1
|
Ashrin A, Anna E, Peyret E, Barbier G, Floreani M, Pointart C, Medus D, Fayet G, Rotureau P, Loret T, Lacroix G. Evaluation of the toxicity of combustion smokes at the air-liquid interface: a comparison between two lung cell models and two exposure methods. Arch Toxicol 2025; 99:1471-1484. [PMID: 39930060 DOI: 10.1007/s00204-025-03964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/15/2025] [Indexed: 04/04/2025]
Abstract
In vitro tests at the air-liquid interface (ALI) represent valuable alternatives to animal experiments to assess the acute toxicity of inhalable compounds. However, these methods still need to be characterized for the toxicity evaluation of complex mixtures such as combustion smokes. In this study, Alveolar type I or Alveolar type 2 cells in co-culture with macrophages were investigated as models for evaluating the acute toxicity of complex mixtures at the air-liquid interface. In that purpose, smokes/obscurants were generated from pyrotechnic devices of known toxic potentials in a 1.3 m3 chamber and the co-cultures were exposed to smokes in static (directly in the chamber) or in dynamic using Vitrocell® modules. After exposure to smokes, static exposure induced higher cell mortality compared to dynamic, likely due to an increased dose. Nevertheless, we could still discriminate between a high-toxic (TA) and a low-toxic (RP) smoke using both exposure methods. Due to important cell mortality in static, oxidative and inflammatory potentials were only evaluated in dynamic mode. Reactive oxygen species were generated in response to smokes in hAELVI-THP-1 but not in A549-THP-1. After exposure to TA, increased levels of IL-1β, IL-6, and TNF-α were released by A549-THP-1 compared to the control while hAELVI-THP-1 released significant amount of IL-8. No inflammation was reported following exposure to RP, likely due to important cell mortality. Although discrepancies exist between the two cell models and exposure modes, these results suggest that both co-cultures and exposure methods remain promising for evaluating the toxicity of inhalable mixtures such as smokes.
Collapse
Affiliation(s)
- A Ashrin
- Experimental Toxicology and Modelling Unit, French National Institute for Industrial Environment and Risks (Ineris), Parc Alata, 60550, Verneuil-en-Halatte, France
| | - E Anna
- Experimental Toxicology and Modelling Unit, French National Institute for Industrial Environment and Risks (Ineris), Parc Alata, 60550, Verneuil-en-Halatte, France
| | - E Peyret
- Experimental Toxicology and Modelling Unit, French National Institute for Industrial Environment and Risks (Ineris), Parc Alata, 60550, Verneuil-en-Halatte, France
| | - G Barbier
- Experimental Toxicology and Modelling Unit, French National Institute for Industrial Environment and Risks (Ineris), Parc Alata, 60550, Verneuil-en-Halatte, France
| | - Maxime Floreani
- Experimental Toxicology and Modelling Unit, French National Institute for Industrial Environment and Risks (Ineris), Parc Alata, 60550, Verneuil-en-Halatte, France
| | - C Pointart
- Etienne LACROIX Group, Route de Gaudies, 09270, Mazeres, France
| | - D Medus
- Etienne LACROIX Group, Route de Gaudies, 09270, Mazeres, France
| | - G Fayet
- Chemical and Electrochemical Reactions Unit, French National Institute for Industrial Environment and Risks (Ineris), Parc Alata, 60550, Verneuil-en-Halatte, France
| | - P Rotureau
- Department of Strategy, Scientific Policy and Communication, French National Institute for Industrial Environment and Risks (Ineris), Parc Alata, 60550, Verneuil-en-Halatte, France
| | - T Loret
- Experimental Toxicology and Modelling Unit, French National Institute for Industrial Environment and Risks (Ineris), Parc Alata, 60550, Verneuil-en-Halatte, France.
| | - G Lacroix
- Experimental Toxicology and Modelling Unit, French National Institute for Industrial Environment and Risks (Ineris), Parc Alata, 60550, Verneuil-en-Halatte, France.
| |
Collapse
|
2
|
Noriega-Fernandes B, Ibrahim M, Cruz R, Kuehl PJ, Shepard KB. Navigating the Development of Dry Powder for Inhalation: A CDMO Perspective. Pharmaceuticals (Basel) 2025; 18:434. [PMID: 40143210 PMCID: PMC11944951 DOI: 10.3390/ph18030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Interest in pulmonary/nasal routes for local delivery has significantly increased over the last decade owing to challenges faced in the delivery of molecules with poor solubility, systemic side effects, or new modalities such as biologics. This increasing interest has attracted new stakeholders to the field who have yet to explore inhaled drug product development. Contract development and manufacturing organizations (CDMOs) play a key role in supporting the development of drug products for inhalation, from early feasibility to post marketing. However, a critical gap exists for these newcomers: a clear, integrated, and a CDMO-centric roadmap for navigating the complexities of pulmonary/nasal drug product development. The purpose of this publication is to highlight the key aspects considered in the product development of inhaled dry powder products from a CDMO perspective, providing a novel and stepwise development strategy. A roadmap for the development of inhalable drug products is proposed with authors' recommendations to facilitate the decision-making process, starting from the definition of the desired target product profile followed by dose selection in preclinical studies. The importance of understanding the nature of the API, whether a small molecule or a biologic, will be highlighted. Additionally, technical guidance on the choice of formulation (dry powder/liquid) will be provided with special focus on dry powders. Selection criteria for the particle engineering technology, mainly jet milling and spray drying, will also be discussed, including the advantages and limitations of such technologies, based on the authors' industry expertise. Lastly, the paper will highlight the challenges and considerations for encapsulating both spray dried and jet milled powders. Unlike existing literature, this paper offers a unified framework that bridges preclinical, formulation, manufacturing, and encapsulation considerations, providing a practical tool for newcomers.
Collapse
Affiliation(s)
| | - Mariam Ibrahim
- Small Molecules Product Development, Lonza Group AG, Bend, OR 97701, USA; (B.N.-F.); (M.I.); (R.C.)
| | - Rui Cruz
- Small Molecules Product Development, Lonza Group AG, Bend, OR 97701, USA; (B.N.-F.); (M.I.); (R.C.)
| | - Philip J. Kuehl
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA;
| | - Kimberly B. Shepard
- Small Molecules Product Development, Lonza Group AG, Bend, OR 97701, USA; (B.N.-F.); (M.I.); (R.C.)
| |
Collapse
|
3
|
Choi YY, Hussain F, Kim SY, Bae HJ, An JY, Kim HJ, Cho YE, Cho SY, Choi JW, Oh SE, Park SJ. A novel method for real-time inhalation toxicity assessment in mice using respirometric system: A promising tool for respiratory toxicology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117333. [PMID: 39547059 DOI: 10.1016/j.ecoenv.2024.117333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Inhalation toxicity assessment is a crucial tool for the identification and classification of hazardous materials like volatile organic carbons, aerosols, and particulate matter. Unlike traditional acute inhalation toxicity studies that use mortality as an endpoint, the Fixed Concentration Procedure (FCP) emphasizes "evident toxicity" by monitoring behavior, weight, and food intake. This reduces reliance on mortality but doesn't directly address respiratory system impact. The present study introduced a respirometer-based inhalation toxicity and respiratory status assessment method. The toxicity evaluation system integrated a respirometric system with an animal exposure chamber, enabling real-time monitoring of oxygen consumption. The ICR mice were exposed to various concentrations of benzene (10, 20, 40, and 80 mg/L of air), toluene (7.5, 15, 30, and 60 mg/L of air), and xylene (7.5, 15, 30, and 60 mg/L of air). The respiration rate decreased by 70 % and 69 % for benzene (80 mg/L of air) and toluene (60 mg/L of air), respectively, with EC50 values of 32.5 mg/l and 21.2 mg/L based on oxygen consumption. Xylene did not exhibit EC50 values at the tested concentrations. However, the oxygen consumption rate significantly decreased (46 %) at high concentrations (60 mg/L of air), indicating sub-lethal toxicological effects. Furthermore, the present study was also validated in the bleomycin-induced idiopathic pulmonary fibrosis (IPF) model, demonstrating its reliability as a respiratory impairment marker. The results exhibited a strong correlation between weight loss and less oxygen consumption in the BLM group (bleomycin-induced) as compared to the SHAM group (control), which was confirmed by histological examination and protein marker analysis. The results suggest the potential use of oxygen consumption as an endpoint measurement in inhalation toxicity assessment tests without animal sacrifice, and the present study could be useful for providing valuable insights into disease progression and pharmacological interventions.
Collapse
Affiliation(s)
- Yu-Yeong Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Fida Hussain
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Environmental Science, University of Lahore, Lahore, 545590, Pakistan
| | - So-Yeon Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Bio Health Science, College of Natural Science, Changwon National University, Changwon 51140, Republic of Korea
| | - Ju-Yeon An
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun-Jeong Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ye Eun Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - So-Young Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ji Woong Choi
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Sang-Eun Oh
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Se Jin Park
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea; School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
4
|
Caron-Beaudoin É, Akpo H, Doyle-Waters MM, Ronald LA, Friesen M, Takaro T, Leven K, Meyer U, McGregor MJ. The human health effects of unconventional oil and gas (UOG) chemical exposures: a scoping review of the toxicological literature. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2024-0076. [PMID: 38985132 DOI: 10.1515/reveh-2024-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024]
Abstract
Many chemicals associated with unconventional oil and natural gas (UOG) are known toxicants, leading to health concerns about the effects of UOG. Our objective was to conduct a scoping review of the toxicological literature to assess the effects of UOG chemical exposures in models relevant to human health. We searched databases for primary research studies published in English or French between January 2000 and June 2023 on UOG-related toxicology studies. Two reviewers independently screened abstracts and full texts to determine inclusion. Seventeen studies met our study inclusion criteria. Nine studies used solely in vitro models, while six conducted their investigation solely in animal models. Two studies incorporated both types of models. Most studies used real water samples impacted by UOG or lab-made mixtures of UOG chemicals to expose their models. Most in vitro models used human cells in monocultures, while all animal studies were conducted in rodents. All studies detected significant deleterious effects associated with exposure to UOG chemicals or samples, including endocrine disruption, carcinogenicity, behavioral changes and metabolic alterations. Given the plausibility of causal relationships between UOG chemicals and adverse health outcomes highlighted in this review, future risk assessment studies should focus on measuring exposure to UOG chemicals in human populations.
Collapse
Affiliation(s)
- Élyse Caron-Beaudoin
- Department of Health and Society, 33530 University of Toronto Scarborough , Ontario, Canada
- Department of Physical and Environmental Sciences, 33530 University of Toronto Scarborough , Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Ontario, Canada
| | - Hélène Akpo
- Department of Occupational and Environmental Health, Université de Montréal, Quebec, Canada
| | - Mary M Doyle-Waters
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, British Columbia, Canada
| | - Lisa A Ronald
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, British Columbia, Canada
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Canada
| | - Michael Friesen
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Canada
| | - Tim Takaro
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Canada
| | | | - Ulrike Meyer
- Department of Family Practice, Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Margaret J McGregor
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, British Columbia, Canada
- Department of Family Practice, Faculty of Medicine, University of British Columbia, British Columbia, Canada
| |
Collapse
|
5
|
Dai Y, Duan K, Huang G, Yang X, Jiang X, Chen J, Liu P. Inhalation of electronic cigarettes slightly affects lung function and inflammation in mice. FRONTIERS IN TOXICOLOGY 2023; 5:1232040. [PMID: 37731664 PMCID: PMC10507352 DOI: 10.3389/ftox.2023.1232040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/14/2023] [Indexed: 09/22/2023] Open
Abstract
Electronic cigarettes have become increasingly popular, but the results of previous studies on electronic cigarette exposure in animals have been equivocal. This study aimed to evaluate the effects of electronic cigarette smoke (ECS) and cigarette smoke (CS) on lung function and pulmonary inflammation in mice to investigate whether electronic cigarettes are safer when compared to cigarettes. 32 specific pathogen-free BALB/c male mice were randomly grouped and exposed to fresh air (control), mint-flavored ECS (ECS1, 6 mg/kg), cheese-flavored ECS (ECS2, 6 mg/kg), and CS (6 mg/kg). After 3 weeks exposure to ECS or CS, we measured lung function (PIF and Penh) and blood oxygen saturation. The levels of TNF-α and IL-6 in the bronchoalveolar lavage fluid (BALF) and serum were measured using ELISA. HE staining was performed to observe the pathological changes in the lung tissues. The levels of IL-6 in BALF and serum, and TNF-α in BALF, were elevated similarly in the ECS and CS groups compared to the control group. Significant elevation was observed in serum TNF-α levels in the CS group. The total count of cells in BALF were increased after ECS1 exposure and CS exposure. PIF and oxygen saturation decreased, and Penh increased markedly in the CS group but not in the ECS groups. Compared with the ECS groups, mice in the CS group had widened lung tissue septa and increased inflammatory cell infiltration. However, we did not detect significant differences between mint-flavored and cheese-flavored e-cigarettes in our study. Overall, our findings suggested that both ECS and CS impair lung function and histopathology while promoting inflammation. In contrast, ECS has a less negative impact than CS.
Collapse
Affiliation(s)
- Yuxing Dai
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Kun Duan
- RELX Science Center, Shenzhen RELX Tech Co., Ltd., Shenzhen, China
| | - Guangye Huang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xuemin Yang
- RELX Science Center, Shenzhen RELX Tech Co., Ltd., Shenzhen, China
| | - Xingtao Jiang
- RELX Science Center, Shenzhen RELX Tech Co., Ltd., Shenzhen, China
| | - Jianwen Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
- National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
- National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Kumar M, Yano N, Fedulov AV. Gestational exposure to titanium dioxide, diesel exhaust, and concentrated urban air particles affects levels of specialized pro-resolving mediators in response to allergen in asthma-susceptible neonate lungs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:243-261. [PMID: 34802391 PMCID: PMC8785906 DOI: 10.1080/15287394.2021.2000906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Maternal gestational exposures to traffic and urban air pollutant particulates have been linked to increased risk and/or worsening asthma in children; however, mechanisms underlying this vertical transmission are not entirely understood. It was postulated that gestational particle exposure might affect the ability to elicit specialized proresolving mediator (SPM) responses upon allergen encounter in neonates. Lipidomic profiling of 50 SPMs was performed in lungs of neonates born to mice exposed to concentrated urban air particles (CAP), diesel exhaust particles (DEP), or less immunotoxic titanium dioxide particles (TiO2). While asthma-like phenotypes were induced with identical eosinophilia intensity across neonates of all particle-exposed mothers, levels of LXA4, HEPE and HETE isoforms, and HDoHe were only decreased by CAP and DEP only but not by TiO2. However, RvE2 and RvD1 were inhibited by all particles. In contrast, isomers of Maresin1 and Protectin D1 were variably elevated by CAP and DEP, whereas Protectin DX, PGE2, and TxB2 were increased in all groups. Only Protectin D1/DX, MaR1(n-3,DPA), 5(S),15(S)-DiHETE, PGE2, and RvE3 correlated with eosinophilia but the majority of other analytes, elevated or inhibited, showed no marked correlation with inflammation intensity. Evidence indicates that gestational particle exposure leads to both particle-specific and nonspecific effects on the SPM network.
Collapse
Affiliation(s)
- Mohan Kumar
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| | - Naohiro Yano
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| | - Alexey V. Fedulov
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| |
Collapse
|
7
|
Andriamasinoro SN, Dieme D, Marie-Desvergne C, Serventi AM, Debia M, Haddad S, Bouchard M. Kinetic time courses of inhaled silver nanoparticles in rats. Arch Toxicol 2021; 96:487-498. [PMID: 34787690 DOI: 10.1007/s00204-021-03191-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Silver nanoparticles (Ag NPs) are priority substances closely monitored by health and safety agencies. Despite their extensive use, some aspects of their toxicokinetics remain to be documented, in particular following inhalation, the predominant route of exposure in the workplace. A same experimental protocol and exposure conditions were reproduced two times (experiments E1 and E2) to document the kinetic time courses of inhaled Ag NPs. Rats were exposed nose-only to 20 nm Ag NPs during 6 h at a target concentration of 15 mg/m3 (E1: 218,341 ± 85,512 particles/cm3; E2, 154,099 ± 5728 particles/cm3). The generated aerosol showed a uniform size distribution of nanoparticle agglomerates with a geometric mean diameter ± SD of 79.1 ± 1.88 nm in E1 and 92.47 ± 2.19 nm in E2. The time courses of elemental silver in the lungs, blood, tissues and excreta were determined over 14 days following the onset of inhalation. Excretion profiles revealed that feces were the dominant excretion route and represented on average (± SD) 5.1 ± 3.4% (E1) and 3.3 ± 2.5% (E2) of the total inhaled exposure dose. The pulmonary kinetic profile was similar in E1 and E2; the highest percentages of the inhaled dose were observed between the end of the 6-h inhalation up to 6-h following the end of exposure, and reached 1.9 ± 1.2% in E1 and 2.5 ± 1.6% in E2. Ag elements found in the GIT followed the trend observed in lungs, with a peak observed at the end of the 6-h inhalation exposure and representing 6.4 ± 4.9% of inhaled dose, confirming a certain ingestion of Ag NPs from the upper respiratory tract. Analysis of the temporal profile of Ag elements in the liver showed two distinct patterns: (i) progressive increase in values with peak at the end of the 6-h inhalation period followed by a progressive decrease; (ii) second increase in values starting at 72 h post-exposure with maximum levels at 168-h followed by a progressive decrease. The temporal profiles of Ag elements in lymphatic nodes, olfactory bulbs, kidneys and spleen also followed a pattern similar to that of the liver. However, concentrations in blood and extrapulmonary organs were much lower than lung concentrations. Overall, results show that only a small percentage of the inhaled dose reached the lungs-most of the dose likely remained in the upper respiratory tract. The kinetic time courses in the gastrointestinal tract and liver showed that part of the inhaled Ag NPs was ingested; lung, blood and extrapulmonary organ profiles also suggest that a small fraction of inhaled Ag NPs progressively reached the systemic circulation by a direct translocation from the respiratory tract.
Collapse
Affiliation(s)
- Sandra Nirina Andriamasinoro
- Department of Environmental and Occupational Health, Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, Main Station, P.O. Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Denis Dieme
- Department of Environmental and Occupational Health, Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, Main Station, P.O. Box 6128, Montreal, QC, H3C 3J7, Canada
| | | | - Alessandra Maria Serventi
- Institute of Research of Hydro-Quebec (IREQ), 1800, boul. Lionel-Boulet, Varennes, QC, J3X 1S1, Canada
| | - Maximilien Debia
- Department of Environmental and Occupational Health, Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, Main Station, P.O. Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Sami Haddad
- Department of Environmental and Occupational Health, Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, Main Station, P.O. Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, Main Station, P.O. Box 6128, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
8
|
Borgatta M, Hechon J, Wild P, Hopf NB. Influence of collection and storage materials on glycol ether concentrations in urine and blood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148196. [PMID: 34153747 DOI: 10.1016/j.scitotenv.2021.148196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Glycol ethers, such as propylene glycol monomethyl ether (PGME) and propylene glycol monobuthyl ether (PGBE) are solvents found in many professional and domestic products. In biomonitoring studies, the type of materials used to collect, store, and transport these samples can greatly influence the analytical results because materials can adsorb the analyte. Plastic tubes generally have a hydrophobic internal surface that can reduce the concentration of certain chemicals and result in an underestimation of workers' exposures. The aim of this study was to assess whether the storage of PGME and PGBE spiked blood and urine samples led to different PGME and PGBE concentrations in vials made of glass and common plastics (polypropylene (PP), polyethylene (PE) or polystyrene (PS)). Glycol ether concentrations were quantified with headspace gas chromatography equipped with a flame ionization detector. Our results show stable urinary PGME and PGBE concentrations in PP, while up to 15% variations in urinary PGME for PE and PS. For PGME and PGBE in blood, we observed no statistically significant losses in glass, while losses were recorded for all types of plastic tested (PS, PP and PE). We conclude that biomonitoring samples should be collected in glass for blood and PP for urine.
Collapse
Affiliation(s)
- Myriam Borgatta
- Center for Primary Care and Public Health (Unisanté), Department of occupational and environmental health (DSTE), University of Lausanne, CH-1011 Lausanne, Switzerland.
| | - Julie Hechon
- Institute for Work and Health (IST), Switzerland
| | - Pascal Wild
- Center for Primary Care and Public Health (Unisanté), Department of occupational and environmental health (DSTE), University of Lausanne, CH-1011 Lausanne, Switzerland; Institute for Research and Safety (INRS), Vandoeuvre les Nancy, France.
| | - Nancy B Hopf
- Center for Primary Care and Public Health (Unisanté), Department of occupational and environmental health (DSTE), University of Lausanne, CH-1011 Lausanne, Switzerland.
| |
Collapse
|
9
|
Primavessy D, Metz J, Schnur S, Schneider M, Lehr CM, Hittinger M. Pulmonary in vitro instruments for the replacement of animal experiments. Eur J Pharm Biopharm 2021; 168:62-75. [PMID: 34438019 DOI: 10.1016/j.ejpb.2021.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/19/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Advanced in vitro systems often combine a mechanical-physical instrument with a biological component e.g. cell culture models. For testing of aerosols, it is of advantage to consider aerosol behavior, particle deposition and lung region specific cell lines. Although there are many good reviews on the selection of cell cultures, articles on instruments are rare. This article focuses on the development of in vitro instruments targeting the exposure of aerosols on cell cultures. In this context, guidelines for toxicity investigation are taken into account as the aim of new methods must be the prediction of human relevant data and the replacement of existing animal experiments. We provide an overview on development history of research-based instruments from a pharmaceutical point of view. The standardized commercial devices resulting from the research-based instruments are presented and the future perspectives on pulmonary in vitro devices are discussed.
Collapse
Affiliation(s)
- Daniel Primavessy
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany.
| | - Julia Metz
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany
| | - Sabrina Schnur
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany; Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany; Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Marius Hittinger
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany; 3RProducts Marius Hittinger, Blieskastel, Germany
| |
Collapse
|
10
|
Lynch HN, Goodman JE, Bachman AN. Lung physiology and controlled exposure study design. J Pharmacol Toxicol Methods 2021; 112:107106. [PMID: 34320367 DOI: 10.1016/j.vascn.2021.107106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022]
Abstract
Controlled human inhalation exposure ( CHIE) studies provide a unique opportunity to conduct formal experiments to examine the human health effects of airborne pollutants. Lung function, easily measured using spirometry, is a common physiological variable often utilized in these studies. By design, CHIE studies only induce mild and reversible acute effects, which may or may not predict adverse effects that may develop under chronic exposure conditions. There is substantial inter- and intra-individual variability in functional capacity and symptoms such as chest tightness and dyspnea, which are complex variables that are affected by individual perception, physiological lung impairment, and other variables (e.g., concomitant health conditions, and level of conditioning/fitness). Thus, the design of the CHIE study and physiological and environmental factors of study participants can affect each CHIE study's results. Researchers can address many of these critical issues in the problem formulation phase of CHIE studies, utilizing existing information on the expected effects of the substance of interest and possible modes of action. Thoughtful design and interpretation of CHIE studies will increase their utility for evaluating and setting environmental health policy.
Collapse
Affiliation(s)
- Heather N Lynch
- Cardno ChemRisk, 607 Boylston Street, Suite 301, Boston, MA 02116, USA.
| | | | - Ammie N Bachman
- ExxonMobil Biomedical Sciences, Inc., 1545 Route 22 East, Annandale, NJ, USA.
| |
Collapse
|
11
|
Johnson NM, Hoffmann AR, Behlen JC, Lau C, Pendleton D, Harvey N, Shore R, Li Y, Chen J, Tian Y, Zhang R. Air pollution and children's health-a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter. Environ Health Prev Med 2021; 26:72. [PMID: 34253165 PMCID: PMC8274666 DOI: 10.1186/s12199-021-00995-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Particulate matter (PM), a major component of ambient air pollution, accounts for a substantial burden of diseases and fatality worldwide. Maternal exposure to PM during pregnancy is particularly harmful to children's health since this is a phase of rapid human growth and development. METHOD In this review, we synthesize the scientific evidence on adverse health outcomes in children following prenatal exposure to the smallest toxic components, fine (PM2.5) and ultrafine (PM0.1) PM. We highlight the established and emerging findings from epidemiologic studies and experimental models. RESULTS Maternal exposure to fine and ultrafine PM directly and indirectly yields numerous adverse birth outcomes and impacts on children's respiratory systems, immune status, brain development, and cardiometabolic health. The biological mechanisms underlying adverse effects include direct placental translocation of ultrafine particles, placental and systemic maternal oxidative stress and inflammation elicited by both fine and ultrafine PM, epigenetic changes, and potential endocrine effects that influence long-term health. CONCLUSION Policies to reduce maternal exposure and health consequences in children should be a high priority. PM2.5 levels are regulated, yet it is recognized that minority and low socioeconomic status groups experience disproportionate exposures. Moreover, PM0.1 levels are not routinely measured or currently regulated. Consequently, preventive strategies that inform neighborhood/regional planning and clinical/nutritional recommendations are needed to mitigate maternal exposure and ultimately protect children's health.
Collapse
Affiliation(s)
- Natalie M Johnson
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA.
| | | | - Jonathan C Behlen
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Carmen Lau
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843, USA
| | - Drew Pendleton
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Navada Harvey
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Ross Shore
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Yixin Li
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jingshu Chen
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Renyi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
12
|
Fritsche E, Haarmann-Stemmann T, Kapr J, Galanjuk S, Hartmann J, Mertens PR, Kämpfer AAM, Schins RPF, Tigges J, Koch K. Stem Cells for Next Level Toxicity Testing in the 21st Century. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006252. [PMID: 33354870 DOI: 10.1002/smll.202006252] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The call for a paradigm change in toxicology from the United States National Research Council in 2007 initiates awareness for the invention and use of human-relevant alternative methods for toxicological hazard assessment. Simple 2D in vitro systems may serve as first screening tools, however, recent developments infer the need for more complex, multicellular organotypic models, which are superior in mimicking the complexity of human organs. In this review article most critical organs for toxicity assessment, i.e., skin, brain, thyroid system, lung, heart, liver, kidney, and intestine are discussed with regards to their functions in health and disease. Embracing the manifold modes-of-action how xenobiotic compounds can interfere with physiological organ functions and cause toxicity, the need for translation of such multifaceted organ features into the dish seems obvious. Currently used in vitro methods for toxicological applications and ongoing developments not yet arrived in toxicity testing are discussed, especially highlighting the potential of models based on embryonic stem cells and induced pluripotent stem cells of human origin. Finally, the application of innovative technologies like organs-on-a-chip and genome editing point toward a toxicological paradigm change moves into action.
Collapse
Affiliation(s)
- Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
- Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | | | - Julia Kapr
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Saskia Galanjuk
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Hartmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Magdeburg, 39106, Germany
| | - Angela A M Kämpfer
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Katharina Koch
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| |
Collapse
|
13
|
Kaur R, Kaushik A, Singh KK, Katare OP, Singh B. An Efficient and Cost-Effective Nose-Only Inhalational Chamber for Rodents: Design, Optimization and Validation. AAPS PharmSciTech 2020; 21:82. [PMID: 31989357 DOI: 10.1208/s12249-019-1608-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022] Open
Abstract
The mainstay treatment of pulmonary disorders lies around the direct drug targeting to the lungs using a nebulizer, metered-dose inhaler, or dry powder inhaler. Only few inhalers are available in the market that could be used for inhalational drug delivery in rodents. However, the available rodent inhalers invariably require high cost and maintenance, which limits their use at laboratory scale. The present work, therefore, was undertaken to develop a simple, reliable, and cost-effective nose-only inhalation chamber with holding capacity of three mice at a time. The nebulized air passes directly and continuously from the central chamber to mouthpiece and maintains an aerosol cloud for rodents to inhale. Laser diffraction analysis indicated volume mean diameter of 4.02 ± 0.30 μm, and the next-generation impactor studies, however, revealed mean mass aerodynamic diameter of 3.40 ± 0.27 μm, respectively. An amount of 2.05 ± 0.20 mg of voriconazole (VRC) was available for inhalation at each delivery port of the inhaler. In vivo studies indicated the deposition of 76.12 ± 19.50 μg of VRC in the mice lungs when nebulized for a period of 20 min. Overall, the developed nose-only inhalation chamber offers a reliable means of generating aerosols and successfully exposing mice to nebulization.
Collapse
|
14
|
Lang AL, Goldsmith WT, Schnegelberger RD, Arteel GE, Beier JI. Vinyl Chloride and High-Fat Diet as a Model of Environment and Obesity Interaction. J Vis Exp 2020:10.3791/60351. [PMID: 31984951 PMCID: PMC7450540 DOI: 10.3791/60351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vinyl chloride (VC), an abundant environmental contaminant, causes steatohepatitis at high levels, but is considered safe at lower levels. Although several studies have investigated the role of VC as a direct hepatotoxicant, the concept that VC modifies sensitivity of the liver to other factors, such as nonalcoholic fatty liver disease (NAFLD) caused by high-fat diet (HFD) is novel. This protocol describes an exposure paradigm to evaluate the effects of chronic, low-level exposure to VC. Mice are acclimated to low-fat or high-fat diet one week prior to the beginning of the inhalation exposure and remain on these diets throughout the experiment. Mice are exposed to VC (sub-OSHA level: <1 ppm) or room air in inhalation chambers for 6 hours/day, 5 days/week, for up to 12 weeks. Animals are monitored weekly for body weight gain and food consumption. This model of VC exposure causes no overt liver injury with VC inhalation alone. However, the combination of VC and HFD significantly enhances liver disease. A technical advantage of this co-exposure model is the whole-body exposure, without restraint. Moreover, the conditions more closely resemble a very common human situation of a combined exposure to VC with underlying nonalcoholic fatty liver disease and therefore support the novel hypothesis that VC is an environmental risk factor for the development of liver damage as a complication of obesity (i.e., NAFLD). This work challenges the paradigm that the current exposure limits of VC (occupational and environmental) are safe. The use of this model can shed new light and concern on the risks of VC exposure. This model of toxicant-induced liver injury can be used for other volatile organic compounds and to study other interactions that may impact the liver and other organ systems.
Collapse
Affiliation(s)
- Anna L Lang
- Department of Pharmacology and Toxicology, University of Louisville; Hepatobiology and Toxicology Program, University of Louisville
| | - William T Goldsmith
- Department of Physiology and Pharmacology, West Virginia University; Center for Inhalation Toxicology, West Virginia University
| | - Regina D Schnegelberger
- Department of Pharmacology and Chemical Biology, University of Pittsburgh; Pittsburgh Liver Research Center, University of Pittsburgh
| | - Gavin E Arteel
- Pittsburgh Liver Research Center, University of Pittsburgh; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh
| | - Juliane I Beier
- Pittsburgh Liver Research Center, University of Pittsburgh; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh;
| |
Collapse
|
15
|
Huang F, Wang P, Pan X, Wang Y, Ren S. Effects of short-term exposure to particulate matters on heart rate variability: A systematic review and meta-analysis based on controlled animal studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113306. [PMID: 31733955 DOI: 10.1016/j.envpol.2019.113306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Exposure to particulate matters (PM) is recognized as an important risk factor for cardiovascular disease. A change in cardiac autonomic function is one postulated mechanism leading to PM related cardiovascular events. This study therefore evaluated the associations of short-term exposure to PM and heart rate variability (HRV) parameters, which can reflect the cardiac autonomic function. METHODS Four electronic databases were searched for controlled studies of rodents published prior to December 2018. A systematic review and meta-analysis was conducted. Effect sizes were calculated for five main HRV parameters, including standard deviation of normal-to-normal intervals (SDNN), square root of mean squared differences between successive normal-to-normal intervals (rMSSD), low frequency (LF), high frequency (HF), and the ratio of LF and HF (LF/HF). RESULTS The review included 23 studies with 401 animals. Short-term exposure to PM by instillation yielded statistically significant effects on SDNN (Standardized Mean Difference [SMD] = -1.11, 95% Confidence Intervals [CI] = -2.22 to -0.01, P = 0.05), LF (SMD = -1.19, 95% CI = -1.99 to -0.40, P = 0.003) and LF/HF (SMD = -1.05, 95% CI = -2.03 to -0.07, P = 0.04). Short-term exposure to PM by inhalation only yielded statistically significant effect on LF/HF (SMD = -0.83, 95% CI = -1.39 to -0.27, P = 0.004). There was no evidence that animal model and exposure frequency influenced the relationship of PM and HRV. CONCLUSIONS Short-term exposure to PM can decrease HRV of rodents, affecting cardiac autonomic function. Exposure methods can influence the relationships of PM and HRV parameters. Further studies should focus on the effects of long-term PM exposure, on human beings, and potential influential factors of PM-HRV associations.
Collapse
Affiliation(s)
- Fangfang Huang
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Ping Wang
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Xinjuan Pan
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yingfang Wang
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Shuai Ren
- Luoyang Fifth People's Hospital, The Fifth Affiliated Hospital of Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
16
|
Pearce K, Goldsmith WT, Greenwald R, Yang C, Mainelis G, Wright C. Characterization of an aerosol generation system to assess inhalation risks of aerosolized nano-enabled consumer products. Inhal Toxicol 2019; 31:357-367. [PMID: 31779509 DOI: 10.1080/08958378.2019.1685613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: The aerosolization of common nano-enabled consumer products such as cosmetics has significantly increased engineered nanoparticle inhalation risks. While several studies have investigated the impact of cosmetic dermal exposures, inhalation hazards of aerosolized cosmetics are much less known but could pose considerable harm to users due to potential co-exposure of nanoparticles and other product components.Materials and Methods: In this study, we developed a fully automated aerosol generation system to examine the aerosol properties of four aerosolized nano-enabled cosmetics using real-time monitoring and sampling instrumentation. Physicochemical characterization of aerosols was conducted using scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (SEM-EDX). Characterization and calibration of animal exposure pods coupled to the system were also performed by measuring and comparing particle concentrations between pods.Results and Discussion: Results show peak emissions are shade dependent and varied between 12,000-22,000 particles/cm3 with modal diameters ranging from 36 nm-1.3 µm. SEM-EDX analysis determined that the original products and collected aerosols have similar morphological features consisting of micron-sized particles decorated with nanoparticles and crystalline structures. Mean total particle concentration in pods at 5 and 10 mg/m3 target levels were 2.22E + 05 #/cm3 and 4.33E + 05 #/cm3, respectively, with <10% variability between pods.Conclusions: The fully automated exposure platform described herein provides reproducible aerosol generation, conforms to recommended guidelines on chemical testing, and therefore is suitable for future in vivo toxicological assessments to examine potential respiratory hazards of aerosolized nano-enabled consumer products.
Collapse
Affiliation(s)
- K Pearce
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA
| | - W T Goldsmith
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA.,Center for Inhalation Toxicology, West Virginia University, Morgantown, WV, USA
| | - R Greenwald
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA
| | - C Yang
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA
| | - G Mainelis
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - C Wright
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
17
|
Numano T, Morioka M, Higuchi H, Uda K, Sugiyama T, Hagiwara T, Doi Y, Imai N, Kawabe M, Mera Y, Tamano S. Effects of administering different vehicles via single intratracheal instillation on responses in the lung and pleural cavity of Crl:CD(SD) rats. J Toxicol Pathol 2019; 33:11-19. [PMID: 32051660 PMCID: PMC7008201 DOI: 10.1293/tox.2019-0060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Intratracheal instillation is the introduction of a substance directly into the trachea. Intratracheal instillation has been used to investigate the lung toxicity of several chemicals and requires the suspension or dissolution of test material in a vehicle for even dispersal throughout the lung. Importantly, the toxicities of vehicles used in intratracheal instillation studies are generally considered to be insignificant. Hence, evaluating the influence of different vehicles on the lung due to intratracheal instillation is crucial. We examined the toxic effects of pure water, saline, phosphate buffered saline (PBS), 0.5% Kolliphor® P188 (KP188), 0.1% Tween 20 in saline, and 1.0% BSA in PBS. These vehicles were administered to male Crl:CD(SD) rats by a single intratracheal instillation. On day 3, broncho-alveolar lavage fluid (BALF) from the right lung was collected and processed for cell counting and biochemical analysis, while the left lung was used for histopathological examination. Accumulation of alveolar macrophages was observed in all vehicle-treated groups but was minimal in the group administered saline, somewhat higher in the groups administered pure water, PBS, 0.1% Tween 20, and 1% BSA, and notably higher in the group administered 0.5% KP188. The results from BALF analysis indicated that intratracheal instillation of 0.5% KP188 also induced alveolar damage. Additionally, administering pure water did not appear to cause tissue damage. Eosinophil infiltration in the interstitial regions was histopathologically observed. Altogether, the results of this study are helpful for the selection of appropriate vehicles for use in intratracheal instillation studies.
Collapse
Affiliation(s)
- Takamasa Numano
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| | - Mai Morioka
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| | - Hitomi Higuchi
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| | - Kazunari Uda
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| | - Taiki Sugiyama
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| | - Teruaki Hagiwara
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| | - Yuko Doi
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| | - Norio Imai
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| | - Mayumi Kawabe
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| | - Yukinori Mera
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| | - Seiko Tamano
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| |
Collapse
|
18
|
The evaluation of inhalation studies for exposure quality: A case study with formaldehyde. Toxicol Lett 2019; 312:167-172. [PMID: 31100492 DOI: 10.1016/j.toxlet.2019.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/28/2019] [Accepted: 05/09/2019] [Indexed: 11/22/2022]
Abstract
The inherent complexity of generating and monitoring a test article in an inhalation chamber can make inhalation toxicity testing challenging. Poor study design, human error, and electrical and mechanical problems can adversely affect an inhalation exposure and undermine a study's results. We have developed a process for evaluating seven key elements of exposure quality in inhalation chamber studies: 1) test article characterization, 2) generation method, 3) chamber sampling and analytical method, 4) chamber concentrations, 5) particle size characteristics, 6) chamber type, and 7) controls. For each study evaluated, exposure deficiencies are documented, and a study is given an overall rating (Robust, Adequate, or Poor) for the quality of its exposure characterization and documentation. In combination with the systematic consideration of experimental features other than exposure, these ratings can inform the utility of a study for use in hazard identification and/or exposure-response analysis. Exposure quality evaluations of 204 formaldehyde inhalation studies are presented as a case study. Of these, 34% were rated Robust because they had comprehensive exposure documentation and no serious deficiencies in the key elements of exposure quality. Another 19% of studies with minor uncertainties or limitations were rated Adequate. Conversely, 47% of the studies were rated Poor due to multiple serious exposure deficiencies. This formaldehyde case study illustrates the need to carefully consider the exposure quality of inhalation toxicity studies when their results are used to support hazard and risk assessments.
Collapse
|
19
|
Abdelgied M, El-Gazzar AM, Alexander WT, Numano T, Iigou M, Naiki-Ito A, Takase H, Hirose A, Taquahashi Y, Kanno J, Abdelhamid M, Abdou KA, Takahashi S, Alexander DB, Tsuda H. Carcinogenic effect of potassium octatitanate (POT) fibers in the lung and pleura of male Fischer 344 rats after intrapulmonary administration. Part Fibre Toxicol 2019; 16:34. [PMID: 31477126 PMCID: PMC6720102 DOI: 10.1186/s12989-019-0316-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Background Potassium octatitanate fibers (K2O•8TiO2, POT fibers) are used as an asbestos substitute. Their physical characteristics suggest that respirable POT fibers are likely to be carcinogenic in the lung and pleura. However, previous 2-year inhalation studies reported that respired POT fibers had little or no carcinogenic potential. In the present study ten-week old male F344 rats were left untreated or were administered vehicle, 0.25 or 0.5 mg rutile-type nano TiO2 (r-nTiO2), 0.25 or 0.5 mg POT fibers, or 0.5 mg MWCNT-7 by intra-tracheal intra-pulmonary spraying (TIPS), and then observed for 2 years. Results There were no differences between the r-nTiO2 and control groups. The incidence of bronchiolo-alveolar cell hyperplasia was significantly increased in the groups treated with 0.50 mg POT and 0.50 mg MWCNT-7. The overall incidence of lung tumors, however, was not increased in either the POT or MWCNT-7 treated groups. Notably, the carcinomas that developed in the POT and MWCNT-7 treated rats were accompanied by proliferative fibrous connective tissue while the carcinomas that developed in the untreated rats and the r-nTiO2 treated rats were not (carcinomas did not develop in the vehicle control rats). In addition, the carcinoma that developed in the rat treated with 0.25 mg POT was a squamous cell carcinoma, a tumor that develops spontaneously in about 1 per 1700 rats. The incidence of mesothelial cell hyperplasia was 4/17, 7/16, and 10/14 and the incidence of malignant mesothelioma was 3/17, 1/16, and 2/14 in the 0.25 mg POT, 0.5 mg POT, and MWCNT-7 treated groups, respectively. Neither mesothelial cell hyperplasia nor mesothelioma developed in control rats or the rats treated with r-nTiO2. Since the incidence of spontaneously occurring malignant mesothelioma in rats is extremely low, approximately 1 per 1000 animals (Japan Bioassay Research Center [JBRC] historical control data), the development of multiple malignant mesotheliomas in the POT and MWCNT-7 treated groups was biologically significant. Conclusion The incidence of pleural mesotheliomas in male F344 rats administered POT fibers and MWCNT-7 was significantly higher than the JBRC historical control data, indicating that the incidence of pleural mesothelioma in the groups administered POT fibers and MWCNT-7 fibers via the airway using TIPS was biologically significant. The incidence of type II epithelial cell hyperplasia and the histology of the carcinomas that developed in the POT treated rats also indicates that respirable POT fibers are highly likely to be carcinogenic in the lungs of male F344 rats. Electronic supplementary material The online version of this article (10.1186/s12989-019-0316-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohamed Abdelgied
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466- 8603, Japan.,Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed M El-Gazzar
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466- 8603, Japan.,Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - William T Alexander
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466- 8603, Japan
| | - Takamasa Numano
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466- 8603, Japan
| | - Masaaki Iigou
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466- 8603, Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Takase
- Core Laboratory, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akihiko Hirose
- Division of Risk Assessment, National Institute of Health Sciences, Kawasaki, Japan
| | - Yuhji Taquahashi
- Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, Kawasaki, Japan
| | - Jun Kanno
- Japan Industrial Safety and Health Association, Japan Bioassay Research Center, Kanagawa, Japan
| | - Mona Abdelhamid
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Khaled Abbas Abdou
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - David B Alexander
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466- 8603, Japan.
| | - Hiroyuki Tsuda
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466- 8603, Japan.
| |
Collapse
|
20
|
Smith GJ, Walsh L, Higuchi M, Kelada SNP. Development of a large-scale computer-controlled ozone inhalation exposure system for rodents. Inhal Toxicol 2019; 31:61-72. [PMID: 31021248 PMCID: PMC7055063 DOI: 10.1080/08958378.2019.1597222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 01/06/2023]
Abstract
Objective: Complete systems for laboratory-based inhalation toxicology studies are typically not commercially available; therefore, inhalation toxicologists utilize custom-made exposure systems. Here we report on the design, construction, testing, operation and maintenance of a newly developed in vivo rodent ozone inhalation exposure system. Materials and methods: Key design requirements for the system included large-capacity exposure chambers to facilitate studies with large sample sizes, automatic and precise control of chamber ozone concentrations, as well as automated data collection on airflow and environmental conditions. The exposure system contains two Hazelton H-1000 stainless steel and glass exposure chambers, each providing capacity for up to 180 mice or 96 rats. We developed an empirically tuned proportional-integral-derivative control loop that provides stable ozone concentrations throughout the exposure period (typically 3h), after a short ramp time (∼8 min), and across a tested concentration range of 0.2-2 ppm. Specific details on the combination of analog and digital input/output system for environmental data acquisition, control and safety systems are provided, and we outline the steps involved in maintenance and calibration of the system. Results: We show that the exposure system produces consistent ozone exposures both within and across experiments, as evidenced by low coefficients of variation in chamber ozone concentration and consistent biological responses (airway inflammation) in mice, respectively. Conclusion: Thus, we have created a large and robust ozone exposure system, facilitating future studies on the health effects of ozone in rodents.
Collapse
Affiliation(s)
- Gregory J. Smith
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leon Walsh
- United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mark Higuchi
- United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Samir N. P. Kelada
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Čabanová K, Hrabovská K, Matějková P, Dědková K, Tomášek V, Dvořáčková J, Kukutschová J. Settled iron-based road dust and its characteristics and possible association with detection in human tissues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2950-2959. [PMID: 30499095 DOI: 10.1007/s11356-018-3841-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Settled road dust was examined to detect the presence of non-airborne submicron and nano-sized iron-based particles and to characterize these particles. Samples were collected from a road surface near a busy road junction in the city of Ostrava, Czech Republic, once a month from March to October. The eight collected samples were subjected to a combination of experimental techniques including elemental analysis, Raman microspectroscopy, scanning electron microscopy (SEM) analysis, and magnetometry. The data thereby obtained confirmed the presence of non-agglomerated spherical nano-sized iron-based particles, with average sizes ranging from 2 down to 490 nm. There are several sources in road traffic which generate road dust particles, including exhaust and non-exhaust processes. Some of them (e.g., brake wear) produce iron as the dominant metallic element. Raman microspectroscopy revealed forms of iron (mainly as oxides, Fe2O3, and mixtures of Fe2O3 and Fe3O4). Moreover, Fe3O4 was also detected in samples of human tissues from the upper and lower respiratory tract. In view of the fact that no agglomeration of those particles was found by SEM, it is supposed that these particles may be easily resuspended and represent a risk to human health due to inhalation exposure, as proved by the detection of particles with similar morphology and phase composition in human tissues.
Collapse
Affiliation(s)
- Kristina Čabanová
- Center for Advanced Innovation Technologies, VŠB-Technical University of Ostrava,, 70800, Ostrava, Czech Republic.
| | - Kamila Hrabovská
- Department of Physics, VŠB-Technical University of Ostrava, 70800, Ostrava, Czech Republic
| | - Petra Matějková
- Center for Advanced Innovation Technologies, VŠB-Technical University of Ostrava,, 70800, Ostrava, Czech Republic
| | - Kateřina Dědková
- Center for Advanced Innovation Technologies, VŠB-Technical University of Ostrava,, 70800, Ostrava, Czech Republic
| | - Vladimír Tomášek
- Nanotechnology Centre, VŠB-Technical University of Ostrava, 70800, Ostrava, Czech Republic
| | - Jana Dvořáčková
- Faculty of Medicine, University of Ostrava, 703 00, Ostrava, Czech Republic
| | - Jana Kukutschová
- Center for Advanced Innovation Technologies, VŠB-Technical University of Ostrava,, 70800, Ostrava, Czech Republic
| |
Collapse
|