1
|
Zhang JQ, Li SY, Yin C, Ji Y, Zhang X, Liu DY, Yang H, Niu Y, Cui GY, Zhou CY, Xiao C. Dysfunction of subthalamic dopaminergic circuitry contributes to anxiety- and depression-like behaviors in 6-OHDA lesion-induced hemiparkinsonian mice. Acta Pharmacol Sin 2025:10.1038/s41401-025-01570-2. [PMID: 40329003 DOI: 10.1038/s41401-025-01570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/17/2025] [Indexed: 05/08/2025]
Abstract
Anxiety and depression are common non-motor symptoms severely affecting the quality of life in patients with Parkinson's disease, but the underlying pathophysiological mechanisms remain elusive. As dopaminergic (DA) system and the subthalamic nucleus (STN) are involved in motor control and emotional processing, we herein investigated the role of DA circuitry in the STN in regulating depression in parkinsonian mice. A hemi-parkinsonian mouse model was established by injection of 6-OHDA into the right medial forebrain bundle (MFB), desipramine (20 mg/kg, i.p.) was injected 30 min before the intracranial injection. Motor function was monitored in open field test and apomorphine-induced contra-lesional rotation and rotarod tests; anxiety- and depression-like behaviors were assessed with the open field test, elevated plus maze, tail suspension test and forced swim test. We found that the hemi-parkinsonian mice displayed motor dysfunction and depression-like behaviors at different time points. Fiber photometry recording revealed that STN neurons were hypersensitive to anxiety- and depression-like stimulation; chemogenetic inhibition of STN neurons mitigated anxiety- and depression-like behaviors. While dopamine release was significantly reduced in the STN of the parkinsonian mice in response to anxiety- and depression-like stimulation, the expression of D1- and D2-like dopamine receptors was time-dependently changed. Intracranial injection of either D1- or D2-like dopamine receptor agonist into the STN mitigated anxiety- and depression-like behaviors in the parkinsonian mice. We conclude that STN DA circuitry may be promising targets to treat anxiety and depression in PD.
Collapse
Affiliation(s)
- Jia-Qi Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Shu-Yi Li
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Cui Yin
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying Ji
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiang Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dan-Yang Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hang Yang
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Gui-Yun Cui
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Chun-Yi Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Cheng Xiao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
2
|
Zhang MD, Gu MJ, Wang Q, Zhang SM, Zhou WX, Liu SB, Liu RP, Huang CP, Zhu JH, Wu HM. Tissue zinc restoration alleviates the levodopa-induced dyskinesia via impeding ERK phosphorylation. Eur J Nutr 2025; 64:159. [PMID: 40249399 DOI: 10.1007/s00394-025-03682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 04/05/2025] [Indexed: 04/19/2025]
Abstract
PURPOSE Levodopa administration has been the standard therapy for Parkinson's disease (PD) and prolonged treatment is associated with levodopa-induced dyskinesia (LID). This study aimed to identify the effects of zinc (Zn) supplements on LID and to explore the underlying mechanisms. METHODS Male C57BL/6J mice were injected with 6-OHDA at medial forebrain bundle, followed by daily levodopa injection to induce LID. The mice were supplemented with Zn of 0, 0.3, 1.2, or 2.4 mg/kg for 4 weeks. RESULTS In the LID mice, Zn supplements restored tissue Zn levels and alleviated global, forelimb, and orolingual abnormal involuntary movements (AIMs). Signaling pathway assessments showed that Zn supplements significantly reduced expressions of phosphorylated glutamate receptor 1 (p-GluR1) and phosphorylation levels of extracellular-signal-regulated kinase (p-ERK/ERK). Correlations between the AIMs score, p-ERK, and tissue Zn levels were established. In addition, Zn supplements reduced numbers of glial fibrillary acidic protein (GFAP) positive cells and compensatory tyrosine hydroxylase (TH) positive cells. These alleviating effects of Zn supplements were strictly regulated in a dose dependent manner. CONCLUSION Appropriate doses of Zn supplements alleviated AIMs in the LID mouse model, potentially via impeding ERK phosphorylation, inhibiting astrocyte activation, and attenuating striatal compensation of TH positive cells.
Collapse
Affiliation(s)
- Meng-Di Zhang
- Institute of Nutrition and Diseases, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Meng-Jie Gu
- Institute of Geriatric Neurology, Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Qi Wang
- Institute of Nutrition and Diseases, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shuai-Mei Zhang
- Institute of Nutrition and Diseases, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wen-Xi Zhou
- Institute of Nutrition and Diseases, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shi-Biao Liu
- Institute of Nutrition and Diseases, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Rong-Pei Liu
- Institute of Geriatric Neurology, Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Chen-Ping Huang
- Institute of Nutrition and Diseases, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jian-Hong Zhu
- Institute of Nutrition and Diseases, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Hong-Mei Wu
- Institute of Nutrition and Diseases, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
3
|
Jafri S, Ghani M, Stickle N, Virtanen C, Hazrati LN, Visanji NP. Translational profiling reveals novel gene expression changes in the direct and indirect pathways in a mouse model of levodopa induced dyskinesia. Front Cell Neurosci 2025; 18:1477511. [PMID: 40144773 PMCID: PMC11936753 DOI: 10.3389/fncel.2024.1477511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/18/2024] [Indexed: 03/28/2025] Open
Abstract
Introduction The molecular mechanisms underlying L-dihydroxyphenylalanine (LDOPA) induced dyskinesia in Parkinson's disease are poorly understood. Here we employ two transgenic mouse lines, combining translating ribosomal affinity purification (TRAP) with bacterial artificial chromosome expression (Bac), to selectively isolate RNA from either DRD1A expressing striatonigral, or DRD2 expressing striatopallidal medium spiny neurons (MSNs) of the direct and indirect pathways respectively, to study changes in translational gene expression following repeated LDOPA treatment. Methods 6-OHDA lesioned DRD1A and DRD2 BacTRAP mice were treated with either saline or LDOPA bi-daily for 21 days over which time they developed abnormal involuntary movements reminiscent of dyskinesia. On day 22, all animals received LDOPA 40min prior to sacrifice. The striatum of the lesioned hemisphere was dissected and subject to TRAP. Extracted ribosomal RNA was amplified, purified, and gene expression was quantified using microarray. Results One hundred ninety-five significantly varying transcripts were identified among the four treatment groups. Pathway analysis revealed an overrepresentation of calcium signaling and long-term potentiation in the DRD1A expressing MSNs of the direct pathway, with significant involvement of long-term depression in the DRD2 expressing MSNs of the indirect pathway following chronic treatment with LDOPA. Several MAPK associated genes (NR4A1, GADD45G, STMN1, FOS, and DUSP1) differentiated the direct and indirect pathways following both acute and chronic LDOPA treatment. However, the MAPK pathway activator PAK1 was downregulated in the indirect pathway and upregulated in the direct pathway, strongly suggesting a role for PAK1 in regulating the opposing effects of LDOPA on these two pathways in dyskinesia. Discussion Future studies will assess the potential of targeting these genes and pathways to prevent the development of LDOPA-induced dyskinesia.
Collapse
Affiliation(s)
- Sabika Jafri
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Mahdi Ghani
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Krembil Discovery Tower, Toronto, ON, Canada
| | - Natalie Stickle
- University Health Network Microarray Centre, Toronto Medical Discovery Tower, Toronto, ON, Canada
| | - Carl Virtanen
- University Health Network Microarray Centre, Toronto Medical Discovery Tower, Toronto, ON, Canada
| | - Lili-Naz Hazrati
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Naomi P. Visanji
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Krembil Discovery Tower, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Ronaghi A, Stan T, Barrientos S, Halje P, Nasretdinov A, Censoni L, Sato S, Malinina E, Tedroff J, Waters N, Petersson P. Neurophysiological Treatment Effects of Mesdopetam, Pimavanserin and Amantadine in a Rodent Model of Levodopa-Induced Dyskinesia. Eur J Neurosci 2025; 61:e70032. [PMID: 40042199 PMCID: PMC11881547 DOI: 10.1111/ejn.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/22/2025] [Accepted: 02/14/2025] [Indexed: 05/12/2025]
Abstract
Levodopa provides effective symptomatic treatment for Parkinson's disease. However, nonmotor symptoms are often insufficiently relieved, and its long-term use is complicated by motor fluctuations and dyskinesia. To clarify mechanisms of levodopa-induced dyskinesia and pharmacological interventions aimed at reducing dyskinetic symptoms, we have here characterized the neurophysiological activity patterns in sensorimotor and cognitive-limbic circuits in dyskinetic rats, comparing the effects of amantadine, pimavanserin, and the novel prospective antidyskinetic and antipsychotic treatment mesdopetam. Parallel recordings of local field potentials from 11 cortical and subcortical regions revealed suppression of narrowband gamma oscillations (NBGs) in sensorimotor structures by amantadine and mesdopetam in conjunction with alleviation of dyskinetic signs. Concomitant gamma oscillations in cognitive-limbic circuits were not directly linked to dyskinesia and were not affected by antidyskinetic treatments to the same extent, although treatment-induced reductions in functional coupling were observed in both sensorimotor and cognitive-limbic circuits, in parallel. In a broad frequency spectrum (1-200 Hz), mesdopetam treatment displayed greater similarities to pimavanserin than to amantadine. These findings point to the reduction of NBGs as a valuable biomarker for the characterization of antidyskinetic treatment effects and provide systems-level mechanistic insights into the antidyskinetic efficacy of mesdopetam, with potential additional benefits for the treatment of Parkinson's-related psychosis.
Collapse
Affiliation(s)
- Abdolaziz Ronaghi
- Department of Medical Translational BiologyUmeå UniversityUmeåSweden
| | - Tiberiu Loredan Stan
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical ScienceLund UniversityLundSweden
| | - Sebastian A. Barrientos
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical ScienceLund UniversityLundSweden
| | - Pär Halje
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical ScienceLund UniversityLundSweden
| | - Azat Nasretdinov
- Department of Medical Translational BiologyUmeå UniversityUmeåSweden
| | - Luciano Censoni
- Department of Medical Translational BiologyUmeå UniversityUmeåSweden
| | | | - Evgenya Malinina
- Department of Medical Translational BiologyUmeå UniversityUmeåSweden
| | - Joakim Tedroff
- Integrative Research Laboratories Sweden ABGöteborgSweden
| | | | - Per Petersson
- Department of Medical Translational BiologyUmeå UniversityUmeåSweden
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical ScienceLund UniversityLundSweden
| |
Collapse
|
5
|
Shaqfah J, Kang W, Gaudette F, Khalil M, Kwan C, Belliveau S, Bourgeois-Cayer É, Hamadjida A, Bédard D, Beaudry F, Huot P. The anti-dyskinetic effect of the clinic-ready mGluR 2 positive allosteric modulator AZD8529 in the 6-OHDA-lesioned rat. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03627-1. [PMID: 39841218 DOI: 10.1007/s00210-024-03627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/10/2024] [Indexed: 01/23/2025]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) remains the main treatment for motor symptoms of Parkinson's disease (PD). However, chronic use is associated with the development of complications such as L-DOPA-induced dyskinesia. We previously demonstrated that LY-487,379, a highly selective metabotropic glutamate receptor 2 (mGluR2) positive allosteric modulator (PAM), reduces the severity of L-DOPA-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD, without interfering with the anti-parkinsonian action of L-DOPA. Here, we seek to determine the effect of AZD8529, another highly selective mGluR2 PAM, on L-DOPA-induced AIMs in the 6-OHDA-lesioned rat. Unlike LY-487,379, AZD8529 has previously undergone clinical trials and could therefore be repurposed if proven efficacious in pre-clinical studies. We first determined the pharmacokinetic (PK) profile of AZD8529 to administer doses leading to clinically relevant plasma levels in the behavioural studies. Then, dyskinetic 6-OHDAlesioned rats were administered AZD8529 (0.1, 0.3, and 1 mg/kg) or vehicle in combination with L-DOPA followed by assessment of AIMs severity. The cylinder test was then used to evaluate the effect of AZD8529 on the anti-parkinsonian action of L-DOPA. We found that AZD8529 (0.1, 0.3 and 1 mg/kg) in combination with L-DOPA significantly reduced the severity of AIMs duration (P < 0.05), but not amplitude, when compared to L-DOPA/vehicle. AZD8529 administration did not interfere with L-DOPA anti-parkinsonian action. Our results provide evidence that mGluR2 positive allosteric modulation with AZD8529 may be a viable, yet relatively modest, treatment strategy to alleviate L-DOPA-induced.
Collapse
Affiliation(s)
- Judy Shaqfah
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Woojin Kang
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Fleur Gaudette
- Plateforme de Pharmacocinétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Marianne Khalil
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Cynthia Kwan
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Sébastien Belliveau
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Élodie Bourgeois-Cayer
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Adjia Hamadjida
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Dominique Bédard
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre de Recherche sur le Cerveau et l'Apprentissage (CIRCA), Université de Montréal, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Movement Disorder Clinic, Division of Neurology, Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
6
|
Zhai S, Cui Q, Wokosin D, Sun L, Tkatch T, Crittenden JR, Graybiel AM, Surmeier DJ. State-dependent modulation of spiny projection neurons controls levodopa-induced dyskinesia in a mouse model of Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.02.631090. [PMID: 39829758 PMCID: PMC11741361 DOI: 10.1101/2025.01.02.631090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In the later stages of Parkinson's disease (PD), patients often manifest levodopa-induced dyskinesia (LID), compromising their quality of life. The pathophysiology underlying LID is poorly understood, and treatment options are limited. To move toward filling this treatment gap, the intrinsic and synaptic changes in striatal spiny projection neurons (SPNs) triggered by the sustained elevation of dopamine (DA) during dyskinesia were characterized using electrophysiological, pharmacological, molecular and behavioral approaches. Our studies revealed that the intrinsic excitability and functional corticostriatal connectivity of SPNs in dyskinetic mice oscillate between the on- and off-states of LID in a cell- and state-specific manner. Although triggered by levodopa, these rapid oscillations in SPN properties depended on both dopaminergic and cholinergic signaling. In a mouse PD model, disrupting M1 muscarinic receptor signaling specifically in iSPNs or deleting its downstream signaling partner CalDAG-GEFI blunted the levodopa-induced oscillation in functional connectivity, enhanced the beneficial effects of levodopa and attenuated LID severity.
Collapse
Affiliation(s)
- Shenyu Zhai
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qiaoling Cui
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815 USA
| | - David Wokosin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Linqing Sun
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tatiana Tkatch
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815 USA
| | - Jill R. Crittenden
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Ann M. Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - D. James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815 USA
| |
Collapse
|
7
|
Li H, Chen Z, Tan Y, Luo H, Lu C, Gao C, Shen X, Cai F, Hu J, Chen S. Enhancing striatal acetylcholine facilitates dopamine release and striatal output in parkinsonian mice. Cell Biosci 2024; 14:146. [PMID: 39627827 PMCID: PMC11616140 DOI: 10.1186/s13578-024-01328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND L-DOPA has been considered the first-line therapy for treating Parkinson's disease (PD) via restoring striatal dopamine (DA) to normalize the activity of local spiny projection neurons (SPNs) in the direct (dSPNs) pathway and the indirect (iSPNs) pathway. While the changes in striatal acetylcholine (ACh) induced by increasing DA have been extensively discussed, their validity remains controversial. Inhibition of striatal cholinergic signaling attenuates PD motor deficits. Interestingly, enhancing striatal ACh triggers local DA release, suggesting the pro-kinetic effects of ACh in movement control. Here, we investigated the in-vivo dynamics of ACh in the dorsolateral striatum (DLS) of the 6-OHDA-lesioned mouse model after L-DOPA administration, as well as its underlying mechanism, and to explore its modulatory role and mechanism in parkinsonian symptoms. RESULTS Using in vivo fiber photometry recordings with genetically encoded fluorescent DA or ACh indicator, we found L-DOPA selectively decreased DLS ACh levels in parkinsonian conditions. DA inhibited ACh release via dopamine D2 receptors and dSPNs-mediated activation of type-A γ-aminobutyric acid receptors on cholinergic interneurons. Restoring DLS ACh levels during L-DOPA treatment induced additional DA release by activating nicotinic acetylcholine receptors, thereby promoting the activity of dSPNs and iSPNs. Enhancing DLS ACh facilitated L-DOPA-induced turning behavior but not dyskinesia in parkinsonian mice. CONCLUSIONS Our results demonstrated that enhancing striatal ACh facilitated the effect of L-DOPA by modulating DA tone. It may challenge the classical hypothesis of a purely competitive interaction between dopaminergic and cholinergic neuromodulation in improving PD motor deficits. Modulating ACh levels within the dopaminergic system may improve striatal DA availability in PD patients.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Lab for Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, ShanghaiTech University, Shanghai, China
| | - Ziluo Chen
- Lab for Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, ShanghaiTech University, Shanghai, China
| | - Yuyan Tan
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huoqing Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chen Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chao Gao
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Shen
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Cai
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
8
|
Jeon E, Seo MS, Lkhagva-Yondon E, Lim YR, Kim SW, Kang YJ, Lee JS, Lee BD, Wi R, Won SY, Chung YC, Park ES, Kim E, Jin BK, Jeon MS. Neuroprotective effect of L-DOPA-induced interleukin-13 on striatonigral degeneration in cerebral ischemia. Cell Death Dis 2024; 15:854. [PMID: 39578419 PMCID: PMC11584695 DOI: 10.1038/s41419-024-07252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Levodopa (L-DOPA) treatment is a clinically effective strategy for improving motor function in patients with ischemic stroke. However, the mechanisms by which modulating the dopamine system relieves the pathology of the ischemic brain remain unclear. Emerging evidence from an experimental mouse model of ischemic stroke, established by middle cerebral artery occlusion (MCAO), suggested that L-DOPA has the potential to modulate the inflammatory and immune response that occurs during a stroke. Here, we aimed to demonstrate the therapeutic effect of L-DOPA in regulating the systemic immune response and improving functional deficits in mice with ischemia. Transient MCAO led to progressive degeneration of nigrostriatal dopamine neurons and significant rotational behavior in mice. Exogenous L-DOPA treatment attenuated the striatonigral degeneration and reversed motor behavioral impairment. Notably, treatment with L-DOPA significantly increased IL-13 but reduced IFN-γ in infarct lesions. To investigate the role of IL-13 in motor behavior, we stereotaxically injected anti-IL-13 antibodies into the infarct area of the mouse brain one week after MCAO, followed by L-DOPA treatment. The intervention reduced dopamine, IL-13, and IL-10 levels and exacerbated motor function. IL-13 is potentially expressed on CD4 T cells, while IL-10 is mainly expressed on microglia rather than astrocytes. Finally, IL-13 activates the phagocytosis of microglia, which may contribute to neuroprotection by eliminating degenerating neurons. Our study provides evidence that the L-DOPA-activated dopamine system modulates peripheral immune cells, resulting in the expression of anti-inflammatory and neuroprotective cytokines in mice with ischemic stroke.
Collapse
Affiliation(s)
- Eunhae Jeon
- Translational Research Center, Inha University Hospital, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Myeong-Seong Seo
- Translational Research Center, Inha University Hospital, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Enkhmaa Lkhagva-Yondon
- Translational Research Center, Inha University Hospital, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Yu-Ree Lim
- Translational Research Center, Inha University Hospital, Incheon, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Seung-Woo Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Yu Jeong Kang
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jun Seok Lee
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Byoung Dae Lee
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Rayul Wi
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - So-Yoon Won
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Young Cheul Chung
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Predictive Toxicology, Korea Institute of Toxicology 1, Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea
| | - Eun S Park
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Eunhee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Byung Kwan Jin
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.
| | - Myung-Shin Jeon
- Translational Research Center, Inha University Hospital, Incheon, Republic of Korea.
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
9
|
Nielsen BE, Ford CP. Reduced striatal M4-cholinergic signaling following dopamine loss contributes to parkinsonian and l-DOPA-induced dyskinetic behaviors. SCIENCE ADVANCES 2024; 10:eadp6301. [PMID: 39565858 PMCID: PMC11578179 DOI: 10.1126/sciadv.adp6301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
A dynamic equilibrium between dopamine and acetylcholine (ACh) is essential for striatal circuitry and motor function, as imbalances are associated with Parkinson's disease (PD) and levodopa-induced dyskinesia (LID). Conventional theories posit that cholinergic signaling is pathologically elevated in PD as a result of increased ACh release, which contributes to motor deficits. However, using approaches to measure receptor-mediated signaling, we found that, rather than the predicted enhancement, the strength of cholinergic transmission at muscarinic M4 receptor synapses on direct pathway medium spiny neurons was decreased in dopamine-depleted mice. This adaptation was due to a reduced postsynaptic M4 receptor function, resulting from down-regulated receptors and downstream signaling. Restoring M4 transmission unexpectedly led to a partial alleviation of motor deficits and LID dyskinetic behavior, revealing an unexpected prokinetic effect in addition to the canonical antikinetic role of M4 receptors. These findings indicate that decreased M4 function differentially contributes to parkinsonian and LID pathophysiology, representing a promising target for therapeutic intervention.
Collapse
Affiliation(s)
- Beatriz E. Nielsen
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Christopher P. Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
10
|
Twedell EL, Bair-Marshall CJ, Girasole AE, Scaria LK, Sridhar S, Nelson AB. Striatal lateral inhibition regulates action selection in a mouse model of levodopa-induced dyskinesia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617939. [PMID: 39416118 PMCID: PMC11482940 DOI: 10.1101/2024.10.11.617939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Striatal medium spiny neurons (MSNs) integrate multiple external inputs to shape motor output. In addition, MSNs form local inhibitory synaptic connections with one another. The function of striatal lateral inhibition is unknown, but one possibility is in selecting an intended action while suppressing alternatives. Action selection is disrupted in several movement disorders, including levodopa-induced dyskinesia (LID), a complication of Parkinson's disease (PD) therapy characterized by involuntary movements. Here, we identify chronic changes in the strength of striatal lateral inhibitory synapses in a mouse model of PD/LID. These synapses are also modulated by acute dopamine signaling. Chemogenetic suppression of lateral inhibition originating from dopamine D2 receptor-expressing MSNs lowers the threshold to develop involuntary movements in vivo, supporting a role in motor control. By examining the role of lateral inhibition in basal ganglia function and dysfunction, we expand the framework surrounding the role of striatal microcircuitry in action selection.
Collapse
Affiliation(s)
- Emily L Twedell
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Chloe J Bair-Marshall
- Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
| | - Allison E Girasole
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
| | - Lara K Scaria
- Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
| | - Sadhana Sridhar
- Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Alexandra B Nelson
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
11
|
Kim E, Frouni I, Shaqfah J, Bédard D, Huot P. Autoradiographic labelling of metabotropic glutamate type 2/3 receptors in the hemi-parkinsonian rat brain. J Chem Neuroanat 2024; 138:102422. [PMID: 38657828 DOI: 10.1016/j.jchemneu.2024.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) is the treatment of choice for Parkinson's disease (PD) motor symptoms, but its chronic use is hindered by complications such as dyskinesia. Pre-clinical studies discovered that activation of metabotropic glutamate type 2 and 3 (mGlu2/3) receptors alleviates L-DOPA-induced dyskinesia. To gain mechanistic insight into the anti-dyskinetic activity of mGlu2/3 activation, we performed autoradiographic binding with [3H]-LY-341,495 in brain sections from L-DOPA-treated 6-hydroxydopamine (6-OHDA)-lesioned rats that developed mild or severe dyskinesia, as well as L-DOPA-untreated 6-OHDA-lesioned and sham-lesioned animals. In the ipsilateral hemisphere, mildly dyskinetic 6-OHDA-lesioned rats showed a decrease in [3H]-LY-341,495 binding in the entopeduncular nucleus (EPN, 30 % vs sham-lesioned rats, P<0.05), globus pallidus (GP, 28 % vs sham-lesioned rats, P<0.05; 23 % vs L-DOPA-untreated 6-OHDA-lesioned rats, P<0.001), and primary motor cortex (49 % vs sham-lesioned rats, P<0.05; 45 % vs L-DOPA-untreated 6-OHDA-lesioned rats, P<0.001). Severely dyskinetic 6-OHDA-lesioned rats exhibited an increase in binding in the primary motor cortex (43 % vs mildly dyskinetic 6-OHDA-lesioned rats, P<0.05). In the contralateral hemisphere, mildly dyskinetic 6-OHDA-lesioned rats harboured a decrease in binding in the EPN (30 % vs sham-lesioned rats; 24 % vs L-DOPA-untreated 6-OHDA-lesioned rats, both P<0.05), GP (34 % vs sham-lesioned rats, P<0.05; 23 % vs L-DOPA-untreated 6-OHDA-lesioned rats, P<0.001), and primary motor cortex (50 % vs sham-lesioned rats; 44 % vs L-DOPA-untreated 6-OHDA-lesioned rats, both P<0.05). Severely dyskinetic 6-OHDA-lesioned rats presented a decrease in binding in the GP (30 % vs sham-lesioned rats; 19 % vs L-DOPA-untreated 6-OHDA-lesioned rats, both P<0.05). Abnormal involuntary movements scores of 6-OHDA-lesioned animals were positively correlated with [3H]-LY-341,495 binding in the ipsilateral striatum, ipsilateral EPN, ipsilateral primary motor cortex and contralateral primary motor cortex (all P<0.05). These results suggest that alterations in mGlu2/3 receptor levels may be part of an endogenous compensatory mechanism to alleviate dyskinesia.
Collapse
Affiliation(s)
- Esther Kim
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Imane Frouni
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Judy Shaqfah
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Dominique Bédard
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Movement Disorder Clinic, Division of Neurology, Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
12
|
Izquierdo-Altarejos P, Arenas YM, Martínez-García M, Vázquez L, Mincheva G, Doverskog M, Blackburn TP, Bohnen NI, Llansola M, Felipo V. Golexanolone reduces glial activation in the striatum and improves non-motor and some motor alterations in a rat model of Parkinson's disease. Front Aging Neurosci 2024; 16:1417938. [PMID: 38974902 PMCID: PMC11224447 DOI: 10.3389/fnagi.2024.1417938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Background Parkinson's disease (PD) affects more than 6 million people worldwide. Along with motor impairments, patients and animal models exhibiting PD symptoms also experience cognitive impairment, fatigue, anxiety, and depression. Currently, there are no drugs available for PD that alter the progression of the disease. A body of evidence suggests that increased GABA levels contribute to the reduced expression of tyrosine hydroxylase (TH) and accompanying behavioral deficits. TH expression may be restored by blocking GABAA receptors. We hypothesized that golexanolone (GR3027), a well-tolerated GABAA receptor-modulating steroid antagonist (GAMSA), may improve Parkinson's symptoms in a rat model of PD. Objectives The aims of this study were to assess whether golexanolone can ameliorate motor and non-motor symptoms in a rat model of PD and to identify some underlying mechanisms. Methods We used the unilateral 6-OHDA rat model of PD. The golexanolone treatment started 4 weeks after surgery. Motor symptoms were assessed using Motorater and CatWalk tests. We also analyzed fatigue (using a treadmill test), anhedonia (via the sucrose preference test), anxiety (with an open field test), and short-term memory (using a Y maze). Glial activation and key proteins involved in PD pathogenesis were analyzed using immunohistochemistry and Western blot. Results Rats with PD showed motor incoordination and impaired locomotor gait, increased fatigue, anxiety, depression, and impaired short-term memory. Golexanolone treatment led to improvements in motor incoordination, certain aspects of locomotor gait, fatigue, anxiety, depression, and short-term memory. Notably, golexanolone reduced the activation of microglia and astrocytes, mitigated TH loss at 5 weeks after surgery, and prevented the increase of α-synuclein levels at 10 weeks. Conclusions Golexanolone may be useful in improving both motor and non-motor symptoms that adversely affect the quality of life in PD patients, such as anxiety, depression, fatigue, motor coordination, locomotor gait, and certain cognitive alterations.
Collapse
Affiliation(s)
| | - Yaiza M. Arenas
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Mar Martínez-García
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Lola Vázquez
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Gergana Mincheva
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | - Nicolaas I. Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
- Neurology Service and GRECC, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, United States
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, United States
- Parkinson's Foundation Center of Excellence, University of Michigan, Ann Arbor, MI, United States
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
13
|
Cardinale A, de Iure A, Picconi B. Neuroinflammation and Dyskinesia: A Possible Causative Relationship? Brain Sci 2024; 14:514. [PMID: 38790492 PMCID: PMC11118841 DOI: 10.3390/brainsci14050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
Levodopa (L-DOPA) treatment represents the gold standard therapy for Parkinson's disease (PD) patients. L-DOPA therapy shows many side effects, among them, L-DOPA-induced dyskinesias (LIDs) remain the most problematic. Several are the mechanisms underlying these processes: abnormal corticostriatal neurotransmission, pre- and post-synaptic neuronal events, changes in gene expression, and altered plasticity. In recent years, researchers have also suggested non-neuronal mechanisms as a possible cause for LIDs. We reviewed recent clinical and pre-clinical studies on neuroinflammation contribution to LIDs. Microglia and astrocytes seem to play a strategic role in LIDs phenomenon. In particular, their inflammatory response affects neuron-glia communication, synaptic activity and neuroplasticity, contributing to LIDs development. Finally, we describe possible new therapeutic interventions for dyskinesia prevention targeting glia cells.
Collapse
Affiliation(s)
- Antonella Cardinale
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| | - Antonio de Iure
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| | - Barbara Picconi
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| |
Collapse
|
14
|
Frouni I, Kim E, Shaqfah J, Bédard D, Kwan C, Belliveau S, Huot P. [ 3H]-NFPS binding to the glycine transporter 1 in the hemi-parkinsonian rat brain. Exp Brain Res 2024; 242:1203-1214. [PMID: 38526743 PMCID: PMC11078860 DOI: 10.1007/s00221-024-06815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/23/2024] [Indexed: 03/27/2024]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) is the main treatment for Parkinson's disease (PD) but with long term administration, motor complications such as dyskinesia are induced. Glycine transporter 1 (GlyT1) inhibition was shown to produce an anti-dyskinetic effect in parkinsonian rats and primates, coupled with an improvement in the anti-parkinsonian action of L-DOPA. The expression of GlyT1 in the brain in the dyskinetic state remains to be investigated. Here, we quantified the levels of GlyT1 across different brain regions using [3H]-NFPS in the presence of Org-25,935. Brain sections were chosen from sham-lesioned rats, L-DOPA-naïve 6-hydroxydopamine (6-OHDA)-lesioned rats and 6-OHDA-lesioned rats exhibiting mild or severe abnormal involuntary movements (AIMs). [3H]-NFPS binding decreased in the ipsilateral and contralateral thalamus, by 28% and 41%, in 6-OHDA-lesioned rats with severe AIMs compared to sham-lesioned animals (P < 0.01 and 0.001). [3H]-NFPS binding increased by 21% in the ipsilateral substantia nigra of 6-OHDA-lesioned rats with severe AIMs compared to 6-OHDA-lesioned rats with mild AIMs (P < 0.05). [3H]-NFPS binding was lower by 19% in the contralateral primary motor cortex and by 20% in the contralateral subthalamic nucleus of 6-OHDA-lesioned rats with mild AIMs animals compared to rats with severe AIMs (both P < 0.05). The severity of AIMs scores positively correlated with [3H]-NFPS binding in the ipsilateral substantia nigra (P < 0.05), ipsilateral entopeduncular nucleus (P < 0.05) and contralateral primary motor cortex (P < 0.05). These data provide an anatomical basis to explain the efficacy of GlyT1 inhibitors in dyskinesia in PD.
Collapse
Affiliation(s)
- Imane Frouni
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Esther Kim
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Judy Shaqfah
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Dominique Bédard
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Cynthia Kwan
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Sébastien Belliveau
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Philippe Huot
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada.
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Movement Disorder Clinic, Division of Neurology, Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
15
|
Kim DY, Kim SM, Cho EJ, Kwak HB, Han IO. Protective effect of increased O-GlcNAc cycling against 6-OHDA induced Parkinson's disease pathology. Cell Death Dis 2024; 15:287. [PMID: 38654003 PMCID: PMC11039476 DOI: 10.1038/s41419-024-06670-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
This study aimed to elucidate the role of O-GlcNAc cycling in 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD)-like neurodegeneration and the underlying mechanisms. We observed dose-dependent downregulation of O-GlcNAcylation, accompanied by an increase in O-GlcNAcase following 6-OHDA treatment in both mouse brain and Neuro2a cells. Interestingly, elevating O-GlcNAcylation through glucosamine (GlcN) injection provided protection against PD pathogenesis induced by 6-OHDA. At the behavioral level, GlcN mitigated motor deficits induced by 6-OHDA, as determined using the pole, cylinder, and apomorphine rotation tests. Furthermore, GlcN attenuated 6-OHDA-induced neuroinflammation and mitochondrial dysfunction. Notably, augmented O-GlcNAcylation, achieved through O-GlcNAc transferase (OGT) overexpression in mouse brain, conferred protection against 6-OHDA-induced PD pathology, encompassing neuronal cell death, motor deficits, neuroinflammation, and mitochondrial dysfunction. These collective findings suggest that O-GlcNAcylation plays a crucial role in the normal functioning of dopamine neurons. Moreover, enhancing O-GlcNAcylation through genetic and pharmacological means could effectively ameliorate neurodegeneration and motor impairment in an animal model of PD. These results propose a potential strategy for safeguarding against the deterioration of dopamine neurons implicated in PD pathogenesis.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, Korea
| | - Sang-Min Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, Korea
| | - Eun-Jeong Cho
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, Korea
| | - Hyo-Bum Kwak
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, Korea
- Department of Kinesiology, Inha University, Incheon, Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, Korea.
- Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea.
| |
Collapse
|
16
|
Feng L, Li D, Tian Y, Zhao C, Sun Y, Kou X, Wu J, Wang L, Gu Q, Li W, Hao J, Hu B, Wang Y. One-step cell biomanufacturing platform: porous gelatin microcarrier beads promote human embryonic stem cell-derived midbrain dopaminergic progenitor cell differentiation in vitro and survival after transplantation in vivo. Neural Regen Res 2024; 19:458-464. [PMID: 37488911 PMCID: PMC10503631 DOI: 10.4103/1673-5374.377412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/07/2023] [Accepted: 04/10/2023] [Indexed: 07/26/2023] Open
Abstract
Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson's disease. Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson's disease. However, transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche. Here, we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells. These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion, effectively maintaining axonal integrity in vitro. Importantly, midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts. Overall, our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation.
Collapse
Affiliation(s)
- Lin Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Da Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yao Tian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Chengshun Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yun Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xiaolong Kou
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Liu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qi Gu
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yukai Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
17
|
Park J, Kang S, Lee Y, Choi JW, Oh YS. Continuous long-range measurement of tonic dopamine with advanced FSCV for pharmacodynamic analysis of levodopa-induced dyskinesia in Parkinson's disease. Front Bioeng Biotechnol 2024; 12:1335474. [PMID: 38328444 PMCID: PMC10847580 DOI: 10.3389/fbioe.2024.1335474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Levodopa, a dopamine prodrug, alleviates the motor symptoms of Parkinson's disease (PD), but its chronic use gives rise to levodopa-induced dyskinesia (LID). However, it remains unclear whether levodopa pharmacodynamics is altered during the progressive onset of LID. Using in vivo fast-scan cyclic voltammetry and second-derivative-based background drift removal, we continuously measured tonic dopamine levels using high temporal resolution recording over 1-h. Increases to tonic dopamine levels following acute levodopa administration were slow and marginal within the naïve PD model. However, these levels increased faster and higher in the LID model. Furthermore, we identified a strong positive correlation of dyskinetic behavior with the rate of dopamine increase, but much less with its cumulative level, at each time point. Here, we identified the altered signature of striatal DA dynamics underlying LID in PD using an advanced FSCV technique that demonstrates the long-range dynamics of tonic dopamine following drug administration.
Collapse
Affiliation(s)
- Jeongrak Park
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Seongtak Kang
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Yaebin Lee
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Ji-Woong Choi
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Yong-Seok Oh
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
18
|
Slézia A, Hegedüs P, Rusina E, Lengyel K, Solari N, Kaszas A, Balázsfi D, Botzanowski B, Acerbo E, Missey F, Williamson A, Hangya B. Behavioral, neural and ultrastructural alterations in a graded-dose 6-OHDA mouse model of early-stage Parkinson's disease. Sci Rep 2023; 13:19478. [PMID: 37945922 PMCID: PMC10636184 DOI: 10.1038/s41598-023-46576-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Studying animal models furthers our understanding of Parkinson's disease (PD) pathophysiology by providing tools to investigate detailed molecular, cellular and circuit functions. Different versions of the neurotoxin-based 6-hydroxydopamine (6-OHDA) model of PD have been widely used in rats. However, these models typically assess the result of extensive and definitive dopaminergic lesions that reflect a late stage of PD, leading to a paucity of studies and a consequential gap of knowledge regarding initial stages, in which early interventions would be possible. Additionally, the better availability of genetic tools increasingly shifts the focus of research from rats to mice, but few mouse PD models are available yet. To address these, we characterize here the behavioral, neuronal and ultrastructural features of a graded-dose unilateral, single-injection, striatal 6-OHDA model in mice, focusing on early-stage changes within the first two weeks of lesion induction. We observed early onset, dose-dependent impairments of overall locomotion without substantial deterioration of motor coordination. In accordance, histological evaluation demonstrated a partial, dose-dependent loss of dopaminergic neurons of substantia nigra pars compacta (SNc). Furthermore, electron microscopic analysis revealed degenerative ultrastructural changes in SNc dopaminergic neurons. Our results show that mild ultrastructural and cellular degradation of dopaminergic neurons of the SNc can lead to certain motor deficits shortly after unilateral striatal lesions, suggesting that a unilateral dose-dependent intrastriatal 6-OHDA lesion protocol can serve as a successful model of the early stages of Parkinson's disease in mice.
Collapse
Affiliation(s)
- Andrea Slézia
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary.
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France.
- Institute of Cognitive Neuroscience and Psychology, Eotvos Lorand Research Network, Budapest, Hungary.
- Institut de Neurosciences de la Timone, CNRS UMR 7289, Aix-Marseille Université, Marseille, France.
| | - Panna Hegedüs
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Evgeniia Rusina
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Katalin Lengyel
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
| | - Nicola Solari
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
| | - Attila Kaszas
- Institut de Neurosciences de la Timone, CNRS UMR 7289, Aix-Marseille Université, Marseille, France
| | - Diána Balázsfi
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
| | - Boris Botzanowski
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Emma Acerbo
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Florian Missey
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Adam Williamson
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France.
- International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.
| | - Balázs Hangya
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary.
| |
Collapse
|
19
|
Delgado-Zabalza L, Mallet NP, Glangetas C, Dabee G, Garret M, Miguelez C, Baufreton J. Targeting parvalbumin-expressing neurons in the substantia nigra pars reticulata restores motor function in parkinsonian mice. Cell Rep 2023; 42:113287. [PMID: 37843977 DOI: 10.1016/j.celrep.2023.113287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/31/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
The activity of substantia nigra pars reticulata (SNr) neurons, the main output structure of basal ganglia, is altered in Parkinson's disease (PD). However, neither the underlying mechanisms nor the type of neurons responsible for PD-related motor dysfunctions have been elucidated yet. Here, we show that parvalbumin-expressing SNr neurons (SNr-PV+) occupy dorsolateral parts and possess specific electrophysiological properties compared with other SNr cells. We also report that only SNr-PV+ neurons' intrinsic excitability is reduced by downregulation of sodium leak channels in a PD mouse model. Interestingly, in anesthetized parkinsonian mice in vivo, SNr-PV+ neurons display a bursty pattern of activity dependent on glutamatergic tone. Finally, we demonstrate that chemogenetic inhibition of SNr-PV+ neurons is sufficient to alleviate motor impairments in parkinsonian mice. Overall, our findings establish cell-type-specific dysfunction in experimental parkinsonism in the SNr and provide a potential cellular therapeutic target to alleviate motor symptoms in PD.
Collapse
Affiliation(s)
- Lorena Delgado-Zabalza
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France; Department of Pharmacology. University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Nicolas P Mallet
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | | | - Guillaume Dabee
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | - Maurice Garret
- University Bordeaux, CNRS, INCIA, UMR 5287, 33000 Bordeaux, France
| | - Cristina Miguelez
- Department of Pharmacology. University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Jérôme Baufreton
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France.
| |
Collapse
|
20
|
Ahmed MR, Zheng C, Dunning JL, Ahmed MS, Ge C, Sanders Pair F, Gurevich VV, Gurevich EV. Arrestin-3-assisted activation of JNK3 mediates dopaminergic behavioral and signaling plasticity in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564447. [PMID: 37961199 PMCID: PMC10634923 DOI: 10.1101/2023.10.27.564447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In rodents with unilateral ablation of the substantia nigra neurons supplying dopamine to the striatum, chronic treatment with the dopamine precursor L-DOPA or dopamine agonists induces a progressive increase of behavioral responses, a process known as behavioral sensitization. The sensitization is blunted in arrestin-3 knockout mice. Using virus-mediated gene delivery to the dopamine-depleted striatum of arrestin-3 knockout mice, we found that the restoration of arrestin-3 fully rescued behavioral sensitization, whereas its mutant defective in JNK activation did not. A 25-residue arrestin-3-derived peptide that facilitates JNK3 activation in cells, expressed ubiquitously or selectively in the direct pathway striatal neurons, fully rescued sensitization, whereas an inactive homologous arrestin-2-derived peptide did not. Behavioral rescue was accompanied by the restoration of JNK3 activity and of JNK-dependent phosphorylation of the transcription factor c-Jun in the dopamine-depleted striatum. Thus, arrestin-3-dependent JNK3 activation in direct pathway neurons is a critical element of the molecular mechanism underlying sensitization.
Collapse
Affiliation(s)
- Mohamed R. Ahmed
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | | | - Mohamed S. Ahmed
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | | | | | | | | |
Collapse
|
21
|
Nascimento GC, Jacob G, Milan BA, Leal-Luiz G, Malzone BL, Vivanco-Estela AN, Escobar-Espinal D, Dias FJ, Del-Bel E. Brainstem Modulates Parkinsonism-Induced Orofacial Sensorimotor Dysfunctions. Int J Mol Sci 2023; 24:12270. [PMID: 37569642 PMCID: PMC10418831 DOI: 10.3390/ijms241512270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Parkinson's Disease (PD), treated with the dopamine precursor l-3,4-dihydroxyphenylalanine (L-DOPA), displays motor and non-motor orofacial manifestations. We investigated the pathophysiologic mechanisms of the lateral pterygoid muscles (LPMs) and the trigeminal system related to PD-induced orofacial manifestations. A PD rat model was produced by unilateral injection of 6-hydroxydopamine into the medial forebrain bundle. Abnormal involuntary movements (dyskinesia) and nociceptive responses were determined. We analyzed the immunodetection of Fos-B and microglia/astrocytes in trigeminal and facial nuclei and morphological markers in the LPMs. Hyperalgesia response was increased in hemiparkinsonian and dyskinetic rats. Hemiparkinsonism increased slow skeletal myosin fibers in the LPMs, while in the dyskinetic ones, these fibers decreased in the contralateral side of the lesion. Bilateral increased glycolytic metabolism and an inflammatory muscle profile were detected in dyskinetic rats. There was increased Fos-B expression in the spinal nucleus of lesioned rats and in the motor and facial nucleus in L-DOPA-induced dyskinetic rats in the contralateral side of the lesion. Glial cells were increased in the facial nucleus on the contralateral side of the lesion. Overall, spinal trigeminal nucleus activation may be associated with orofacial sensorial impairment in Parkinsonian rats, while a fatigue profile on LPMs is suggested in L-DOPA-induced dyskinesia when the motor and facial nucleus are activated.
Collapse
Affiliation(s)
- Glauce Crivelaro Nascimento
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil; (G.C.N.); (G.J.); (B.A.M.); (G.L.-L.); (B.L.M.); (A.N.V.-E.); (D.E.-E.)
- Department of Integral Dentistry, Oral Biology Research Centre (CIBO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Gabrielle Jacob
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil; (G.C.N.); (G.J.); (B.A.M.); (G.L.-L.); (B.L.M.); (A.N.V.-E.); (D.E.-E.)
| | - Bruna Araujo Milan
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil; (G.C.N.); (G.J.); (B.A.M.); (G.L.-L.); (B.L.M.); (A.N.V.-E.); (D.E.-E.)
| | - Gabrielli Leal-Luiz
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil; (G.C.N.); (G.J.); (B.A.M.); (G.L.-L.); (B.L.M.); (A.N.V.-E.); (D.E.-E.)
| | - Bruno Lima Malzone
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil; (G.C.N.); (G.J.); (B.A.M.); (G.L.-L.); (B.L.M.); (A.N.V.-E.); (D.E.-E.)
| | - Airam Nicole Vivanco-Estela
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil; (G.C.N.); (G.J.); (B.A.M.); (G.L.-L.); (B.L.M.); (A.N.V.-E.); (D.E.-E.)
| | - Daniela Escobar-Espinal
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil; (G.C.N.); (G.J.); (B.A.M.); (G.L.-L.); (B.L.M.); (A.N.V.-E.); (D.E.-E.)
| | - Fernando José Dias
- Department of Integral Dentistry, Oral Biology Research Centre (CIBO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Elaine Del-Bel
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil; (G.C.N.); (G.J.); (B.A.M.); (G.L.-L.); (B.L.M.); (A.N.V.-E.); (D.E.-E.)
- Department of Neuroscience, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo 14040-900, Brazil
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo 14040-900, Brazil
| |
Collapse
|
22
|
Nascimento GC, Santos BM, Pedrazzi JF, Silva-Amaral D, Bortolanza M, Harris GT, Del Bel E, Branco LG. Effects of hydrogen gas inhalation on L-DOPA-induced dyskinesia. Brain Behav Immun Health 2023; 30:100623. [PMID: 37096172 PMCID: PMC10121822 DOI: 10.1016/j.bbih.2023.100623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/07/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023] Open
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia is a side effect of Parkinson's disease treatment and it is characterized by atypical involuntary movements. A link between neuroinflammation and L-DOPA-induced dyskinesia has been documented. Hydrogen gas (H2) has neuroprotective effects in Parkinson's disease models and has a major anti-inflammatory effect. Our objective is to test the hypothesis that H2 inhalation reduces L-DOPA-induced dyskinesia. 15 days after 6-hydroxydopamine lesions of dopaminergic neurons were made (microinjection into the medial forebrain bundle), chronic L-DOPA treatment (15 days) was performed. Rats were exposed to H2 (2% gas mixture, 1 h) or air (controls) before L-DOPA injection. Abnormal involuntary movements and locomotor activity were conducted. Striatal microglia and astrocyte was analyzed and striatal and plasma samples for cytokines evaluation were collected after the abnormal involuntary movements analysis. H2 inhalation attenuated L-DOPA-induced dyskinesia. The gas therapy did not impair the improvement of locomotor activity achieved by L-DOPA treatment. H2 inhalation reduced activated microglia in the lesioned striatum, which is consistent with the observed reduced pro-inflammatory cytokines levels. Display of abnormal involuntary movements was positively correlated with plasma IL-1β and striatal TNF-α levels and negatively correlated with striatal IL-10 levels. Prophylactic H2 inhalation decreases abnormal involuntary movements in a preclinical L-DOPA-induced dyskinesia model. The H2 antidyskinetic effect was associated with decreased striatal and peripheral inflammation. This finding has a translational importance to L-DOPA-treated parkinsonian patients' well-being.
Collapse
Affiliation(s)
- Glauce C. Nascimento
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Basic and Oral Biology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Bruna M. Santos
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Josephs' Hospital and Medical Center, Phoenix, AZ, USA
| | - João F. Pedrazzi
- Neuroscience Graduate Program, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Danyelle Silva-Amaral
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mariza Bortolanza
- Department of Basic and Oral Biology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Grant T. Harris
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Josephs' Hospital and Medical Center, Phoenix, AZ, USA
| | - Elaine Del Bel
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Basic and Oral Biology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto, SP, Brazil
- Neuroscience Graduate Program, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G.S. Branco
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Basic and Oral Biology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
23
|
Nakamura T, Nishijima H, Mori F, Kinoshita I, Kon T, Suzuki C, Wakabayashi K, Tomiyama M. Axon terminal hypertrophy of striatal projection neurons with levodopa-induced dyskinesia priming. Front Neurosci 2023; 17:1169336. [PMID: 37351424 PMCID: PMC10282195 DOI: 10.3389/fnins.2023.1169336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
Background A rat model of levodopa-induced dyskinesia (LID) showed enlarged axon terminals of striatal direct pathway neurons in the internal segment of the globus pallidus (GPi) with excessive gamma-aminobutyric acid (GABA) storage in them. Massive GABA release to GPi upon levodopa administration determines the emergence of LID. Objectives We examined whether LID and axon terminal hypertrophy gradually develop with repeated levodopa treatment in Parkinsonian rats to examine if the hypertrophy reflects dyskinesia priming. Methods 6-hydroxydopamine-lesioned hemiparkinsonian rats were randomly allocated to receive saline injections (placebo group, 14 days; n = 4), injections of 6 mg/kg levodopa methyl ester combined with 12.5 mg/kg benserazide (levodopa-treated groups, 3-day-treatment; n = 4, 7-day-treatment; n = 4, 14-day-treatment; n = 4), or injections of 6 mg/kg levodopa methyl ester with 12.5 mg/kg benserazide and 1 mg/kg 8-hydroxy-2-(di-n-propylamino)tetralin for 14 days (8-OH-DPAT-treated group; n = 4). We evaluated abnormal involuntary movement (AIM) scores and axon terminals in the GPi. Results The AIM score increased with levodopa treatment, as did the hypertrophy of axon terminals in the GPi, showing an increased number of synaptic vesicles in hypertrophied terminals. Conclusion Increased GABA storage in axon terminals of the direct pathway neurons represents the priming process of LID.
Collapse
Affiliation(s)
- Takashi Nakamura
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Haruo Nishijima
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Fumiaki Mori
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Iku Kinoshita
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoya Kon
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Chieko Suzuki
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
24
|
Murakami Y, Nishijima H, Nakamura T, Furukawa T, Kinoshita I, Kon T, Suzuki C, Tomiyama M. Altered Amantadine Effects after Repetitive Treatment for l-dopa-induced Involuntary Movements in a Rat Model of Parkinson's Disease. Neurosci Lett 2023; 806:137248. [PMID: 37061023 DOI: 10.1016/j.neulet.2023.137248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND l-3,4-dihydroxyphenylalanine (l-dopa) is the most effective drug for Parkinson's disease (PD); however, most PD patients develop motor fluctuations including wearing-off and l-dopa-induced dyskinesia (LID). Amantadine is beneficial for improving the motor symptoms, reducing "off" time, and ameliorating LID, although its long-term efficacy remains unknown. OBJECTIVES To investigate the effects of amantadine on PD and LID using a rat model with repetitive drug treatment. METHOD We utilized 6-hydroxydopamine injections to develop a hemiparkinsonian rat model. The rats were assigned to four groups: five rats received l-dopa and benserazide for 31 days, six rats received l-dopa and benserazide plus amantadine for 31 days, five rats received l-dopa and benserazide for 15 days followed by l-dopa and benserazide plus amantadine for 16 days, and five rats received l-dopa and benserazide plus amantadine for 15 days followed by l-dopa and benserazide treatment for 16 days. We evaluated the l-dopa-induced abnormal involuntary movements on treatment days 1, 7, 14, 16, 22, and 29. Subsequently, immunohistochemistry for drebrin was performed. RESULTS l-dopa-induced abnormal movements were reduced on the first day of amantadine treatment, and these effects disappeared with repetitive treatment. In contrast, the extension of l-dopa "on" time was observed after repetitive amantadine treatment. All groups showed enlarged drebrin immunoreactive dots in the dopamine-denervated striatum, indicating that amantadine did not prevent priming effects of repetitive l-dopa treatment. CONCLUSION Anti-LID effect of amantadine diminished after repetitive treatment, and the effect of amantadine on wearing-off emerged after repetitive treatment in a hemiparkinsonian rat model. Fluctuations in amantadine effects should be considered when using it in clinical settings.
Collapse
Affiliation(s)
- Yoshiki Murakami
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Haruo Nishijima
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | - Takashi Nakamura
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomonori Furukawa
- Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Iku Kinoshita
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoya Kon
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Chieko Suzuki
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
25
|
Pisanò CA, Mercatelli D, Mazzocchi M, Brugnoli A, Morella I, Fasano S, Zaveri NT, Brambilla R, O'Keeffe GW, Neubig RR, Morari M. Regulator of G-Protein Signalling 4 (RGS4) negatively modulates nociceptin/orphanin FQ opioid receptor signalling: Implication for l-Dopa-induced dyskinesia. Br J Pharmacol 2023; 180:927-942. [PMID: 34767639 DOI: 10.1111/bph.15730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Regulator of G-protein signalling 4 (RGS4) is a signal transduction protein that accelerates intrinsic GTPase activity of Gαi/o and Gαq subunits, suppressing GPCR signalling. Here, we investigate whether RGS4 modulates nociceptin/orphanin FQ (N/OFQ) opioid (NOP) receptor signalling and if this modulation has relevance for l-Dopa-induced dyskinesia. EXPERIMENTAL APPROACH HEK293T cells transfected with NOP, NOP/RGS4 or NOP/RGS19 were challenged with N/OFQ and the small-molecule NOP agonist AT-403, using D1-stimulated cAMP levels as a readout. Primary rat striatal neurons and adult mouse striatal slices were challenged with either N/OFQ or AT-403 in the presence of the experimental RGS4 chemical probe, CCG-203920, and D1-stimulated cAMP or phosphorylated extracellular signal regulated kinase 1/2 (pERK) responses were monitored. In vivo, CCG-203920 was co-administered with AT-403 and l-Dopa to 6-hydroxydopamine hemilesioned rats, and dyskinetic movements, striatal biochemical correlates of dyskinesia (pERK and pGluR1 levels) and striatal RGS4 levels were measured. KEY RESULTS RGS4 expression reduced NOFQ and AT-403 potency and efficacy in HEK293T cells. CCG-203920 increased N/OFQ potency in primary rat striatal neurons and potentiated AT-403 response in mouse striatal slices. CCG-203920 enhanced AT-403-mediated inhibition of dyskinesia and its biochemical correlates, without compromising its motor-improving effects. Unilateral dopamine depletion caused bilateral reduction of RGS4 levels, which was reversed by l-Dopa. l-Dopa acutely up-regulated RGS4 in the lesioned striatum. CONCLUSIONS AND IMPLICATIONS RGS4 physiologically inhibits NOP receptor signalling. CCG-203920 enhanced NOP responses and improved the antidyskinetic potential of NOP receptor agonists, mitigating the effects of striatal RGS4 up-regulation occurring during dyskinesia expression. LINKED ARTICLES This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Clarissa A Pisanò
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Daniela Mercatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Martina Mazzocchi
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Alberto Brugnoli
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Ilaria Morella
- Neuroscience and Mental Health Research Institute, Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, UK
| | - Stefania Fasano
- Neuroscience and Mental Health Research Institute, Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, UK
| | - Nurulain T Zaveri
- Astraea Therapeutics, Medicinal Chemistry Division, Mountain View, California, USA
| | - Riccardo Brambilla
- Neuroscience and Mental Health Research Institute, Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, UK
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Michele Morari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
26
|
Skovgård K, Barrientos SA, Petersson P, Halje P, Cenci MA. Distinctive Effects of D1 and D2 Receptor Agonists on Cortico-Basal Ganglia Oscillations in a Rodent Model of L-DOPA-Induced Dyskinesia. Neurotherapeutics 2023; 20:304-324. [PMID: 36344723 PMCID: PMC10119363 DOI: 10.1007/s13311-022-01309-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
L-DOPA-induced dyskinesia (LID) in Parkinson's disease has been linked to oscillatory neuronal activities in the cortico-basal ganglia network. We set out to examine the pattern of cortico-basal ganglia oscillations induced by selective agonists of D1 and D2 receptors in a rat model of LID. Local field potentials were recorded in freely moving rats using large-scale electrodes targeting three motor cortical regions, dorsomedial and dorsolateral striatum, external globus pallidus, and substantial nigra pars reticulata. Abnormal involuntary movements were elicited by the D1 agonist SKF82958 or the D2 agonist sumanirole, while overall motor activity was quantified using video analysis (DeepLabCut). Both SKF82958 and sumanirole induced dyskinesia, although with significant differences in temporal course, overall severity, and body distribution. The D1 agonist induced prominent narrowband oscillations in the high gamma range (70-110 Hz) in all recorded structures except for the nigra reticulata. Additionally, the D1 agonist induced strong functional connectivity between the recorded structures and the phase analysis revealed that the primary motor cortex (forelimb area) was leading a supplementary motor area and striatum. Following treatment with the D2 agonist, narrowband gamma oscillations were detected only in forelimb motor cortex and dorsolateral striatum, while prominent oscillations in the theta band occurred in the globus pallidus and nigra reticulata. Our results reveal that the dyskinetic effects of D1 and D2 receptor agonists are associated with distinct patterns of cortico-basal ganglia oscillations, suggesting a recruitment of partially distinct networks.
Collapse
Affiliation(s)
- Katrine Skovgård
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, BMC A13, 221 84, Lund, Sweden
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sebastian A Barrientos
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Per Petersson
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Pär Halje
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, BMC A13, 221 84, Lund, Sweden.
| |
Collapse
|
27
|
Xiao C, Ji YW, Luan YW, Jia T, Yin C, Zhou CY. Differential modulation of subthalamic projection neurons by short-term and long-term electrical stimulation in physiological and parkinsonian conditions. Acta Pharmacol Sin 2022; 43:1928-1939. [PMID: 34880404 PMCID: PMC9343451 DOI: 10.1038/s41401-021-00811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/31/2021] [Indexed: 11/09/2022]
Abstract
The subthalamic nucleus (STN) is one of the best targets for therapeutic deep brain stimulation (DBS) to control motor symptoms in Parkinson's disease. However, the precise circuitry underlying the effects of STN-DBS remains unclear. To understand how electrical stimulation affects STN projection neurons, we used a retrograde viral vector (AAV-retro-hSyn-eGFP) to label STN neurons projecting to the substantia nigra pars reticulata (SNr) (STN-SNr neurons) or the globus pallidus interna (GPi) (STN-GPi neurons) in mice, and performed whole-cell patch-clamp recordings from these projection neurons in ex vivo brain slices. We found that STN-SNr neurons exhibited stronger responses to depolarizing stimulation than STN-GPi neurons. In most STN-SNr and STN-GPi neurons, inhibitory synaptic inputs predominated over excitatory inputs and electrical stimulation at 20-130 Hz inhibited these neurons in the short term; its longer-term effects varied. 6-OHDA lesion of the nigrostriatal dopaminergic pathway significantly reduced inhibitory synaptic inputs in STN-GPi neurons, but did not change synaptic inputs in STN-SNr neurons; it enhanced short-term electrical-stimulation-induced inhibition in STN-SNr neurons but reversed the effect of short-term electrical stimulation on the firing rate in STN-GPi neurons from inhibitory to excitatory; in both STN-SNr and STN-GPi neurons, it increased the inhibition but attenuated the enhancement of firing rate induced by long-term electrical stimulation. Our results suggest that STN-SNr and STN-GPi neurons differ in their synaptic inputs, their responses to electrical stimulation, and their modification under parkinsonian conditions; STN-GPi neurons may play important roles in both the pathophysiology and therapeutic treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Cheng Xiao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China. .,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China. .,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Ya-wei Ji
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004 China
| | - Yi-wen Luan
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004 China ,grid.460176.20000 0004 1775 8598Department of Anesthesiology, Wuxi People’s Hospital, Wuxi, 214023 China
| | - Tao Jia
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004 China
| | - Cui Yin
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004 China ,grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004 China ,grid.417303.20000 0000 9927 0537NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004 China
| | - Chun-yi Zhou
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004 China ,grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004 China ,grid.417303.20000 0000 9927 0537NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004 China
| |
Collapse
|
28
|
Phosphodiesterase 10A Inhibition Modulates the Corticostriatal Activity and L-DOPA-Induced Dyskinesia. Pharmaceuticals (Basel) 2022; 15:ph15080947. [PMID: 36015095 PMCID: PMC9415800 DOI: 10.3390/ph15080947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 12/01/2022] Open
Abstract
The facilitation of corticostriatal transmission is modulated by the pharmacological inhibition of striatal phosphodiesterase 10A (PDE10A). Since L-DOPA-induced dyskinesia is associated with abnormal corticostriatal transmission, we hypothesized that inhibition of PDE10A would modulate L-DOPA-induced dyskinesia (LID) by regulating corticostriatal activity. 6-OHDA-lesioned rats were chronically treated with L-DOPA for one week. After that, for two additional weeks, animals were treated with the PDE10A inhibitor PDM-042 (1 and 3 mg/kg) one hour before L-DOPA. Behavioral analyses were performed to quantify abnormal involuntary movements (AIMs) and to assess the antiparkinsonian effects of L-DOPA. Single-unit extracellular electrophysiological recordings were performed in vivo to characterize the responsiveness of MSNs to cortical stimulation. The low dose of PDM-042 had an antidyskinetic effect (i.e., attenuated peak-dose dyskinesia) and did not interfere with cortically evoked spike activity. Conversely, the high dose of PDM-042 did not affect peak-dose dyskinesia, prolonged AIMs, and increased cortically evoked spike activity. These data suggest that the facilitation of corticostriatal transmission is likely to contribute to the expression of AIMs. Therefore, cyclic nucleotide manipulation is an essential target in controlling LID.
Collapse
|
29
|
Schor JS, Gonzalez Montalvo I, Spratt PWE, Brakaj RJ, Stansil JA, Twedell EL, Bender KJ, Nelson AB. Therapeutic deep brain stimulation disrupts movement-related subthalamic nucleus activity in parkinsonian mice. eLife 2022; 11:e75253. [PMID: 35786442 PMCID: PMC9342952 DOI: 10.7554/elife.75253] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 07/01/2022] [Indexed: 12/02/2022] Open
Abstract
Subthalamic nucleus deep brain stimulation (STN DBS) relieves many motor symptoms of Parkinson's disease (PD), but its underlying therapeutic mechanisms remain unclear. Since its advent, three major theories have been proposed: (1) DBS inhibits the STN and basal ganglia output; (2) DBS antidromically activates motor cortex; and (3) DBS disrupts firing dynamics within the STN. Previously, stimulation-related electrical artifacts limited mechanistic investigations using electrophysiology. We used electrical artifact-free GCaMP fiber photometry to investigate activity in basal ganglia nuclei during STN DBS in parkinsonian mice. To test whether the observed changes in activity were sufficient to relieve motor symptoms, we then combined electrophysiological recording with targeted optical DBS protocols. Our findings suggest that STN DBS exerts its therapeutic effect through the disruption of movement-related STN activity, rather than inhibition or antidromic activation. These results provide insight into optimizing PD treatments and establish an approach for investigating DBS in other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Jonathan S Schor
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
| | - Isabelle Gonzalez Montalvo
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
| | - Perry WE Spratt
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
| | - Rea J Brakaj
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Jasmine A Stansil
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Emily L Twedell
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Kevin J Bender
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Alexandra B Nelson
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| |
Collapse
|
30
|
Xie C, Power J, Prasad AA. Bidirectional Optogenetic Modulation of the Subthalamic Nucleus in a Rodent Model of Parkinson's Disease. Front Neurosci 2022; 16:848821. [PMID: 35655750 PMCID: PMC9152094 DOI: 10.3389/fnins.2022.848821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a range of motor symptoms. Treatments are focused on dopamine replacement therapy or deep brain stimulation (DBS). The subthalamic nucleus (STN) is a common target for DBS treatment of PD. However, the function of the STN in normal conditions and pathology is poorly understood. Here, we show in rats that optogenetic modulation of STN neuronal activity exerts bidirectional control of motor function, where inhibition of the STN increases movement and STN activation decreases movement. We also examined the effect of bidirectional optogenetic manipulation STN neuronal activity under dopamine depleted condition using the bilateral rodent 6-hydroxydopamine (6-OHDA) model of Parkinson's disease. Optogenetic inhibition of the STN in the absence of dopamine had no impact on motor control yet STN excitation led to pronounced abnormal involuntary movement. Administration of levodopa rescued the abnormal involuntary movements induced by STN excitation. Although dopamine and STN dysfunction are well established in PD pathology, here we demonstrate simultaneous STN over activity and loss of dopamine lead to motor deficits. Moreover, we show the dysfunction of the STN is dependent on dopamine. This study provides evidence that the loss of dopamine and the over activity of the STN are key features of PD motor deficits. These results provide insight into the STN pathology in PD and therapeutic mechanism of targeting the STN for the treatment for PD.
Collapse
Affiliation(s)
- Caroline Xie
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - John Power
- Department of Physiology and Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Asheeta A. Prasad
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
31
|
Modulation by Estradiol of L-Dopa-Induced Dyskinesia in a Rat Model of Post-Menopausal Hemiparkinsonism. Life (Basel) 2022; 12:life12050640. [PMID: 35629308 PMCID: PMC9143229 DOI: 10.3390/life12050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/03/2022] Open
Abstract
Treatment with levodopa (L-dopa) in Parkinson’s disease (PD) leads to involuntary movements termed L-dopa-induced dyskinesia (LID). There are contradictory data about the influence of hormone therapy in female PD patients with LID and of 17-β-estradiol (E2) on animal correlates of LID-abnormal involuntary movements (AIMs). Our aim was to characterize the influence of E2 on motor impairment and AIMs in ovariectomized 6-hydroxydopamine (6-OHDA) rat model of PD. Half of the rats received empty and the other half implants filled with E2. Following the 6-OHDA surgery, the rats received daily treatment with either L-dopa or saline for 16 days. They were assessed for AIMs, contralateral rotations, and FAS. In the L-dopa-treated rats, E2 intensified and prolonged AIMs and contralateral rotations. On the other hand, it had no effect on motor impairment. Postmortem tyrosine hydroxylase immunostaining revealed an almost complete unilateral lesion of nigrostriatal dopaminergic neurons. E2 partially prevented the upregulation of striatal ΔFosB caused by dopamine depletion. L-dopa potentiated the upregulation of ΔFosB within the dopamine-depleted striatum and this effect was further enhanced by E2. We speculate that the potentiating effects of E2 on AIMs and on contralateral rotations could be explained by the molecular adaptations within the striatal medium spiny neurons of the direct and indirect striatofugal pathways.
Collapse
|
32
|
Striatal neuronal ensembles reveal differential actions of amantadine and clozapine to ameliorate mice L-DOPA-induced dyskinesia. Neuroscience 2022; 492:92-107. [PMID: 35367290 DOI: 10.1016/j.neuroscience.2022.03.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/03/2022] [Accepted: 03/26/2022] [Indexed: 12/23/2022]
Abstract
Amantadine and clozapine have proved to reduce abnormal involuntary movements (AIMs) in preclinical and clinical studies of L-DOPA-Induced Dyskinesias (LID). Even though both drugs decrease AIMs, they may have different action mechanisms by using different receptors and signaling profiles. Here we asked whether there are differences in how they modulate neuronal activity of multiple striatal neurons within the striatal microcircuit at histological level during the dose-peak of L-DOPA in ex-vivo brain slices obtained from dyskinetic mice. To answer this question, we used calcium imaging to record the activity of dozens of neurons of the dorsolateral striatum before and after drugs administration in vitro. We also developed an analysis framework to extract encoding insights from calcium imaging data by quantifying neuronal activity, identifying neuronal ensembles by linking neurons that coactivate using hierarchical cluster analysis and extracting network parameters using Graph Theory. The results show that while both drugs reduce LIDs scores behaviorally in a similar way, they have several different and specific actions on modulating the dyskinetic striatal microcircuit. The extracted features were highly accurate in separating amantadine and clozapine effects by means of principal components analysis (PCA) and support vector machine (SVM) algorithms. These results predict possible synergistic actions of amantadine and clozapine on the dyskinetic striatal microcircuit establishing a framework for a bioassay to test novel antidyskinetic drugs or treatments in vitro.
Collapse
|
33
|
Jiang X, Liang P, Wang K, Jia J, Wang X. Serotonin 1A receptor agonist modulation of motor deficits and cortical oscillations by NMDA receptor interaction in parkinsonian rats. Neuropharmacology 2022; 203:108881. [PMID: 34785162 DOI: 10.1016/j.neuropharm.2021.108881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022]
Abstract
Although serotonin 1A (5-HT1A) receptor agonists are widely used as the additive compound to reduce l-dopa-induced dyskinesia in Parkinson's disease (PD), few studies focused on the effect and mechanism of 5-HT1A receptor agonist on the motor symptoms of PD. Unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats were used and implantation of electrodes was performed in the motor cortex of these rats. So the effect of 5-HT1A receptor agonist 8-OH-DPAT on motor behaviors and oscillatory activities were evaluated. In addition, 8-OH-DPAT combined with D2 receptor antagonist raclopride, NMDA receptor antagonist MK-801, or its agonist d-cycloserine (DCS) were co-administrated. 8-OH-DPAT administration significantly improved spontaneous locomotor activity and asymmetric forepaw function in 6-OHDA-lesioned rats. Meanwhile, 8-OH-DPAT identified selective modulation of the abnormal high beta oscillations (25-40 Hz) in the motor cortex of 6-OHDA-lesioned rats, without inducing pathological finely tuned gamma around 80 Hz. Different from 8-OH-DPAT, l-dopa treatment produced a prolonged improvement on motor performances and differential regulation of high beta and gamma oscillations. However, dopamine D2 receptor antagonist had no influence on the 8-OH-DPAT-mediated-motor behaviors and beta oscillations in 6-OHDA-lesioned rats. In contrast, subthreshold NMDA receptor antagonist MK-801 obviously elevated the 8-OH-DPAT-mediated-motor behaviors, while NMDA receptor agonist DCS partially impaired the 8-OH-DPAT-mediated symptoms in 6-OHDA-lesioned rats. This study suggests that 5-HT1A receptor agonist 8-OH-DPAT improves motor activity and modulates the oscillations in the motor cortex of parkinsonian rats. Different from l-dopa, 8-OH-DPAT administration ameliorates motor symptoms of PD through glutamatergic rather than the dopaminergic pathway.
Collapse
Affiliation(s)
- Xinxin Jiang
- Departments of Neurobiology and Physiology, Capital Medical University, Beijing, 100069, China.
| | - Peirong Liang
- Departments of Neurobiology and Physiology, Capital Medical University, Beijing, 100069, China.
| | - Ke Wang
- Departments of Neurobiology and Physiology, Capital Medical University, Beijing, 100069, China.
| | - Jun Jia
- Departments of Neurobiology and Physiology, Capital Medical University, Beijing, 100069, China.
| | - Xiaomin Wang
- Departments of Neurobiology and Physiology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
34
|
Hansen CA, Miller DR, Annarumma S, Rusch CT, Ramirez-Zamora A, Khoshbouei H. Levodopa-induced dyskinesia: a historical review of Parkinson's disease, dopamine, and modern advancements in research and treatment. J Neurol 2022; 269:2892-2909. [PMID: 35039902 DOI: 10.1007/s00415-022-10963-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/01/2022]
Abstract
Over the past two decades, animal models of Parkinson's disease (PD) have helped to determine the plausible underlying mechanism of levo-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia following L-DOPA treatment. However, our understanding of the mechanisms related to this phenomenon remains incomplete. The purpose of this manuscript is to provide a comprehensive review of treatment protocols used for assessing the occurrence of L-DOPA-induced dyskinesia, L-DOPA absorption, distribution, drug/food interaction, and discuss current strategies and future directions. This review offers a historical perspective using L-DOPA in animal models of PD and the occurrence of L-DOPA-induced dyskinesia.
Collapse
Affiliation(s)
- Carissa A Hansen
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Douglas R Miller
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Stephanie Annarumma
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Carley T Rusch
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA.,Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
35
|
Kwan C, Lévesque C, Bédard D, Frouni I, Yesuf JM, Hamadjida A, Lévesque D, Clarke PB, Huot P. Autoradiographic labelling of 5-HT 3 receptors in the hemi-parkinsonian rat brain. Neurosci Res 2021; 177:135-144. [PMID: 34954302 DOI: 10.1016/j.neures.2021.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) is the mainstay treatment for Parkinson's disease, but its effectiveness during early disease is marred by the eventual development of L-DOPA induced dyskinesia. In hemi-parkinsonian rats, the serotonin type 3 (5-HT3) antagonists ondansetron and granisetron alleviated dyskinesia induced by L-DOPA without impeding its anti-parkinsonian action; in parkinsonian marmosets, ondansetron alleviated dyskinesia and enhanced L-DOPA anti-parkinsonian action. Here, we sought to gain insight into the mechanisms governing the anti-dyskinetic action of 5-HT3 antagonists and measured their levels across different brain, using [3H]GR65630 autoradiographic binding. Brain sections were chosen from 6-hydroxydopamine (6-OHDA)-lesioned rats exhibiting abnormal involuntary movements (AIMs), as well as L-DOPA-naïve 6-OHDA and sham-lesioned animals. [3H]GR65630 binding increased in the ipsilateral subthalamic nucleus of 6-OHDA-lesioned rats with mild and severe AIMs, (3-fold changes, P < 0.001). [3H]GR65630 binding also increased in the ipsilateral entopeduncular nucleus and thalamus of 6-OHDA-lesioned rats with severe AIMs (75% and 88%, P < 0.05). AIMs scores negatively correlated with [3H]GR65630 binding in the ipsilateral dorsolateral striatum and contralateral subthalamic nucleus (P < 0.05). These results suggest that alterations in 5-HT3 mediated neurotransmission may contribute to the pathophysiology of L-DOPA induced dyskinesia.
Collapse
Affiliation(s)
- Cynthia Kwan
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | | | - Dominique Bédard
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Imane Frouni
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Département de pharmacologie et physiologie, Université de Montréal, Montreal, QC, Canada
| | - Jemal M Yesuf
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Adjia Hamadjida
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Daniel Lévesque
- Faculté de pharmacie, Université de Montréal, Montreal, QC, Canada
| | - Paul Bs Clarke
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Département de pharmacologie et physiologie, Université de Montréal, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Movement Disorder Clinic, Division of Neurology, Department of Neuroscience, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
36
|
Lama J, Buhidma Y, Fletcher E, Duty S. Animal models of Parkinson's disease: a guide to selecting the optimal model for your research. Neuronal Signal 2021; 5:NS20210026. [PMID: 34956652 PMCID: PMC8661507 DOI: 10.1042/ns20210026] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is a complex, multisystem disorder characterised by α-synuclein (SNCA) pathology, degeneration of nigrostriatal dopaminergic neurons, multifactorial pathogenetic mechanisms and expression of a plethora of motor and non-motor symptoms. Animal models of PD have already been instructive in helping us unravel some of these aspects. However, much remains to be discovered, requiring continued interrogation by the research community. In contrast with the situation for many neurological disorders, PD benefits from of a wide range of available animal models (pharmacological, toxin, genetic and α-synuclein) but this makes selection of the optimal one for a given study difficult. This is especially so when a study demands a model that displays a specific combination of features. While many excellent reviews of animal models already exist, this review takes a different approach with the intention of more readily informing this decision-making process. We have considered each feature of PD in turn - aetiology, pathology, pathogenesis, motor dysfunctions and non-motor symptoms (NMS) - highlighting those animal models that replicate each. By compiling easily accessible tables and a summary figure, we aim to provide the reader with a simple, go-to resource for selecting the optimal animal model of PD to suit their research needs.
Collapse
Affiliation(s)
- Joana Lama
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age Related Diseases, Wolfson Wing, Hodgkin Building, Guy’s Campus, London SE1 1UL, U.K
| | - Yazead Buhidma
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age Related Diseases, Wolfson Wing, Hodgkin Building, Guy’s Campus, London SE1 1UL, U.K
| | - Edward J.R. Fletcher
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age Related Diseases, Wolfson Wing, Hodgkin Building, Guy’s Campus, London SE1 1UL, U.K
| | - Susan Duty
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age Related Diseases, Wolfson Wing, Hodgkin Building, Guy’s Campus, London SE1 1UL, U.K
| |
Collapse
|
37
|
Malave L, Zuelke DR, Uribe-Cano S, Starikov L, Rebholz H, Friedman E, Qin C, Li Q, Bezard E, Kottmann AH. Dopaminergic co-transmission with sonic hedgehog inhibits abnormal involuntary movements in models of Parkinson's disease and L-Dopa induced dyskinesia. Commun Biol 2021; 4:1071. [PMID: 34552196 PMCID: PMC8458306 DOI: 10.1038/s42003-021-02567-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 08/17/2021] [Indexed: 01/06/2023] Open
Abstract
L-Dopa induced dyskinesia (LID) is a debilitating side effect of dopamine replacement therapy for Parkinson’s Disease. The mechanistic underpinnings of LID remain obscure. Here we report that diminished sonic hedgehog (Shh) signaling in the basal ganglia caused by the degeneration of midbrain dopamine neurons facilitates the formation and expression of LID. We find that the pharmacological activation of Smoothened, a downstream effector of Shh, attenuates LID in the neurotoxic 6-OHDA- and genetic aphakia mouse models of Parkinson’s Disease. Employing conditional genetic loss-of-function approaches, we show that reducing Shh secretion from dopamine neurons or Smoothened activity in cholinergic interneurons promotes LID. Conversely, the selective expression of constitutively active Smoothened in cholinergic interneurons is sufficient to render the sensitized aphakia model of Parkinson’s Disease resistant to LID. Furthermore, acute depletion of Shh from dopamine neurons through prolonged optogenetic stimulation in otherwise intact mice and in the absence of L-Dopa produces LID-like involuntary movements. These findings indicate that augmenting Shh signaling in the L-Dopa treated brain may be a promising therapeutic approach for mitigating the dyskinetic side effects of long-term treatment with L-Dopa. Lauren Malave et al. examine the impact of sonic hedgehog signaling in the dorsal striatum in L-Dopa induced dyskinesia (LID) animal models. Their results suggest that increasing sonic hedgehog signaling can reduce the severity of LID and abnormal involuntary movements, suggesting future therapeutic approaches to mitigate dyskinetic comorbidities of long-term treatment with L-Dopa.
Collapse
Affiliation(s)
- Lauren Malave
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Neuroscience Collaborative, New York, NY, USA.,Department of Psychiatry, Columbia University, New York, NY, USA
| | - Dustin R Zuelke
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Molecular, Cellular and Developmental Subprogram, New York, NY, USA
| | - Santiago Uribe-Cano
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Neuroscience Collaborative, New York, NY, USA
| | - Lev Starikov
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Molecular, Cellular and Developmental Subprogram, New York, NY, USA.,Blue Rock Therapeutics, Inc, New York, NY, USA
| | - Heike Rebholz
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,GHU Psychiatrie et Neurosciences, Paris, France.,Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, Universite de Paris, Paris, France.,Center of Neurodegeneration, Danube Private University, Krems, Austria
| | - Eitan Friedman
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Neuroscience Collaborative, New York, NY, USA.,City University of New York Graduate Center, Molecular, Cellular and Developmental Subprogram, New York, NY, USA
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, People's Republic of China
| | - Qin Li
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, People's Republic of China.,Motac Neuroscience, Manchester, UK
| | - Erwan Bezard
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, People's Republic of China.,Motac Neuroscience, Manchester, UK.,Universite de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Andreas H Kottmann
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA. .,City University of New York Graduate Center, Neuroscience Collaborative, New York, NY, USA. .,City University of New York Graduate Center, Molecular, Cellular and Developmental Subprogram, New York, NY, USA.
| |
Collapse
|
38
|
Vilela-Filho O, Santos UM, Castro JC, Reis DM, Domingues-Hajj PMS, Morais BA, Souza JT, Silva DJ, Grandi-Miranda FT, Dalle CR, Milhomem CBSS. Induction of Ticlike Involuntary Movements in Rats by Striatotomy and Subsequent Neurochemical Sensitization. World Neurosurg 2021; 155:e674-e686. [PMID: 34478885 DOI: 10.1016/j.wneu.2021.08.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE It has been proposed that Tourette syndrome is associated with dysfunction in widespread cortical areas and globus pallidus externus hyperactivity secondary to dopaminergic hyperactivity and serotonergic/dynorphinergic hypoactivity. The main objective of this study was to test this hypothesis by developing an animal model of Tourette syndrome via striatotomy, followed by administration of drugs that mimic the neurotransmitter environment, so as to induce globus pallidus externus hyperactivity. METHODS Rats were assigned to 3 groups: stereotactic striatotomy (STT) and striatal sham -lesion (SHAM) groups, treated with anterior and posterior striatum procedures in both hemispheres, and a group of nonoperated animals (NAIVE). Postoperatively, all rodents were blindly administered 3 drug protocols: levodopa/benserazide; levodopa/benserazide/ergotamine/naloxone (MIX); and saline. The animals were filmed at the peak action of these drugs. The videos were evaluated by a single blinded researcher. RESULTS Six types of involuntary movements (IMs) were observed: cephalic, trunk jerks, oromandibular, forepaw jerks, dystonic, and locomotive. The number of animals with IM and the mean number of IM after both levodopa/benserazide and MIX was significantly higher in the STT compared with the SHAM and NAIVE groups. In the SHAM and NAIVE, MIX was superior to levodopa/benserazide in the induction of IM. In the STT, MIX was superior to levodopa/benserazide in the induction of trunk jerks. Appendicular IM were more common after posterior than after anterior striatotomy. CONCLUSIONS These results show that striatotomy, followed by administration of levodopa/benserazide alone or associated with ergotamine and naloxone, is efficacious in inducing IM, supporting the hypothesis that led to this study.
Collapse
Affiliation(s)
- Osvaldo Vilela-Filho
- Division of Neurosurgery, Department of Surgery, Medical School, Clinics Hospital, Federal University of Goiás, Goiânia, Goiás, Brazil; Department of Neurosciences, Medical School, Pontifical Catholic University of Goiás, Goiânia, Goiás, Brazil.
| | - Uliana M Santos
- Department of Neurosciences, Medical School, Pontifical Catholic University of Goiás, Goiânia, Goiás, Brazil
| | - Jacqueline C Castro
- Department of Neurosciences, Medical School, Pontifical Catholic University of Goiás, Goiânia, Goiás, Brazil
| | - Diego M Reis
- Department of Neurosciences, Medical School, Pontifical Catholic University of Goiás, Goiânia, Goiás, Brazil
| | - Pryscilla M S Domingues-Hajj
- Division of Neurosurgery, Department of Surgery, Medical School, Clinics Hospital, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Bárbara A Morais
- Department of Neurosciences, Medical School, Pontifical Catholic University of Goiás, Goiânia, Goiás, Brazil
| | - Joaquim T Souza
- Division of Neurosurgery, Department of Surgery, Medical School, Clinics Hospital, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Délson J Silva
- Neurology Unit, Clinics Hospital, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Flávia T Grandi-Miranda
- Division of Neurosurgery, Department of Surgery, Medical School, Clinics Hospital, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Camila R Dalle
- Division of Neurosurgery, Department of Surgery, Medical School, Clinics Hospital, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Caroline B S S Milhomem
- Department of Neurosciences, Medical School, Pontifical Catholic University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
39
|
Lyu Y, Huang Y, Shi G, Lei X, Li K, Zhou R, Bai L, Qin C. Transcriptome profiling of five brain regions in a 6-hydroxydopamine rat model of Parkinson's disease. CNS Neurosci Ther 2021; 27:1289-1299. [PMID: 34347369 PMCID: PMC8504527 DOI: 10.1111/cns.13702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease, and its pathogenesis is unclear. Previous studies mainly focus on the lesions of substantia nigra (SN) and striatum (Str) in PD. However, lesions are not limited. The olfactory bulb (OB), subventricular zone (SVZ), and hippocampus (Hippo) are also affected in PD. AIM To reveal gene expression changes in the five brain regions (OB, SVZ, Str, SN, and Hippo), and to look for potential candidate genes and pathways that may be correlated with the pathogenesis of PD. MATERIALS AND METHODS We established control group and 6-hydroxydopamine (6-OHDA) PD model group, and detected gene expressions in the five brain regions using RNA-seq and real-time quantitative polymerase chain reaction (RT-qPCR). We further analyzed the RNA-seq data by bioinformatics. RESULTS We identified differentially expressed genes (DEGs) in all five brain regions. The DEGs were significantly enriched in the "dopaminergic synapse" and "retrograde endocannabinoid signaling," and Gi/o-GIRK is the shared cascade in the two pathways. We further identified Ephx2, Fam111a, and Gng2 as the potential candidate genes in the pathogenesis of PD for further studies. CONCLUSION Our study suggested that gene expressions change in the five brain regions following exposure to 6-OHDA. The "dopaminergic synapse," "retrograde endocannabinoid signaling," and Gi/o-GIRK may be the key pathways and cascade of the synaptic damage in 6-OHDA PD rats. Ephx2, Fam111a, and Gng2 may play critical roles in the pathogenesis of PD.
Collapse
Affiliation(s)
- Ying Lyu
- Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Sciences (CAMS) & Comparative Medical Center, Peking Union Medical College (PUMC), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.,Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiying Huang
- Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Sciences (CAMS) & Comparative Medical Center, Peking Union Medical College (PUMC), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Guiying Shi
- Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Sciences (CAMS) & Comparative Medical Center, Peking Union Medical College (PUMC), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Xuepei Lei
- Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Sciences (CAMS) & Comparative Medical Center, Peking Union Medical College (PUMC), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Keya Li
- Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Sciences (CAMS) & Comparative Medical Center, Peking Union Medical College (PUMC), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Ran Zhou
- Beijing City University, Beijing, China
| | - Lin Bai
- Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Sciences (CAMS) & Comparative Medical Center, Peking Union Medical College (PUMC), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Sciences (CAMS) & Comparative Medical Center, Peking Union Medical College (PUMC), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| |
Collapse
|
40
|
Sonne JWH, Seavey C, Groshong JS. Rapid immunohistological measurement of tyrosine hydroxylase in rat midbrain by near-infrared instrument-based detection. J Chem Neuroanat 2021; 116:101992. [PMID: 34166778 DOI: 10.1016/j.jchemneu.2021.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
We present a robust, fresh-frozen approach to immunohistochemistry (IHC), without committing the tissue to IHC via fixation and cryopreservation while maintaining long-term storage, using LiCor-based infrared (IR) quantification for sensitive assessment of TH in immunoreacted midbrain sections for quantitative comparison across studies. In fresh-frozen tissue stored up to 1 year prior to IHC reaction, we found our method to be highly sensitive to rotenone treatment in 3-month-old Sprague-Dawley rats, and correlated with a significant decline in rotarod latency-to-fall measurement by approximately 2.5 fold. The measured midbrain region revealed a 31 % lower TH signal when compared to control (p < 0.01 by t test, n = 5). Bivariate analysis of integrated TH counts versus rotarod latency-to-fall indicates a positive slope and modest but significant correlation of R2 = 0.68 (p < 0.05, n = 10). These results indicate this rapid, instrument-based quantification method by IR detection successfully quantifies TH levels in rat brain tissue, while taking only 5 days from euthanasia to data output. This approach also allows for the identification of multiple targets by IHC with the simultaneous performance of downstream molecular analysis within the same animal tissue, allowing for the use of fewer animals per study.
Collapse
Affiliation(s)
- James W H Sonne
- University of South Carolina School of Medicine Greenville, 607 Grove Road, Greenville, SC, USA.
| | - Corey Seavey
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL, USA
| | - Jason S Groshong
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL, USA; Science Department, Valencia College, Orlando, FL, USA.
| |
Collapse
|
41
|
Riluzole Administration to Rats with Levodopa-Induced Dyskinesia Leads to Loss of DNA Methylation in Neuronal Genes. Cells 2021; 10:cells10061442. [PMID: 34207710 PMCID: PMC8228416 DOI: 10.3390/cells10061442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Dyskinesias are characterized by abnormal repetitive involuntary movements due to dysfunctional neuronal activity. Although levodopa-induced dyskinesia, characterized by tic-like abnormal involuntary movements, has no clinical treatment for Parkinson’s disease patients, animal studies indicate that Riluzole, which interferes with glutamatergic neurotransmission, can improve the phenotype. The rat model of Levodopa-Induced Dyskinesia is a unilateral lesion with 6-hydroxydopamine in the medial forebrain bundle, followed by the repeated administration of levodopa. The molecular pathomechanism of Levodopa-Induced Dyskinesia is still not deciphered; however, the implication of epigenetic mechanisms was suggested. In this study, we investigated the striatum for DNA methylation alterations under chronic levodopa treatment with or without co-treatment with Riluzole. Our data show that the lesioned and contralateral striata have nearly identical DNA methylation profiles. Chronic levodopa and levodopa + Riluzole treatments led to DNA methylation loss, particularly outside of promoters, in gene bodies and CpG poor regions. We observed that several genes involved in the Levodopa-Induced Dyskinesia underwent methylation changes. Furthermore, the Riluzole co-treatment, which improved the phenotype, pinpointed specific methylation targets, with a more than 20% methylation difference relative to levodopa treatment alone. These findings indicate potential new druggable targets for Levodopa-Induced Dyskinesia.
Collapse
|
42
|
Bordone MP, Damianich A, Bernardi MA, Eidelman T, Sanz-Blasco S, Gershanik OS, Avale ME, Ferrario JE. Fyn knockdown prevents levodopa-induced dyskinesia in a mouse model of Parkinson's disease. eNeuro 2021; 8:ENEURO.0559-20.2021. [PMID: 34099487 PMCID: PMC8281260 DOI: 10.1523/eneuro.0559-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
Dopamine replacement by levodopa is the most widely used therapy for Parkinson's disease (PD), however patients often develop side effects, known as levodopa-induced dyskinesia (LID), that usually need therapeutic intervention. There are no suitable therapeutic options for LID, except for the use of the NMDA receptor antagonist amantadine, which has limited efficacy. The NMDA receptor is indeed the most plausible target to manage LID in PD and recently the kinase Fyn- one of its key regulators- became a new putative molecular target involved in LID. The aim of this work was to reduce Fyn expression to alleviate LID in a mouse model of PD. We performed intra-striatal delivery of a designed micro-RNA against Fyn (miRNA-Fyn) in 6-OHDA-lesioned mice treated with levodopa. The miRNA-Fyn was delivered either before or after levodopa exposure to assess its ability to prevent or revert dyskinesia. Pre-administration of miRNA-Fyn reduced LID with a concomitant reduction of FosB-ΔFosB protein levels -a marker of LID- as well as decreased phosphorylation of the NR2B-NMDA subunit, which is a main target of Fyn. On the other hand, post L-DOPA delivery of miRNA-Fyn was less effective to revert already established dyskinesia, suggesting that early blocking of Fyn activity might be a more efficient therapeutic approach. Together, our results provide proof of concept about Fyn as a plausible therapeutic target to manage LID, and validate RNA silencing as a potential approach to locally reduce striatal Fyn, rising new perspectives for RNA therapy interventions in PD.Significance StatementLevodopa induced dyskinesia (LID) is an incapacitant side effect of treatment in Parkinson's disease (PD). LID is a therapeutic challenge, lacking an effective pharmacological treatment, except for the use of inhibitors of the NMDA receptor, which have limited efficacy and may trigger untoward side effects. The kinase Fyn is a key regulator of NMDA function and a potential therapeutic target to control LID. Here, we show that RNA interference therapy to reduce the amount of Fyn mRNA in the adult brain is effective to prevent LID in a mouse model of PD, setting the grounds for future biomedical interventions to manage LID in PD.
Collapse
Affiliation(s)
- Melina P Bordone
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología traslacional (iB3), Ciudad Autónoma de Buenos Aires, Argentina (C1428EGA)
- CONICET, Ciudad Autónoma de Buenos Aires, Argentina (C1113AAD)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Ciudad Autónoma de Buenos Aires, Argentina (C1113AAD)
| | - Ana Damianich
- CONICET - Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), "Dr. Héctor N. Torres", Ciudad Autónoma de Buenos Aires, Argentina (C1428ADN)
| | - M Alejandra Bernardi
- CONICET, Ciudad Autónoma de Buenos Aires, Argentina (C1113AAD)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Ciudad Autónoma de Buenos Aires, Argentina (C1113AAD)
| | - Tomas Eidelman
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología traslacional (iB3), Ciudad Autónoma de Buenos Aires, Argentina (C1428EGA)
| | - Sara Sanz-Blasco
- CONICET, Ciudad Autónoma de Buenos Aires, Argentina (C1113AAD)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Ciudad Autónoma de Buenos Aires, Argentina (C1113AAD)
| | - Oscar S Gershanik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Ciudad Autónoma de Buenos Aires, Argentina (C1113AAD)
| | - M Elena Avale
- CONICET - Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), "Dr. Héctor N. Torres", Ciudad Autónoma de Buenos Aires, Argentina (C1428ADN)
| | - Juan E Ferrario
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología traslacional (iB3), Ciudad Autónoma de Buenos Aires, Argentina (C1428EGA).
- CONICET, Ciudad Autónoma de Buenos Aires, Argentina (C1113AAD)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Ciudad Autónoma de Buenos Aires, Argentina (C1113AAD)
| |
Collapse
|
43
|
Vegas‐Suárez S, Aristieta A, Requejo C, Bengoetxea H, Lafuente JV, Miguelez C, Ugedo L. The effect of 5-HT 1A receptor agonists on the entopeduncular nucleus is modified in 6-hydroxydopamine-lesioned rats. Br J Pharmacol 2021; 178:2516-2532. [PMID: 33686657 PMCID: PMC8252460 DOI: 10.1111/bph.15437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND PURPOSE l-DOPA prolonged treatment leads to disabling motor complications as dyskinesia that could be decreased by drugs acting on 5-HT1A receptors. Since the internal segment of the globus pallidus, homologous to the entopeduncular nucleus in rodents, seems to be involved in the etiopathology of l-DOPA-induced dyskinesia, we investigated whether the entopeduncular nucleus is modulated by the 5-HT1A receptor partial and full agonists, buspirone, and 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) in control and 6-hydroxydopamine (6-OHDA)-lesioned rats with or without long-term l-DOPA treatment. EXPERIMENTAL APPROACH Extracellular single-unit electrocorticogram and local field potential recordings under anaesthesia, immunostaining assays and optogenetic manipulation coupled to electrophysiological recordings were performed. KEY RESULTS Systemic buspirone reduced the entopeduncular nucleus firing rate in the sham animals and burst activity in the 6-OHDA-lesioned rats (with or without l-DOPA treatment), while local administration reduced entopeduncular nucleus activity in all the groups, regardless of DA integrity. Systemic 8-OH-DPAT also induced inhibitory effects only in the sham animals. Effects triggered by buspirone and 8-OH-DPAT were reversed by the 5-HT1A receptor antagonist, WAY-100635. Neither buspirone nor 8-OH-DPAT modified the low-frequency oscillatory activity in the entopeduncular nucleus or its synchronization with the motor cortex. Buspirone did not alter the response induced by subthalamic nucleus opto-stimulation in the entopeduncular nucleus. CONCLUSION AND IMPLICATIONS Systemic 5-HT1A receptor activation elicits different effects on the electrophysiological properties of the entopeduncular nucleus depending on the integrity of the nigrostriatal pathway and it does not alter the relationship between subthalamic nucleus and entopeduncular nucleus neuron activity.
Collapse
Affiliation(s)
- Sergio Vegas‐Suárez
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoSpain
| | - Asier Aristieta
- Department of Biological SciencesCarnegie Mellon UniversityPittsburghPAUSA
- Center for the Neural Basis of CognitionCarnegie Mellon UniversityPittsburghPAUSA
| | - Catalina Requejo
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Harkaitz Bengoetxea
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - José Vicente Lafuente
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoSpain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoSpain
| |
Collapse
|
44
|
Abnormal Cortico-Basal Ganglia Neurotransmission in a Mouse Model of l-DOPA-Induced Dyskinesia. J Neurosci 2021; 41:2668-2683. [PMID: 33563724 DOI: 10.1523/jneurosci.0267-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 10/16/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
l-3,4-dihydroxyphenylalanine (l-DOPA) is an effective treatment for Parkinson's disease (PD); however, long-term treatment induces l-DOPA-induced dyskinesia (LID). To elucidate its pathophysiology, we developed a mouse model of LID by daily administration of l-DOPA to PD male ICR mice treated with 6-hydroxydopamine (6-OHDA), and recorded the spontaneous and cortically evoked neuronal activity in the external segment of the globus pallidus (GPe) and substantia nigra pars reticulata (SNr), the connecting and output nuclei of the basal ganglia, respectively, in awake conditions. Spontaneous firing rates of GPe neurons were decreased in the dyskinesia-off state (≥24 h after l-DOPA injection) and increased in the dyskinesia-on state (20-100 min after l-DOPA injection while showing dyskinesia), while those of SNr neurons showed no significant changes. GPe and SNr neurons showed bursting activity and low-frequency oscillation in the PD, dyskinesia-off, and dyskinesia-on states. In the GPe, cortically evoked late excitation was increased in the PD and dyskinesia-off states but decreased in the dyskinesia-on state. In the SNr, cortically evoked inhibition was largely suppressed, and monophasic excitation became dominant in the PD state. Chronic l-DOPA treatment partially recovered inhibition and suppressed late excitation in the dyskinesia-off state. In the dyskinesia-on state, inhibition was further enhanced, and late excitation was largely suppressed. Cortically evoked inhibition and late excitation in the SNr are mediated by the cortico-striato-SNr direct and cortico-striato-GPe-subthalamo-SNr indirect pathways, respectively. Thus, in the dyskinesia-on state, signals through the direct pathway that release movements are enhanced, while signals through the indirect pathway that stop movements are suppressed, underlying LID.SIGNIFICANCE STATEMENT Parkinson's disease (PD) is caused by progressive loss of midbrain dopaminergic neurons, characterized by tremor, rigidity, and akinesia, and estimated to affect around six million people world-wide. Dopamine replacement therapy is the gold standard for PD treatment; however, control of symptoms using l-3,4-dihydroxyphenylalanine (l-DOPA) becomes difficult over time because of abnormal involuntary movements (AIMs) known as l-DOPA-induced dyskinesia (LID), one of the major issues for advanced PD. Our electrophysiological data suggest that dynamic changes in the basal ganglia circuitry underlie LID; signals through the direct pathway that release movements are enhanced, while signals through the indirect pathway that stop movements are suppressed. These results will provide the rationale for the development of more effective treatments for LID.
Collapse
|
45
|
Ferrari DP, Bortolanza M, Del Bel EA. Interferon-γ Involvement in the Neuroinflammation Associated with Parkinson's Disease and L-DOPA-Induced Dyskinesia. Neurotox Res 2021; 39:705-719. [PMID: 33687725 DOI: 10.1007/s12640-021-00345-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Interferon-γ (IFN-γ) is a proinflammatory cytokine that activates glial cells. IFN-γ is increased in the plasma and brain of Parkinson's disease patients, suggesting its potential role in the disease. We investigated whether the IFN-γ deficiency could interfere with nigrostriatal degeneration induced by the neurotoxin 6-hydroxydopamine, L-DOPA-induced dyskinesia, and the neuroinflammatory features as astrogliosis, microgliosis, and induced nitric oxide synthase (iNOS) immunoreactivity induced by L-DOPA treatment. Wild type (WT) and IFN-γ knockout (IFN-γ/KO) mice received unilateral striatal microinjections of 6-hydroxydopamine. Animals were sacrificed 1, 3, 7, and 21 days after lesions. Additional group of WT and IFN-γ/KO parkinsonian mice, after 3 weeks of neurotoxin injection, received L-DOPA (intraperitoneally, for 21 days) resulting in dyskinetic-like behavior. Tyrosine hydroxylase immunostaining indicated the starting of dopaminergic lesion since the first day past toxin administration, progressively increased until the third day when it stabilized. There was no difference in the lesion and L-DOPA-induced dyskinesia intensity between WT and IFN-γ/KO mice. Remarkably, IFN-γ/KO mice treated with L-DOPA presented in the lesioned striatum an increase of iNOS and glial fibrilary acid protein (GFAP) density, compared with the WT group. Morphological analysis revealed the rise of astrocytes and microglia reactivity in IFN-γ/KO mice exibiting dyskinesia. In conclusion, IFN-γ/KO mice presented an intensification of the inflammatory reaction accompanying L-DOPA treatment and suggest that iNOS and GFAP increase, and the activation of astrocytes and microglia induced afterward L-DOPA treatment was IFN-γ independent events. Intriguingly, IFN-γ absence did not affect the degeneration of dopaminergic neurons or LID development.
Collapse
Affiliation(s)
- D P Ferrari
- Department of Neuroscience, School of Medicine of Ribeirão Preto, University of São Paulo, SP, 14040-900, Brazil.,Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, SP, 14040-904, Brazil
| | - M Bortolanza
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, SP, 14040-904, Brazil
| | - E A Del Bel
- Department of Neuroscience, School of Medicine of Ribeirão Preto, University of São Paulo, SP, 14040-900, Brazil. .,Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, SP, 14040-904, Brazil.
| |
Collapse
|
46
|
Aeed F, Cermak N, Schiller J, Schiller Y. Intrinsic Disruption of the M1 Cortical Network in a Mouse Model of Parkinson's Disease. Mov Disord 2021; 36:1565-1577. [PMID: 33606292 DOI: 10.1002/mds.28538] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/14/2020] [Accepted: 01/15/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) disrupts motor performance by affecting the basal ganglia system. Yet, despite the critical position of the primary motor cortex in linking basal ganglia computations with motor performance, its contribution to motor disability in PD is largely unknown. The objective of this study was to characterize the role of the primary motor cortex in PD-related motor disability. METHODS Two-photon calcium imaging and optogenetic stimulation of primary motor cortex neurons was done during performance of a dexterous reach-to-grasp motor task in control and 6-hydroxydopamine-induced PD mice. RESULTS Experimental PD disrupted performance of the reach-to-grasp motor task and especially initiation of the task, which was partially restored by optogenetic activation of the primary motor cortex. Two-photon calcium imaging during task performance revealed experimental-PD affected the primary motor cortex in a cell-type-specific manner. It suppressed activation of output layer 5 pyramidal tract neurons, with greater effects on freeze versus nonfreeze trials. In contrast, it did not attenuate the initial movement-related activation response of layer 2/3 pyramidal neurons while diminishing the late inhibitory phase of their response. At the network level, experimental PD disrupted movement-related population dynamics of the layer 5 pyramidal tract network while almost not affecting the dynamics of the layer 2/3 neuronal population. It also disrupted short- and long-term robustness and stability of the pyramidal tract subnetwork, with reduced intertrial temporal accuracy and diminished reproducibility of motor parameter encoding and temporal recruitment of the output pyramidal tract neurons over repeated daily sessions. CONCLUSIONS Experimental PD disrupts both external driving and intrinsic properties of the primary motor cortex. Motor disability in experimental PD results primarily from the inability to generate robust and stable output motor sequences in the parkinsonian primary motor cortex output layer 5 pyramidal tract subnetwork. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Fadi Aeed
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nathan Cermak
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jackie Schiller
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yitzhak Schiller
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Neurology, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
47
|
Paz RM, Tubert C, Stahl AM, Amarillo Y, Rela L, Murer MG. Levodopa Causes Striatal Cholinergic Interneuron Burst-Pause Activity in Parkinsonian Mice. Mov Disord 2021; 36:1578-1591. [PMID: 33547844 DOI: 10.1002/mds.28516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Enhanced striatal cholinergic interneuron activity contributes to the striatal hypercholinergic state in Parkinson's disease (PD) and to levodopa-induced dyskinesia. In severe PD, dyskinesia and motor fluctuations become seriously debilitating, and the therapeutic strategies become scarce. Given that the systemic administration of anticholinergics can exacerbate extrastriatal-related symptoms, targeting cholinergic interneurons is a promising therapeutic alternative. Therefore, unraveling the mechanisms causing pathological cholinergic interneuron activity in severe PD with motor fluctuations and dyskinesia may provide new molecular therapeutic targets. METHODS We used ex vivo electrophysiological recordings combined with pharmacological and morphological studies to investigate the intrinsic alterations of cholinergic interneurons in the 6-hydroxydopamine mouse model of PD treated with levodopa. RESULTS Cholinergic interneurons exhibit pathological burst-pause activity in the parkinsonian "off levodopa" state. This is mediated by a persistent ligand-independent activity of dopamine D1/D5 receptor signaling, involving a cyclic adenosine monophosphate (cAMP) pathway. Dysregulation of membrane ion channels that results in increased inward-rectifier potassium type 2 (Kir2) and decreased leak currents causes the burst pause activity, which can be dampened by pharmacological inhibition of intracellular cAMP. A single challenge with a dyskinetogenic dose of levodopa is sufficient to induce persistent cholinergic interneuron burst-pause firing. CONCLUSION Our data unravel a mechanism causing aberrant cholinergic interneuron burst-pause activity in parkinsonian mice treated with levodopa. Targeting D5-cAMP signaling and the regulation of Kir2 and leak channels may alleviate parkinsonism and dyskinesia by restoring normal cholinergic interneuron function. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rodrigo Manuel Paz
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay Street, Buenos Aires, 1121, Argentina
| | - Cecilia Tubert
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay Street, Buenos Aires, 1121, Argentina
| | - Agostina Monica Stahl
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay Street, Buenos Aires, 1121, Argentina
| | - Yimy Amarillo
- Departamento de Física Médica, Centro Atómico Bariloche and Instituto Balseiro, CONICET, 9500 Ezequiel Bustillo Avenue, San Carlos de Bariloche, Rio Negro, 8402, Argentina
| | - Lorena Rela
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay Street, Buenos Aires, 1121, Argentina
| | - Mario Gustavo Murer
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay Street, Buenos Aires, 1121, Argentina
| |
Collapse
|
48
|
Simorgh S, Alizadeh R, Shabani R, Karimzadeh F, Seidkhani E, Majidpoor J, Moradi F, Kasbiyan H. Olfactory mucosa stem cells delivery via nasal route: a simple way for the treatment of Parkinson disease. Neurotox Res 2021; 39:598-608. [PMID: 33433781 DOI: 10.1007/s12640-020-00290-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022]
Abstract
Finding a simple and effective way for transferring cells to the brain lesion site with minimum side effects mounts a challenge in cell therapy. Cell delivery via nasal route using the bypassing the blood-brain barrier (BBB) property is a simple and non-invasive strategy without serious complications such as trauma. Therefore, it is a suitable technique to treat neurodegenerative disorders like Parkinson's disease (PD). Olfactory ectomesenchymal stem cells (OE-MSCs) located in the lamina propria of olfactory mucosa could be differentiated into dopaminergic neurons under in vitro and in vivo conditions. Thus, OE-MSCs represent a good source of Parkinson's stem cell-based therapy. In this research, we studied thirty male rats (n = 10 in each group) in three control (Ctl), lesion (LE), and intranasal administration (INA) groups to investigate the therapeutic effect of intranasal injection of OE-MSCs in the Parkinson's animal models. To do so, we examined the homing variation of OE-MSCs in different brain regions such as olfactory bulb (OB), cortex, striatum (Str), hippocampus (HPC), and substantia nigra (SN). The results of real-time PCR and immunohistochemistry (IHC) analysis showed the expression of dopaminergic neuron markers such as PITX3, PAX2, PAX5 (as dopaminergic neurons markers), tyrosine hydroxylase (TH), and dopamine transporter (DAT) 2 months after INA of 1 × 106 OE-MSCs. The results confirmed that IN OE-MSCs delivery into the central nervous system (CNS) was powerful enough to improve the behavioral functions in the animal models of PD.
Collapse
Affiliation(s)
- Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rafieh Alizadeh
- ENT and Head & Neck Research Center and Department, The Five Senses Institute, HazratRasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Ronk Shabani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fariba Karimzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Seidkhani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamidreza Kasbiyan
- Department of chemical engineering, Universitat Politècnica de Catalunya, Barcelona, Spain.
| |
Collapse
|
49
|
Güttler C, Altschüler J, Tanev K, Böckmann S, Haumesser JK, Nikulin VV, Kühn AA, van Riesen C. Levodopa-Induced Dyskinesia Are Mediated by Cortical Gamma Oscillations in Experimental Parkinsonism. Mov Disord 2020; 36:927-937. [PMID: 33247603 DOI: 10.1002/mds.28403] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Levodopa is the most efficacious drug in the symptomatic therapy of motor symptoms in Parkinson's disease (PD); however, long-term treatment is often complicated by troublesome levodopa-induced dyskinesia (LID). Recent evidence suggests that LID might be related to increased cortical gamma oscillations. OBJECTIVE The objective of this study was to test the hypothesis that cortical high-gamma network activity relates to LID in the 6-hydroxydopamine model and to identify new biomarkers for adaptive deep brain stimulation (DBS) therapy in PD. METHODS We recorded and analyzed primary motor cortex (M1) electrocorticogram data and motor behavior in freely moving 6-OHDA lesioned rats before and during a daily treatment with levodopa for 3 weeks. The results were correlated with the abnormal involuntary movement score (AIMS) and used for generalized linear modeling (GLM). RESULTS Levodopa reverted motor impairment, suppressed beta activity, and, with repeated administration, led to a progressive enhancement of LID. Concurrently, we observed a highly significant stepwise amplitude increase in finely tuned gamma (FTG) activity and gamma centroid frequency. Whereas AIMS and FTG reached their maximum after the 4th injection and remained on a stable plateau thereafter, the centroid frequency of the FTG power continued to increase thereafter. Among the analyzed gamma activity parameters, the fraction of longest gamma bursts showed the strongest correlation with AIMS. Using a GLM, it was possible to accurately predict AIMS from cortical recordings. CONCLUSIONS FTG activity is tightly linked to LID and should be studied as a biomarker for adaptive DBS. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Christopher Güttler
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Jennifer Altschüler
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Kaloyan Tanev
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Saskia Böckmann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Jens Kersten Haumesser
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Vadim V Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Christoph van Riesen
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
50
|
Sebastianutto I, Goyet E, Andreoli L, Font-Ingles J, Moreno-Delgado D, Bouquier N, Jahannault-Talignani C, Moutin E, Di Menna L, Maslava N, Pin JP, Fagni L, Nicoletti F, Ango F, Cenci MA, Perroy J. D1-mGlu5 heteromers mediate noncanonical dopamine signaling in Parkinson's disease. J Clin Invest 2020; 130:1168-1184. [PMID: 32039920 DOI: 10.1172/jci126361] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
Dopamine receptor D1 modulates glutamatergic transmission in cortico-basal ganglia circuits and represents a major target of L-DOPA therapy in Parkinson's disease. Here we show that D1 and metabotropic glutamate type 5 (mGlu5) receptors can form previously unknown heteromeric entities with distinctive functional properties. Interacting with Gq proteins, cell-surface D1-mGlu5 heteromers exacerbated PLC signaling and intracellular calcium release in response to either glutamate or dopamine. In rodent models of Parkinson's disease, D1-mGlu5 nanocomplexes were strongly upregulated in the dopamine-denervated striatum, resulting in a synergistic activation of PLC signaling by D1 and mGlu5 receptor agonists. In turn, D1-mGlu5-dependent PLC signaling was causally linked with excessive activation of extracellular signal-regulated kinases in striatal neurons, leading to dyskinesia in animals treated with L-DOPA or D1 receptor agonists. The discovery of D1-mGlu5 functional heteromers mediating maladaptive molecular and motor responses in the dopamine-denervated striatum may prompt the development of new therapeutic principles for Parkinson's disease.
Collapse
Affiliation(s)
- Irene Sebastianutto
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Elise Goyet
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Laura Andreoli
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Joan Font-Ingles
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - David Moreno-Delgado
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.,Department of Neuroscience Research, UCB Pharma, Braine l'Alleud, Belgium
| | - Nathalie Bouquier
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Enora Moutin
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Luisa Di Menna
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Natallia Maslava
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Laurent Fagni
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Ferdinando Nicoletti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Fabrice Ango
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Julie Perroy
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|