1
|
Roca CP, Burton OT, Gergelits V, Prezzemolo T, Whyte CE, Halpert R, Kreft Ł, Collier J, Botzki A, Spidlen J, Humblet-Baron S, Liston A. AutoSpill is a principled framework that simplifies the analysis of multichromatic flow cytometry data. Nat Commun 2021; 12:2890. [PMID: 34001872 PMCID: PMC8129071 DOI: 10.1038/s41467-021-23126-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Compensating in flow cytometry is an unavoidable challenge in the data analysis of fluorescence-based flow cytometry. Even the advent of spectral cytometry cannot circumvent the spillover problem, with spectral unmixing an intrinsic part of such systems. The calculation of spillover coefficients from single-color controls has remained essentially unchanged since its inception, and is increasingly limited in its ability to deal with high-parameter flow cytometry. Here, we present AutoSpill, an alternative method for calculating spillover coefficients. The approach combines automated gating of cells, calculation of an initial spillover matrix based on robust linear regression, and iterative refinement to reduce error. Moreover, autofluorescence can be compensated out, by processing it as an endogenous dye in an unstained control. AutoSpill uses single-color controls and is compatible with common flow cytometry software. AutoSpill allows simpler and more robust workflows, while reducing the magnitude of compensation errors in high-parameter flow cytometry.
Collapse
Affiliation(s)
- Carlos P Roca
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK.
| | - Oliver T Burton
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Václav Gergelits
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Teresa Prezzemolo
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Carly E Whyte
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | | | | | | | | | | | - Stéphanie Humblet-Baron
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Adrian Liston
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK.
| |
Collapse
|
2
|
McTernan PM, Katz PS, Porretta C, Welsh DA, Siggins RW. A Novel FACS-Based Workflow for Simultaneous Assessment of RedOx Status, Cellular Phenotype, and Mitochondrial Genome Stability. BIOCHEM 2021; 1:1-18. [PMID: 35937039 PMCID: PMC9355044 DOI: 10.3390/biochem1010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Intracellular reduction-oxidation (RedOx) status mediates a myriad of critical biological processes. Importantly, RedOx status regulates the differentiation of hematopoietic stem and progenitor cells (HSPCs), mesenchymal stromal cells (MSCs) and maturation of CD8+ T Lymphocytes. In most cells, mitochondria are the greatest contributors of intracellular reactive oxygen species (ROS). Excess ROS leads to mitochondrial DNA (mtDNA) damage and protein depletion. We have developed a fluorescence-activated cell sorting (FACS)-based protocol to simultaneously analyze RedOx status and mtDNA integrity. This simultaneous analysis includes measurements of ROS (reduced glutathione (GSH)), ATP5H (nuclear encoded protein), MTCO1 (mitochondrial DNA encoded protein), and cell surface markers to allow discrimination of different cell populations. Using the ratio of MTCO1 to ATP5H median fluorescence intensity (MFI), we can gain an understanding of mtDNA genomic stability, since MTCO1 levels are decreased when mtDNA becomes significantly damaged. Furthermore, this workflow can be optimized for sorting cells, using any of the above parameters, allowing for downstream quantification of mtDNA genome copies/nucleus by quantitative PCR (qPCR). This unique methodology can be used to enhance analyses of the impacts of pharmacological interventions, as well as physiological and pathophysiological processes on RedOx status along with mitochondrial dynamics in most cell types.
Collapse
Affiliation(s)
- Patrick M. McTernan
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Paige S. Katz
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Constance Porretta
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - David A. Welsh
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Robert W. Siggins
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Correspondence: ; Tel.: +1-504-568-2045
| |
Collapse
|
3
|
Involvement of Histamine 2 Receptor in Alpha 1 Adrenoceptor Mediated Cardiac Hypertrophy and Oxidative Stress in H9c2 Cardio Myoblasts. J Cardiovasc Transl Res 2020; 14:184-194. [PMID: 32385805 DOI: 10.1007/s12265-020-09967-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/06/2020] [Indexed: 01/01/2023]
Abstract
Despite the involvement of ɑ1adrenergic (ɑ1AR) and Histamine 2 receptors (H2R) in cardiac hypertrophy (CH), their relationship is yet to be studied. Our study investigated interrelationship between them using in vitro CH model. H9c2 cardiomyoblasts were exposed to phenylephrine (ɑ1AR agonist-50 μM) in the presence, the absence of famotidine (H2R antagonist-10 μM) and BAY 11-7082 (NF-kB inhibitor-10 μM). The impact of ɑ1AR stimulation on H2R expression and oxidative stress was assessed. Hypertrophic indices were assessed from activities of enzymatic mediators of cardiac hypertrophy, total protein content, BNP levels and cell volume. Additionally, the inverse agonistic property of famotidine and NFkB activity was also studied. ɑ1AR-induced H2R expression, oxidative stress and hypertrophic indices were significantly abolished by famotidine and pharmacological inhibitor of NFkB. Increase in constitutive activity of H2R was noticed correlating with increased receptor population. These results suggest involvement of NFkB-mediated upregulation of H2R in ɑ1AR-mediated CH.
Collapse
|
4
|
Aktar K, Kafi A, Dahiya R. Association of Gpx1 fluctuation in cell cycle progression. In Vitro Cell Dev Biol Anim 2019; 55:94-103. [PMID: 30632027 DOI: 10.1007/s11626-018-00314-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 12/09/2018] [Indexed: 01/19/2023]
Abstract
This research demonstrates fluctuation of glutathione peroxidase1 (Gpx1) throughout cell cycle progression with significant decreased expression at mitosis of HeLa cell. This was achieved with western blot (WB) analysis of target proteins from each phase of synchronized cells. The synchronizations were performed with double thymidine (T/T) for G1/S arrest and thymidine followed by nocodazole (T/N) for G2/M arrest. The G1/S arrested cells were released in fresh medium for 3, 6, 9, 10, and 15h to obtain cell at each phase such as gap1 (G1), synthesis (S), gap2 (G2), mitosis (M), and gap1 (G1) phase, respectively, for investigating Gpx1 expression throughout a complete cycle. The synchronizations were confirmed using fluorescence activated cell sorting (FACS) and WB analysis of phase-specific markers. The fluctuations of Gpx1 expression were verified with universal protein actin and peroxiredoxin1 (Prx1) which are stable throughout the cell cycle. Intriguingly, immunoblots showed the level of Gpx1 decreases at mitosis phase and increased during mitotic exit to G1 phase in HeLa cells, while Prx1 protein level remained constant. The fractionation experiments reveal that only the cytosolic Gpx1 was decreased while their levels at mitochondria remain constant. The highest levels of mitochondrial ROS were measured in mitosis phase with FACS analysis using Mito sox indicating that antioxidant activity of Gpx1 for detoxifying excessive induced endogenous reactive oxygen species (ROS) in the mitosis phase could be the reason for such decreasing level. For unfolding the molecular mechanism of such decreased expression, the Gpx1 was investigated at transcriptional, translational, and proteosomal level. The results revealed that translational mechanism is involve in the decreased expression rather than transcriptional or proteosomal degradation at mitosis phase. This finding supports that Gpx1 is involved in the cell cycle progression through regulation of endogenous ROS. Based on this observation, further research could uncover their possible association with the infinitive division of a cancer cell.
Collapse
Affiliation(s)
- Khudishta Aktar
- BEST group, School of Engineering, University of Glasgow, Glasgow, UK
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Abdul Kafi
- BEST group, School of Engineering, University of Glasgow, Glasgow, UK
| | - Ravinder Dahiya
- BEST group, School of Engineering, University of Glasgow, Glasgow, UK.
| |
Collapse
|
5
|
La Sala L, Mrakic-Sposta S, Micheloni S, Prattichizzo F, Ceriello A. Glucose-sensing microRNA-21 disrupts ROS homeostasis and impairs antioxidant responses in cellular glucose variability. Cardiovasc Diabetol 2018; 17:105. [PMID: 30037352 PMCID: PMC6055345 DOI: 10.1186/s12933-018-0748-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/17/2018] [Indexed: 01/09/2023] Open
Abstract
Background Antioxidant enzymes play a fundamental role in counteracting oxidative stress induced by high glucose. Although mitochondrial superoxide dismutase (SOD2) is the principal defence against the toxicity of superoxide anions, the mechanism of its inactivation in diabetic subjects is still poorly understood. Recently, microRNA-21 has been associated with diabetes, although its function remains unclear. We sought to explore the mechanism underlying defective SOD2 antioxidant response in HUVECs during exposures to constant high glucose and oscillating glucose (as glucose variability model, GV) and the role of miR-21 in increasing the susceptibility to oxidative stress by disrupting reactive oxygen species (ROS) homeostasis. Methods HUVECs exposed for 1 week to constant high glucose and GV were subjected to quantitative electron paramagnetic resonance for ROS measurements. Superoxide anions, SOD2 protein levels and mitochondrial membrane potential (ΔΨm) were also evaluated. Endogenous miR-21 and its putative ROS-homeostatic target genes (KRIT1, FoxO1, NFE2L2 and SOD2) were tested using mimic-miR-21 and quantified by qPCR. Luciferase assays were performed to test miR-21/3′-UTR-SOD2 binding. Results We observed upregulation of microRNA-21, overproduction of superoxide anions and total ROS generation, depolarisation of the mitochondrial membrane potential (ΔΨm) and defective SOD2 antioxidant response in HUVECs subjected to constant high glucose and GV exposures. We also found that exogenous mimic-microRNA-21 targeted putative microRNA-21 ROS-homeostatic target genes, e.g., KRIT1, NRF2 and SOD2, which were significantly downregulated. All these effects were reverted by a microRNA-21 inhibitor, which improved SOD2 and KRIT1 expression, reduced the levels of ROS production and ameliorated ΔΨm. Conclusions Our data demonstrate the association of microRNA-21 with oscillating and high glucose and early mitochondrial dysfunction. We found that microRNA-21 may promote the suppression of homeostatic signalling that normally limits ROS damage. These data provide novel clues about the inhibition of microRNA-21 as a new therapeutic approach to protect against cellular oxidative injury in glucose variability and diabetes. Electronic supplementary material The online version of this article (10.1186/s12933-018-0748-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lucia La Sala
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy.
| | - Simona Mrakic-Sposta
- Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy
| | - Stefano Micheloni
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy
| | - Francesco Prattichizzo
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy
| | - Antonio Ceriello
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| |
Collapse
|
6
|
Avior Y, Lezmi E, Yanuka D, Benvenisty N. Modeling Developmental and Tumorigenic Aspects of Trilateral Retinoblastoma via Human Embryonic Stem Cells. Stem Cell Reports 2017; 8:1354-1365. [PMID: 28392220 PMCID: PMC5425613 DOI: 10.1016/j.stemcr.2017.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
Human embryonic stem cells (hESCs) provide a platform for studying human development and understanding mechanisms underlying diseases. Retinoblastoma-1 (RB1) is a key regulator of cell cycling, of which biallelic inactivation initiates retinoblastoma, the most common congenital intraocular malignancy. We developed a model to study the role of RB1 in early development and tumor formation by generating RB1-null hESCs using CRISPR/Cas9. RB1−/− hESCs initiated extremely large teratomas, with neural expansions similar to those of trilateral retinoblastoma tumors, in which retinoblastoma is accompanied by intracranial neural tumors. Teratoma analysis further revealed a role for the transcription factor ZEB1 in RB1-mediated ectoderm differentiation. Furthermore, RB1−/− cells displayed mitochondrial dysfunction similar to poorly differentiated retinoblastomas. Screening more than 100 chemotherapies revealed an RB1–/–-specific cell sensitivity to carboplatin, exploiting their mitochondrial dysfunction. Together, our work provides a human pluripotent cell model for retinoblastoma and sheds light on developmental and tumorigenic roles of RB1. RB1-null hESCs were generated using CRISPR/Cas9 RB1−/− hESCs generate large, neural-enriched teratomas, possibly by ZEB1 activation RB1 inactivation triggers aberrant mitochondrial abundance and function Unbiased drug screening found that carboplatin specifically targets RB1-null cells
Collapse
Affiliation(s)
- Yishai Avior
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
| | - Elyad Lezmi
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
| | - Dorit Yanuka
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel.
| |
Collapse
|
7
|
Waldman M, Bellner L, Vanella L, Schragenheim J, Sodhi K, Singh SP, Lin D, Lakhkar A, Li J, Hochhauser E, Arad M, Darzynkiewicz Z, Kappas A, Abraham NG. Epoxyeicosatrienoic Acids Regulate Adipocyte Differentiation of Mouse 3T3 Cells, Via PGC-1α Activation, Which Is Required for HO-1 Expression and Increased Mitochondrial Function. Stem Cells Dev 2016; 25:1084-94. [PMID: 27224420 DOI: 10.1089/scd.2016.0072] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epoxyeicosatrienoic acid (EET) contributes to browning of white adipose stem cells to ameliorate obesity/diabetes and insulin resistance. In the current study, we show that EET altered preadipocyte function, enhanced peroxisome proliferation-activated receptor γ coactivator α (PGC-1α) expression, and increased mitochondrial function in the 3T3-L1 preadipocyte subjected to adipogenesis. Cells treated with EET resulted in an increase, P < 0.05, in PGC-1α and a decrease in mitochondria-derived ROS (MitoSox), P < 0.05. The EET increase in heme oxygenase-1 (HO-1) levels is dependent on activation of PGC-1α as cells deficient in PGC-1α (PGC-1α knockout adipocyte cell) have an impaired ability to express HO-1, P < 0.02. Additionally, adipocytes treated with EET exhibited an increase in mitochondrial superoxide dismutase (SOD) in a PGC-1α-dependent manner, P < 0.05. The increase in PGC-1α was associated with an increase in β-catenin, P < 0.05, adiponectin expression, P < 0.05, and lipid accumulation, P < 0.02. EET decreased heme levels and mitochondria-derived ROS (MitoSox), P < 0.05, compared to adipocytes that were untreated. EET also decreased mesoderm-specific transcript (MEST) mRNA and protein levels (P < 0.05). Adipocyte secretion of EET act in an autocrine/paracrine manner to increase PGC-1α is required for activation of HO-1 expression. This is the first study to dissect the mechanism by which the antiadipogenic and anti-inflammatory lipid, EET, induces the PGC-1α signaling cascade and reprograms the adipocyte phenotype by regulating mitochondrial function and HO-1 expression, leading to an increase in healthy, that is, small, adipocytes and a decrease in adipocyte enlargement and terminal differentiation. This is manifested by an increase in mitochondrial function and an increase in the canonical Wnt signaling cascade during adipocyte proliferation and terminal differentiation.
Collapse
Affiliation(s)
- Maayan Waldman
- 1 Department of Pharmacology, New York Medical College , Valhalla, New York.,2 Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel-Aviv University , Petah-Tikva, Israel
| | - Lars Bellner
- 1 Department of Pharmacology, New York Medical College , Valhalla, New York
| | - Luca Vanella
- 1 Department of Pharmacology, New York Medical College , Valhalla, New York.,3 University of Catania , Department of Drug Science/Section of Biochemistry, Catania, Italy
| | | | - Komal Sodhi
- 4 Departments of Medicine and Surgery, Joan C. Edwards School of Medicine, Marshall University , Huntington, West Virginia
| | - Shailendra P Singh
- 1 Department of Pharmacology, New York Medical College , Valhalla, New York
| | - Daohong Lin
- 1 Department of Pharmacology, New York Medical College , Valhalla, New York
| | - Anand Lakhkar
- 1 Department of Pharmacology, New York Medical College , Valhalla, New York
| | - Jiangwei Li
- 5 Department of Pathology, New York Medical College , Valhalla, New York
| | - Edith Hochhauser
- 2 Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel-Aviv University , Petah-Tikva, Israel
| | - Michael Arad
- 6 Leviev Heart Center, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University , Tel Hashomer, Israel
| | | | | | - Nader G Abraham
- 1 Department of Pharmacology, New York Medical College , Valhalla, New York.,4 Departments of Medicine and Surgery, Joan C. Edwards School of Medicine, Marshall University , Huntington, West Virginia.,7 The Rockefeller University , New York, New York.,8 Department of Medicine, New York Medical College , Valhalla, New York
| |
Collapse
|
8
|
Yang JI, Tang JY, Liu YS, Wang HR, Lee SY, Yen CY, Chang HW. Roe Protein Hydrolysates of Giant Grouper (Epinephelus lanceolatus) Inhibit Cell Proliferation of Oral Cancer Cells Involving Apoptosis and Oxidative Stress. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8305073. [PMID: 27195297 PMCID: PMC4852358 DOI: 10.1155/2016/8305073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/01/2016] [Accepted: 03/21/2016] [Indexed: 12/14/2022]
Abstract
Roe protein hydrolysates were reported to have antioxidant property but the anticancer effects were less addressed, especially for oral cancer. In this study, we firstly used the ultrafiltrated roe hydrolysates (URH) derived from giant grouper (Epinephelus lanceolatus) to evaluate the impact of URH on proliferation against oral cancer cells. We found that URH dose-responsively reduced cell viability of two oral cancer cells (Ca9-22 and CAL 27) in terms of ATP assay. Using flow cytometry, URH-induced apoptosis of Ca9-22 cells was validated by morphological features of apoptosis, sub-G1 accumulation, and annexin V staining in dose-responsive manners. URH also induced oxidative stress in Ca9-22 cells in terms of reactive oxygen species (ROS)/superoxide generations and mitochondrial depolarization. Taken together, these data suggest that URH is a potential natural product for antioral cancer therapy.
Collapse
Affiliation(s)
- Jing-Iong Yang
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80708, Taiwan
| | - Ya-Sin Liu
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan
| | - Hui-Ru Wang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sheng-Yang Lee
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
- Division of Orthodontics, Wan-Fang Medical Center, Taipei Medical University, Taipei 11648, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Research Resources and Development of Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
9
|
Li R, Jen N, Wu L, Lee J, Fang K, Quigley K, Lee K, Wang S, Zhou B, Vergnes L, Chen YR, Li Z, Reue K, Ann DK, Hsiai TK. Disturbed Flow Induces Autophagy, but Impairs Autophagic Flux to Perturb Mitochondrial Homeostasis. Antioxid Redox Signal 2015; 23:1207-19. [PMID: 26120766 PMCID: PMC4657520 DOI: 10.1089/ars.2014.5896] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM Temporal and spatial variations in shear stress are intimately linked with vascular metabolic effects. Autophagy is tightly regulated in intracellular bulk degradation/recycling system for maintaining cellular homeostasis. We postulated that disturbed flow modulates autophagy with an implication in mitochondrial superoxide (mtO2(•-)) production. RESULTS In the disturbed flow or oscillatory shear stress (OSS)-exposed aortic arch, we observed prominent staining of p62, a reverse marker of autophagic flux, whereas in the pulsatile shear stress (PSS)-exposed descending aorta, p62 was attenuated. OSS significantly increased (i) microtubule-associated protein light chain 3 (LC3) II to I ratios in human aortic endothelial cells, (ii) autophagosome formation as quantified by green fluorescent protein (GFP)-LC3 dots per cell, and (iii) p62 protein levels, whereas manganese superoxide dismutase (MnSOD) overexpression by recombinant adenovirus, N-acetyl cysteine treatment, or c-Jun N-terminal kinase (JNK) inhibition reduced OSS-mediated LC3-II/LC3-I ratios and mitochondrial DNA damage. Introducing bafilomycin to Earle's balanced salt solution or to OSS condition incrementally increased both LC3-II/LC3-I ratios and p62 levels, implicating impaired autophagic flux. In the OSS-exposed aortic arch, both anti-phospho-JNK and anti-8-hydroxy-2'-deoxyguanosine (8-OHdG) staining for DNA damage were prominent, whereas in the PSS-exposed descending aorta, the staining was nearly absent. Knockdown of ATG5 with siRNA increased OSS-mediated mtO2(•-), whereas starvation or rapamycin-induced autophagy reduced OSS-mediated mtO2(•-), mitochondrial respiration, and complex II activity. INNOVATION Disturbed flow-mediated oxidative stress and JNK activation induce autophagy. CONCLUSION OSS impairs autophagic flux to interfere with mitochondrial homeostasis. Antioxid. Redox Signal. 23, 1207-1219.
Collapse
Affiliation(s)
- Rongsong Li
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Nelson Jen
- 2 Department of Bioengineering, UCLA Henry Samueli School of Engineering and Applied Science , Los Angeles, California
| | - Lan Wu
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Juhyun Lee
- 2 Department of Bioengineering, UCLA Henry Samueli School of Engineering and Applied Science , Los Angeles, California
| | - Karen Fang
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Katherine Quigley
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Katherine Lee
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Sky Wang
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Bill Zhou
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Laurent Vergnes
- 3 Department of Human Genetics, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Yun-Ru Chen
- 4 Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center , Duarte, California
| | - Zhaoping Li
- 5 Department of Medicine, VA Greater Los Angeles Healthcare System, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Karen Reue
- 3 Department of Human Genetics, UCLA David Geffen School of Medicine , Los Angeles, California
| | - David K Ann
- 4 Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center , Duarte, California
| | - Tzung K Hsiai
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California.,2 Department of Bioengineering, UCLA Henry Samueli School of Engineering and Applied Science , Los Angeles, California.,5 Department of Medicine, VA Greater Los Angeles Healthcare System, UCLA David Geffen School of Medicine , Los Angeles, California
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Blood flow is intimately linked with cardiovascular development, repair and dysfunction. The current review will build on the fluid mechanical principle underlying haemodynamic shear forces, mechanotransduction and metabolic effects. RECENT FINDINGS Pulsatile flow produces both time (∂τ/∂t) and spatial-varying shear stress (∂τ/∂x) to modulate vascular oxidative stress and inflammatory response with pathophysiological significance to atherosclerosis. The characteristics of haemodynamic shear forces, namely, steady laminar (∂τ/∂t = 0), pulsatile shear stress (PSS: unidirectional forward flow) and oscillatory shear stress (bidirectional with a near net 0 forward flow), modulate mechano-signal transduction to influence metabolic effects on vascular endothelial function. Atheroprotective PSS promotes antioxidant, anti-inflammatory and antithrombotic responses, whereas atherogenic oscillatory shear stress induces nicotinamide adenine dinucleotide phosphate oxidase-JNK signalling to increase mitochondrial superoxide production, protein degradation of manganese superoxide dismutase and post-translational protein modifications of LDL particles in the disturbed flow-exposed regions of vasculature. In the era of tissue regeneration, shear stress has been implicated in reactivation of developmental genes, namely, Wnt and Notch signalling, for vascular development and repair. SUMMARY Blood flow imparts a dynamic continuum from vascular development to repair. Augmentation of PSS confers atheroprotection and reactivation of developmental signalling pathways for regeneration.
Collapse
Affiliation(s)
- Juhyun Lee
- Department of Bioengineering, Department of Medicine, all at the University of California, Los Angeles, Los Angeles, California
| | - René R. Sevag Packard
- Department of Molecular, Cellular and Integrative Physiology, Department of Medicine, all at the University of California, Los Angeles, Los Angeles, California
- Division of Cardiology, Department of Medicine, all at the University of California, Los Angeles, Los Angeles, California
| | - Tzung K. Hsiai
- Department of Bioengineering, Department of Medicine, all at the University of California, Los Angeles, Los Angeles, California
- Department of Molecular, Cellular and Integrative Physiology, Department of Medicine, all at the University of California, Los Angeles, Los Angeles, California
- Division of Cardiology, Department of Medicine, all at the University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
11
|
Inchingolo F, Marrelli M, Annibali S, Cristalli MP, Dipalma G, Inchingolo AD, Palladino A, Inchingolo AM, Gargari M, Tatullo M. Influence of endodontic treatment on systemic oxidative stress. Int J Med Sci 2014; 11:1-6. [PMID: 24396280 PMCID: PMC3880985 DOI: 10.7150/ijms.6663] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/26/2013] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION An increased production of oxidizing species related to reactive oral diseases, such as chronic apical periodontitis, could have systemic implications such as an increase in cardiovascular morbidity. Based on this consideration, we conducted a prospective study to assess whether subjects affected by chronic periodontitis presented with higher values of oxidative stress than reference values before endodontic treatment, and whether endodontic treatment can reduce the oxidative imbalance and bring it back to normal in these subjects. MATERIALS AND METHODS The authors recruited 2 groups of patients from private studies and dental clinics: these patients were recruited randomly. The oxidative balance in both patients with chronic apical periodontitis (CAP) and healthy control patients was determined by measuring the oxidant status, using an identification of the reactive oxygen metabolites (d-ROMs) test, while the antioxidant status in these patients was determined using a biological antioxidant potential (BAP) test. Both these tests were carried on plasma samples taken from enrolled patients. Values were measured both before the endodontic treatment of the patients with chronic apical periodontitis, and 30 and 90 days after treatment, and compared to those obtained from healthy control patients. RESULTS It was found that, on recruitment, the patients with chronic apical periodontitis exhibited significantly higher levels of oxidative stress than control patients, as determined by the d-ROMs and BAP tests. Furthermore, the d-ROMs test values were shown to decrease and the BAP test values to increase over time in patients with chronic apical periodontitis following endodontic therapy. As the levels of oxidative stress in these patients tended to reduce and return to normal by 90 days following treatment. CONCLUSIONS This study has demonstrated a positive association between chronic apical periodontitis and oxidative stress. Subjects affected by chronic apical periodontitis are exposed to a condition of oxidative stress, which is extremely dangerous to general health. Moreover, one can infer from these findings that through proper endodontic therapy, a good oxidative balance can be restored, thereby avoiding the risk of contracting the abovementioned diseases.
Collapse
Affiliation(s)
- Francesco Inchingolo
- 1. Department of interdisciplinary Medicine, University of Bari, General Hospital, Bari, Italy
| | - Massimo Marrelli
- 2. Unit of Maxillofacial Surgery, Calabrodental, Crotone, Italy; ; 4. Tecnologica Research Institute, Biomedical Section, Crotone, Italy
| | - Susanna Annibali
- 6. Department of Stomatology and Maxillofacial Science - Oral Surgery Unit - University of Rome "Sapienza" Rome, Italy
| | - Maria Paola Cristalli
- 6. Department of Stomatology and Maxillofacial Science - Oral Surgery Unit - University of Rome "Sapienza" Rome, Italy
| | - Gianna Dipalma
- 2. Unit of Maxillofacial Surgery, Calabrodental, Crotone, Italy
| | | | | | - Angelo Michele Inchingolo
- 5. Department of Surgical, Reconstructive, and Diagnostic Sciences, University of Milan, Milan, Italy
| | - Marco Gargari
- 8. Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Marco Tatullo
- 2. Unit of Maxillofacial Surgery, Calabrodental, Crotone, Italy; ; 3. Department of Basic Medical Sciences, University of Bari, Bari, Italy; ; 4. Tecnologica Research Institute, Biomedical Section, Crotone, Italy
| |
Collapse
|
12
|
Bajić A, Spasić M, Andjus PR, Savić D, Parabucki A, Nikolić-Kokić A, Spasojević I. Fluctuating vs. continuous exposure to H₂O₂: the effects on mitochondrial membrane potential, intracellular calcium, and NF-κB in astroglia. PLoS One 2013; 8:e76383. [PMID: 24124554 PMCID: PMC3790680 DOI: 10.1371/journal.pone.0076383] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/27/2013] [Indexed: 01/08/2023] Open
Abstract
The effects of H2O2 are widely studied in cell cultures and other in vitro systems. However, such investigations are performed with the assumption that H2O2 concentration is constant, which may not properly reflect in vivo settings, particularly in redox-turbulent microenvironments such as mitochondria. Here we introduced and tested a novel concept of fluctuating oxidative stress. We treated C6 astroglial cells and primary astrocytes with H2O2, using three regimes of exposure - continuous, as well as fluctuating at low or high rate, and evaluated mitochondrial membrane potential and other parameters of mitochondrial activity - respiration, reducing capacity, and superoxide production, as well as intracellular ATP, intracellular calcium, and NF-κB activation. When compared to continuous exposure, fluctuating H2O2 induced a pronounced hyperpolarization in mitochondria, whereas the activity of electron transport chain appears not to be significantly affected. H2O2 provoked a decrease of ATP level and an increase of intracellular calcium concentration, independently of the regime of treatment. However, fluctuating H2O2 induced a specific pattern of large-amplitude fluctuations of calcium concentration. An impact on NF-κB activation was observed for high rate fluctuations, whereas continuous and low rate fluctuating oxidative stress did not provoke significant effects. Presented results outline the (patho)physiological relevance of redox fluctuations.
Collapse
Affiliation(s)
- Aleksandar Bajić
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Mihajlo Spasić
- Department of Physiology, Institute for Biological Research ‘Siniša Stanković’, University of Belgrade, Belgrade, Serbia
| | - Pavle R. Andjus
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Danijela Savić
- Department of Neurobiology, Institute for Biological Research ‘Siniša Stanković’, University of Belgrade, Belgrade, Serbia
| | - Ana Parabucki
- Department of Neurobiology, Institute for Biological Research ‘Siniša Stanković’, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Nikolić-Kokić
- Department of Physiology, Institute for Biological Research ‘Siniša Stanković’, University of Belgrade, Belgrade, Serbia
| | - Ivan Spasojević
- Life Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Ma KK, Petroff MG, Coscia LA, Armenti VT, Adams Waldorf KM. Complex chimerism: pregnancy after solid organ transplantation. CHIMERISM 2013; 4:71-7. [PMID: 23974274 DOI: 10.4161/chim.25401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thousands of women with organ transplantation have undergone successful pregnancies, however little is known about how the profound immunologic changes associated with pregnancy might influence tolerance or rejection of the allograft. Pregnant women with a solid organ transplant are complex chimeras with multiple foreign cell populations from the donor organ, fetus, and mother of the pregnant woman. We consider the impact of complex chimerism and pregnancy-associated immunologic changes on tolerance of the allograft both during pregnancy and the postpartum period. Mechanisms of allograft tolerance are likely dynamic during pregnancy and affected by the influx of fetal microchimeric cells, HLA relationships (between the fetus, pregnant woman and/or donor), peripheral T cell tolerance to fetal cells, and fetal minor histocompatibility antigens. Further research is necessary to understand the complex immunology during pregnancy and the postpartum period of women with a solid organ transplant.
Collapse
Affiliation(s)
- Kimberly K Ma
- Department of Obstetrics & Gynecology; University of Washington; Seattle, WA USA
| | | | | | | | | |
Collapse
|