increasing role in the restoration of organ function and can be integrated into organ transplantation protocols. Different types and sources of stem cells are considered for this purpose, but highly specific immune cells are also the focus of attention when developing individualized therapies. In-depth knowledge of the underlying mechanisms governing cell differentiation and engraftment is crucial for clinical implementation. Additionally, novel technologies such as ex vivo machine perfusion and recent developments in tissue engineering may hold promising potential for the implementation of cell-based therapies to restore proper organ function.
Collapse
|
21
|
Oldhafer F, Wittauer EM, Beetz O, Weigle CA, Sieg L, Eismann H, Braubach P, Bock M, Jonigk D, Johanning K, Vondran FWR. Supportive Hepatocyte Transplantation after Partial Hepatectomy Enhances Liver Regeneration in a Preclinical Pig Model. Eur Surg Res 2021; 62:238-247. [PMID: 34044396 DOI: 10.1159/000516690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/07/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hepatocyte transplantation (HTx) is regarded as a potential treatment modality for various liver diseases including acute liver failure. We developed a preclinical pig model to evaluate if HTx could safely support recovery from liver function impairment after partial hepatectomy. METHODS Pigs underwent partial hepatectomy with reduction of the liver volume by 50% to induce a transient but significant impairment of liver function. Thereafter, 2 protocols for HTx were evaluated and compared to a control group receiving liver resection only (group 1, n = 5). Portal pressure-controlled HTx was performed either immediately after surgery (group 2, n = 6) or 3 days postoperatively (group 3, n = 5). In all cases, liver regeneration was monitored by conventional laboratory tests and the novel noninvasive maximum liver function capacity (LiMAx) test with a follow-up of 4 weeks. RESULTS Partial hepatectomy significantly impaired liver function according to conventional liver function tests as well as LiMAx in all groups. A mean of 4.10 ± 1.1 × 108 and 3.82 ± 0.7 × 108 hepatocytes were transplanted in groups 2 and 3, respectively. All animals remained stable with respect to vital parameters during and after HTx. The animals in group 2 showed enhanced liver regeneration as observed by mean postoperative LiMAx values (621.5 vs. 331.3 μg/kg/h on postoperative day 7; p < 0.001) whereas HTx in group 3 led to a significant increase in mean liver-specific coagulation factor VII (112.2 vs. 54.0% on postoperative day 7; p = 0.003) compared to controls (group 1), respectively. In both experimental groups, thrombotic material was observed in the portal veins and pulmonary arteries on histology, despite the absence of clinical symptoms. CONCLUSION HTx can be performed safely and effectively immediately after a partial (50%) hepatectomy as well as 3 days postoperatively, with comparable results regarding the enhancement of liver function and regeneration.
Collapse
Affiliation(s)
- Felix Oldhafer
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany,
| | - Eva-Maria Wittauer
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Oliver Beetz
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Clara A Weigle
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Lion Sieg
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Hendrik Eismann
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Michael Bock
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- Institute for Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Kai Johanning
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Florian Wolfgang Rudolf Vondran
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
22
|
Demaret T, Evraerts J, Ravau J, Roumain M, Muccioli GG, Najimi M, Sokal EM. High Dose Versus Low Dose Syngeneic Hepatocyte Transplantation in Pex1-G844D NMRI Mouse Model is Safe but Does Not Achieve Long Term Engraftment. Cells 2020; 10:cells10010040. [PMID: 33396635 PMCID: PMC7823729 DOI: 10.3390/cells10010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
Genetic alterations in PEX genes lead to peroxisome biogenesis disorder. In humans, they are associated with Zellweger spectrum disorders (ZSD). No validated treatment has been shown to modify the dismal natural history of ZSD. Liver transplantation (LT) improved clinical and biochemical outcomes in mild ZSD patients. Hepatocyte transplantation (HT), developed to overcome LT limitations, was performed in a mild ZSD 4-year-old child with encouraging short-term results. Here, we evaluated low dose (12.5 million hepatocytes/kg) and high dose (50 million hepatocytes/kg) syngeneic male HT via intrasplenic infusion in the Pex1-G844D NMRI mouse model which recapitulates a mild ZSD phenotype. HT was feasible and safe in growth retarded ZSD mice. Clinical (weight and food intake) and biochemical parameters (very long-chain fatty acids, abnormal bile acids, etc.) were in accordance with ZSD phenotype but they were not robustly modified by HT. As expected, one third of the infused cells were detected in the liver 24 h post-HT. No liver nor spleen microchimerism was detected after 7, 14 and 30 days. Future optimizations are required to improve hepatocyte engraftment in Pex1-G844D NMRI mouse liver. The mouse model exhibited the robustness required for ZSD liver-targeted therapies evaluation.
Collapse
Affiliation(s)
- Tanguy Demaret
- Laboratoire d’Hépatologie Pédiatrique et Thérapie Cellulaire, Unité PEDI, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (J.E.); (J.R.); (M.N.); (E.M.S.)
- Correspondence:
| | - Jonathan Evraerts
- Laboratoire d’Hépatologie Pédiatrique et Thérapie Cellulaire, Unité PEDI, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (J.E.); (J.R.); (M.N.); (E.M.S.)
| | - Joachim Ravau
- Laboratoire d’Hépatologie Pédiatrique et Thérapie Cellulaire, Unité PEDI, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (J.E.); (J.R.); (M.N.); (E.M.S.)
| | - Martin Roumain
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.R.); (G.G.M.)
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.R.); (G.G.M.)
| | - Mustapha Najimi
- Laboratoire d’Hépatologie Pédiatrique et Thérapie Cellulaire, Unité PEDI, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (J.E.); (J.R.); (M.N.); (E.M.S.)
| | - Etienne M. Sokal
- Laboratoire d’Hépatologie Pédiatrique et Thérapie Cellulaire, Unité PEDI, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (J.E.); (J.R.); (M.N.); (E.M.S.)
| |
Collapse
|
23
|
Salminen AT, Allahyari Z, Gholizadeh S, McCloskey MC, Ajalik R, Cottle RN, Gaborski TR, McGrath JL. In vitro Studies of Transendothelial Migration for Biological and Drug Discovery. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:600616. [PMID: 35047883 PMCID: PMC8757899 DOI: 10.3389/fmedt.2020.600616] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammatory diseases and cancer metastases lack concrete pharmaceuticals for their effective treatment despite great strides in advancing our understanding of disease progression. One feature of these disease pathogeneses that remains to be fully explored, both biologically and pharmaceutically, is the passage of cancer and immune cells from the blood to the underlying tissue in the process of extravasation. Regardless of migratory cell type, all steps in extravasation involve molecular interactions that serve as a rich landscape of targets for pharmaceutical inhibition or promotion. Transendothelial migration (TEM), or the migration of the cell through the vascular endothelium, is a particularly promising area of interest as it constitutes the final and most involved step in the extravasation cascade. While in vivo models of cancer metastasis and inflammatory diseases have contributed to our current understanding of TEM, the knowledge surrounding this phenomenon would be significantly lacking without the use of in vitro platforms. In addition to the ease of use, low cost, and high controllability, in vitro platforms permit the use of human cell lines to represent certain features of disease pathology better, as seen in the clinic. These benefits over traditional pre-clinical models for efficacy and toxicity testing are especially important in the modern pursuit of novel drug candidates. Here, we review the cellular and molecular events involved in leukocyte and cancer cell extravasation, with a keen focus on TEM, as discovered by seminal and progressive in vitro platforms. In vitro studies of TEM, specifically, showcase the great experimental progress at the lab bench and highlight the historical success of in vitro platforms for biological discovery. This success shows the potential for applying these platforms for pharmaceutical compound screening. In addition to immune and cancer cell TEM, we discuss the promise of hepatocyte transplantation, a process in which systemically delivered hepatocytes must transmigrate across the liver sinusoidal endothelium to successfully engraft and restore liver function. Lastly, we concisely summarize the evolving field of porous membranes for the study of TEM.
Collapse
Affiliation(s)
- Alec T. Salminen
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Zahra Allahyari
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - Shayan Gholizadeh
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - Molly C. McCloskey
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Raquel Ajalik
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Renee N. Cottle
- Bioengineering, Clemson University, Clemson, SC, United States
| | - Thomas R. Gaborski
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - James L. McGrath
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
| |
Collapse
|
24
|
Abstract
Over the last decade, there has been a considerable progress in the development of cell therapy products for the treatment of liver diseases. The quest to generate well-defined homogenous cell populations with defined mechanism(s) of action has enabled the progression from use of autologous bone marrow stem cells comprising of heterogeneous cell populations to allogeneic cell types such as monocyte-derived macrophages, regulatory T cells, mesenchymal stromal cells, macrophages, etc. There is growing evidence regarding the multiple molecular mechanisms pivotal to various therapeutic effects and hence, careful selection of cell therapy product for the desired putative effects is crucial. In this review, we have presented an overview of the cell therapies that have been developed thus far, with preclinical and clinical evidence for their use in liver disease. Limitations associated with these therapies have also been discussed. Despite the advances made, there remain multiple challenges to overcome before cell therapies can be considered as viable treatment options, and these include larger scale clinical trials, scalable production of cells according to good manufacturing practice standards, pathways for delivery of cell therapy within hospital environments, and costs associated with the production.
Collapse
Affiliation(s)
- Sheeba Khan
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Reenam S Khan
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Philip N Newsome
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
25
|
Deepak HB, Shreekrishna N, Sameermahmood Z, Anand NN, Hulgi R, Suresh J, Khare S, Dhakshinamoorthy S. An in vitro model of hepatic steatosis using lipid loaded induced pluripotent stem cell derived hepatocyte like cells. J Biol Methods 2020; 7:e135. [PMID: 32934967 PMCID: PMC7483829 DOI: 10.14440/jbm.2020.330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatic steatosis is a metabolic disease, characterized by selective and progressive accumulation of lipids in liver, leading to progressive non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and cirrhosis. The existing in vitro models of hepatic steatosis to elucidate the molecular mechanisms behind the onset of hepatic steatosis and to profile small molecule modulators uses lipid loaded primary hepatocytes, and cell lines like HepG2. The limitation of these models includes high variability between the different donor samples, reproducibility, and translatability to physiological context. An in vitro human hepatocyte derived model that mimics the pathophysiological changes seen in hepatic steatosis may provide an alternative tool for pre-clinical drug discovery research. We report the development of an in vitro experimental model of hepatic steatosis using human induced pluripotent stem cell (iPSC) derived hepatocytes like cells (HLC), loaded with lipids. Our data suggests that HLC carry some of the functional characteristics of primary hepatocytes and are amenable for development of an in vitro steatosis model using lipid loading method. The in vitro experimental model of hepatic steatosis was further characterized using biomarker analysis and validated using telmisartan. With some refinement and additional validation, our in vitro steatosis model system may be useful for profiling small molecule inhibitors and studying the mechanism of action of new drugs.
Collapse
Affiliation(s)
| | | | | | | | - Raghotham Hulgi
- Discovery Biology and Pharmacology, Jubilant Biosys Ltd., Bangalore 560022, India
| | - Juluri Suresh
- Discovery Biology and Pharmacology, Jubilant Biosys Ltd., Bangalore 560022, India
| | - Sonal Khare
- Discovery Biology and Pharmacology, Jubilant Biosys Ltd., Bangalore 560022, India
| | | |
Collapse
|
26
|
Exposure of von Willebrand Factor on Isolated Hepatocytes Promotes Tethering of Platelets to the Cell Surface. Transplantation 2020; 103:1630-1638. [PMID: 30896677 DOI: 10.1097/tp.0000000000002707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hepatocyte transplantation (Hctx) is a potentially attractive method for the treatment of acute liver failure and liver-based metabolic disorders. Unfortunately, the procedure is hampered by the instant blood-mediated inflammatory reaction (IBMIR), a thromboinflammatory response elicited by the vascular innate immune system, causing activation of the coagulation and complement systems and clearance of transplanted cells. Observations have also revealed platelets adhered to the surface of the hepatocytes (Hc). To establish Hctx as a clinical treatment, all factors that trigger IBMIR need to be identified and controlled. This work explores the expression of von Willebrand factor (VWF) on isolated Hc resulting in tethering of platelets. METHODS VWF on Hc was studied by flow cytometry, confocal microscopy, immunoblot, and real-time polymerase chain reaction. Interaction between Hc and platelets was studied in a Chandler loop model. Adhesion of platelets to the hepatocyte surface was demonstrated by flow cytometry and confocal microscopy. RESULTS Isolated Hc constitutively express VWF on their cell surface and mRNA for VWF was found in the cells. Hc and platelets, independently of coagulation formed complexes, were shown by antibody blocking studies to be dependent on hepatocyte-associated VWF and platelet-bound glycoprotein Ibα. CONCLUSIONS VWF on isolated Hc causes, in contact with blood, adhesion of platelets, which thereby forms an ideal surface for coagulation. This phenomenon needs to be considered in hepatocyte-based reconstitution therapy and possibly even in other settings of cell transplantation.
Collapse
|
27
|
Pareja E, Gómez-Lechón MJ, Tolosa L. Induced pluripotent stem cells for the treatment of liver diseases: challenges and perspectives from a clinical viewpoint. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:566. [PMID: 32775367 PMCID: PMC7347783 DOI: 10.21037/atm.2020.02.164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The only curative treatment for severe end-stage liver disease (ESLD) is liver transplantation (LT) but it is limited by the shortage of organ donors. The increase of the incidence of liver disease has led to develop new therapeutic approaches such as liver cell transplantation. Current challenges that limit a wider application of this therapy include a limited cell source and the poor engraftment in the host liver of cryopreserved hepatocytes after thawing. Induced pluripotent stem cells (iPSCs) that can be differentiated into hepatocyte-like cells (HLCs) are being widely explored as an alternative to human hepatocytes because of their unlimited proliferation capacity and their potential ability to avoid the immune system. Their large-scale production could provide a new tool to produce enough HLCs for treating patients with metabolic diseases, acute liver failure (ALF), those with ESLD or patients not considered for organ transplantation. In this review we discuss current challenges for generating differentiated cells compatible with human application as well as in-depth safety evaluation. This analysis highlights the uncertainties and deficiencies that should be addressed before their clinical use but also points out the potential benefits that will produce a great impact in the field of hepatology.
Collapse
Affiliation(s)
- Eugenia Pareja
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Unidad Hepatobiliopancreáctica, Hospital Universitario Doctor Peset, Valencia, Spain
| | - M José Gómez-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,CIBERehd, ISCIII, Madrid, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
28
|
Furuta T, Furuya K, Zheng YW, Oda T. Novel alternative transplantation therapy for orthotopic liver transplantation in liver failure: A systematic review. World J Transplant 2020; 10:64-78. [PMID: 32257850 PMCID: PMC7109592 DOI: 10.5500/wjt.v10.i3.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/10/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the only treatment for end-stage liver failure; however, graft shortage impedes its applicability. Therefore, studies investigating alternative therapies are plenty. Nevertheless, no study has comprehensively analyzed these therapies from different perspectives. AIM To summarize the current status of alternative transplantation therapies for OLT and to support future research. METHODS A systematic literature search was performed using PubMed, Cochrane Library and EMBASE for articles published between January 2010 and 2018, using the following MeSH terms: [(liver transplantation) AND cell] OR [(liver transplantation) AND differentiation] OR [(liver transplantation) AND organoid] OR [(liver transplantation) AND xenotransplantation]. Various types of studies describing therapies to replace OLT were retrieved for full-text evaluation. Among them, we selected articles including in vivo transplantation. RESULTS A total of 89 studies were selected. There are three principle forms of treatment for liver failure: Xeno-organ transplantation, scaffold-based transplantation, and cell transplantation. Xeno-organ transplantation was covered in 14 articles, scaffold-based transplantation was discussed in 22 articles, and cell transplantation was discussed in 53 articles. Various types of alternative therapies were discussed: Organ liver, 25 articles; adult hepatocytes, 31 articles; fetal hepatocytes, three articles; mesenchymal stem cells (MSCs), 25 articles; embryonic stem cells, one article; and induced pluripotent stem cells, three articles and other sources. Clinical applications were discussed in 12 studies: Cell transplantation using hepatocytes in four studies, five studies using umbilical cord-derived MSCs, three studies using bone marrow-derived MSCs, and two studies using hematopoietic stem cells. CONCLUSION The clinical applications are present only for cell transplantation. Scaffold-based transplantation is a comprehensive treatment combining organ and cell transplantations, which warrants future research to find relevant clinical applications.
Collapse
Affiliation(s)
- Tomoaki Furuta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| | - Kinji Furuya
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
- Institute of Regenerative Medicine and Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
- Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| |
Collapse
|
29
|
Iwanaka T, Yamaza T, Sonoda S, Yoshimaru K, Matsuura T, Yamaza H, Ohga S, Oda Y, Taguchi T. A model study for the manufacture and validation of clinical-grade deciduous dental pulp stem cells for chronic liver fibrosis treatment. Stem Cell Res Ther 2020; 11:134. [PMID: 32213198 PMCID: PMC7093986 DOI: 10.1186/s13287-020-01630-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/30/2020] [Accepted: 03/02/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Human deciduous pulp stem cells (hDPSCs) have remarkable stem cell potency associated with cell proliferation, mesenchymal multipotency, and immunosuppressive function and have shown beneficial effects in a variety of animal disease models. Recent studies demonstrated that hDPSCs exhibited in vivo anti-fibrotic and anti-inflammatory action and in vivo hepatogenic-associated liver regeneration, suggesting that hDPSCs may offer a promising source with great clinical demand for treating liver diseases. However, how to manufacture ex vivo large-scale clinical-grade hDPSCs with the appropriate quality, safety, and preclinical efficacy assurances remains unclear. METHODS We isolated hDPSCs from human deciduous dental pulp tissues formed by the colony-forming unit-fibroblast (CFU-F) method and expanded them under a xenogeneic-free and serum-free (XF/SF) condition; hDPSC products were subsequently stored by two-step banking including a master cell bank (MCB) and a working cell bank (WCB). The final products were directly thawed hDPSCs from the WCB. We tested the safety and quality check, stem cell properties, and preclinical potentials of final hDPSC products and hDPSC products in the MCB and WCB. RESULTS We optimized manufacturing procedures to isolate and expand hDPSC products under a XF/SF culture condition and established the MCB and the WCB. The final hDPSC products and hDPSC products in the MCB and WCB were validated the safety and quality including population doubling ability, chromosome stability, microorganism safety, and stem cell properties including morphology, cell surface marker expression, and multipotency. We also evaluated the in vivo immunogenicity and tumorigenicity and validated in vivo therapeutic efficacy for liver regeneration in a CCl4-induced chronic liver fibrosis mouse model in the final hDPSC products and hDPSC products in the WCB. CONCLUSION The manufacture and quality control results indicated that the present procedure could produce sufficient numbers of clinical-grade hDPSC products from a tiny deciduous dental pulp tissue to enhance clinical application of hDPSC products in chronic liver fibrosis.
Collapse
Affiliation(s)
- Tsuyoshi Iwanaka
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Soichiro Sonoda
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koichiro Yoshimaru
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshiharu Matsuura
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Haruyoshi Yamaza
- Department of Pediatric Dentistry, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
30
|
Nguyen MP, Jain V, Iansante V, Mitry RR, Filippi C, Dhawan A. Clinical application of hepatocyte transplantation: current status, applicability, limitations, and future outlook. Expert Rev Gastroenterol Hepatol 2020; 14:185-196. [PMID: 32098516 DOI: 10.1080/17474124.2020.1733975] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Hepatocyte transplantation (HT) is a promising alternative to liver transplantation for the treatment of liver-based metabolic diseases and acute liver failure (ALF). However, shortage of good-quality liver tissues, early cell loss post-infusion, reduced cell engraftment and function restricts clinical application.Areas covered: A comprehensive literature search was performed to cover pre-clinical and clinical HT studies. The review discusses the latest developments to address HT limitations: cell sources from marginal/suboptimal donors to neonatal livers, differentiating pluripotent stem cells into hepatocyte-like cells, in vitro expansion, prevention of immune response to transplanted cells by encapsulation or using innate immunity-inhibiting agents, and enhancing engraftment through partial hepatectomy or irradiation.Expert opinion: To date, published data are highly encouraging specially the alginate-encapsulated hepatocyte treatment of children with ALF. Hepatocyte functions can be further improved through co-culturing with mesenchymal stromal cells. Moreover, ex-vivo genetic correction will enable the use of autologous cells in future personalized medicine.
Collapse
Affiliation(s)
- Minh Phuong Nguyen
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Vandana Jain
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Valeria Iansante
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Ragai R Mitry
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Celine Filippi
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Anil Dhawan
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| |
Collapse
|
31
|
Siefert J, Hillebrandt KH, Moosburner S, Podrabsky P, Geisel D, Denecke T, Unger JK, Sawitzki B, Gül-Klein S, Lippert S, Tang P, Reutzel-Selke A, Morgul MH, Reske AW, Kafert-Kasting S, Rüdinger W, Oetvoes J, Pratschke J, Sauer IM, Raschzok N. Hepatocyte Transplantation to the Liver via the Splenic Artery in a Juvenile Large Animal Model. Cell Transplant 2019; 28:14S-24S. [PMID: 31842585 PMCID: PMC7016464 DOI: 10.1177/0963689719885091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatocyte transplantation (HcTx) is a promising approach for the treatment of metabolic diseases in newborns and children. The most common application route is the portal vein, which is difficult to access in the newborn. Transfemoral access to the splenic artery for HcTx has been evaluated in adults, with trials suggesting hepatocyte translocation from the spleen to the liver with a reduced risk for thromboembolic complications. Using juvenile Göttingen minipigs, we aimed to evaluate feasibility of hepatocyte transplantation by transfemoral splenic artery catheterization, while providing insight on engraftment, translocation, viability, and thromboembolic complications. Four Göttingen Minipigs weighing 5.6 kg to 12.6 kg were infused with human hepatocytes (two infusions per cycle, 1.00E08 cells per kg body weight). Immunosuppression consisted of tacrolimus and prednisolone. The animals were sacrificed directly after cell infusion (n=2), 2 days (n=1), or 14 days after infusion (n=1). The splenic and portal venous blood flow was controlled via color-coded Doppler sonography. Computed tomography was performed on days 6 and 18 after the first infusion. Tissue samples were stained in search of human hepatocytes. Catheter placement was feasible in all cases without procedure-associated complications. Repetitive cell transplantations were possible without serious adverse effects associated with hepatocyte transplantation. Immunohistochemical staining has proven cell relocation to the portal venous system and liver parenchyma. However, cells were neither present in the liver nor the spleen 18 days after HcTx. Immunological analyses showed a response of the adaptive immune system to the human cells. We show that interventional cell application via the femoral artery is feasible in a juvenile large animal model of HcTx. Moreover, cells are able to pass through the spleen to relocate in the liver after splenic artery infusion. Further studies are necessary to compare this approach with umbilical or transhepatic hepatocyte administration.
Collapse
Affiliation(s)
- J Siefert
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - K H Hillebrandt
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - S Moosburner
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - P Podrabsky
- Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - D Geisel
- Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - T Denecke
- Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - J K Unger
- Department of Experimental Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - B Sawitzki
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - S Gül-Klein
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - S Lippert
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - P Tang
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - A Reutzel-Selke
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - M H Morgul
- Department of General, Visceral and Transplantation Surgery, University of Münster, Münster, Germany
| | - A W Reske
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Leipzig, Leipzig, Germany
| | | | - W Rüdinger
- Cytonet GmbH & Co. KG, Weinheim, Germany
| | - J Oetvoes
- Department of Experimental Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - J Pratschke
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - I M Sauer
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - N Raschzok
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,BIH Charité Clinician Scientist Program, Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
32
|
Pan T, Chen Y, Zhuang Y, Yang F, Xu Y, Tao J, You K, Wang N, Wu Y, Lin X, Wu F, Liu Y, Li Y, Wang G, Li YX. Synergistic modulation of signaling pathways to expand and maintain the bipotency of human hepatoblasts. Stem Cell Res Ther 2019; 10:364. [PMID: 31791391 PMCID: PMC6888929 DOI: 10.1186/s13287-019-1463-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/24/2019] [Accepted: 10/21/2019] [Indexed: 12/29/2022] Open
Abstract
Background The limited proliferative ability of hepatocytes is a major limitation to meet their demand for cell-based therapy, bio-artificial liver device, and drug tests. One strategy is to amplify cells at the hepatoblast (HB) stage. However, expansion of HBs with their bipotency preserved is challenging. Most HB expansion methods hardly maintain the bipotency and also lack functional confirmation. Methods On the basis of analyzing and manipulating related signaling pathways during HB (derived from human induced pluripotent stem cells, iPSCs) differentiation and proliferation, we established a specific chemically defined cocktails to synergistically regulate the related signaling pathways that optimize the balance of HB proliferation ability and stemness maintenance, to expand the HBs and investigate their capacity for injured liver repopulation in immune-deficient mice. Results We found that the proliferative ability progressively declines during HB differentiation process. Small molecule activation of Wnt or inhibition of TGF-β pathways promoted HB proliferation but diminished their bipotency, whereas activation of hedgehog (HH) signaling stimulated proliferation and sustained HB phenotypes. A cocktail synergistically regulating the BMP/WNT/TGF-β/HH pathways created a fine balance for expansion and maintenance of the bipotency of HBs. After purification, colony formation, and expansion for 20 passages, HBs retained their RNA profile integrity, normal karyotype, and ability to differentiate into mature hepatocytes and cholangiocytes. Moreover, upon transplantation into liver injured mice, the expanded HBs could engraft and differentiate into mature human hepatocytes and repopulate liver tissue with restoring hepatocyte mass. Conclusion Our data contribute to the understanding of some signaling pathways for human HB proliferation in vitro. Simultaneous BMP/HGF induction, activation of Wnt and HH, and inhibition of TGF-β pathways created a reliable method for long-term stable large-scale expansion of HBs to obtain mature hepatocytes that may have substantial clinical applications. Graphical abstract ![]()
Collapse
Affiliation(s)
- Tingcai Pan
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Science, Beijing, 100049, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yan Chen
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuanqi Zhuang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Fan Yang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yingying Xu
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiawang Tao
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Science, Beijing, 100049, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Kai You
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ning Wang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuhang Wu
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xianhua Lin
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Feima Wu
- The Second Affiliated Hospital, Guangzhou Medical College, Guangzhou, 510260, China
| | - Yanli Liu
- The Second Affiliated Hospital, Guangzhou Medical College, Guangzhou, 510260, China
| | - Yingrui Li
- iCarbonX(Shenzhen) Company Limited, Shenzhen, 518000, China
| | - Guodong Wang
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yin-Xiong Li
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China. .,University of Chinese Academy of Science, Beijing, 100049, China. .,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
33
|
Functions and the Emerging Role of the Foetal Liver into Regenerative Medicine. Cells 2019; 8:cells8080914. [PMID: 31426422 PMCID: PMC6721721 DOI: 10.3390/cells8080914] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
During foetal life, the liver plays the important roles of connection and transient hematopoietic function. Foetal liver cells develop in an environment called a hematopoietic stem cell niche composed of several cell types, where stem cells can proliferate and give rise to mature blood cells. Embryologically, at about the third week of gestation, the liver appears, and it grows rapidly from the fifth to 10th week under WNT/β-Catenin signaling pathway stimulation, which induces hepatic progenitor cells proliferation and differentiation into hepatocytes. Development of new strategies and identification of new cell sources should represent the main aim in liver regenerative medicine and cell therapy. Cells isolated from organs with endodermal origin, like the liver, bile ducts, and pancreas, could be preferable cell sources. Furthermore, stem cells isolated from these organs could be more susceptible to differentiate into mature liver cells after transplantation with respect to stem cells isolated from organs or tissues with a different embryological origin. The foetal liver possesses unique features given the co-existence of cells having endodermal and mesenchymal origin, and it could be highly available source candidate for regenerative medicine in both the liver and pancreas. Taking into account these advantages, the foetal liver can be the highest potential and available cell source for cell therapy regarding liver diseases and diabetes.
Collapse
|
34
|
Abstract
Introduction: Liver disease is an increasing cause of worldwide mortality, and currently the only curative treatment for end-stage liver disease is whole organ allograft transplantation. Whilst this is an effective treatment, there is a shortage of suitable grafts and consequently some patients die whilst on the waiting list. Cell therapy provides an alternative treatment to increase liver function and potentially ameliorate fibrosis. Areas covered: In this review, we discuss the different cellular sources for therapy investigated to date in humans including mature hepatocytes, hematopoietic stem cells, mesenchymal stromal cells and hepatic progenitor cells. Cells investigated in animals include embryonic stem cells, induced pluripotent stem cells and directly reprogrammed cells. We then appraise the experience and evidence base underlying each cell type. Expert opinion: We discuss how this field may evolve in the years to come focusing on opportunities to enhance the intrinsic regenerative response with therapeutic targets and cell therapies. Growing expertise in tissue engineering will likely lead to increasingly complex bio-reactors and bio-artificial livers, which open a further avenue to restore liver function and delay or prevent the need for transplantation.
Collapse
Affiliation(s)
- Alexander Boyd
- a NIHR Birmingham Biomedical Research Centre , University Hospitals Birmingham NHS Foundation Trust and University of Birmingham , Birmingham , UK.,b Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy , University of Birmingham , Birmingham , UK.,c Liver Unit , University Hospitals Birmingham NHS Foundation Trust , Birmingham , UK
| | - Philip Newsome
- a NIHR Birmingham Biomedical Research Centre , University Hospitals Birmingham NHS Foundation Trust and University of Birmingham , Birmingham , UK.,b Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy , University of Birmingham , Birmingham , UK.,c Liver Unit , University Hospitals Birmingham NHS Foundation Trust , Birmingham , UK
| | - Wei-Yu Lu
- b Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy , University of Birmingham , Birmingham , UK
| |
Collapse
|
35
|
Figueiredo C, Oldhafer F, Wittauer EM, Carvalho-Oliveira M, Akhdar A, Beetz O, Chen-Wacker C, Yuzefovych Y, Falk CS, Blasczyk R, Vondran FWR. Silencing of HLA class I on primary human hepatocytes as a novel strategy for reduction in alloreactivity. J Cell Mol Med 2019; 23:5705-5714. [PMID: 31180181 PMCID: PMC6653539 DOI: 10.1111/jcmm.14484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
In contrast to the whole liver, primary hepatocytes are highly immunogenic. Thus, alternative strategies of immunomodulation after hepatocyte transplantation are of special interest. Silencing of HLA class I expression is expected to reduce the strength of allogeneic immune responses and to improve graft survival. In this study, primary human hepatocytes (PHH) were isolated using a two-step-collagenase perfusion-technique and co-cultured with allogeneic lymphocytes in terms of a mixed lymphocyte hepatocyte culture. Expression of HLA class I on PHH was silenced using lentiviral vectors encoding for β2-microglobulin-specific short hairpin RNA (shβ2m) or non-specific shRNA (shNS) as control. The delivery of shβ2m into PHH caused a decrease by up to 96% in β2m transcript levels and a down-regulation of HLA class I cell surface expression on PHH by up to 57%. Proliferative T cell alloresponses against HLA-silenced PHH were significantly lower than those observed form fully HLA-expressing PHH. In addition, significantly lower secretion of pro-inflammatory cytokines was observed. Levels of albumin, urea and aspartate-aminotransferase did not differ in supernatants of cultured PHH. In conclusion, silencing HLA class I expression on PHH might represent a promising approach for immunomodulation in the transplant setting without compromising metabolic function of silenced hepatocytes.
Collapse
Affiliation(s)
- Constança Figueiredo
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany.,Excellence Cluster REBIRTH - From Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Felix Oldhafer
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Eva-Maria Wittauer
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Marco Carvalho-Oliveira
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany.,Excellence Cluster REBIRTH - From Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Ali Akhdar
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Oliver Beetz
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Chen Chen-Wacker
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany.,Excellence Cluster REBIRTH - From Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Yuliia Yuzefovych
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Christine S Falk
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany.,Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Florian W R Vondran
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
36
|
Bi Y, Liu X, Si C, Hong Y, Lu Y, Gao P, Yang Y, Zhang X, Wang Y, Xiong H, Duan Z, Chen Y, Hong F. Transplanted adult human hepatic stem/progenitor cells prevent histogenesis of advanced hepatic fibrosis in mice induced by carbon tetrachloride. Am J Transl Res 2019; 11:2350-2358. [PMID: 31105841 PMCID: PMC6511762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
Transplantation of adult human hepatic stem/progenitor cells (hHSPCs) has been considered as an alternative therapy, replacing donor liver transplantation to treat liver cirrhosis. This study assessed the antifibrotic effects of hHSPCs in mice with fibrosis induced by carbon tetrachloride (CCl4) and examined the actions of hHSPCs on the fibrogenic activity of human hepatic stellate cells (HSCs) in a coculture system. Isolated hHSPCs expressed stem/progenitor cell phenotypic markers. Mice were given CCl4 (twice weekly for 7 weeks) and hHSPC transplantation weekly. CCl4 induced advanced fibrosis (bridging fibrosis and cirrhosis) in mice, which was prevented by hHSPC transplantation. The liver of hHSPC-transplanted mice showed only occasional short septa and focal parenchymal fibrosis, and a 50% reduction in hepatic collagen, assessed by Sirius red stain histomorphometry. Moreover, the proteins for α-smooth muscle actin (α-SMA) and collagen I were decreased. While α-SMA, collagen α1(I), and tissue inhibitor of metalloproproteinase-1 mRNAs were decreased, matrix metalloproteinase (MMP)-1 mRNA was increased, consistent with decreased fibrogenesis. MMP-2 and transforming growth factor-β were not affected. Alanine aminotransferase and aspartate aminotransferase were lower, suggesting improvement of liver function/damage. In coculture, hHSPCs elicited changes of α-SMA and fibrogenic molecules in HSCs similar to those observed in vivo, providing evidence for a functional link between hHSPCs and HSCs. A decreased HSC proliferation was noted. Thus, transplantation of hHSPCs prevents histogenesis of advanced liver fibrosis caused by CCl4. hHSPCs mediate downregulation of HSC activation coincident with modulation of fibrogenic molecule expression, leading to suppression of fibrogenesis both in vivo and in vitro.
Collapse
Affiliation(s)
- Yanzhen Bi
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical UniversityBeijing 100069, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment ResearchBeijing 100069, China
| | - Xiyu Liu
- The Thoracic Surgery Department, Affiliated Hospital of Guilin Medical UniversityGuilin 541001, China
| | - Chuanping Si
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical UniversityJining 272000, China
| | - Ye Hong
- University of TurkuTurku 20014, Finland
| | - Yongke Lu
- Department of Health Sciences, College of Public Health, East Tennessee State UniversityJohnson 37614, TN, USA
| | - Pengfei Gao
- College of Pharmacy, Dali UniversityDali 671000, China
| | - Yonghong Yang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical UniversityJining 272000, China
| | - Xiaobei Zhang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical UniversityJining 272000, China
| | - Yibo Wang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical UniversityJining 272000, China
| | - Huabao Xiong
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount SinaiNew York, NY 10029, USA
| | - Zhongping Duan
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical UniversityBeijing 100069, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment ResearchBeijing 100069, China
| | - Yu Chen
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical UniversityBeijing 100069, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment ResearchBeijing 100069, China
| | - Feng Hong
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical UniversityJining 272000, China
| |
Collapse
|
37
|
Lee C, Dhawan A, Iansante V, Filippi C, Mitry R, Tang J, Walker S, Fernandez DaCosta R, Sinha S, Hughes RD, Koulmanda M, Fitzpatrick E. Improving engraftment of hepatocyte transplantation using alpha-1 antitrypsin as an immune modulator. J Mol Med (Berl) 2019; 97:563-577. [PMID: 30820592 PMCID: PMC6440943 DOI: 10.1007/s00109-019-01747-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 01/11/2023]
Abstract
Abstract For patients with non-cirrhotic liver-based metabolic disorders, hepatocyte transplantation can be an effective treatment. However, long-term function of transplanted hepatocytes following infusion has not been achieved due to insufficient numbers of hepatocytes reaching the liver cell plates caused by activation of the instant blood-mediated inflammatory reaction (IBMIR). Our aim was to determine if the natural immune modulator, alpha-1 antitrypsin (AAT), could improve engraftment of transplanted hepatocytes and investigate its mechanism of action. A tubing loop model was used to analyse activation of the IBMIR when human hepatocytes were in contact with ABO-matched blood and 4 mg/ml AAT. Platelet and white cell counts, complement and cytokine expression were analysed. To determine if AAT could improve short-term engraftment, female rats underwent tail vein injection of AAT (120 mg/kg) or water (control) prior to the intrasplenic transplantation of 2 × 107 male hepatocytes. At 48 h and 1 week, livers were collected for analysis. In our loop model, human hepatocytes elicited a significant drop in platelet count with thrombus formation compared to controls. Loops containing AAT and hepatocytes showed no platelet consumption and no thrombus formation. Further, AAT treatment resulted in reduced IL-1β, IL-6 and IFN-γ and increased IL-1RA compared to untreated loops. In vivo, AAT significantly improved engraftment of rat hepatocytes compared to untreated at 48 h. AAT infusion may inhibit the IBMIR, thus improving short-term engraftment of donor hepatocytes and potentially improve the outcomes for patients with liver-based metabolic disease. Key messages • Alpha-1 antitrypsin (AAT) acts as an immune modulator to improve the efficacy of hepatocyte transplantation. • Treatment with AAT decreased thrombus formation and pro-inflammatory cytokine expression in a tubing loop model. • AAT significantly improved engraftment of donor hepatocytes within the first 48 h post transplantation. Electronic supplementary material The online version of this article (10.1007/s00109-019-01747-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charlotte Lee
- Dhawan Group at Mowat Labs, Institute of Liver Studies, King's College London at King's College Hospital, London, UK
| | - Anil Dhawan
- Paediatric Liver, GI and Nutrition Centre, King's College London School of Medicine at King's College Hospital, Denmark Hill, London, UK.
| | - Valeria Iansante
- Dhawan Group at Mowat Labs, Institute of Liver Studies, King's College London at King's College Hospital, London, UK
| | - Celine Filippi
- Dhawan Group at Mowat Labs, Institute of Liver Studies, King's College London at King's College Hospital, London, UK
| | - Ragai Mitry
- Dhawan Group at Mowat Labs, Institute of Liver Studies, King's College London at King's College Hospital, London, UK
| | - Joanne Tang
- Dhawan Group at Mowat Labs, Institute of Liver Studies, King's College London at King's College Hospital, London, UK
| | - Simon Walker
- Paediatric Liver, GI and Nutrition Centre, King's College London School of Medicine at King's College Hospital, Denmark Hill, London, UK
| | - Raquel Fernandez DaCosta
- Paediatric Liver, GI and Nutrition Centre, King's College London School of Medicine at King's College Hospital, Denmark Hill, London, UK
| | - Siddharth Sinha
- Dhawan Group at Mowat Labs, Institute of Liver Studies, King's College London at King's College Hospital, London, UK
| | - Robin D Hughes
- Dhawan Group at Mowat Labs, Institute of Liver Studies, King's College London at King's College Hospital, London, UK
| | - Maria Koulmanda
- Departments of Medicine and Surgery, The Transplant Institute, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Emer Fitzpatrick
- Paediatric Liver, GI and Nutrition Centre, King's College London School of Medicine at King's College Hospital, Denmark Hill, London, UK.
| |
Collapse
|
38
|
MITO-Tag Mice enable rapid isolation and multimodal profiling of mitochondria from specific cell types in vivo. Proc Natl Acad Sci U S A 2018; 116:303-312. [PMID: 30541894 DOI: 10.1073/pnas.1816656115] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondria are metabolic organelles that are essential for mammalian life, but the dynamics of mitochondrial metabolism within mammalian tissues in vivo remains incompletely understood. While whole-tissue metabolite profiling has been useful for studying metabolism in vivo, such an approach lacks resolution at the cellular and subcellular level. In vivo methods for interrogating organellar metabolites in specific cell types within mammalian tissues have been limited. To address this, we built on prior work in which we exploited a mitochondrially localized 3XHA epitope tag (MITO-Tag) for the fast isolation of mitochondria from cultured cells to generate MITO-Tag Mice. Affording spatiotemporal control over MITO-Tag expression, these transgenic animals enable the rapid, cell-type-specific immunoisolation of mitochondria from tissues, which we verified using a combination of proteomic and metabolomic approaches. Using MITO-Tag Mice and targeted and untargeted metabolite profiling, we identified changes during fasted and refed conditions in a diverse array of mitochondrial metabolites in hepatocytes and found metabolites that behaved differently at the mitochondrial versus whole-tissue level. MITO-Tag Mice should have utility for studying mitochondrial physiology, and our strategy should be generally applicable for studying other mammalian organelles in specific cell types in vivo.
Collapse
|
39
|
Heil J, Schultze D, Schemmer P, Bruns H. N-acetylcysteine protects hepatocytes from hypoxia-related cell injury. Clin Exp Hepatol 2018; 4:260-266. [PMID: 30603674 PMCID: PMC6311746 DOI: 10.5114/ceh.2018.80128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023] Open
Abstract
AIM OF THE STUDY Hepatocyte transplantation has been discussed as an alternative to liver transplantation in selected cases of acute and chronic liver failure and metabolic diseases. Immediately after infusion of hepatocytes, hypoxia-related cell injury is inevitable. N-acetylcysteine (NAC) has been suggested to attenuate hypoxic damage. This study's objective was to evaluate NAC's protective effect in a model of hypoxia-related hepatocyte injury. MATERIAL AND METHODS HepG2 cells were used as a model for hepatocytes and were cultured under standardized hypoxia or normoxia for 24 hours with or without NAC. Growth kinetics were monitored using trypan blue staining. The activation of apoptotic pathways was measured using quantitative real-time PCR for Bcl-2/Bax and p53. The proportions of vital, apoptotic and necrotic cells were verified by fluorescence activated cell sorting using annexin V-labelling. The expression of hypoxia inducible factor 1 (HIF-1) was measured indirectly using its downstream target vascular endothelial growth factor A (VEGF-A). RESULTS After NAC, cell proliferation increased under both hypoxia and normoxia by 528% and 320% (p < 0.05), while VEGF-A expression decreased under normoxia by 67% and 37% (p < 0.05). Compared to cells treated without NAC under hypoxia, the Bcl-2/Bax ratio increased significantly in cells treated with NAC. This finding was confirmed by an increased number of vital cells in FACS analysis. CONCLUSIONS NAC protects hepatocytes from hypoxic injury and ultimately activates anti-apoptotic pathways.
Collapse
Affiliation(s)
- Jan Heil
- Department of General and Visceral Surgery, Goethe-University Hospital Frankfurt, Frankfurt/M., Germany
| | - Daniel Schultze
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Schemmer
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Helge Bruns
- European Medical School, University Hospital for General and Visceral Surgery, Klinikum Oldenburg, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
40
|
Srinivasan RC, Kannisto K, Strom SC, Gramignoli R. Evaluation of different routes of administration and biodistribution of human amnion epithelial cells in mice. Cytotherapy 2018; 21:113-124. [PMID: 30409699 DOI: 10.1016/j.jcyt.2018.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 09/28/2018] [Accepted: 10/07/2018] [Indexed: 01/10/2023]
Abstract
Placenta is a non-controversial and promising source of cells for the treatment of several liver diseases. We previously reported that transplanted human amnion epithelial cells (hAECs) differentiate into hepatocyte-like cells, resulting in correction of mouse models of metabolic liver disease or acute hepatic failure. As part of preclinical safety studies, we investigated the distribution of hAECs using two routes of administration to efficiently deliver hAECs to the liver. Optical imaging is commonly used because it can provide fast, high-throughput, whole-body imaging, thus DiR-labeled hAECs were injected into immunodeficient mice, via the spleen or the tail vein. The cell distribution was monitored using an in vivo imaging system over the next 24 h. After splenic injection, the DiR signal was detected in liver and spleen at 1, 3 and 24 h post-transplant. The distribution was confirmed by analysis of human DNA content at 24 h post-transplant and human-specific cytokeratin 8/18 staining. Tail vein infusion resulted in cell engraftment mainly in the lungs, with minimal detection in the liver. Delivery of cells to the portal vein, via the spleen, resulted in efficient delivery of hAECs to the liver, with minimal, off-target distribution to lungs or other organs.
Collapse
Affiliation(s)
- Raghuraman C Srinivasan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Kannisto
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stephen C Strom
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
41
|
Lee CA, Sinha S, Fitzpatrick E, Dhawan A. Hepatocyte transplantation and advancements in alternative cell sources for liver-based regenerative medicine. J Mol Med (Berl) 2018; 96:469-481. [PMID: 29691598 PMCID: PMC5988761 DOI: 10.1007/s00109-018-1638-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/07/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022]
Abstract
Human hepatocyte transplantation has been actively perused as an alternative to liver replacement for acute liver failure and liver-based metabolic defects. Current challenges in this field include a limited cell source, reduced cell viability following cryopreservation and poor engraftment of cells into the recipient liver with consequent limited life span. As a result, alternative stem cell sources such as pluripotent stem cells, fibroblasts, hepatic progenitor cells, amniotic epithelial cells and mesenchymal stem/stromal cells (MSCs) can be used to generate induced hepatocyte like cells (HLC) with each technique exhibiting advantages and disadvantages. HLCs may have comparable function to primary human hepatocytes and could offer patient-specific treatment. However, long-term functionality of transplanted HLCs and the potential oncogenic risks of using stem cells have yet to be established. The immunomodulatory effects of MSCs are promising, and multiple clinical trials are investigating their effect in cirrhosis and acute liver failure. Here, we review the current status of hepatocyte transplantation, alternative cell sources to primary human hepatocytes and their potential in liver regeneration. We also describe recent clinical trials using hepatocytes derived from stem cells and their role in improving the phenotype of several liver diseases.
Collapse
Affiliation(s)
- Charlotte A Lee
- Dhawan Lab, Institute of Liver Studies, King's College London at King's College Hospital NHS Foundation trust, London, UK
| | - Siddharth Sinha
- Dhawan Lab, Institute of Liver Studies, King's College London at King's College Hospital NHS Foundation trust, London, UK
| | - Emer Fitzpatrick
- Paediatric Liver GI and Nutrition Centre, King's College London at King's College Hospital NHS Foundation Trust, London, UK
| | - Anil Dhawan
- Paediatric Liver GI and Nutrition Centre, King's College London at King's College Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
42
|
Ridola L, Bragazzi MC, Cardinale V, Carpino G, Gaudio E, Alvaro D. Cholangiocytes: Cell transplantation. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1516-1523. [PMID: 28735098 DOI: 10.1016/j.bbadis.2017.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Due to significant limitations to the access to orthotropic liver transplantation, cell therapies for liver diseases have gained large interest worldwide. SCOPE OF REVIEW To revise current literature dealing with cell therapy for liver diseases. We discussed the advantages and pitfalls of the different cell sources tested so far in clinical trials and the rationale underlying the potential benefits of transplantation of human biliary tree stem cells (hBTSCs). MAJOR CONCLUSIONS Transplantation of adult hepatocytes showed transient benefits but requires immune-suppression that is a major pitfall in patients with advanced liver diseases. Mesenchymal stem cells and hematopoietic stem cells transplanted into patients with liver diseases are not able to replace resident hepatocytes but rather they target autoimmune or inflammatory processes into the liver. Stem cells isolated from fetal or adult liver have been recently proposed as alternative cell sources for advanced liver cirrhosis and metabolic liver disease. We demonstrated the presence of multipotent cells expressing a variety of endodermal stem cell markers in (peri)-biliary glands of bile ducts in fetal or adult human tissues, and in crypts of gallbladder epithelium. In the first cirrhotic patients treated in our center with biliary tree stem cell therapy, we registered no adverse event but significant benefits. GENERAL SIGNIFICANCE The biliary tree stem cell could represent the ideal cell source for the cell therapy of liver diseases. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Lorenzo Ridola
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Italy.
| | - Maria Consiglia Bragazzi
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Italy.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Italy.
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Italy.
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy.
| | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Division of Gastroenterology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
43
|
Abstract
BACKGROUND Crigler-Najjar syndrome type I (CNI) arises from biallelic variants of UGT1A1 that abrogate uridine diphosphate glucuronosyltransferase (UGT1A1) activity resulting in unconjugated hyperbilirubinemia. Historically, liver parenchyma in CNI was considered structurally and histologically normal. Recent review of CNI liver explants revealed fibrosis. Our aim was to investigate the association between hepatic histology and disease phenotype in CNI. METHODS We extracted data from the medical record at the time of liver transplant from 22 patients with CNI at the Children's Hospital of Pittsburgh, and reviewed explant histology. Continuous data were normally distributed, are presented as mean (±1 SD), and analyzed using two-tailed Student t-test. Categorical data were analyzed using the Chi-square test. RESULTS Both alanine transaminase (ALT; mean 87.4 IU/L) and aspartate transaminase (AST; mean 54.6 IU/L) were elevated. Nine (41%) of 22 explants had significant fibrosis. Pericentral (n = 5), periportal (n = 2), and mixed (n = 2) patterns of fibrosis occurred. A significant difference in mean age of subjects with fibrotic versus non-fibrotic livers (16.1 years vs 10.5 years; P = 0.02) was seen. There were no indices of synthetic liver dysfunction or portal hypertension. Neither a history of gallstone disease nor excess weight appeared to contribute to the development of fibrosis. CONCLUSIONS For the first time, we report a 41% prevalence of clinically silent, yet histologically significant fibrosis among subjects with Crigler-Najjar type 1. Risk for fibrosis appears to accrue with time, indicating that earlier intervention may be prudent whenever considering alternative treatments such as hepatocyte transplant, auxiliary liver transplant, or viral gene therapy.
Collapse
|
44
|
Lee CA, Dhawan A, Iansante V, Lehec S, Khorsandi SE, Filippi C, Walker S, Fernandez-Dacosta R, Heaton N, Bansal S, Mitry RR, Fitzpatrick E. Cryopreserved neonatal hepatocytes may be a source for transplantation: Evaluation of functionality toward clinical use. Liver Transpl 2018; 24:394-406. [PMID: 29356341 DOI: 10.1002/lt.25015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 12/27/2022]
Abstract
Neonatal livers are a potential source of good-quality hepatocytes for clinical transplantation. We compared viability and function of neonatal hepatocytes (NHs) and adult hepatocytes (AHs) and report their clinical use both intraportally and in alginate microbeads. Following isolation from donor livers, hepatocyte function was assessed using albumin, alpha-1-antitrypsin, and factor VII. Metabolic function was investigated by measuring resorufin conjugation, ammonia metabolism, uridine diphosphate glucuronosyltransferase enzyme activity, and cytochrome P450 (CYP) function following induction. Activation of the instant blood-mediated inflammatory reaction by NHs and AHs was investigated using an in vitro blood perfusion model, and tissue factor expression was analyzed using real-time polymerase chain reaction (RT-PCR). Clinical hepatocyte transplantation (HT) was undertaken using standard protocols. Hepatocytes were isolated from 14 neonatal livers, with an average viability of 89.4% ± 1.8% (mean ± standard error of the mean) and average yield of 9.3 × 106 ± 2.0 × 106 cells/g. Hepatocytes were isolated from 14 adult livers with an average viability of 78.6% ± 2.4% and yield 2.2 × 106 ± 0.5 × 105 cells/g. NHs had significantly higher viability after cryopreservation than AHs, with better attachment efficiency and less plasma membrane leakage. There were no differences in albumin, alpha-1-antitrypsin, and factor VII synthesis between NHs and AHs (P > 0.05). Neonatal cells had inducible phase 1 enzymes as assessed by CYP function and functional phase 2 enzymes, in which activity was comparable to AHs. In an in vitro blood perfusion model, AHs elicited increased thrombus formation with a greater consumption of platelets and white cells compared with NHs (28.3 × 109 versus 118.7 × 109 and 3.3 × 109 versus 6.6 × 109 ; P < 0.01). Intraportal transplantation and intraperitoneal transplantation of alginate encapsulated hepatocytes was safe, and preliminary data suggest the cells may activate the immune response to a lesser degree than adult cells. In conclusion, we have shown NHs have excellent cell viability, function, and drug metabolism making them a suitable alternative source for clinical HT. Liver Transplantation 24 394-406 2018 AASLD.
Collapse
Affiliation(s)
- Charlotte A Lee
- Dhawan Lab, Institute of Liver Studies and, King's College London at King's College Hospital, London, UK
| | - Anil Dhawan
- Pediatric Liver, GI and Nutrition Centre, King's College London at King's College Hospital, London, UK
| | - Valeria Iansante
- Dhawan Lab, Institute of Liver Studies and, King's College London at King's College Hospital, London, UK
| | - Sharon Lehec
- Dhawan Lab, Institute of Liver Studies and, King's College London at King's College Hospital, London, UK
| | - Shirin E Khorsandi
- Institute of Liver Studies, King's College Hospital National Health Service Foundation Trust, London, UK
| | - Celine Filippi
- Dhawan Lab, Institute of Liver Studies and, King's College London at King's College Hospital, London, UK
| | - Simon Walker
- Dhawan Lab, Institute of Liver Studies and, King's College London at King's College Hospital, London, UK
| | - Raquel Fernandez-Dacosta
- Dhawan Lab, Institute of Liver Studies and, King's College London at King's College Hospital, London, UK
| | - Nigel Heaton
- Institute of Liver Studies, King's College Hospital National Health Service Foundation Trust, London, UK
| | - Sanjay Bansal
- Pediatric Liver, GI and Nutrition Centre, King's College London at King's College Hospital, London, UK
| | - Ragai R Mitry
- Dhawan Lab, Institute of Liver Studies and, King's College London at King's College Hospital, London, UK
| | - Emer Fitzpatrick
- Pediatric Liver, GI and Nutrition Centre, King's College London at King's College Hospital, London, UK
| |
Collapse
|
45
|
Anderson TN, Zarrinpar A. Hepatocyte transplantation: past efforts, current technology, and future expansion of therapeutic potential. J Surg Res 2018; 226:48-55. [PMID: 29661288 DOI: 10.1016/j.jss.2018.01.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 11/16/2017] [Accepted: 01/17/2018] [Indexed: 12/16/2022]
Abstract
Hepatic cell transplantation (HCT) continues to garner interest as an alternative to orthotopic liver transplantation and the attendant donor shortage. When compared with solid organ transplantation, advantages of cell transplantation include the potential to treat more patients with a considerably less invasive procedure, the ability to utilize organs otherwise unsuitable for transplant, and leaving the native organ in situ with the potential for regeneration. While studies date back to the early 1960s, advancement of clinical application has been slow due in part to limitations of suitable tissue supplies and reproducible robust techniques. Compared with orthotopic liver transplantation, there are fewer absolute contraindications for donor selection. And, current techniques used to harvest, isolate, store, and even transfuse cells vary little between institutions. Significant variation is seen due to a lack of consensus with maintenance therapy. Although the ideal recipient has not been clearly identified, the most significant results have been demonstrated with correction of congenital metabolic liver disorders, with a few trials examining its utility in cirrhotics and more recently acute liver failure. The most exciting new topic of discussion examines techniques to improve engraftment, with many such as ischemic preconditioning and nonselective partial embolization (microbead therapy), while not yet used in HCT study, showing promise in solid organ research. Advancements in HCT, although slow in progress, have great potential in the ability to alleviate the burden faced in solid organ transplantation and possibly become a long-term viable option, beyond that of a bridge or salvage therapy.
Collapse
Affiliation(s)
- Tiffany N Anderson
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida
| | - Ali Zarrinpar
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida.
| |
Collapse
|
46
|
Current Perspectives Regarding Stem Cell-Based Therapy for Liver Cirrhosis. Can J Gastroenterol Hepatol 2018; 2018:4197857. [PMID: 29670867 PMCID: PMC5833156 DOI: 10.1155/2018/4197857] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
Liver cirrhosis is a major cause of mortality and a common end of various progressive liver diseases. Since the effective treatment is currently limited to liver transplantation, stem cell-based therapy as an alternative has attracted interest due to promising results from preclinical and clinical studies. However, there is still much to be understood regarding the precise mechanisms of action. A number of stem cells from different origins have been employed for hepatic regeneration with different degrees of success. The present review presents a synopsis of stem cell research for the treatment of patients with liver cirrhosis according to the stem cell type. Clinical trials to date are summarized briefly. Finally, issues to be resolved and future perspectives are discussed with regard to clinical applications.
Collapse
|
47
|
Abstract
Cellular transplantation represents an alternative to liver transplantation for the treatment of end-stage liver disease and liver-based inborn errors of metabolism. In order for cellular transplantation to be successful, an optimal source of cells for transplantation needs to be identified and the molecular mechanisms regulating their engraftment, proliferation, and functional differentiation elucidated. Here we describe a detailed protocol for the isolation, selection, and transplantation into an injured adult rat liver of a defined population of late gestation fetal rat hepatocytes. Also described is the methodology for assessing the purity of the selected cells and the efficiency with which they repopulate the adult liver. Our approach provides an in vivo model to study the molecular pathways involved in liver repopulation.
Collapse
Affiliation(s)
- Jennifer A Sanders
- Department of Pediatrics, Rhode Island Hospital, Brown University, 593 Eddy Street, MPS 2-209, Providence, RI, 02903, USA. .,Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Brown University, 593 Eddy Street, MPS 2-209, Providence, RI, 02903, USA.
| |
Collapse
|
48
|
Heath RD, Ertem F, Romana BS, Ibdah JA, Tahan V. Hepatocyte transplantation: Consider infusion before incision. World J Transplant 2017; 7:317-323. [PMID: 29312860 PMCID: PMC5743868 DOI: 10.5500/wjt.v7.i6.317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 02/05/2023] Open
Abstract
Human hepatocyte transplantation is undergoing study as a bridge, or even alternative, to orthotopic liver transplantation (OLT). This technique has undergone multiple developments over the past thirty years in terms of mode of delivery, source and preparation of cell cultures, monitoring of graft function, and use of immunosuppression. Further refinements and improvements in these techniques will likely allow improved graft survival and function, granting patients higher yield from this technique and potentially significantly delaying need for OLT.
Collapse
Affiliation(s)
- Ryan D Heath
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, United States
| | - Furkan Ertem
- Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, United States
| | - Bhupinder S Romana
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, United States
| | - Jamal A Ibdah
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, United States
| | - Veysel Tahan
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, United States
| |
Collapse
|
49
|
Abstract
BACKGROUND The limited availability of donor organs has led to a search for alternatives to liver transplantation to restore liver function and bridge patients to transplantation. We have shown that the proliferation of late gestation (embryonic day 19) fetal rat hepatocytes is mitogen-independent and that mechanisms regulating mRNA translation, cell cycle progression, and gene expression differ from those of adult rat hepatocytes. In the present study, we investigated whether E19 fetal hepatocytes can engraft and repopulate an injured adult liver. METHODS Fetal hepatocytes were isolated using a monoclonal antibody against a hepatic surface protein, leucine amino peptidase (LAP). LAP+ and LAP- fractions were analyzed by immunofluorescence and microarray. Immunopurified E19 liver cells from DPPIV+ rats were transplanted via splenic injection into partial hepatectomized DPPIV- rats that had been pretreated with mitomycin C. RESULTS More than a third of LAP+ fetal hepatocytes expressed ductal markers. Transcriptomic analysis revealed that these dual-expressing cells represent a population of less well-differentiated hepatocytes. Upon transplantation, LAP+ late gestation fetal hepatocytes formed hepatic, endothelial, and ductal colonies within 1 month. By 10 months, colonies derived from LAP+ cells increased so that up to 35% of the liver was repopulated by donor-derived cells. CONCLUSIONS Late gestation fetal hepatocytes, despite being far along in the differentiation process, possess the capacity for extensive liver repopulation. This is likely related to the unexpected presence of a significant proportion of hepatocyte marker-positive cells maintaining a less well-differentiated phenotype.
Collapse
|
50
|
Squires JE, Soltys KA, McKiernan P, Squires RH, Strom SC, Fox IJ, Soto-Gutierrez A. Clinical Hepatocyte Transplantation: What Is Next? CURRENT TRANSPLANTATION REPORTS 2017; 4:280-289. [PMID: 29732274 DOI: 10.1007/s40472-017-0165-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of review Significant recent scientific developments have occurred in the field of liver repopulation and regeneration. While techniques to facilitate liver repopulation with donor hepatocytes and different cell sources have been studied extensively in the laboratory, in recent years clinical hepatocyte transplantation (HT) and liver repopulation trials have demonstrated new disease indications and also immunological challenges that will require the incorporation of a fresh look and new experimental approaches. Recent findings Growth advantage and regenerative stimulus are necessary to allow donor hepatocytes to proliferate. Current research efforts focus on mechanisms of donor hepatocyte expansion in response to liver injury/preconditioning. Moreover, latest clinical evidence shows that important obstacles to HT include optimizing engraftment and limited duration of effectiveness, with hepatocytes being lost to immunological rejection. We will discuss alternatives for cellular rejection monitoring, as well as new modalities to follow cellular graft function and near-to-clinical cell sources. Summary HT partially corrects genetic disorders for a limited period of time and has been associated with reversal of ALF. The main identified obstacles that remain to make HT a curative approach include improving engraftment rates, and methods for monitoring cellular graft function and rejection. This review aims to discuss current state-of-the-art in clinical HT and provide insights into innovative approaches taken to overcome these obstacles.
Collapse
Affiliation(s)
- James E Squires
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Kyle A Soltys
- Thomas E. Starzl Transplant Institute, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Patrick McKiernan
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Robert H Squires
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Stephen C Strom
- Karolinska Institutet, Department of Laboratory Medicine, Division of Pathology, Stockholm, Sweden
| | - Ira J Fox
- Department of Surgery, Children's Hospital of Pittsburgh of UPMC, and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|