1
|
Tahri-Joutey M, Hamer I, Tevel V, Raas Q, Gondcaille C, Trompier D, Kebbaj RE, Ménétrier F, Latruffe N, Lizard G, Nasser B, Savary S, Jadot M, Cherkaoui-Malki M, Andreoletti P. Analytical subcellular fractionation of microglial BV-2 cells with peroxisomal beta-oxidation defect. Histochem Cell Biol 2025; 163:44. [PMID: 40229507 DOI: 10.1007/s00418-025-02372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2025] [Indexed: 04/16/2025]
Abstract
Peroxisomes have gained increasing attention and are now considered vital players in normal physiological functions. To gain further insight into how peroxisomal defects influence cellular functions, we developed BV-2 microglial models featuring CRISPR/Cas9 gene-edited mutations in peroxisomal Acox1 or Abcd1 and Abcd2 genes. The Acox1-/- BV-2 cell line we generated lacks acyl-CoA oxidase 1, the key enzyme that initiates peroxisomal β-oxidation. In contrast, the double mutant Abcd1/d2-/- BV-2 cell line carries mutations in the genes encoding the membranous ABC transporters ABCD1 and ABCD2, which are responsible for transporting fatty acyl-thioesters inside peroxisome. Here, for the first time, we used analytical fractionation to compare these three genotypes. Through flow cytometry, we observed an increase in cell granularity in these mutant cells, which could be associated with alterations in peroxisome distribution and mitochondrial dynamics. Additionally, the analysis of organelle markers in microglial cells, employing differential centrifugation, exhibited an enrichment of peroxisomes particularly in both L and P fractions of these BV-2 cell line models. The use of an isopycnic Nycodenz density gradient showed that peroxisomes sedimented with a median density of 1.18 g/ml. Notably, our results revealed no significant differences in the distribution profiles of organelles when comparing microglial BV-2 Wt cells with deficient Acox1‒/‒ or Abcd1/d2-/‒ BV-2 cells, which lack peroxisomal fatty acid beta-oxidation. Our study is the first to report on the fractionation of brain-derived microglial cells, laying valuable groundwork for future proteomic and/or metabolomic analyses of peroxisome fractions.
Collapse
Grants
- 17UHP2019, Morocco Ministère de l'Enseignement et de la Recherche and the CNRST,
- 17UHP2019, Morocco Ministère de l'Enseignement et de la Recherche and the CNRST,
- 17UHP2019, Morocco Ministère de l'Enseignement et de la Recherche and the CNRST,
- 17UHP2019, Morocco Ministère de l'Enseignement et de la Recherche and the CNRST,
- 17UHP2019, Morocco Ministère de l'Enseignement et de la Recherche and the CNRST,
- TBK 19/92 n° n° Campus France: 41501RJ PHC Toubkal program
- TBK 19/92 n° n° Campus France: 41501RJ PHC Toubkal program
- TBK 19/92 n° n° Campus France: 41501RJ PHC Toubkal program
- TBK 19/92 n° n° Campus France: 41501RJ PHC Toubkal program
- TBK 19/92 n° n° Campus France: 41501RJ PHC Toubkal program
- TBK 19/92 n° n° Campus France: 41501RJ PHC Toubkal program
- TBK 19/92 n° n° Campus France: 41501RJ PHC Toubkal program
- CA 16112 COST Action
- CA 16112 COST Action
- CA 16112 COST Action
- CA 16112 COST Action
- CA 16112 COST Action
- CA 16112 COST Action
- CA 16112 COST Action
- 2022Y-14248 Projet d'Envergure Neurosens
- 2022Y-14248 Projet d'Envergure Neurosens
- 2022Y-14248 Projet d'Envergure Neurosens
- 2022Y-14248 Projet d'Envergure Neurosens
- 2022Y-14248 Projet d'Envergure Neurosens
- 2022Y-14248 Projet d'Envergure Neurosens
Collapse
Affiliation(s)
- Mounia Tahri-Joutey
- Laboratoire Biochimie, Faculté des Sciences et Techniques, Neurosciences, Ressources Naturelles et Environnement, Université Hassan I, BP577, 26000, Settat, Morocco
- Centre des Sciences du Goût et de l'Alimentation (CSGA), CNRS, INRAe, Institut Agro, Université de Bourgogne Europe, 21000, Dijon, France
| | - Isabelle Hamer
- Physiological Chemistry Laboratory, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Virginie Tevel
- Physiological Chemistry Laboratory, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Quentin Raas
- Centre des Sciences du Goût et de l'Alimentation (CSGA), CNRS, INRAe, Institut Agro, Université de Bourgogne Europe, 21000, Dijon, France
| | - Catherine Gondcaille
- Centre des Sciences du Goût et de l'Alimentation (CSGA), CNRS, INRAe, Institut Agro, Université de Bourgogne Europe, 21000, Dijon, France
| | - Doriane Trompier
- Centre des Sciences du Goût et de l'Alimentation (CSGA), CNRS, INRAe, Institut Agro, Université de Bourgogne Europe, 21000, Dijon, France
| | - Riad El Kebbaj
- Sciences and Engineering of Biomedicals, Biophysics and Health. Higher Institute of Health Sciences, Hassan First University, 26000, Settat, Morocco
| | - Franck Ménétrier
- Centre des Sciences du Goût et de l'Alimentation (CSGA), CNRS, INRAe, Institut Agro, Université de Bourgogne Europe, 21000, Dijon, France
| | - Norbert Latruffe
- Centre des Sciences du Goût et de l'Alimentation (CSGA), CNRS, INRAe, Institut Agro, Université de Bourgogne Europe, 21000, Dijon, France
| | - Gérard Lizard
- Centre des Sciences du Goût et de l'Alimentation (CSGA), CNRS, INRAe, Institut Agro, Université de Bourgogne Europe, 21000, Dijon, France
| | - Boubker Nasser
- Laboratoire Biochimie, Faculté des Sciences et Techniques, Neurosciences, Ressources Naturelles et Environnement, Université Hassan I, BP577, 26000, Settat, Morocco
| | - Stéphane Savary
- Centre des Sciences du Goût et de l'Alimentation (CSGA), CNRS, INRAe, Institut Agro, Université de Bourgogne Europe, 21000, Dijon, France
| | - Michel Jadot
- Physiological Chemistry Laboratory, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Mustapha Cherkaoui-Malki
- Centre des Sciences du Goût et de l'Alimentation (CSGA), CNRS, INRAe, Institut Agro, Université de Bourgogne Europe, 21000, Dijon, France.
| | - Pierre Andreoletti
- Centre des Sciences du Goût et de l'Alimentation (CSGA), CNRS, INRAe, Institut Agro, Université de Bourgogne Europe, 21000, Dijon, France.
| |
Collapse
|
2
|
Wang J, Ye J. Analyzing the topology of N-linked glycans by PNGase F accessibility assay. STAR Protoc 2023; 4:102458. [PMID: 37516975 PMCID: PMC10407232 DOI: 10.1016/j.xpro.2023.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
While N-glycans are synthesized in the lumens, some of them reach the cytosolic side of membranes through retro-translocation independent of endoplasmic-reticulum-associated degradation. Here, we present a protocol to measure the topology of N-glycans in a transmembrane protein, based on the principle that cytosolic but not luminal N-glycans are trimmed by PNGase F in the absence of detergent. We describe the procedures for this protocol consisting of microsome preparation from cells, PNGase F accessibility assay, and western blot analysis. For complete details on the use and execution of this protocol, please refer to Wang et al.1.
Collapse
Affiliation(s)
- Jingcheng Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Wang H, Wang S, Wang W, Xu L, Welsh LRJ, Gierlinski M, Whisson SC, Hemsley PA, Boevink PC, Birch PRJ. Uptake of oomycete RXLR effectors into host cells by clathrin-mediated endocytosis. THE PLANT CELL 2023:koad069. [PMID: 36911990 DOI: 10.1093/plcell/koad069] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Filamentous (oomycete and fungal) plant pathogens deliver cytoplasmic effector proteins into host cells to facilitate disease. How RXLR effectors from the potato late blight pathogen Phytophthora infestans enter host cells is unknown. One possible route involves clathrin-mediated endocytosis (CME). Transient silencing of NbCHC, encoding clathrin heavy chain, or the endosome marker gene NbAra6 encoding a Rab GTPase in the model host Nicotiana benthamiana, attenuated P. infestans infection and reduced translocation of RXLR effector fusions from transgenic pathogen strains into host cells. By contrast, silencing PP1c isoforms, susceptibility factors not required for endocytosis, reduced infection but did not attenuate RXLR effector uptake. Endosome enrichment by ultracentrifugation and sucrose gradient fractionation revealed co-localization of RXLR effector Pi04314-RFP with clathrin-coated vesicles. Immunopurification of clathrin- and NbAra6-associated vesicles during infection showed that RXLR effectors Pi04314-RFP and AvrBlb1-RFP, but not apoplastic effector PiSCR74-RFP, were co-immunoprecipitated during infection with pathogen strains secreting these effectors. Tandem mass spectrometry analyses of proteins co-immunoprecipitated with NbAra6-GFP during infection revealed enrichment of host proteins associated with endocytic vesicles alongside multiple pathogen RXLR effectors, but not apoplastic effectors, including PiSCR74, which do not enter host cells. Our data show that uptake of P. infestans RXLR effectors into plant cells occurs via CME.
Collapse
Affiliation(s)
- Haixia Wang
- Division of Plant Science, School of Life Sciences, University of Dundee, @James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Shumei Wang
- Division of Plant Science, School of Life Sciences, University of Dundee, @James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA
| | - Wei Wang
- Division of Plant Science, School of Life Sciences, University of Dundee, @James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Lin Xu
- Division of Plant Science, School of Life Sciences, University of Dundee, @James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Lydia R J Welsh
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Marek Gierlinski
- Data Analysis Group, Division of Computational Biology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, UK
| | - Stephen C Whisson
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Piers A Hemsley
- Division of Plant Science, School of Life Sciences, University of Dundee, @James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Petra C Boevink
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Paul R J Birch
- Division of Plant Science, School of Life Sciences, University of Dundee, @James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
4
|
Haldar S, Okamoto K, Dunning RA, Kasson PM. Precise Triggering and Chemical Control of Single-Virus Fusion within Endosomes. J Virol 2020; 95:e01982-20. [PMID: 33115879 PMCID: PMC7737740 DOI: 10.1128/jvi.01982-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/20/2022] Open
Abstract
Many enveloped viruses infect cells within endocytic compartments. The pH drop that accompanies endosomal maturation, often in conjunction with proteolysis, triggers viral proteins to insert into the endosomal membrane and drive fusion. Fusion dynamics have been studied by tracking viruses within living cells, which limits the precision with which fusion can be synchronized and controlled, and reconstituting viral fusion to synthetic membranes, which introduces nonphysiological membrane curvature and composition. To overcome these limitations, we report chemically controllable triggering of single-virus fusion within endosomes. We isolated influenza (A/Aichi/68; H3N2) virus:endosome conjugates from cells, immobilized them in a microfluidic flow cell, and rapidly and controllably triggered fusion. Observed lipid-mixing kinetics were surprisingly similar to those of influenza virus fusion with model membranes of opposite curvature: 80% of single-virus events had indistinguishable kinetics. This result suggests that endosomal membrane curvature is not a key permissive feature for viral entry, at least lipid mixing. The assay preserved endosomal membrane asymmetry and protein composition, providing a platform to test how cellular restriction factors and altered endosomal trafficking affect viral membrane fusion.IMPORTANCE Many enveloped viruses infect cells via fusion to endosomes, but controlling this process within living cells has been challenging. We studied the fusion of influenza virus virions to endosomes in a chemically controllable manner. Extracting virus:endosome conjugates from cells and exogenously triggering fusion permits precise study of virus:endosome fusion kinetics. Surprisingly, endosomal curvature does not grossly alter fusion kinetics, although membrane deformability does. This supports a model for influenza virus entry where cells restrict or permit membrane fusion by changing deformability, for instance, using interferon-induced proteins.
Collapse
Affiliation(s)
- Sourav Haldar
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Kenta Okamoto
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Rebecca A Dunning
- Department of Molecular Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Peter M Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Department of Molecular Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Lyu K, Zhang Y, Zhang D, Kahn M, Ter Horst KW, Rodrigues MRS, Gaspar RC, Hirabara SM, Luukkonen PK, Lee S, Bhanot S, Rinehart J, Blume N, Rasch MG, Serlie MJ, Bogan JS, Cline GW, Samuel VT, Shulman GI. A Membrane-Bound Diacylglycerol Species Induces PKCϵ-Mediated Hepatic Insulin Resistance. Cell Metab 2020; 32:654-664.e5. [PMID: 32882164 PMCID: PMC7544641 DOI: 10.1016/j.cmet.2020.08.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/22/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease is strongly associated with hepatic insulin resistance (HIR); however, the key lipid species and molecular mechanisms linking these conditions are widely debated. We developed a subcellular fractionation method to quantify diacylglycerol (DAG) stereoisomers and ceramides in the endoplasmic reticulum (ER), mitochondria, plasma membrane (PM), lipid droplets, and cytosol. Acute knockdown (KD) of diacylglycerol acyltransferase-2 in liver induced HIR in rats. This was due to PM sn-1,2-DAG accumulation, which promoted PKCϵ activation and insulin receptor kinase (IRK)-T1160 phosphorylation, resulting in decreased IRK-Y1162 phosphorylation. Liver PM sn-1,2-DAG content and IRK-T1160 phosphorylation were also higher in humans with HIR. In rats, liver-specific PKCϵ KD ameliorated high-fat diet-induced HIR by lowering IRK-T1160 phosphorylation, while liver-specific overexpression of constitutively active PKCϵ-induced HIR by promoting IRK-T1160 phosphorylation. These data identify PM sn-1,2-DAGs as the key pool of lipids that activate PKCϵ and that hepatic PKCϵ is both necessary and sufficient in mediating HIR.
Collapse
Affiliation(s)
- Kun Lyu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ye Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Endocrinology & Metabolism, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kasper W Ter Horst
- Department of Endocrinology and Metabolism Amsterdam University Medical Center, 1105AZ Amsterdam, the Netherlands
| | - Marcos R S Rodrigues
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; School of Medicine, State University of Ponta Grossa, Avenida General Carlos Cavalcanti, Ponta Grossa, PR 84030-900, Brazil
| | - Rafael C Gaspar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Laboratory of Molecular Biology of Exercise, School of Applied Science, University of Campinas, Limeira, SP 13484-350, Brazil
| | - Sandro M Hirabara
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Postgraduate Interdisciplinary Program of Health Sciences, Cruzeiro do Sul University, Sao Paulo, SP 01506-000, Brazil
| | - Panu K Luukkonen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Seohyuk Lee
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Niels Blume
- CV Research, Novo Nordisk A/S, Novo Nordisk Park, 2760 Maaloev, Denmark
| | | | - Mireille J Serlie
- Department of Endocrinology and Metabolism Amsterdam University Medical Center, 1105AZ Amsterdam, the Netherlands
| | - Jonathan S Bogan
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Gary W Cline
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Varman T Samuel
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
6
|
Abstract
Identification of the protein targets of bioactive small molecules is a routine challenge in chemical biology and phenotype-based drug discovery. Recent years have seen an explosion of approaches to meeting this challenge, but the traditional method of affinity pulldowns remains a practical choice in many contexts. This technique can be used as long as an affinity probe can be synthesized, usually with a crosslinking moiety to enable photo-affinity pulldowns. It can be applied to varied tissue types and can be performed with minimal specialized equipment. Here, we provide our protocol for photo-affinity pulldown experiments, with notes on making this method generally applicable to varied target identification challenges.
Collapse
Affiliation(s)
- Seung-Yong Seo
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Timothy W Corson
- Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
7
|
Abstract
Proteins expressed at the cell surface play important roles in physiology and represent valuable targets for new therapeutic agents. Indeed, the so-called druggable proteome consists, for about two thirds, of proteins that are either integral to or associated with the cell membrane. In spite of its importance, however, a complete characterization of the cell surface proteome has remained elusive because of the difficulty to efficiently purify these proteins from other contaminants. Methods exploiting the strong interaction between biotin and streptavidin have paved the way for the most significant advances in this field. The present chapter focuses on techniques for cell surface biotinylation with commercially available reagents and capture by avidin affinity chromatography and release of the biotinylated surface proteins for downstream analysis by electrophoretic methods.
Collapse
|
8
|
Battle KN, Jackson JM, Witek MA, Hupert ML, Hunsucker SA, Armistead PM, Soper SA. Solid-phase extraction and purification of membrane proteins using a UV-modified PMMA microfluidic bioaffinity μSPE device. Analyst 2014; 139:1355-63. [PMID: 24487280 PMCID: PMC3970079 DOI: 10.1039/c3an02400h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We present a novel microfluidic solid-phase extraction (μSPE) device for the affinity enrichment of biotinylated membrane proteins from whole cell lysates. The device offers features that address challenges currently associated with the extraction and purification of membrane proteins from whole cell lysates, including the ability to release the enriched membrane protein fraction from the extraction surface so that they are available for downstream processing. The extraction bed was fabricated in PMMA using hot embossing and was comprised of 3600 micropillars. Activation of the PMMA micropillars by UV/O3 treatment permitted generation of surface-confined carboxylic acid groups and the covalent attachment of NeutrAvidin onto the μSPE device surfaces, which was used to affinity select biotinylated MCF-7 membrane proteins directly from whole cell lysates. The inclusion of a disulfide linker within the biotin moiety permitted release of the isolated membrane proteins via DTT incubation. Very low levels (∼20 fmol) of membrane proteins could be isolated and recovered with ∼89% efficiency with a bed capacity of 1.7 pmol. Western blotting indicated no traces of cytosolic proteins in the membrane protein fraction as compared to significant contamination using a commercial detergent-based method. We highlight future avenues for enhanced extraction efficiency and increased dynamic range of the μSPE device using computational simulations of different micropillar geometries to guide future device designs.
Collapse
Affiliation(s)
- Katrina N. Battle
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803-1804, USA
| | - Joshua M. Jackson
- Department of Chemistry, University of North Carolina, Campus Box 3290, Chapel Hill, NC 27599-3290, USA
| | - Małgorzata A. Witek
- Department of Biomedical Engineering, University of North Carolina,152 MacNider Hall Campus Box 7575 Chapel Hill, NC 27599-7575, USA
| | - Mateusz L. Hupert
- Department of Biomedical Engineering, University of North Carolina,152 MacNider Hall Campus Box 7575 Chapel Hill, NC 27599-7575, USA
- BioFluidica, LLC, c/o Carolina Kick-Start, 321 Bondurant Hall, Chapel Hill, NC, 27599
| | - Sally A. Hunsucker
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Paul M. Armistead
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Steven A. Soper
- Department of Chemistry, University of North Carolina, Campus Box 3290, Chapel Hill, NC 27599-3290, USA
- Department of Biomedical Engineering, University of North Carolina,152 MacNider Hall Campus Box 7575 Chapel Hill, NC 27599-7575, USA
- BioFluidica, LLC, c/o Carolina Kick-Start, 321 Bondurant Hall, Chapel Hill, NC, 27599
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
9
|
Rangel R, Dobroff AS, Guzman-Rojas L, Salmeron CC, Gelovani JG, Sidman RL, Pasqualini R, Arap W. Targeting mammalian organelles with internalizing phage (iPhage) libraries. Nat Protoc 2013; 8:1916-39. [PMID: 24030441 PMCID: PMC4309278 DOI: 10.1038/nprot.2013.119] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Techniques that are largely used for protein interaction studies and the discovery of intracellular receptors, such as affinity-capture complex purification and the yeast two-hybrid system, may produce inaccurate data sets owing to protein insolubility, transient or weak protein interactions or irrelevant intracellular context. A versatile tool for overcoming these limitations, as well as for potentially creating vaccines and engineering peptides and antibodies as targeted diagnostic and therapeutic agents, is the phage-display technique. We have recently developed a new technology for screening internalizing phage (iPhage) vectors and libraries using a ligand/receptor-independent mechanism to penetrate eukaryotic cells. iPhage particles provide a unique discovery platform for combinatorial intracellular targeting of organelle ligands along with their corresponding receptors and for fingerprinting functional protein domains in living cells. Here we explain the design, cloning, construction and production of iPhage-based vectors and libraries, along with basic ligand-receptor identification and validation methodologies for organelle receptors. An iPhage library screening can be performed in ∼8 weeks.
Collapse
Affiliation(s)
- Roberto Rangel
- David H. Koch Center, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Andrey S. Dobroff
- David H. Koch Center, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Liliana Guzman-Rojas
- David H. Koch Center, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Carolina C. Salmeron
- David H. Koch Center, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Juri G. Gelovani
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan 48201, USA
| | - Richard L. Sidman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Renata Pasqualini
- David H. Koch Center, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wadih Arap
- David H. Koch Center, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
10
|
Abstract
Macromolecular complexes are involved in a broad spectrum of cellular processes including protein biosynthesis, protein secretion and degradation, metabolism, DNA replication and repair, and signal transduction along with other important biological processes. The analysis of protein complexes in health and disease is important to gain insights into cellular physiology and pathophysiology. In the last few decades, research has focused on the identification and the dynamics of macromolecular complexes. Several techniques have been developed to isolate native protein complexes from cells and tissues to allow further characterization by microscopic and proteomic analysis. In the present paper, we provide a brief overview of proteomic methods that can be used to identify protein–protein interactions, focusing on recent developments to study the entire complexome of a biological sample.
Collapse
|
11
|
Abstract
Cell surface proteins play a very important role in physiology and pathology and are receiving increased attention by the pharmaceutical industry as valuable targets for development of new therapeutics. However, owing to the very nature of this category of proteins, their comprehensive study remains an elusive task. A number of methods have been proposed to enrich and purify cell surface proteins. Among them, usage of biotinylating reagents and exploitation of the strong interaction between biotin and streptavidin for the purification of biotinylated proteins has rapidly gained in popularity and allowed some of the most significant progresses in quantitative proteomics. This chapter focuses on methods for cell surface biotinylation with commercially available reagents, capture by avidin-affinity chromatography and release of the biotinylated surface proteins for downstream analysis by electrophoretic techniques.
Collapse
|
12
|
Trost M, Bridon G, Desjardins M, Thibault P. Subcellular phosphoproteomics. MASS SPECTROMETRY REVIEWS 2010; 29:962-90. [PMID: 20931658 DOI: 10.1002/mas.20297] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Protein phosphorylation represents one of the most extensively studied post-translational modifications, primarily due to the emergence of sensitive methods enabling the detection of this modification both in vitro and in vivo. The availability of enrichment methods combined with sensitive mass spectrometry instrumentation has played a crucial role in uncovering the dynamic changes and the large expanding repertoire of this reversible modification. The structural changes imparted by the phosphorylation of specific residues afford exquisite mechanisms for the regulation of protein functions by modulating new binding sites on scaffold proteins or by abrogating protein-protein interactions. However, the dynamic interplay of protein phosphorylation is not occurring randomly within the cell but is rather finely orchestrated by specific kinases and phosphatases that are unevenly distributed across subcellular compartments. This spatial separation not only regulates protein phosphorylation but can also control the activity of other enzymes and the transfer of other post-translational modifications. While numerous large-scale phosphoproteomics studies highlighted the extent and diversity of phosphoproteins present in total cell lysates, the further understanding of their regulation and biological activities require a spatio-temporal resolution only achievable through subcellular fractionation. This review presents a first account of the emerging field of subcellular phosphoproteomics where cell fractionation approaches are combined with sensitive mass spectrometry methods to facilitate the identification of low abundance proteins and to unravel the intricate regulation of protein phosphorylation.
Collapse
Affiliation(s)
- Matthias Trost
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | |
Collapse
|
13
|
Ding J, List EO, Okada S, Kopchick JJ. Perspective: proteomic approach to detect biomarkers of human growth hormone. Growth Horm IGF Res 2009; 19:399-407. [PMID: 19501004 PMCID: PMC2760539 DOI: 10.1016/j.ghir.2009.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2009] [Indexed: 10/20/2022]
Abstract
Several serum biomarkers for recombinant human growth hormone (rhGH) have been established, however, none alone or in combination have generate a specific, sensitive, and reproducible 'kit' for the detection of rhGH abuse. Thus, the search for additional GH specific biomarkers continues. In this review, we focus on the use of proteomics in general and two-dimensional electrophoresis (2-DE) in particular for the discovery of new GH induced serum biomarkers. Also, we review some of the protocols involved in 2-DE. Finally, the possibility of tissues other than blood for biomarker discovery is discussed.
Collapse
Affiliation(s)
- Juan Ding
- Edison Biotechnology Institute, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Molecular and Cellular Biology Program, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Department of Biological Sciences, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Edward O. List
- Edison Biotechnology Institute, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Shigeru Okada
- Edison Biotechnology Institute, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - John J. Kopchick
- Edison Biotechnology Institute, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Molecular and Cellular Biology Program, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| |
Collapse
|
14
|
Neves JS, Perez SAC, Spencer LA, Melo RCN, Weller PF. Subcellular fractionation of human eosinophils: isolation of functional specific granules on isoosmotic density gradients. J Immunol Methods 2009; 344:64-72. [PMID: 19328806 DOI: 10.1016/j.jim.2009.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/13/2009] [Accepted: 03/18/2009] [Indexed: 01/21/2023]
Abstract
Subcellular fractionation has been an important tool in investigating human eosinophil structure and function, including localizing of cytokine/chemokines within granules, investigating granule protein translocation and intracellular transport during eosinophil secretion, and studying secretory mechanisms of granules. The resolution of organelles obtained by subcellular fractionation was improved considerably after the introduction of nonionic iodinated density-gradient metrizamide and Nycodenz media that, unlike sucrose, exhibit relatively low tonicity throughout the gradient. However, the structure and membrane preservation of isolated organelles were still compromised due to the lack of gradient isoosmolarity. This paper describes a detailed protocol of subcellular fractionation of nitrogen cavitated eosinophils on an isoosmotic iodinated density gradient (iodixanol - OptiPrep) and the isolation of well preserved and functional membrane-bound specific granules.
Collapse
Affiliation(s)
- Josiane S Neves
- Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|