1
|
Vadivel Gnanasundram S, Bonczek O, Wang L, Chen S, Fahraeus R. p53 mRNA Metabolism Links with the DNA Damage Response. Genes (Basel) 2021; 12:1446. [PMID: 34573428 PMCID: PMC8465283 DOI: 10.3390/genes12091446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Human cells are subjected to continuous challenges by different genotoxic stress attacks. DNA damage leads to erroneous mutations, which can alter the function of oncogenes or tumor suppressors, resulting in cancer development. To circumvent this, cells activate the DNA damage response (DDR), which mainly involves cell cycle regulation and DNA repair processes. The tumor suppressor p53 plays a pivotal role in the DDR by halting the cell cycle and facilitating the DNA repair processes. Various pathways and factors participating in the detection and repair of DNA have been described, including scores of RNA-binding proteins (RBPs) and RNAs. It has become increasingly clear that p53's role is multitasking, and p53 mRNA regulation plays a prominent part in the DDR. This review is aimed at covering the p53 RNA metabolism linked to the DDR and highlights the recent findings.
Collapse
Affiliation(s)
| | - Ondrej Bonczek
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
- RECAMO, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656-53 Brno, Czech Republic
| | - Lixiao Wang
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
| | - Sa Chen
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
| | - Robin Fahraeus
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
- RECAMO, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656-53 Brno, Czech Republic
- Inserm UMRS1131, Institut de Genetique Moleculaire, Universite Paris 7, Hopital St Louis, F-75010 Paris, France
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-822 Gdansk, Poland
| |
Collapse
|
2
|
Parsels LA, Engelke CG, Parsels J, Flanagan SA, Zhang Q, Tanska D, Wahl DR, Canman CE, Lawrence TS, Morgan MA. Combinatorial Efficacy of Olaparib with Radiation and ATR Inhibitor Requires PARP1 Protein in Homologous Recombination-Proficient Pancreatic Cancer. Mol Cancer Ther 2021; 20:263-273. [PMID: 33268569 PMCID: PMC7867626 DOI: 10.1158/1535-7163.mct-20-0365] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/06/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
PARP inhibitor monotherapy (olaparib) was recently FDA approved for the treatment of BRCA1/2-mutant, homologous recombination (HR) repair-deficient pancreatic cancer. Most pancreatic cancers, however, are HR proficient and thus resistant to PARP inhibitor monotherapy. We tested the hypothesis that combined therapy with radiation and ataxia telangiectasia and Rad3-related (ATR) inhibitor (AZD6738) would extend the therapeutic indication of olaparib to HR-proficient pancreatic cancers. We show that olaparib combined with AZD6738 significantly reduced radiation survival relative to either agent alone, regardless of HR status. Whereas catalytic inhibition of PARP with low concentrations of olaparib radiosensitized HR-deficient models, maximal sensitization in HR-proficient models required concentrations of olaparib that induce formation of PARP1-DNA complexes. Furthermore, CRISPR-Cas9-mediated PARP1 deletion failed to recapitulate the effects of olaparib on radiosensitivity and negated the combinatorial efficacy of olaparib and AZD6738 on radiosensitization, suggesting that PARP1-DNA complexes, rather than PARP catalytic inhibition, were responsible for radiosensitization. Mechanistically, therapeutic concentrations of olaparib in combination with radiation and AZD6738 increased DNA double-strand breaks. DNA fiber combing revealed that high concentrations of olaparib did not stall replication forks but instead accelerated replication fork progression in association with an ATR-mediated replication stress response that was antagonized by AZD6738. Finally, in HR-proficient tumor xenografts, the combination of olaparib, radiation, and AZD6738 significantly delayed tumor growth compared with all other treatments. These findings suggest that PARP1-DNA complexes are required for the therapeutic activity of olaparib combined with radiation and ATR inhibitor in HR-proficient pancreatic cancer and support the clinical development of this combination for tumors intrinsically resistant to PARP inhibitors.
Collapse
Affiliation(s)
- Leslie A Parsels
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Carl G Engelke
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Joshua Parsels
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Sheryl A Flanagan
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Qiang Zhang
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daria Tanska
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Christine E Canman
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
3
|
Pandya P, Braiman A, Isakov N. PICOT (GLRX3) is a positive regulator of stress-induced DNA-damage response. Cell Signal 2019; 62:109340. [PMID: 31176019 DOI: 10.1016/j.cellsig.2019.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/15/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022]
Abstract
Protein kinase C (PKC)-interacting cousin of thioredoxin (PICOT; also termed glutaredoxin 3 (Glrx3)) is a ubiquitously expressed protein that possesses an N-terminal monothiol thioredoxin (Trx) domain and two C-terminal tandem copies of a monothiol Glrx domain. It has an overall highly conserved amino acid sequence and is encoded by a unique gene, both in humans and mice, without having other functional gene homologs in the entire genome. Despite being discovered almost two decades ago, the biological function of PICOT remains largely ill-defined and its ramifications are underestimated considering the fact that PICOT-deficiency in mice results in embryonic lethality. Since classical Glrxs are important regulators of the cellular redox homeostasis, we tested whether PICOT participate in the stress-induced DNA-damage response, focusing on nuclear proteins that function as integral components of the DNA repair machinery. Using wild type versus PICOT-deficient (PICOT-KD) Jurkat T cells we found that the anti-oxidant mechanism in PICOT-deficient cells is impaired, and that these cells respond to genotoxic drugs, such as etoposide and camptothecin, by increased caspase-3 activity, a reduced survival and a slower and diminished phosphorylation of the histone protein, H2AX. Nevertheless, the effect of PICOT on the drug-induced phosphorylation of H2AX was independent of the cellular levels of reactive oxygen species. PICOT-deficient cells also demonstrated reduced and slower γH2AX foci formation in response to radiation. Furthermore, immunofluorescence staining using PICOT- and γH2AX-specific Abs followed by confocal microscopy demonstrated partial localization of PICOT at the γH2AX-containing foci at the site of the DNA double strand breaks. In addition, PICOT knockdown resulted in inhibition of phosphorylation of ATR, Chk1 and Chk2 kinases, which play an essential role in the DNA-damage response and serve as upstream regulators of γH2AX. The present data suggest that PICOT protects cells from DNA damage-inducing agents by operating as an upstream positive regulator of ATR-dependent signaling pathways. By promoting the activity of ATR, PICOT indirectly regulates the phosphorylation and activation of Chk1, Chk2, and γH2AX, which are critical components of the DNA damage repair mechanism and thereby attenuate the stress- and replication-induced genome instability.
Collapse
Affiliation(s)
- Pinakin Pandya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel..
| |
Collapse
|
4
|
Ghobashi AH, Kamel MA. Tip60: updates. J Appl Genet 2018; 59:161-168. [PMID: 29549519 DOI: 10.1007/s13353-018-0432-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/28/2018] [Accepted: 01/31/2018] [Indexed: 12/21/2022]
Abstract
The maintenance of genome integrity is essential for organism survival. Therefore, eukaryotic cells possess many DNA repair mechanisms in response to DNA damage. Acetyltransferase, Tip60, plays a central role in ATM and p53 activation which are involved in DNA repair. Recent works uncovered the roles of Tip60 in ATM and p53 activation and how Tip60 is recruited to double-strand break sites. Moreover, recent works have demonstrated the role of Tip60 in cancer progression. Here, we review the current understanding of how Tip60 activates both ATM and p53 in response to DNA damage and his new roles in tumorigenesis.
Collapse
Affiliation(s)
- Ahmed H Ghobashi
- Human Genetics Department, Medical Research Institute, Alexandria University, 165 El Horreya Street, Alexandria, Egypt.
| | - Maher A Kamel
- Biochemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Refaat A, Owis M, Abdelhamed S, Saiki I, Sakurai H. Retrospective screening of microarray data to identify candidate IFN-inducible genes in a HTLV-1 transformed model. Oncol Lett 2018; 15:4753-4758. [PMID: 29616088 PMCID: PMC5876501 DOI: 10.3892/ol.2018.8014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
HuT-102 cells are considered one of the most representable human T-lymphotropic virus 1 (HTLV-1)-infected cell lines for studying adult T-cell lymphoma (ATL). In our previous studies, genome-wide screening was performed using the GeneChip system with Human Genome Array U133 Plus 2.0 for transforming growth factor-β-activated kinase 1 (TAK1)-, interferon regulatory factor 3 (IRF3)- and IRF4-regulated genes to demonstrate the effects of interferon-inducible genes in HuT-102 cells. Our previous findings demonstrated that TAK1 induced interferon inducible genes via an IRF3-dependent pathway and that IRF4 has a counteracting effect. As our previous data was performed by manual selection of common interferon-related genes mentioned in the literature, there has been some obscure genes that have not been considered. In an attempt to maximize the outcome of those microarrays, the present study reanalyzed the data collected in previous studies through a set of computational rules implemented using ‘R’ software, to identify important candidate genes that have been missed in the previous two studies. The final list obtained consisted of ten genes that are highly recommend as potential candidate for therapies targeting the HTLV-1 infected cancer cells. Those genes are ATM, CFTR, MUC4, PARP14, QK1, UBR2, CLEC7A (Dectin-1), L3MBTL, SEC24D and TMEM140. Notably, PARP14 has gained increased attention as a promising target in cancer cells.
Collapse
Affiliation(s)
- Alaa Refaat
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT9 7AE, Northern Ireland.,Department of Cancer Cell Biology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Mohamed Owis
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt
| | - Sherif Abdelhamed
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Ikuo Saiki
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
6
|
Parsels LA, Karnak D, Parsels JD, Zhang Q, Vélez-Padilla J, Reichert ZR, Wahl DR, Maybaum J, O'Connor MJ, Lawrence TS, Morgan MA. PARP1 Trapping and DNA Replication Stress Enhance Radiosensitization with Combined WEE1 and PARP Inhibitors. Mol Cancer Res 2017; 16:222-232. [PMID: 29133592 DOI: 10.1158/1541-7786.mcr-17-0455] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/30/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022]
Abstract
KRAS mutations in non-small cell lung cancer (NSCLC) cause increased levels of DNA damage and replication stress, suggesting that inhibition of the DNA damage response (DDR) is a promising strategy for radiosensitization of NSCLC. This study investigates the ability of a WEE1 inhibitor (AZD1775) and a PARP inhibitor (olaparib) to radiosensitize KRAS-mutant NSCLC cells and tumors. In addition to inhibiting the DDR, these small-molecule inhibitors of WEE1 and PARP induce DNA replication stress via nucleotide exhaustion and PARP trapping, respectively. As monotherapy, AZD1775 or olaparib alone modestly radiosensitized a panel of KRAS-mutant NSCLC lines. The combination of agents, however, significantly increased radiosensitization. Furthermore, AZD1775-mediated radiosensitization was rescued by nucleotide repletion, suggesting a mechanism involving AZD1775-mediated replication stress. In contrast, radiosensitization by the combination of AZD1775 and olaparib was not rescued by nucleosides. Whereas both veliparib, a PARP inhibitor that does not efficiently trap PARP1 to chromatin, and PARP1 depletion radiosensitized NSCLC cells as effectively as olaparib, which does efficiently trap PARP, only olaparib potentiated AZD1775-mediated radiosensitization. Taken together, these mechanistic data demonstrate that although nucleotide depletion is sufficient for radiosensitization by WEE1 inhibition alone, and inhibition of PARP catalytic activity is sufficient for radiosensitization by olaparib alone, PARP1 trapping is required for enhanced radiosensitization by the combination of WEE1 and PARP inhibitors.Implications: This study highlights DNA replication stress caused by nucleotide depletion and PARP1 trapping as an important mechanism of radiosensitization in KRAS-mutant tumors and supports further development of DNA replication as a therapeutic target. Mol Cancer Res; 16(2); 222-32. ©2017 AACR.
Collapse
Affiliation(s)
- Leslie A Parsels
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - David Karnak
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Joshua D Parsels
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Qiang Zhang
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | | | - Zachery R Reichert
- Department of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jonathan Maybaum
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Mark J O'Connor
- Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
7
|
Tan R, Nakajima S, Wang Q, Sun H, Xue J, Wu J, Hellwig S, Zeng X, Yates NA, Smithgall TE, Lei M, Jiang Y, Levine AS, Su B, Lan L. Nek7 Protects Telomeres from Oxidative DNA Damage by Phosphorylation and Stabilization of TRF1. Mol Cell 2017; 65:818-831.e5. [PMID: 28216227 PMCID: PMC5924698 DOI: 10.1016/j.molcel.2017.01.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 11/26/2016] [Accepted: 01/05/2017] [Indexed: 11/24/2022]
Abstract
Telomeric repeat binding factor 1 (TRF1) is essential to the maintenance of telomere chromatin structure and integrity. However, how telomere integrity is maintained, especially in response to damage, remains poorly understood. Here, we identify Nek7, a member of the Never in Mitosis Gene A (NIMA) kinase family, as a regulator of telomere integrity. Nek7 is recruited to telomeres and stabilizes TRF1 at telomeres after damage in an ATM activation-dependent manner. Nek7 deficiency leads to telomere aberrations, long-lasting γH2AX and 53BP1 foci, and augmented cell death upon oxidative telomeric DNA damage. Mechanistically, Nek7 interacts with and phosphorylates TRF1 on Ser114, which prevents TRF1 from binding to Fbx4, an Skp1-Cul1-F box E3 ligase subunit, thereby alleviating proteasomal degradation of TRF1, leading to a stable association of TRF1 with Tin2 to form a shelterin complex. Our data reveal a mechanism of efficient protection of telomeres from damage through Nek7-dependent stabilization of TRF1.
Collapse
Affiliation(s)
- Rong Tan
- Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Satoshi Nakajima
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Qun Wang
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jing Xue
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Jian Wu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Sabine Hellwig
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, 3501 Fifth Avenue, 9th Floor Biomedical Science Tower III, Pittsburgh, PA 15261, USA
| | - Nathan A Yates
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA; Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, 3501 Fifth Avenue, 9th Floor Biomedical Science Tower III, Pittsburgh, PA 15261, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S362 Biomedical Science Tower S, Pittsburgh, PA 15261, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Ming Lei
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, W1058 Thomas E. Starzl Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | - Arthur S Levine
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Bing Su
- Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China; Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale School of Medicine, 10 Amistad Street, PO Box 208011, New Haven, CT 06520, USA.
| | - Li Lan
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA.
| |
Collapse
|
8
|
Parsels LA, Tanska DM, Parsels JD, Zabludoff SD, Cuneo KC, Lawrence TS, Maybaum J, Morgan MA. Dissociation of gemcitabine chemosensitization by CHK1 inhibition from cell cycle checkpoint abrogation and aberrant mitotic entry. Cell Cycle 2016; 15:730-9. [PMID: 26890478 DOI: 10.1080/15384101.2016.1148841] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In order to determine the relative contribution of checkpoint abrogation and subsequent aberrant mitotic entry to gemcitabine chemosensitization by CHK1 inhibition, we established a model utilizing the CDK inhibitors roscovitine or purvalanol A to re-establish cell cycle arrest and prevent aberrant mitotic entry in pancreatic cancer cells treated with gemcitabine and the CHK inhibitor AZD7762. In this study, we report that the extent of aberrant mitotic entry, as determined by flow cytometry for the mitotic marker phospho-Histone H3 (Ser10), did not reflect the relative sensitivities of pancreatic cancer cell lines to gemcitabine chemosensitization by AZD7762. In addition, re-establishing gemcitabine-induced cell cycle arrest either pharmacologically, with roscovitine or purvalanol A, or genetically, with cyclin B1 siRNA, did not inhibit chemosensitization uniformly across the cell lines. Furthermore, we found that AZD7762 augmented high-intensity γH2AX signaling in gemcitabine-treated cells, suggesting the presence of replication stress when CHK1 is inhibited. Finally, the ability of roscovitine to prevent chemosensitization correlated with its ability to inhibit AZD7762-induced high-intensity γH2AX, but not aberrant pHH3, suggesting that the effects of AZD7762 on DNA replication or repair rather than aberrant mitotic entry determine gemcitabine chemosensitization in pancreatic cancer cells.
Collapse
Affiliation(s)
- Leslie A Parsels
- a Department of Radiation Oncology , University of Michigan Medical School , Ann Arbor , MI , USA.,b Department of Pharmacology , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Daria M Tanska
- b Department of Pharmacology , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Joshua D Parsels
- a Department of Radiation Oncology , University of Michigan Medical School , Ann Arbor , MI , USA.,b Department of Pharmacology , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Sonya D Zabludoff
- c AstraZeneca R&D Boston , Waltham , MA , USA.,d Zabludoff Consulting San Diego , CA , USA
| | - Kyle C Cuneo
- a Department of Radiation Oncology , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Theodore S Lawrence
- a Department of Radiation Oncology , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Jonathan Maybaum
- a Department of Radiation Oncology , University of Michigan Medical School , Ann Arbor , MI , USA.,b Department of Pharmacology , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Meredith A Morgan
- a Department of Radiation Oncology , University of Michigan Medical School , Ann Arbor , MI , USA
| |
Collapse
|
9
|
Li J, Cai J, Zhao S, Yao K, Sun Y, Li Y, Chen L, Li R, Zhai X, Zhang J, Jiang C. GANT61, a GLI inhibitor, sensitizes glioma cells to the temozolomide treatment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:184. [PMID: 27894350 PMCID: PMC5127098 DOI: 10.1186/s13046-016-0463-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/22/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The aim of this study was to investigate the effect of downregulating Hedgehog pathway by GANT61 on human glioma cells, examine the consequent changes of temozolomide (TMZ)-induced effects and explore the molecular mechanisms. METHODS The cytotoxicity of a Gli1/2 inhibitor, GANT61 was examined both alone and in combination with TMZ in human glioma cell lines. The mRNA and protein expression alterations were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. CCK-8 assay detected the cell proliferative capability. Apoptotic cell number was measured by flow cytometry. The transwell assay was used to test the cell invasive capability. DNA damage effect was identified by COMET assay and γH2AX expression. RESULTS Proliferation of tumor cells treated with GANT61 in combination with TMZ was significantly suppressed compared with those treated with either drug used alone. The combination treatment induced a higher rate of apoptosis, DNA damage and reduced the invasive capability of glioma cells. DNA damage repair enzyme MGMT and the Notch1 pathway increased in the cells treated by TMZ treatment. However, GANT61 could abrogated the protein increasing. CONCLUSIONS GANT61 sensitizes glioma cells to TMZ treatment by enhancing DNA damage effect, decreasing MGMT expression and the Notch1 pathway.
Collapse
Affiliation(s)
- Jianlong Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, 150086, Harbin, People's Republic of China.,Chinese Glioma Cooperative Group (CGCG), Beijing, 100050, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, 150086, Harbin, People's Republic of China.,Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, 100050, China
| | - Shihong Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, 150086, Harbin, People's Republic of China
| | - Kun Yao
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Ying Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, 150086, Harbin, People's Republic of China.,Chinese Glioma Cooperative Group (CGCG), Beijing, 100050, China
| | - Yongli Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, 150086, Harbin, People's Republic of China.,Chinese Glioma Cooperative Group (CGCG), Beijing, 100050, China
| | - Lingchao Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, 100050, China
| | - Ruiyan Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, 150086, Harbin, People's Republic of China.,Chinese Glioma Cooperative Group (CGCG), Beijing, 100050, China
| | - Xiuwei Zhai
- Department of Neurosurgery, Daqing LongNan Hospital, Daqing, 163001, China
| | - Junhe Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, 150086, Harbin, People's Republic of China. .,Chinese Glioma Cooperative Group (CGCG), Beijing, 100050, China.
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, 150086, Harbin, People's Republic of China. .,Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin, 150086, China. .,Chinese Glioma Cooperative Group (CGCG), Beijing, 100050, China.
| |
Collapse
|
10
|
Kausar T, Schreiber JS, Karnak D, Parsels LA, Parsels JD, Davis MA, Zhao L, Maybaum J, Lawrence TS, Morgan MA. Sensitization of Pancreatic Cancers to Gemcitabine Chemoradiation by WEE1 Kinase Inhibition Depends on Homologous Recombination Repair. Neoplasia 2016; 17:757-66. [PMID: 26585231 PMCID: PMC4656803 DOI: 10.1016/j.neo.2015.09.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/18/2015] [Accepted: 09/24/2015] [Indexed: 12/12/2022] Open
Abstract
To improve the efficacy of chemoradiation therapy for locally advanced pancreatic cancer and begin to establish patient selection criteria, we investigated the combination of the WEE1 inhibitor AZD1775 with gemcitabine-radiation in homologous recombination (HR) repair proficient and deficient pancreatic cancers. Sensitization to gemcitabine-radiation by AZD1775 was assessed in pancreatic cancer cells by clonogenic survival and in patient-derived xenografts by tumor growth. The contributions of HR repair inhibition and G2 checkpoint abrogation to sensitization were assessed by γH2AX, BRCA2 manipulation, and RAD51 focus formation and pHistone H3 flow cytometry, respectively. We found that AZD1775 sensitized to gemcitabine-radiation in BRCA2 wild-type but not BRCA2 mutant pancreatic cancer cells. In all cells, AZD1775 caused inhibition of CDK1 phosphorylation and G2 checkpoint abrogation. However, sensitization by AZD1775 was associated with persistent γH2AX and inhibition of RAD51 focus formation. In HR-proficient (BRCA2 wild-type) or -deficient (BRAC2 null) isogenic cells, AZD1775 sensitized to gemcitabine-radiation in BRCA2 wild-type, but not in BRCA2 null cells, despite significant G2 checkpoint abrogation. In patient-derived pancreatic tumor xenografts, AZD1775 significantly inhibited tumor growth and impaired RAD51 focus formation in response to gemcitabine-radiation. In conclusion, WEE1 inhibition by AZD1775 is an effective strategy for sensitizing pancreatic cancers to gemcitabine chemoradiation. Although this sensitization is accompanied by inhibition of CDK1 phosphorylation and G2 checkpoint abrogation, this mechanism is not sufficient for sensitization. Our findings demonstrate that sensitization to chemoradiation by WEE1 inhibition results from inhibition of HR repair and suggest that patient tumors without underlying HR defects would benefit most from this therapy.
Collapse
Affiliation(s)
- Tasneem Kausar
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jason S Schreiber
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - David Karnak
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Leslie A Parsels
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Joshua D Parsels
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Mary A Davis
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Lili Zhao
- Biostatistics Unit, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
| | - Jonathan Maybaum
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109.
| |
Collapse
|
11
|
Guo J, Lv J, Chang S, Chen Z, Lu W, Xu C, Liu M, Pang X. Inhibiting cytoplasmic accumulation of HuR synergizes genotoxic agents in urothelial carcinoma of the bladder. Oncotarget 2016; 7:45249-45262. [PMID: 27303922 PMCID: PMC5216720 DOI: 10.18632/oncotarget.9932] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/28/2016] [Indexed: 11/25/2022] Open
Abstract
HuR, an RNA-binding protein, post-transcriptionally regulates nearly 4% of encoding proteins implicated in cell survival. Here we show that HuR is required for the efficacy of chemotherapies in urothelial carcinoma of the bladder. We identify pyrvinium pamoate, an FDA-approved anthelminthic drug, as a novel HuR inhibitor that dose-dependently inhibited cytoplasmic accumulation of HuR. Combining pyrvinium pamoate with chemotherapeutic agents (e.g. cisplatin, doxorubicin, vincristine and oxaliplatin) not only led to enhanced cytotoxicity in bladder cancer cells but also synergistically suppressed the growth of patient-derived bladder tumor xenografts in mice (P < 0.001). Mechanistically, pyrvinium pamoate promoted nuclear import of HuR by activating the AMP-activated kinase/importin α1 cascade and blocked HuR nucleo-cytoplasmic translocation by inhibiting the checkpoint kinase1/cyclin-dependent kinase 1 pathway. Notably, pyrvinium pamoate-additive treatment increased DNA double-strand breaks as indicated by elevated γH2AX expression, suggesting an involvement of DNA damage response. We further found that pyrvinium pamoate dramatically downregulated several key DNA repair genes in genotoxically-stressed cells, including DNA ligase IV and BRCA2, leading to unbearable genomic instability and cell death. Collectively, our findings are the first to characterize a clinical HuR inhibitor and provide a novel therapeutically tractable strategy by targeting cytoplasmic translocation of HuR for treatment of urothelial carcinoma of the bladder.
Collapse
Affiliation(s)
- Jiawei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jing Lv
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Siyu Chang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhi Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chuanliang Xu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
12
|
Festarini A, Shultz C, Stuart M, Kim SB, Ferreri C. CELLULAR RESPONSES TO TRITIUM EXPOSURE IN RAINBOW TROUT: HTO- AND OBT-SPIKED FEED EXPOSURE EXPERIMENTS. CNL NUCLEAR REVIEW 2016. [DOI: 10.12943/cnr.2015.00059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biological effects were evaluated in rainbow trout (Oncorhynchus mykiss) exposed to tritiated water (HTO) or food spiked with organically bound tritium (OBT). An HTO exposure study was conducted using a tritium activity concentration of 7000 Bq/L, and an OBT exposure study was conducted using a tritium activity concentration of 30 000 Bq/L. Following 140 days of in vivo HTO exposure, liver, heart, spleen, kidney, and brain cells did not show statistically significant differences in viability; kidney, liver, and spleen cells did not show significant differences in DNA double-strand break repair activity compared with control cells. Membrane fatty acid composition analysis was conducted on liver cells and no effects of HTO exposure could be detected. Following 140 days of in vivo OBT exposure, viability and DNA double-strand break repair activity were not statistically different from controls in liver, heart, spleen, kidney, and brain cells. Changes, however, were noted in the fatty acid composition of liver and muscle tissues. For both studies, all measurements were performed on each tissue and on a fraction of the same tissue that was exposed to a gamma 4 Gy dose in vitro to test for adaptive responses, and no effects were observed except for fatty acid composition. The findings demonstrated that membrane fatty acid composition is a sensitive marker and that microscopic evaluation of gamma-H2AX foci is more sensitive than the flow cytometric approach. These studies are the first to correlate uptake and depuration with biological health indicators in edible fish for tritium exposures within worldwide drinking water guidelines.
Collapse
Affiliation(s)
- Amy Festarini
- Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0, Canada
| | - Carmen Shultz
- Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0, Canada
| | - Marilyne Stuart
- Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0, Canada
| | - Sang Bog Kim
- Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0, Canada
| | - Carla Ferreri
- Department of Chemical Sciences and Materials Technologies of the National Research Council of Italy, Bologna, Italy
| |
Collapse
|
13
|
Borràs M, Armengol G, De Cabo M, Barquinero JF, Barrios L. Comparison of methods to quantify histone H2AX phosphorylation and its usefulness for prediction of radiosensitivity. Int J Radiat Biol 2015; 91:915-24. [DOI: 10.3109/09553002.2015.1101501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Karnak D, Engelke CG, Parsels LA, Kausar T, Wei D, Robertson JR, Marsh KB, Davis MA, Zhao L, Maybaum J, Lawrence TS, Morgan MA. Combined inhibition of Wee1 and PARP1/2 for radiosensitization in pancreatic cancer. Clin Cancer Res 2014; 20:5085-96. [PMID: 25117293 DOI: 10.1158/1078-0432.ccr-14-1038] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE While the addition of radiation to chemotherapy improves survival in patients with locally advanced pancreatic cancer, more effective therapies are urgently needed. Thus, we investigated the radiosensitizing efficacy of the novel drug combination of Wee1 and PARP1/2 inhibitors (AZD1775 and olaparib, respectively) in pancreatic cancer. EXPERIMENTAL DESIGN Radiosensitization of AsPC-1 or MiaPaCa-2 human pancreatic cancer cells was assessed by clonogenic survival and tumor growth assays. Mechanistically, the effects of AZD1775, olaparib, and radiation on cell cycle, DNA damage (γH2AX), and homologous recombination repair (HRR) were determined. RESULTS Treatment of AsPC-1 and MiaPaCa-2 cells with either AZD1775 or olaparib caused modest radiosensitization, whereas treatment with the combination significantly increased radiosensitization. Radiosensitization by the combination of AZD1775 and olaparib was associated with G2 checkpoint abrogation and persistent DNA damage. In addition, AZD1775 inhibited HRR activity and prevented radiation-induced Rad51 focus formation. Finally, in vivo, in MiaPaCa-2-derived xenografts, olaparib did not radiosensitize, whereas AZD1775 produced moderate, yet significant, radiosensitization (P < 0.05). Importantly, the combination of AZD1775 and olaparib produced highly significant radiosensitization (P < 0.0001) evidenced by a 13-day delay in tumor volume doubling (vs. radiation alone) and complete eradication of 20% of tumors. CONCLUSIONS Taken together, these results demonstrate the efficacy of combined inhibition of Wee1 and PARP inhibitors for radiosensitizing pancreatic cancers and support the model that Wee1 inhibition sensitizes cells to PARP inhibitor-mediated radiosensitization through inhibition of HRR and abrogation of the G2 checkpoint, ultimately resulting in unrepaired, lethal DNA damage and radiosensitization. Clin Cancer Res; 20(19); 5085-96. ©2014 AACR.
Collapse
Affiliation(s)
- David Karnak
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Carl G Engelke
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Leslie A Parsels
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Tasneem Kausar
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Dongping Wei
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jordan R Robertson
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Katherine B Marsh
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Mary A Davis
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Lili Zhao
- Biostatistics Unit, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Jonathan Maybaum
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
15
|
Abstract
BACKGROUND The benefits of radiotherapy for cancer have been well documented for many years, but many patients treated with radiation develop adverse effects. This study analyzed the current research into the biological basis of radiotherapy-induced normal tissue damage. METHODS Using the PubMed and EMBASE databases, articles on adverse effects of radiotherapy on normal tissue published from January of 2005 through May of 2012 were identified. Their abstracts were reviewed for information relevant to radiotherapy-induced DNA damage and DNA repair. Articles in the reference lists that seemed relevant were reviewed with no limitations on publication date. RESULTS Of 1751 publications, 1729 were eliminated because they did not address fundamental biology or were duplicates. The 22 included articles revealed that many adverse effects are driven by chronic oxidative stress affecting the nuclear function of DNA repair mechanisms. Among normal cells undergoing replication, cells in S phase are most radioresistant because of overexpression of DNA repair enzymes, while cells in M phase are especially radiosensitive. Cancer cells exhibit increased radiosensitivity, leading to accumulation of irreparable DNA lesions and cell death. Irradiated cells have an indirect effect on the cell cycle and survival of cocultured nonirradiated cells. Method of irradiation and linear energy transfer to cancer cells versus bystander cells are shown to have an effect on cell survival. CONCLUSIONS Radiotherapy-induced increases in reactive oxygen species in irradiated cells may signal healthy cells by increasing metabolic stress and creating DNA lesions. The side effects of radiotherapy and bystander cell signaling may have a larger impact than previously acknowledged.
Collapse
|
16
|
Xu S, Chen G, Chen C, Sun C, Zhang D, Murbach M, Kuster N, Zeng Q, Xu Z. Cell type-dependent induction of DNA damage by 1800 MHz radiofrequency electromagnetic fields does not result in significant cellular dysfunctions. PLoS One 2013; 8:e54906. [PMID: 23355902 PMCID: PMC3552808 DOI: 10.1371/journal.pone.0054906] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 12/18/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although IARC clarifies radiofrequency electromagnetic fields (RF-EMF) as possible human carcinogen, the debate on its health impact continues due to the inconsistent results. Genotoxic effect has been considered as a golden standard to determine if an environmental factor is a carcinogen, but the currently available data for RF-EMF remain controversial. As an environmental stimulus, the effect of RF-EMF on cellular DNA may be subtle. Therefore, more sensitive method and systematic research strategy are warranted to evaluate its genotoxicity. OBJECTIVES To determine whether RF-EMF does induce DNA damage and if the effect is cell-type dependent by adopting a more sensitive method γH2AX foci formation; and to investigate the biological consequences if RF-EMF does increase γH2AX foci formation. METHODS Six different types of cells were intermittently exposed to GSM 1800 MHz RF-EMF at a specific absorption rate of 3.0 W/kg for 1 h or 24 h, then subjected to immunostaining with anti-γH2AX antibody. The biological consequences in γH2AX-elevated cell type were further explored with comet and TUNEL assays, flow cytometry, and cell growth assay. RESULTS Exposure to RF-EMF for 24 h significantly induced γH2AX foci formation in Chinese hamster lung cells and Human skin fibroblasts (HSFs), but not the other cells. However, RF-EMF-elevated γH2AX foci formation in HSF cells did not result in detectable DNA fragmentation, sustainable cell cycle arrest, cell proliferation or viability change. RF-EMF exposure slightly but not significantly increased the cellular ROS level. CONCLUSIONS RF-EMF induces DNA damage in a cell type-dependent manner, but the elevated γH2AX foci formation in HSF cells does not result in significant cellular dysfunctions.
Collapse
Affiliation(s)
- Shanshan Xu
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Guangdi Chen
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunjing Chen
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuan Sun
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Danying Zhang
- Institute of Occupational Health Assessment, Guangdong Prevention and Treatment Center for Occupational Disease, Guangzhou, China
| | - Manuel Murbach
- Foundation for Research on Information Technologies in Society, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Niels Kuster
- Foundation for Research on Information Technologies in Society, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Qunli Zeng
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail: (ZX); (QZ)
| | - Zhengping Xu
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail: (ZX); (QZ)
| |
Collapse
|
17
|
Malla RR, Gopinath S, Alapati K, Gorantla B, Gondi CS, Rao JS. uPAR and cathepsin B inhibition enhanced radiation-induced apoptosis in gliomainitiating cells. Neuro Oncol 2012; 14:745-60. [PMID: 22573309 DOI: 10.1093/neuonc/nos088] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glioblastomas present as diffuse tumors with invasion into normal brain tissue and frequently recur or progress after radiation as focal masses because of glioma-initiating cells. The role of the urokinase-type plasminogen activator receptor (uPAR) and cathepsin B in stem-like phenotype has been extensively studied in several solid tumors. In the present study, we demonstrated that selection of glioma-initiating cells using CD133 expression leads to a specific enrichment of CD133(+) cells in both U87 and 4910 cells. In addition, CD133(+) cells exhibited a considerable amount of other stem cell markers, such as Nestin and Sox-2. Radiation treatment significantly enhanced uPAR and cathepsin B levels in glioma-initiating cells. To downregulate radiation-induced uPAR and cathepsin B expression, we used a bicistronic shRNA construct that simultaneously targets both uPAR and cathepsin B (pCU). Downregulation of uPAR and cathepsin B using pCU decreased radiation-enhanced uPAR and cathepsin B levels and caused DNA damage-induced apoptosis in glioma cell lines and glioma-initiating cells. The most striking finding of this study is that knockdown of uPAR and cathepsin B inhibited ongoing transcription by suppressing BrUTP incorporation at γH2AX foci. In addition, uPAR and cathepsin B gene silencing inversely regulated survivin and H2AX expression in both glioma cells and glioma-initiating cells. Pretreatment with pCU reduced radiation-enhanced expression of uPAR, cathepsin B, and survivin and enhanced DNA damage in pre-established glioma in nude mice. Taken together, our in vitro and in vivo findings suggest that uPAR and cathepsin B inhibition might serve as an adjunct to radiation therapy to target glioma-initiating cells and, therefore, for the treatment of glioma.
Collapse
Affiliation(s)
- Rama Rao Malla
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605, USA
| | | | | | | | | | | |
Collapse
|
18
|
Vance S, Liu E, Zhao L, Parsels JD, Parsels LA, Brown JL, Maybaum J, Lawrence TS, Morgan MA. Selective radiosensitization of p53 mutant pancreatic cancer cells by combined inhibition of Chk1 and PARP1. Cell Cycle 2011; 10:4321-9. [PMID: 22134241 DOI: 10.4161/cc.10.24.18661] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We have recently shown that inhibition of HRR (homologous recombination repair) by Chk1 (checkpoint kinase 1) inhibition radiosensitizes pancreatic cancer cells and others have demonstrated that Chk1 inhibition selectively sensitizes p53 mutant tumor cells. Furthermore, PARP1 [poly (ADP-ribose) polymerase-1] inhibitors dramatically radiosensitize cells with DNA double strand break repair defects. Thus, we hypothesized that inhibition of HRR (mediated by Chk1 via AZD7762) and PARP1 [via olaparib (AZD2281)] would selectively sensitize p53 mutant pancreatic cancer cells to radiation. We also used 2 isogenic p53 cell models to assess the role of p53 status in cancer cells and intestinal epithelial cells to assess overall cancer specificity. DNA damage response and repair were assessed by flow cytometry, γH2AX, and an HRR reporter assay. We found that the combination of AZD7762 and olaparib produced significant radiosensitization in p53 mutant pancreatic cancer cells and in all of the isogenic cancer cell lines. The magnitude of radiosensitization by AZD7762 and olaparib was greater in p53 mutant cells compared with p53 wild type cells. Importantly, normal intestinal epithelial cells were not radiosensitized. The combination of AZD7762 and olaparib caused G 2 checkpoint abrogation, inhibition of HRR, and persistent DNA damage responses. These findings demonstrate that the combination of Chk1 and PARP1 inhibition selectively radiosensitizes p53 mutant pancreatic cancer cells. Furthermore, these studies suggest that inhibition of HRR by Chk1 inhibitors may be a useful strategy for selectively inducing a BRCA1/2 'deficient-like' phenotype in p53 mutant tumor cells, while sparing normal tissue.
Collapse
Affiliation(s)
- Sean Vance
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Parsels LA, Qian Y, Tanska DM, Gross M, Zhao L, Hassan MC, Arumugarajah S, Parsels JD, Hylander-Gans L, Simeone DM, Morosini D, Brown JL, Zabludoff SD, Maybaum J, Lawrence TS, Morgan MA. Assessment of chk1 phosphorylation as a pharmacodynamic biomarker of chk1 inhibition. Clin Cancer Res 2011; 17:3706-15. [PMID: 21482692 DOI: 10.1158/1078-0432.ccr-10-3082] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE Chk1 inhibitors, such as AZD7762, are in clinical development in combination with cytotoxic agents for the treatment of solid tumors, including pancreatic cancers. To maximize the likelihood of their clinical success, it is essential to optimize drug scheduling as well as pharmacodynamic biomarkers in preclinical models. EXPERIMENTAL DESIGN We tested multiple schedules of administration of gemcitabine and AZD7762 on the survival of pancreatic cancer cells. Potential pharmacodynamic biomarkers including pChk1, pChk2, pHistone H3, and caspase-3 were evaluated in vitro, followed by assessment of promising candidate biomarkers in vivo. We then went on to determine the contributions of PP2A and DNA damage to the mechanism(s) of induction of the identified biomarker, pS345 Chk1. RESULTS AZD7762 given during and after or after gemcitabine administration produced maximum chemosensitization. In vivo, AZD7762 significantly inhibited the growth of pancreatic tumor xenografts in response to gemcitabine. Of the biomarkers assessed, pS345 Chk1 was most consistently increased in response to gemcitabine and AZD7762 in tumors and normal tissues (hair follicles). pS345 Chk1 induction in response to gemcitabine and AZD7762 occurred in the presence of PP2A inhibition and in association with elevated γH2AX, suggesting that DNA damage is an underlying mechanism. CONCLUSIONS AZD7762 sensitizes pancreatic cancer cells and tumors to gemcitabine in association with induction of pS345 Chk1. Together these data support the clinical investigation of AZD7762 with gemcitabine in pancreatic cancer under a dosing schedule in which gemcitabine is administered concurrent with or before AZD7762 and in conjunction with skin biopsies to measure pS345 Chk1.
Collapse
Affiliation(s)
- Leslie A Parsels
- Departments of Radiation Oncology, Pharmacology, and Surgery, University of Michigan Medical School, Ann Arbor, MI 48109-5637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Morgan MA, Parsels LA, Zhao L, Parsels JD, Davis MA, Hassan MC, Arumugarajah S, Hylander-Gans L, Morosini D, Simeone DM, Canman CE, Normolle DP, Zabludoff SD, Maybaum J, Lawrence TS. Mechanism of radiosensitization by the Chk1/2 inhibitor AZD7762 involves abrogation of the G2 checkpoint and inhibition of homologous recombinational DNA repair. Cancer Res 2010; 70:4972-81. [PMID: 20501833 DOI: 10.1158/0008-5472.can-09-3573] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The median survival for patients with locally advanced pancreatic cancer treated with gemcitabine and radiation is approximately 1 year. To develop improved treatment, we have combined a Chk1/2-targeted agent, AZD7762, currently in phase I clinical trials, with gemcitabine and ionizing radiation in preclinical pancreatic tumor models. We found that in vitro AZD7762 alone or in combination with gemcitabine significantly sensitized MiaPaCa-2 cells to radiation. AZD7762 inhibited Chk1 autophosphorylation (S296 Chk1), stabilized Cdc25A, and increased ATR/ATM-mediated Chk1 phosphorylation (S345 Chk1). Radiosensitization by AZD7762 was associated with abrogation of the G(2) checkpoint as well as with inhibition of Rad51 focus formation, inhibition of homologous recombination repair, and persistent gamma-H2AX expression. AZD7762 was also a radiation sensitizer in multiple tumor xenograft models. In both MiaPaCa-2- and patient-derived xenografts, AZD7762 significantly prolonged the median time required for tumor volume doubling in response to gemcitabine and radiation. Together, our findings suggest that G(2) checkpoint abrogation and homologous recombination repair inhibition both contribute to sensitization by Chk1 inhibition. Furthermore, they support the clinical use of AZD7762 in combination with gemcitabine and radiation for patients with locally advanced pancreatic cancer.
Collapse
Affiliation(s)
- Meredith A Morgan
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5637, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dickey JS, Redon CE, Nakamura AJ, Baird BJ, Sedelnikova OA, Bonner WM. H2AX: functional roles and potential applications. Chromosoma 2009; 118:683-92. [PMID: 19707781 DOI: 10.1007/s00412-009-0234-4] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 07/24/2009] [Accepted: 07/30/2009] [Indexed: 12/28/2022]
Abstract
Upon DNA double-strand break (DSB) induction in mammals, the histone H2A variant, H2AX, becomes rapidly phosphorylated at serine 139. This modified form, termed gamma-H2AX, is easily identified with antibodies and serves as a sensitive indicator of DNA DSB formation. This review focuses on the potential clinical applications of gamma-H2AX detection in cancer and in response to other cellular stresses. In addition, the role of H2AX in homeostasis and disease will be discussed. Recent work indicates that gamma-H2AX detection may become a powerful tool for monitoring genotoxic events associated with cancer development and tumor progression.
Collapse
Affiliation(s)
- Jennifer S Dickey
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Histone H2AX phosphorylation on a serine four residues from the carboxyl terminus (producing gammaH2AX) is a sensitive marker for DNA double-strand breaks (DSBs). DSBs may lead to cancer but, paradoxically, are also used to kill cancer cells. Using gammaH2AX detection to determine the extent of DSB induction may help to detect precancerous cells, to stage cancers, to monitor the effectiveness of cancer therapies and to develop novel anticancer drugs.
Collapse
Affiliation(s)
- William M Bonner
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|