1
|
Tan K, Zhang H, Yang J, Wang H, Li Y, Ding G, Gu P, Yang S, Li J, Fan X. Organelle-oriented nanomedicines in tumor therapy: Targeting, escaping, or collaborating? Bioact Mater 2025; 49:291-339. [PMID: 40161442 PMCID: PMC11953998 DOI: 10.1016/j.bioactmat.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Precise tumor therapy is essential for improving treatment specificity, enhancing efficacy, and minimizing side effects. Targeting organelles is a key strategy for achieving this goal and is a frontier research area attracting a considerable amount of attention. The concept of organelle targeting has a significant effect on the structural design of the nanodrugs employed. Most notably, the intricate interactions among different organelles in a tumor cell essentially create a unified system. Unfortunately, this aspect might have been somewhat overlooked when existing organelle-targeting nanodrugs were designed. In this review, we underscore the synergistic relationship among the various organelles and advocate for a holistic view of organelle-targeting design. Through the integration of biology and material science, recent advancements in organelle targeting, escaping, and collaborating are consolidated to offer fresh perspectives for the development of antitumor nanomedicines.
Collapse
Affiliation(s)
- Kexin Tan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Jianyuan Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Hang Wang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| |
Collapse
|
2
|
Gundesen MT, Schjesvold F, Lund T. Treatment of myeloma bone disease: When, how often, and for how long? J Bone Oncol 2025; 52:100680. [PMID: 40242221 PMCID: PMC12002780 DOI: 10.1016/j.jbo.2025.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
The landscape of MM has changed dramatically in recent years. Several new and more effective treatments have been introduced that not only makes patients live longer but also brings them into a deeper remission. This makes the potential total exposure of bone protective treatment much higher but perhaps also less needed. New and more precise imagining techniques have been introduced making detection of bone disease more sensitive, and the introduction of SLiM-CRAB criteria have changed the parameters used in old clinical trials investigating treatment of MM bone disease. New data have also emerged investigating the effect of the RANKL inhibitor denosumab compared to zoledronic acid (ZOL). Randomized trials have investigated longer treatment durations, which becomes more relevant as patients now live longer. In addition in this review, data regarding interval between individual treatment, impact of remission status, new data in relation to rebound after discontinuation and of denosumab, as well as the rational for drug holidays before dental procedures will also be discussed.
Collapse
Affiliation(s)
| | - Fredrik Schjesvold
- Oslo Myeloma Center, Department of Hematology, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B-Cell Malignancies, University of Oslo, Oslo, Norway
| | - Thomas Lund
- Department of Hematology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Centre for Innovative Medical Technology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
3
|
Saremi Poor A, Davaeil B, Ramezanpour M, Shafiee Ardestani M, Moosavi-Movahedi AA, Asghari SM. Nanoparticle Albumin-Bound Bortezomib: Enhanced Antitumor Efficacy and Tumor Accumulation in Breast Cancer Therapy. Mol Pharm 2025; 22:2482-2493. [PMID: 40223780 DOI: 10.1021/acs.molpharmaceut.4c01283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Nanoparticle albumin-bound (NAB) formulations are emerging as a viable strategy for the intravenous delivery of poorly water-soluble drugs. This study aims to improve the therapeutic profile of Bortezomib (BTZ), addressing its low solubility and significant systemic toxicity through the development of NAB-BTZ nanoparticles. The synthesized nanoparticles exhibited an average size of 296.47 ± 10 nm and a high drug encapsulation efficiency of 75%, and a drug loading of 10%. NAB-BTZ displayed a controlled, pH-sensitive release profile, with 59% release at pH 5.4 (mimicking tumor environments) and 46% at pH 7.4 after 12 h. In vitro assays demonstrated that NAB-BTZ significantly reduced the viability of 4T1 mammary carcinoma cells in a dose- and time-dependent manner, increasing late apoptosis from 6% to 54% after 48 h, compared to 24% for free BTZ. At molecular level, NAB-BTZ induced apoptosis by upregulating p53 and Bax, downregulating Bcl-2, and activating caspases 3 and 7. In vivo tests in a murine 4T1 breast cancer model showed that NAB-BTZ substantially inhibited tumor growth, achieving an average tumor volume of 916 mm3 by day 31 versus 1400 mm3 for free BTZ, leading to an improved survival rate of 100% compared to 83% in the BTZ group. Technetium-99m (99mTc) labeling and SPECT imaging confirmed enhanced targeting capability, showing preferential accumulation of NAB-BTZ in tumor sites compared to free BTZ. These findings suggest that NAB-BTZ not only improves antitumor efficacy but also enhances its safety profile, underscoring its clinical potential in breast cancer therapy.
Collapse
Affiliation(s)
- Anita Saremi Poor
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, 1417614411 Tehran, Iran
| | - Bagher Davaeil
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, 1417614411 Tehran, Iran
| | - Marziyeh Ramezanpour
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, 1417614411 Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, 1461884513 Tehran, Iran
- Research Center for Molecular Medicine, Shariati Hospital, North Kargar Avenue, 1411713135 Tehran, Iran
| | | | - S Mohsen Asghari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, 1417614411 Tehran, Iran
| |
Collapse
|
4
|
Zhang H, Kong X, Qu H, Gao Y, Guan Z, Zhou H, Yin Z, Lu K, Wang W, Zhai X, Jin B. MYCBP2-mediated HNF4α ubiquitination reprogrammed lipid metabolism in MASH-associated hepatocellular carcinoma. Oncogene 2025:10.1038/s41388-025-03373-5. [PMID: 40181155 DOI: 10.1038/s41388-025-03373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/27/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Hepatocellular carcinoma (HCC) is a major global health burden, with metabolic dysfunction-associated steatohepatitis (MASH) emerging as a significant risk factor. The scarcity of effective pharmacological treatments for MASH and its progression to HCC underscores the need for deeper molecular insights. Our study identifies Myc-binding protein 2 (MYCBP2), an E3 ubiquitin ligase, as a potential tumor suppressor in MASH-related HCC. Through transcriptomic and proteomic analyses, we observed significant downregulation of MYCBP2 in HCC tissues. In vitro and in vivo experiments demonstrate that MYCBP2 inhibits HCC cell proliferation, migration, and invasion by modulating lipid metabolism pathways. Mechanistically, MYCBP2 promotes the ubiquitination and degradation of Hepatocyte Nuclear Factor 4 Alpha (HNF4α). This ubiquitination occurs via K33- and K48-linked polyubiquitin chains at lysines 300 and 307 of HNF4α. The results showed that MYCBP2 influences the expression of lipid metabolism-related genes and attenuates HNF4α's regulatory role in lipid metabolism through the mediated ubiquitination and degradation of HNF4α. Our findings elucidate the MYCBP2-HNF4α axis as a novel regulatory pathway in MASH-related HCC and highlight the broader implications of ubiquitination in cancer metabolism, offering a promising metabolic target for therapeutic intervention.
Collapse
Affiliation(s)
- Hao Zhang
- Organ Transplant Department, Qilu Hospital of Shandong University, Jinan, China
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Xiangxu Kong
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China
- The Second Clinical Medical School of Shandong University, Jinan, China
| | - Haoran Qu
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China
- The Second Clinical Medical School of Shandong University, Jinan, China
| | - Yi Gao
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Zhengyao Guan
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China
- The Second Clinical Medical School of Shandong University, Jinan, China
| | - Huaxin Zhou
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China
- The Second Clinical Medical School of Shandong University, Jinan, China
| | - Zhaoqing Yin
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China
- The Second Clinical Medical School of Shandong University, Jinan, China
| | - Kangping Lu
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China
- The Second Clinical Medical School of Shandong University, Jinan, China
| | - Wei Wang
- Medical Integration and Practice Center, Shandong University, Jinan, China.
| | - Xiangyu Zhai
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China.
- The Second Clinical Medical School of Shandong University, Jinan, China.
| | - Bin Jin
- Organ Transplant Department, Qilu Hospital of Shandong University, Jinan, China.
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China.
- The Second Clinical Medical School of Shandong University, Jinan, China.
| |
Collapse
|
5
|
Wang G, Wu W, He D, Wang J, Kong H, Wu W. N6-methyladenosine-mediated upregulation of H19 promotes resistance to bortezomib by modulating the miR-184/CARM1 axis in multiple myeloma. Clin Exp Med 2025; 25:102. [PMID: 40167832 PMCID: PMC11961544 DOI: 10.1007/s10238-025-01624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
Malignant plasma cell proliferation characterizes multiple myeloma (MM), a hematologic disease. Bortezomib (BTZ) is a protease inhibitor that has been approved for the treatment of MM. Nevertheless, the effectiveness of BTZ is frequently impeded by drug resistance, and the mechanisms responsible for this phenomenon remain incompletely understood. A growing body of evidence indicates that N6-methyladenosine (m6A) plays crucial roles in a wide range of biological functions. However, the impact of m6A on the response of MM cells to BTZ is poorly understood. In our recent research, we discovered that METTL3 facilitated the m6A alteration of lncRNA H19, providing MM cells with resistance to BTZ. Additional examination revealed that H19 functioned as a sponge to negatively regulate the expression of miR-184 in MM cells. Furthermore, we discovered that H19 binds to miR-184, a tumor suppressor, in MM cells. In MM cells, miR184 can suppress the expression of CARM1 by targeting its 3'-UTR. In conclusion, rescue trials have validated the significance of the METTL3/H19/miR-184/CARM1 pathway in determining the susceptibility of cells to BTZ. Consequently, directing efforts toward this pathway could prove to be a powerful approach for enhancing the effectiveness of BTZ for MM therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Hematology, The Quzhou Affiliated Hospital of Wenzhou Medical UniversityThe Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang Province, China
| | - Wenping Wu
- Department of Hematology, The Quzhou Affiliated Hospital of Wenzhou Medical UniversityThe Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang Province, China
| | - Donghua He
- Bone Marrow Transplantation Center is Part of the First Affiliated Hospital at the School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jiaheng Wang
- Department of Hematology, The Quzhou Affiliated Hospital of Wenzhou Medical UniversityThe Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang Province, China
| | - Hongwei Kong
- Department of Hematology, The Quzhou Affiliated Hospital of Wenzhou Medical UniversityThe Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang Province, China
| | - Wenjun Wu
- Bone Marrow Transplantation Center is Part of the First Affiliated Hospital at the School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
6
|
Sánchez Salas JA, Moreno Belmonte MJ, Poveda García A, Ruiz Ruiz E, Soler Espejo E, Cabanas Perianes V, García Hernandez AM. Intestinal Perforation Secondary to Bortezomib-Induced Autonomic Neuropathy. Clin Case Rep 2025; 13:e70340. [PMID: 40171013 PMCID: PMC11959410 DOI: 10.1002/ccr3.70340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/04/2025] [Accepted: 03/01/2025] [Indexed: 04/03/2025] Open
Abstract
It is essential to evaluate both the patient's prior conditions and the severity of the current clinical presentation when deciding on BTZ toxicity management. It seems prudent to consider the permanent discontinuation of the drug in patients who have experienced at least grade 3 intestinal neuropathy and have structural abnormalities or other risk factors for intestinal perforation. Trial Registration: NCT03710603.
Collapse
Affiliation(s)
| | | | | | - Estela Ruiz Ruiz
- Department of HematologyVirgen de la Arrixaca University HospitalMurciaSpain
| | - Eva Soler Espejo
- Department of HematologyVirgen de la Arrixaca University HospitalMurciaSpain
| | | | | |
Collapse
|
7
|
Teissonnière M, Point M, Biver E, Hadji P, Bonnelye E, Ebeling PR, Kendler D, de Villiers T, Holzer G, Body JJ, Fuleihan GEH, Brandi ML, Rizzoli R, Confavreux CB. Bone Effects of Anti-Cancer Treatments in 2024. Calcif Tissue Int 2025; 116:54. [PMID: 40146323 PMCID: PMC11950069 DOI: 10.1007/s00223-025-01362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/09/2025] [Indexed: 03/28/2025]
Abstract
Considerable progress has been made in the management of cancer patients in the last decade with the arrival of anti-cancer immunotherapies (immune checkpoint inhibitors) and targeted therapies. As a result, a broad spectrum of cancers, not just hormone-sensitive ones, have seen several patients achieve profound and prolonged remissions, or even cures. The management of medium- and long-term side-effects of treatment and quality of life of patients are essential considerations. This is especially true for bone, as bone fragility can lead to increased fractures and loss of autonomy, ultimately reducing the possibility of resuming physical activity. Physical activity is essential for lasting oncological remission and prevention of fatigue. While the issue of hormone therapies and their association with breast cancer has been recognized for some time, the situation is relatively new with regards to targeted therapies and immunotherapies. This is particularly challenging given the wide range of available targeted therapies and their application to numerous cancer types. This article provides a comprehensive review of the bone effects of the main anti-cancer therapies currently in use. The review goes beyond glucocorticoids and hormone therapies and discusses for each drug category what is known regarding cellular effects, BMD effects, and fracture incidence.
Collapse
Affiliation(s)
- Marie Teissonnière
- Pharmacie, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Mathieu Point
- INSERM UMR1033-LYOS, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Emmanuel Biver
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Peyman Hadji
- Frankfurt Center of Bone Health & Philipps University of Marburg, Frankfurt, Germany
| | - Edith Bonnelye
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - David Kendler
- Department of Medicine (Endocrinology), University of British Columbia, Vancouver, Canada
| | - Tobias de Villiers
- Department Gynaecology, Stellenbosch University, Cape Town, South Africa
| | | | - Jean-Jacques Body
- Department of Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Ghada El Hajj Fuleihan
- Calcium Metabolism and Osteoporosis Program WHO Center for Metabolic Bone Disorders, American University of Beirut, Beirut, Lebanon
| | - Maria Luisa Brandi
- FIRMO Foundation, Florence and University Vita-Salute San Raffaele, Milan, Italy
| | - René Rizzoli
- Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Cyrille B Confavreux
- INSERM UMR1033-LYOS, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.
- Rheumatology Department, Bone Metastasis Expert Center (CEMOS), Hospices Civils of Lyon Cancer Institute (IC-HCL), Hôpital Lyon Sud, Pierre-Bénite, France.
- Centre Expert Des Métastases Osseuses (CEMOS), Service de Rhumatologie Sud, Hôpital Lyon Sud, 165 chemin du Grand Revoyet, 69310, Pierre Bénite, France.
| |
Collapse
|
8
|
Li Z, Huang F, Hao S. Guillain-Barré syndrome in patients with multiple myeloma: three cases report and literature review. BMC Neurol 2025; 25:36. [PMID: 39856633 PMCID: PMC11760682 DOI: 10.1186/s12883-025-04045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Multiple myeloma (MM) with Guillain-Barré syndrome (GBS) is relatively rare, and the specific mechanism is still unclear. The previous infection, surgery, and medication use may have contributed to the occurrence of GBS. The use of bortezomib in patients with MM can easily lead to peripheral neuropathy, which is similar to the symptoms of GBS, making it challenging to diagnose GBS. CASES PRESENTATION Three patients with IgA type MM experienced lower limb weakness during treatment. Combined with lumbar puncture, nerve conduction studies, and other tests, the diagnosis was confirmed as GBS. All three patients had a history of spinal surgery before the onset of GBS, and had been treated with bortezomib which induced peripheral neuropathy. Two of the three patients had a clear history of upper respiratory tract infection before the onset of GBS. After treatment with intravenous immunoglobulin, one patient died and two patients showed improvement in GBS symptoms. CONCLUSION Patients with MM often have concurrent infections and spinal surgery, which may contribute to the occurrence of GBS. The symptoms of bortezomib-induce peripheral neuropathy overlap with those of GBS, which can easily lead to misdiagnosis or missed diagnosis of GBS. Timely lumbar puncture and nerve conduction studies may help to diagnose GBS and improve the prognosis.
Collapse
Affiliation(s)
- Zhichao Li
- Department of Hematology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Fang Huang
- Department of Hematology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Siguo Hao
- Department of Hematology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
9
|
Wang JX, Zhang L, Zhang PW, Yuan LW, Jiang J, Cheng XH, Zhu W, Lei Y, Tian FQ. Boanmycin overcomes bortezomib resistance by inducing DNA damage and endoplasmic reticulum functional impairment in multiple myeloma. Biol Direct 2025; 20:1. [PMID: 39757239 DOI: 10.1186/s13062-024-00590-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a hematological malignancy characterized by uncontrolled proliferation of plasma cells and is currently incurable. Despite advancements in therapeutic strategies, resistance to proteasome inhibitors, particularly bortezomib (BTZ), poses a substantial challenge to disease management. This study aimed to explore the efficacy of boanmycin, a novel antitumor antibiotic, in overcoming resistance to BTZ in MM. METHODS BTZ-resistant cells were generated over a period of at least 6 months by gradually increasing the concentration of BTZ. The viability of MM cell lines and patient bone marrow mononuclear cells (BMMCs) was measured via the CCK8 reagent. The protein levels of cleaved caspase 3, cleaved caspase 7, cleaved PARP, PARP, p-JNK, JNK, and γ-H2AX were analyzed through Western blot. Cellular morphology was observed via transmission electron microscopy. Colony formation ability was evaluated, and cell apoptosis and the cell cycle were detected through flow cytometry. Xenograft experiments were conducted to evaluate the growth of MM cells in vivo. RESULTS Our results demonstrated that boanmycin effectively inhibited cell proliferation and colony formation, and triggered apoptosis in both BTZ-sensitive and BTZ-resistant MM cells. The combination of boanmycin with BTZ had greater inhibitory effects than either drug alone. Furthermore, boanmycin significantly suppressed MM cell growth in immunodeficient mouse xenograft models without inducing distinct toxic side effects. Notably, boanmycin markedly killed patient-derived MM cells ex vivo. Mechanistically, boanmycin not only disrupts the cell cycle and causes DNA damage but also exerts its antitumor effects by inducing endoplasmic reticulum (ER) functional impairment. CONCLUSIONS Our findings highlight the potential of boanmycin as a promising novel therapeutic option for treating MM, particularly in patients with BTZ resistance.
Collapse
Affiliation(s)
- Jin-Xing Wang
- Department of Hematology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, National- Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University Medical School, Shenzhen, 518060, China
- Department of Pathology Technique, Guangdong Medical University, No.1 Xincheng Road, Dongguan, Guangdong Province, 523808, China
| | - Ling Zhang
- Department of Hematology, The Third Affiliated Hospital, Institute of Hematology, Sun Yat-sen University, Guangzhou, 510630, China
| | - Peng-Wei Zhang
- Department of Hematology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Luo-Wei Yuan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Jian Jiang
- Department of Hematology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Xiao-Hui Cheng
- Department of Hematology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Wei Zhu
- Department of Pathology Technique, Guangdong Medical University, No.1 Xincheng Road, Dongguan, Guangdong Province, 523808, China.
| | - Yong Lei
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Fa-Qing Tian
- Department of Hematology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| |
Collapse
|
10
|
Ai N, Yuan H, Liang Y, Lu S, Ouyang D, Lai QH, Lai LL. Multi-View Multiattention Graph Learning With Stack Deep Matrix Factorization for circRNA-Drug Sensitivity Association Identification. IEEE J Biomed Health Inform 2024; 28:7670-7682. [PMID: 39186430 DOI: 10.1109/jbhi.2024.3431693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Identifying circular RNA (circRNA)-drug sensitivity association (CDsA) is crucial for advancing drug development. As conducting traditional wet experiments for determining CDsA is costly and inefficient, calculation methods have already proven to be a valid approach to cope with this problem. However, there exists limited research addressing the prediction of the CDsA prediction problem, and certain discrepancies persist, particularly concerning false-negative associations. As a consequence, we present a multi-view framework, called MAGSDMF, for identifying latent CDsA. Firstly, MAGSDMF applies ultiple ttention mechanisms and raph learning methods to dynamically extract features and strengthen the features of inside and across multi-similarity networks of circRNA and drug. Secondly, the tack eep atrix Factorization (SDMF) is devised to directly extract features from CDsAs. We consider multi-similarity networks with the original CDsAs as multi-view information. Thirdly, MAGSDMF utilizes a multi-attention channel mechanism to integrate these features for the purpose of reconstructing CDsA. Finally, MAGSDMF performs another DMF based on the reconstruction to identify the latent CDsAs. Simultaneously, contrastive learning (CL) is implemented to enhance the generalization capability of MAGSDMF and oversee the learning process of the underlying links prediction task. In comparative experiments, MAGSDMF achieves superior performance on two datasets with AUC values of 0.9743 and 0.9739 based on 5-fold cross-validation. Moreover, in case studies, the achievements further validate the identification reliability of MAGSDMF.
Collapse
|
11
|
Guo W, Liu Y, Chen B, Fan L. Target prediction and potential application of dihydroartemisinin on hepatocarcinoma treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7711-7724. [PMID: 38713259 DOI: 10.1007/s00210-024-03123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
With high incidence of hepatocarcinoma and limited effective treatments, most patients suffer in pain. Antitumor drugs are single-targeted, toxicity, causing adverse side effects and resistance. Dihydroartemisinin (DHA) inhibits tumor through multiple mechanisms effectively. This study explores and evaluates safety and potential mechanism of DHA towards human hepatocarcinoma based on network pharmacology in a comprehensive way. Adsorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of DHA were evaluated with pkCSM, SwissADME, and ADMETlab. Potential targets of DHA were obtained from SwissTargetPrediction, Drugbank, TargetNET, and PharmMapper. Target gene of hepatocarcinoma was obtained from OMIM, GeneCards, and DisGeNET. Overlapping targets and hub genes were identified and analyzed for Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway. Molecular docking was utilized to investigate the interactions sites and hydrogen bonds. Cell counting kit-8 (CCK8), wound healing, invasion, and migration assays on HepG2 and SNU387 cell proved DHA inhibits malignant biological features of hepatocarcinoma cell. DHA is safe and desirable for clinical application. A total of 131 overlapping targets were identified. Biofunction analysis showed targets were involved in kinase activity, protein phosphorylation, intracellular reception, signal transduction, transcriptome dysregulation, PPAR pathway, and JAK-STAT signaling axis. Top 9 hub genes were obtained using MCC (Maximal Clique Centrality) algorithm, namely CDK1, CCNA2, CCNB1, CCNB2, KIF11, CHEK1, TYMS, AURKA, and TOP2A. Molecular docking suggests that all hub genes form a stable interaction with DHA for optimal binding energy were all less than - 5 kcal/mol. Dihydroartemisinin might be a potent and safe anticarcinogen based on its biological safety and effective therapeutic effect.
Collapse
Affiliation(s)
- Wenjia Guo
- Department of Laboratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yu'e Liu
- Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bingdi Chen
- The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Lieying Fan
- Department of Laboratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
12
|
Yuan S, Li Q, He C, Bing M, Zhang X, Xu H, Wang Z, Zhao M, Zhang Y, Chai Y, Li B, Zhuang W. Anti-BCMA-engineered exosomes for bortezomib-targeted delivery in multiple myeloma. Blood Adv 2024; 8:4886-4899. [PMID: 38875465 PMCID: PMC11421322 DOI: 10.1182/bloodadvances.2023012464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
ABSTRACT Exosomes have emerged as promising vehicles for delivering therapeutic cargoes to specific cells or tissues, owing to their superior biocompatibility, reduced immunogenicity, and enhanced targeting capabilities compared with conventional drug delivery systems. In this study, we developed a delivery platform using exosomes derived from monocytes, specifically designed for targeted delivery of bortezomib (Btz) to multiple myeloma (MM) cells. Our approach involved the genetic modification of monocytes to express antibodies targeting B-cell maturation antigen (anti-BCMA), because BCMA selectively expresses on myeloma cells. This modified anti-BCMA was then efficiently incorporated into the monocyte-derived exosomes. These adapted exosomes effectively encapsulated Btz, leading to enhanced drug accessibility within MM cells and sustained intracellular accumulation over an extended period. Remarkably, our results demonstrated that anti-BCMA-modified exosome-loaded Btz (anti-BCMA-Exo-Btz) outperformed free Btz in vitro, exhibiting a more potent myeloma-suppressive effect. In orthotopic MM xenograft models, anti-BCMA-Exo-Btz exhibited a significant antitumor effect compared with free Btz. Furthermore, it demonstrated remarkable specificity in targeting Btz to myeloma cells in vivo. Importantly, we observed no significant histological damage in mice treated with anti-BCMA-Exo-Btz and a slight effect on peripheral blood mononuclear cells. In addition, our study highlighted the multifunctional potential of monocyte exosomes, which induced cell apoptosis, mediated immune responses, and enhanced the osteogenic potential of mesenchymal stromal cells. In conclusion, our study suggests that exosomes modified with targeting ligands hold therapeutic promise for delivering Btz to myelomas, offering substantial potential for clinical applications.
Collapse
Affiliation(s)
- Shushu Yuan
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Qi Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chuan He
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Mengli Bing
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyun Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Xu
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiming Wang
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Meifang Zhao
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yucheng Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yali Chai
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Bingzong Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenzhuo Zhuang
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
13
|
Liu W, Jia B, Wang Z, Li C, Li N, Tang J, Wang J. Unveiling the role of PSMA5 in glioma progression and prognosis. Discov Oncol 2024; 15:414. [PMID: 39240463 PMCID: PMC11379840 DOI: 10.1007/s12672-024-01296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
Glioma is the most aggressive intracranial malignancy and is associated with poor survival rates and limited quality of life, impairing neuropsychological function and cognitive competence in survivors. The Proteasome Subunit Alpha Type-5 (PSMA5) is a multicatalytic proteinase complex that has been linked with tumor progression but is rarely reported in glioma. This study investigates the expression pattern, prognostic characteristics, and potential biological functions of PSMA5 in glioma. PSMA5 was significantly overexpressed in 28 types of cancer when compared to normal tissue. Furthermore, elevated levels of PSMA5 were observed in patients with wild-type isocitrate dehydrogenase 1 and exhibited a positive correlation with tumor grade. It was also found to be a standalone predictor of outcomes in glioma patients. Additionally, inhibiting PSMA5-induced cell cycle arrest may provide a therapeutic option for glioma.
Collapse
Affiliation(s)
- Wei Liu
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China
| | - Bo Jia
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China
| | - Zan Wang
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China
| | - Chengcai Li
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China
| | - Nanding Li
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China
| | - Jie Tang
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jiwei Wang
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China.
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China.
| |
Collapse
|
14
|
Zhang Y, He F, Hu W, Sun J, Zhao H, Cheng Y, Tang Z, He J, Wang X, Liu T, Luo C, Lu Z, Xiang M, Liao Y, Wang Y, Li J, Xia J. Bortezomib elevates intracellular free Fe 2+ by enhancing NCOA4-mediated ferritinophagy and synergizes with RSL-3 to inhibit multiple myeloma cells. Ann Hematol 2024; 103:3627-3637. [PMID: 38647678 DOI: 10.1007/s00277-024-05762-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Iron contributes to tumor initiation and progression; however, excessive intracellular free Fe2+ can be toxic to cancer cells. Our findings confirmed that multiple myeloma (MM) cells exhibited elevated intracellular iron levels and increased ferritin, a key protein for iron storage, compared with normal cells. Interestingly, Bortezomib (BTZ) was found to trigger ferritin degradation, increase free intracellular Fe2+, and promote ferroptosis in MM cells. Subsequent mechanistic investigation revealed that BTZ effectively increased NCOA4 levels by preventing proteasomal degradation in MM cells. When we knocked down NCOA4 or blocked autophagy using chloroquine, BTZ-induced ferritin degradation and the increase in intracellular free Fe2+ were significantly reduced in MM cells, confirming the role of BTZ in enhancing ferritinophagy. Furthermore, the combination of BTZ with RSL-3, a specific inhibitor of GPX4 and inducer of ferroptosis, synergistically promoted ferroptosis in MM cell lines and increased cell death in both MM cell lines and primary MM cells. The induction of ferroptosis inhibitor liproxstatin-1 successfully counteracted the synergistic effect of BTZ and RSL-3 in MM cells. Altogether, our findings reveal that BTZ elevates intracellular free Fe2+ by enhancing NCOA4-mediated ferritinophagy and synergizes with RSL-3 by increasing ferroptosisin MM cells.
Collapse
Affiliation(s)
- Yanyan Zhang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Fen He
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Wei Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Jingqi Sun
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Hongyan Zhao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Yuzhi Cheng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Zhanyou Tang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Jiarui He
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Xiangyuan Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Tairan Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Cong Luo
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhongwei Lu
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Mei Xiang
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yiting Liao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Yihao Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Junjun Li
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Jiliang Xia
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China.
| |
Collapse
|
15
|
Delimpasi S, Dimopoulos MA, Straub J, Symeonidis A, Pour L, Hájek R, Touzeau C, Bhanderi VK, Berdeja JG, Pavlíček P, Matous JV, Robak PJ, Suryanarayan K, Miller A, Villarreal M, Cherepanov D, Srimani JK, Yao H, Labotka R, Orlowski RZ. Ixazomib plus daratumumab and dexamethasone: Final analysis of a phase 2 study among patients with relapsed/refractory multiple myeloma. Am J Hematol 2024; 99:1746-1756. [PMID: 38856176 DOI: 10.1002/ajh.27382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/08/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
Novel therapies have improved outcomes for multiple myeloma (MM) patients, but most ultimately relapse, making treatment decisions for relapsed/refractory MM (RRMM) patients increasingly challenging. We report the final analysis of a single-arm, phase 2 study evaluating the oral proteasome inhibitor (PI) ixazomib combined with daratumumab and dexamethasone (IDd; NCT03439293). Sixty-one RRMM patients (ixazomib/daratumumab-naïve; 1-3 prior therapies) were enrolled to receive IDd (28-day cycles) until disease progression/unacceptable toxicity. Median age was 69 years; 14.8% of patients had International Staging System stage III disease; 14.8% had received three prior therapies. Patients received a median of 16 cycles of IDd. In 59 response-evaluable patients, the overall response rate was 64.4%; the confirmed ≥very good partial response (VGPR) rate (primary endpoint) was 30.5%. Rates of ≥VGPR in patient subgroups were: high-risk cytogenetics (n = 15, 26.7%), expanded high-risk cytogenetics (n = 24, 29.2%), aged ≥75 years (n = 12, 16.7%), lenalidomide-refractory (n = 21, 28.6%), and prior PI/IMiD therapy (n = 58, 31.0%). With a median follow-up of 31.6 months, median progression-free survival was 16.8 months (95% confidence interval: 10.1-23.7). Grade ≥3 treatment-emergent adverse events (TEAEs) occurred in 54.1% of patients; 44.3% had serious TEAEs; TEAEs led to dose modifications/reductions/discontinuations in 62.3%/36.1%/16.4%. There were five on-study deaths. Any-grade and grade ≥3 peripheral neuropathy occurred in 18.0% and 1.6% of patients. Quality of life was generally maintained throughout treatment. IDd showed a positive risk-benefit profile in RRMM patients and was active in clinically relevant subgroups with no new safety signals.
Collapse
Affiliation(s)
- Sosana Delimpasi
- Department of Hematology and Bone Marrow Transplantation Unit, General Hospital Evangelismos, Athens, Greece
| | - Meletios A Dimopoulos
- Hematology & Medical Oncology, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Jan Straub
- Department of Internal Medicine - Hematology, University Hospital, Prague, Czech Republic
| | - Argiris Symeonidis
- Department of Hematology, University General Hospital of Patras, Patras, Greece
| | - Luděk Pour
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Roman Hájek
- Department of Haematooncology, University Hospital Ostrava and Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | | | | | | | - Petr Pavlíček
- Department of Internal Medicine and Hematology, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jeffrey V Matous
- Colorado Blood Cancer Institute and Sarah Cannon Research Institute, Denver, Colorado, USA
| | - Pawel J Robak
- Department of Hematology, Medical University of Lodz and Copernicus Memorial Hospital, Lodz, Poland
| | - Kaveri Suryanarayan
- Clinical Research, Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts, USA
| | - Alison Miller
- Statistics, Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts, USA
| | - Miguel Villarreal
- Oncology, Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts, USA
| | - Dasha Cherepanov
- Global Evidence and Outcomes (GEO), Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts, USA
| | - Jaydeep K Srimani
- Quantitative Clinical Pharmacology, Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts, USA
| | - Huilan Yao
- Precision and Translational Medicine, Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts, USA
| | - Richard Labotka
- Oncology Clinical Research, Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts, USA
| | - Robert Z Orlowski
- Departments of Lymphoma/Myeloma and Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
16
|
Tian X, Srinivasan PR, Tajiknia V, Sanchez Sevilla Uruchurtu AF, Seyhan AA, Carneiro BA, De La Cruz A, Pinho-Schwermann M, George A, Zhao S, Strandberg J, Di Cristofano F, Zhang S, Zhou L, Raufi AG, Navaraj A, Zhang Y, Verovkina N, Ghandali M, Ryspayeva D, El-Deiry WS. Targeting apoptotic pathways for cancer therapy. J Clin Invest 2024; 134:e179570. [PMID: 39007268 PMCID: PMC11245162 DOI: 10.1172/jci179570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Apoptosis is a form of programmed cell death that is mediated by intrinsic and extrinsic pathways. Dysregulation of and resistance to cell death are hallmarks of cancer. For over three decades, the development of therapies to promote treatment of cancer by inducing various cell death modalities, including apoptosis, has been a main goal of clinical oncology. Apoptosis pathways also interact with other signaling mechanisms, such as the p53 signaling pathway and the integrated stress response (ISR) pathway. In addition to agents directly targeting the intrinsic and extrinsic pathway components, anticancer drugs that target the p53 and ISR signaling pathways are actively being developed. In this Review, we discuss selected and promising anticancer therapies in various stages of development, including drug targets, mechanisms, and resistance to related treatments, focusing especially on B cell lymphoma 2 (BCL-2) inhibitors, TRAIL analogues, DR5 antibodies, and strategies that target p53, mutant p53, and the ISR.
Collapse
Affiliation(s)
- Xiaobing Tian
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Praveen R. Srinivasan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Vida Tajiknia
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Ashley F. Sanchez Sevilla Uruchurtu
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Benedito A. Carneiro
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| | - Arielle De La Cruz
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Maximilian Pinho-Schwermann
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| | - Andrew George
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Shuai Zhao
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Jillian Strandberg
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Francesca Di Cristofano
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Alexander G. Raufi
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| | - Arunasalam Navaraj
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Yiqun Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Nataliia Verovkina
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Maryam Ghandali
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Dinara Ryspayeva
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| |
Collapse
|
17
|
Carullo G, Rossi S, Giudice V, Pezzotta A, Chianese U, Scala P, Carbone S, Fontana A, Panzeca G, Pasquini S, Contri C, Gemma S, Ramunno A, Saponara S, Galvani F, Lodola A, Mor M, Benedetti R, Selleri C, Varani K, Butini S, Altucci L, Vincenzi F, Pistocchi A, Campiani G. Development of Epigenetic Modifiers with Therapeutic Potential in FMS-Related Tyrosine Kinase 3/Internal Tandem Duplication (FLT3/ITD) Acute Myeloid Leukemia and Other Blood Malignancies. ACS Pharmacol Transl Sci 2024; 7:2125-2142. [PMID: 39022363 PMCID: PMC11249625 DOI: 10.1021/acsptsci.4c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024]
Abstract
Blood cancers encompass a group of diseases affecting the blood, bone marrow, or lymphatic system, representing the fourth most commonly diagnosed cancer worldwide. Leukemias are characterized by the dysregulated proliferation of myeloid and lymphoid cells with different rates of progression (acute or chronic). Among the chronic forms, hairy cell leukemia (HCL) is a rare disease, and no drugs have been approved to date. However, acute myeloid leukemia (AML) is one of the most aggressive malignancies, with a low survival rate, especially in cases with FLT3-ITD mutations. Epigenetic modifications have emerged as promising strategies for the treatment of blood cancers. Epigenetic modulators, such as histone deacetylase (HDAC) inhibitors, are increasingly used for targeted cancer therapy. New hydroxamic acid derivatives, preferentially inhibiting HDAC6 (5a-q), were developed and their efficacy was investigated in different blood cancers, including multiple myeloma (MM), HCL, and AML, pointing out their pro-apoptotic effect as the mechanism of cell death. Among the inhibitors described, 5c, 5g, and 5h were able to rescue the hematopoietic phenotype in vivo using the FLT3-ITD zebrafish model of AML. 5c (leuxinostat) proved its efficacy in cells from FLT3-ITD AML patients, promoting marked acetylation of α-tubulin compared to histone H3, thereby confirming HDAC6 as a preferential target for this new class of hydroxamic acid derivatives at the tested doses.
Collapse
Affiliation(s)
- Gabriele Carullo
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Sara Rossi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Valentina Giudice
- Department
of Medicine, Surgery, Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, Baronissi, SA 84081, Italy
| | - Alex Pezzotta
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, LITA, Fratelli Cervi 93, Segrate, MI 20054, Italy
| | - Ugo Chianese
- Department
of Precision Medicine, University of Campania
Luigi Vanvitelli, Via de Crecchio 7, Naples 80138, Italy
| | - Pasqualina Scala
- Department
of Medicine, Surgery, Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, Baronissi, SA 84081, Italy
| | - Sabrina Carbone
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, LITA, Fratelli Cervi 93, Segrate, MI 20054, Italy
| | - Anna Fontana
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Giovanna Panzeca
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Silvia Pasquini
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Borsari 46, Ferrara 44121, Italy
| | - Chiara Contri
- Department
of Translational Medicine, University of
Ferrara, Via Borsari 46, Ferrara 44121, Italy
| | - Sandra Gemma
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Anna Ramunno
- Department
of Pharmacy, University of Salerno, Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Simona Saponara
- Department
of Life Sciences, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Francesca Galvani
- Department
of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Alessio Lodola
- Department
of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Marco Mor
- Department
of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Rosaria Benedetti
- Department
of Precision Medicine, University of Campania
Luigi Vanvitelli, Via de Crecchio 7, Naples 80138, Italy
- Program
of Medical Epigenetics, Vanvitelli Hospital, Naples 80138, Italy
| | - Carmine Selleri
- Department
of Medicine, Surgery, Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, Baronissi, SA 84081, Italy
| | - Katia Varani
- Department
of Translational Medicine, University of
Ferrara, Via Borsari 46, Ferrara 44121, Italy
| | - Stefania Butini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Lucia Altucci
- Department
of Precision Medicine, University of Campania
Luigi Vanvitelli, Via de Crecchio 7, Naples 80138, Italy
- Program
of Medical Epigenetics, Vanvitelli Hospital, Naples 80138, Italy
- Biogem
Institute of Molecular and Genetic Biology, Ariano Irpino 83031, Italy
| | - Fabrizio Vincenzi
- Department
of Translational Medicine, University of
Ferrara, Via Borsari 46, Ferrara 44121, Italy
| | - Anna Pistocchi
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, LITA, Fratelli Cervi 93, Segrate, MI 20054, Italy
| | - Giuseppe Campiani
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
- Bioinformatics
Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-7346, Iran
| |
Collapse
|
18
|
Lu Q, Yang D, Li H, Niu T, Tong A. Multiple myeloma: signaling pathways and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:25. [PMID: 38961036 PMCID: PMC11222366 DOI: 10.1186/s43556-024-00188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy of plasma cells, characterized by osteolytic bone lesions, anemia, hypercalcemia, renal failure, and the accumulation of malignant plasma cells. The pathogenesis of MM involves the interaction between MM cells and the bone marrow microenvironment through soluble cytokines and cell adhesion molecules, which activate various signaling pathways such as PI3K/AKT/mTOR, RAS/MAPK, JAK/STAT, Wnt/β-catenin, and NF-κB pathways. Aberrant activation of these pathways contributes to the proliferation, survival, migration, and drug resistance of myeloma cells, making them attractive targets for therapeutic intervention. Currently, approved drugs targeting these signaling pathways in MM are limited, with many inhibitors and inducers still in preclinical or clinical research stages. Therapeutic options for MM include non-targeted drugs like alkylating agents, corticosteroids, immunomodulatory drugs, proteasome inhibitors, and histone deacetylase inhibitors. Additionally, targeted drugs such as monoclonal antibodies, chimeric antigen receptor T cells, bispecific T-cell engagers, and bispecific antibodies are being used in MM treatment. Despite significant advancements in MM treatment, the disease remains incurable, emphasizing the need for the development of novel or combined targeted therapies based on emerging theoretical knowledge, technologies, and platforms. In this review, we highlight the key role of signaling pathways in the malignant progression and treatment of MM, exploring advances in targeted therapy and potential treatments to offer further insights for improving MM management and outcomes.
Collapse
Affiliation(s)
- Qizhong Lu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Donghui Yang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hexian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
19
|
Raucci F, Vernieri C, Di Tano M, Ligorio F, Blaževitš O, Lazzeri S, Shmahala A, Fragale G, Salvadori G, Varano G, Casola S, Buono R, Visco E, de Braud F, Longo VD. Cyclic Fasting-Mimicking Diet Plus Bortezomib and Rituximab Is an Effective Treatment for Chronic Lymphocytic Leukemia. Cancer Res 2024; 84:1133-1148. [PMID: 38241703 PMCID: PMC10982641 DOI: 10.1158/0008-5472.can-23-0295] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/12/2023] [Accepted: 01/18/2024] [Indexed: 01/21/2024]
Abstract
Cyclic fasting-mimicking diet (FMD) is an experimental nutritional intervention with potent antitumor activity in preclinical models of solid malignancies. FMD cycles are also safe and active metabolically and immunologically in cancer patients. Here, we reported on the outcome of FMD cycles in two patients with chronic lymphocytic leukemia (CLL) and investigated the effects of fasting and FMD cycles in preclinical CLL models. Fasting-mimicking conditions in murine CLL models had mild cytotoxic effects, which resulted in apoptosis activation mediated in part by lowered insulin and IGF1 concentrations. In CLL cells, fasting conditions promoted an increase in proteasome activity that served as a starvation escape pathway. Pharmacologic inhibition of this escape mechanism with the proteasome inhibitor bortezomib resulted in a strong enhancement of the proapoptotic effects of starvation conditions in vitro. In mouse CLL models, combining cyclic fasting/FMD with bortezomib and rituximab, an anti-CD20 antibody, delayed CLL progression and resulted in significant prolongation of mouse survival. Overall, the effect of proteasome inhibition in combination with FMD cycles in promoting CLL death supports the targeting of starvation escape pathways as an effective treatment strategy that should be tested in clinical trials. SIGNIFICANCE Chronic lymphocytic leukemia cells resist fasting-mimicking diet by inducing proteasome activation to escape starvation, which can be targeted using proteasome inhibition by bortezomib treatment to impede leukemia progression and prolong survival.
Collapse
Affiliation(s)
- Franca Raucci
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Claudio Vernieri
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maira Di Tano
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
- Weill Cornell Medical College, Department of Medicine, Cornell University, New York, New York
| | - Francesca Ligorio
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Olga Blaževitš
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Samuel Lazzeri
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Giuseppe Fragale
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giulia Salvadori
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Gabriele Varano
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Stefano Casola
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Roberta Buono
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
- Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, California
| | - Euplio Visco
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valter D. Longo
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
- Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, California
| |
Collapse
|
20
|
Bozhüyük KAJ, Präve L, Kegler C, Schenk L, Kaiser S, Schelhas C, Shi YN, Kuttenlochner W, Schreiber M, Kandler J, Alanjary M, Mohiuddin TM, Groll M, Hochberg GKA, Bode HB. Evolution-inspired engineering of nonribosomal peptide synthetases. Science 2024; 383:eadg4320. [PMID: 38513038 DOI: 10.1126/science.adg4320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/09/2024] [Indexed: 03/23/2024]
Abstract
Many clinically used drugs are derived from or inspired by bacterial natural products that often are produced through nonribosomal peptide synthetases (NRPSs), megasynthetases that activate and join individual amino acids in an assembly line fashion. In this work, we describe a detailed phylogenetic analysis of several bacterial NRPSs that led to the identification of yet undescribed recombination sites within the thiolation (T) domain that can be used for NRPS engineering. We then developed an evolution-inspired "eXchange Unit between T domains" (XUT) approach, which allows the assembly of NRPS fragments over a broad range of GC contents, protein similarities, and extender unit specificities, as demonstrated for the specific production of a proteasome inhibitor designed and assembled from five different NRPS fragments.
Collapse
Affiliation(s)
- Kenan A J Bozhüyük
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043 Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
- Myria Biosciences AG, Tech Park Basel, Hochbergstrasse 60C, 4057 Basel, Switzerland
| | - Leonard Präve
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043 Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Carsten Kegler
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043 Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Leonie Schenk
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043 Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Sebastian Kaiser
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043 Marburg, Germany
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Christian Schelhas
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043 Marburg, Germany
| | - Yan-Ni Shi
- Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Wolfgang Kuttenlochner
- Chair of Biochemistry, Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85748 Garching, Germany
| | - Max Schreiber
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043 Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Joshua Kandler
- Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Mohammad Alanjary
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - T M Mohiuddin
- Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Michael Groll
- Chair of Biochemistry, Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85748 Garching, Germany
| | - Georg K A Hochberg
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Phillips University Marburg, 35043 Marburg, Germany
- Department of Chemistry, Phillips University Marburg, 35043 Marburg, Germany
| | - Helge B Bode
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043 Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Phillips University Marburg, 35043 Marburg, Germany
- Department of Chemistry, Phillips University Marburg, 35043 Marburg, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG) & Senckenberg Gesellschaft für Naturforschung, 60325 Frankfurt, Germany
| |
Collapse
|
21
|
Krishnan D, Babu S, Raju R, Veettil MV, Prasad TSK, Abhinand CS. Epstein-Barr Virus: Human Interactome Reveals New Molecular Insights into Viral Pathogenesis for Potential Therapeutics and Antiviral Drug Discovery. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:32-44. [PMID: 38190109 DOI: 10.1089/omi.2023.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Host-virus Protein-Protein Interactions (PPIs) play pivotal roles in biological processes crucial for viral pathogenesis and by extension, inform antiviral drug discovery and therapeutics innovations. Despite efforts to develop the Epstein-Barr virus (EBV)-host PPI network, there remain significant knowledge gaps and a limited number of interacting human proteins deciphered. Furthermore, understanding the dynamics of the EBV-host PPI network in the distinct lytic and latent viral stages remains elusive. In this study, we report a comprehensive map of the EBV-human protein interactions, encompassing 1752 human and 61 EBV proteins by integrating data from the public repository HPIDB (v3.0) as well as curated high-throughput proteomic data from the literature. To address the stage-specific nature of EBV infection, we generated two detailed subset networks representing the latent and lytic stages, comprising 747 and 481 human proteins, respectively. Functional and pathway enrichment analysis of these subsets uncovered the profound impact of EBV proteins on cancer. The identification of highly connected proteins and the characterization of intrinsically disordered and cancer-related proteins provide valuable insights into potential therapeutic targets. Moreover, the exploration of drug-protein interactions revealed notable associations between hub proteins and anticancer drugs, offering novel perspectives for controlling EBV pathogenesis. This study represents, to the best of our knowledge, the first comprehensive investigation of the two distinct stages of EBV infection using high-throughput datasets. This makes a contribution to our understanding of EBV-host interactions and provides a foundation for future drug discovery and therapeutic interventions.
Collapse
Affiliation(s)
- Deepak Krishnan
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, India
| | - Sreeranjini Babu
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | | | | | - Chandran S Abhinand
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
22
|
Bai Y, Zhou L, Zhang C, Guo M, Xia L, Tang Z, Liu Y, Deng S. Dual network analysis of transcriptome data for discovery of new therapeutic targets in non-small cell lung cancer. Oncogene 2023; 42:3605-3618. [PMID: 37864031 PMCID: PMC10691970 DOI: 10.1038/s41388-023-02866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
The drug therapy for non-small cell lung cancer (NSCLC) have always been issues of poisonous side effect, acquired drug resistance and narrow applicable population. In this study, we built a novel network analysis method (difference- correlation- enrichment- causality- node), which was based on the difference analysis, Spearman correlation network analysis, biological function analysis and Bayesian causality network analysis to discover new therapeutic target of NSCLC in the sequencing data of BEAS-2B and 7 NSCLC cell lines. Our results showed that, as a proteasome subunit coding gene in the central of cell cycle network, PSMD2 was associated with prognosis and was an independent prognostic factor for NSCLC patients. Knockout of PSMD2 inhibited the proliferation of NSCLC cells by inducing cell cycle arrest, and exhibited marked increase of cell cycle blocking protein p21, p27 and decrease of cell cycle driven protein CDK4, CDK6, CCND1 and CCNE1. IPA and molecular docking suggested bortezomib has stronger affinity to PSMD2 compared with reported targets PSMB1 and PSMB5. In vitro and In vivo experiments demonstrated the inhibitory effect of bortezomib in NSCLC with different driven mutations or with tyrosine kinase inhibitors resistance. Taken together, bortezomib could target PSMD2, PSMB1 and PSMB5 to inhibit the proteasome degradation of cell cycle check points, to block cell proliferation of NSCLC, which was potential optional drug for NSCLC patients.
Collapse
Affiliation(s)
- Yuquan Bai
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Zhou
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuanfen Zhang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minzhang Guo
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Xia
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenying Tang
- College of Computer Science, Sichuan University, Chengdu, 610041, China
| | - Yi Liu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Senyi Deng
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
23
|
Dong Y, Chen Y, Ma G, Cao H. The role of E3 ubiquitin ligases in bone homeostasis and related diseases. Acta Pharm Sin B 2023; 13:3963-3987. [PMID: 37799379 PMCID: PMC10547920 DOI: 10.1016/j.apsb.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 10/07/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) dedicates to degrade intracellular proteins to modulate demic homeostasis and functions of organisms. These enzymatic cascades mark and modifies target proteins diversly through covalently binding ubiquitin molecules. In the UPS, E3 ubiquitin ligases are the crucial constituents by the advantage of recognizing and presenting proteins to proteasomes for proteolysis. As the major regulators of protein homeostasis, E3 ligases are indispensable to proper cell manners in diverse systems, and they are well described in physiological bone growth and bone metabolism. Pathologically, classic bone-related diseases such as metabolic bone diseases, arthritis, bone neoplasms and bone metastasis of the tumor, etc., were also depicted in a UPS-dependent manner. Therefore, skeletal system is versatilely regulated by UPS and it is worthy to summarize the underlying mechanism. Furthermore, based on the current status of treatment, normal or pathological osteogenesis and tumorigenesis elaborated in this review highlight the clinical significance of UPS research. As a strategy possibly remedies the limitations of UPS treatment, emerging PROTAC was described comprehensively to illustrate its potential in clinical application. Altogether, the purpose of this review aims to provide more evidence for exploiting novel therapeutic strategies based on UPS for bone associated diseases.
Collapse
Affiliation(s)
| | | | - Guixing Ma
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| |
Collapse
|
24
|
Diaz-delCastillo M, Gundesen MT, Andersen CW, Nielsen AL, Møller HEH, Vinholt PJ, Asmussen JT, Kristensen IB, Nyvold CG, Abildgaard N, Levin Andersen T, Lund T. Increased Bone Volume by Ixazomib in Multiple Myeloma: 3-Month Results from an Open Label Phase 2 Study. J Bone Miner Res 2023; 38:639-649. [PMID: 36970780 DOI: 10.1002/jbmr.4807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
Multiple myeloma (MM) is an incurable bone marrow cancer characterized by the development of osteolytic lesions due to the myeloma-induced increase in osteoclastogenesis and decrease in osteoblastic activity. The standard treatment of MM often involves proteasome inhibitors (PIs), which can also have a beneficial off-target bone anabolic effect. However, long-term treatment with PIs is unadvised due to their high side-effect burden and inconvenient route of administration. Ixazomib is a new-generation, oral PI that is generally well tolerated; however, its bone effect remains unknown. Here, we describe the 3-month results of a single-center phase II clinical trial investigating the effect of ixazomib treatment on bone formation and bone microstructure. Thirty patients with MM in stable disease not receiving antimyeloma treatment for ≥3 months and presenting ≥2 osteolytic lesions received monthly ixazomib treatment cycles. Serum and plasma samples were collected at baseline and monthly thereafter. Sodium 18 F-Fluoride positron emission tomography (NaF-PET) whole-body scans and trephine iliac crest bone biopsies were collected before and after three treatment cycles. The serum levels of bone remodeling biomarkers suggested an early ixazomib-induced decrease in bone resorption. NaF-PET scans indicated unchanged bone formation ratios; however, histological analyses of bone biopsies revealed a significant increase in bone volume per total volume after treatment. Further analyses of bone biopsies showed unchanged osteoclast number and COLL1A1High -expressing osteoblasts on bone surfaces. Next, we analyzed the superficial bone structural units (BSUs), which represent each recent microscopic bone remodeling event. Osteopontin staining revealed that following treatment, significantly more BSUs were enlarged (>200,000 μm2 ), and the distribution frequency of their shape was significantly different from baseline. Overall, our data suggest that ixazomib induces overflow remodeling-based bone formation by decreasing the level of bone resorption and promoting longer bone formation events, making it a potentially valuable candidate for future maintenance treatment. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | - Michael Tveden Gundesen
- Department of Hematology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | | | | | | | - Jon Thor Asmussen
- Department of Radiology, Odense University Hospital, Odense, Denmark
| | - Ida Bruun Kristensen
- Department of Hematology, Odense University Hospital, Odense, Denmark
- Hematology-Pathology Research Laboratory, Research Unit for Hematology & Research Unit for Pathology, University of Southern Denmark & Odense University Hospital, Odense, Denmark
| | - Charlotte Guldborg Nyvold
- Hematology-Pathology Research Laboratory, Research Unit for Hematology & Research Unit for Pathology, University of Southern Denmark & Odense University Hospital, Odense, Denmark
| | - Niels Abildgaard
- Department of Hematology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Thomas Levin Andersen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Thomas Lund
- Department of Hematology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
25
|
Qin J, Sharma A, Wang Y, Tobar-Tosse F, Dakal TC, Liu H, Liu H, Ke B, Kong C, Liu T, Zhao C, Schmidt-Wolf IGH, Jin C. Systematic discrimination of the repetitive genome in proximity of ferroptosis genes and a novel prognostic signature correlating with the oncogenic lncRNA CRNDE in multiple myeloma. Front Oncol 2022; 12:1026153. [PMID: 36605450 PMCID: PMC9808058 DOI: 10.3389/fonc.2022.1026153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Emerging insights into iron-dependent form of regulated cell death ferroptosis in cancer have opened a perspective for its use in cancer therapy. Of interest, a systematic profiling of ferroptosis gene signatures as prognostic factors has gained special attention in several cancers. Herein, we sought to investigate the presence of repetitive genomes in the vicinity of ferroptosis genes that may influence their expression and to establish a prognostic gene signature associated with multiple myeloma (MM). Our analysis showed that genes associated with ferroptosis were enriched with the repetitive genome in their vicinity, with a strong predominance of the SINE family, followed by LINE, of which the most significant discriminant values were SINE/Alu and LINE/L1, respectively. In addition, we examined in detail the performance of these genes as a cancer risk prediction model and specified fourteen ferroptosis-related gene signatures, which identified MM high-risk patients with lower immune/stromal scores with higher tumor purity in their immune microenvironment. Of interest, we also found that lncRNA CRNDE correlated with a risk score and was highly associated with the majority of genes comprising the signature. Taken together, we propose to investigate the molecular impact of the repetitive genome we have highlighted on the local transcriptome of ferroptosis genes in cancer. Furthermore, we revealed a genomic signature/biomarker related to ferroptosis that can be used to predict the risk of survival in MM patients.
Collapse
Affiliation(s)
- Jiading Qin
- Medical College of Nanchang University, Nanchang, China,Department of Hematology, Jiangxi Provincial People’s Hospital, Nanchang, China,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology, University Hospital of Bonn, Bonn, Germany,Department of Neurosurgery, University Hospital of Bonn, Bonn, Germany
| | - Yulu Wang
- Department of Integrated Oncology, Center for Integrated Oncology, University Hospital of Bonn, Bonn, Germany
| | - Fabian Tobar-Tosse
- Department of Basic Sciences for Health, Pontificia Universidad Javeriana Cali, Cali, Colombia
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, India
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Hongjia Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Bo Ke
- Department of Hematology, Jiangxi Provincial People’s Hospital, Nanchang, China
| | - Chunfang Kong
- Department of Hematology, Jiangxi Provincial People’s Hospital, Nanchang, China
| | - Tingting Liu
- Department of Hematology, Jiangxi Provincial People’s Hospital, Nanchang, China
| | - Chunxia Zhao
- School of Nursing, Nanchang University, Nanchang, China
| | - Ingo G. H. Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology, University Hospital of Bonn, Bonn, Germany
| | - Chenghao Jin
- Medical College of Nanchang University, Nanchang, China,Department of Hematology, Jiangxi Provincial People’s Hospital, Nanchang, China,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China,*Correspondence: Chenghao Jin,
| |
Collapse
|
26
|
Ding K, Jiang W, Jia H, Lei M. Synergistically Anti-Multiple Myeloma Effects: Flavonoid, Non-Flavonoid Polyphenols, and Bortezomib. Biomolecules 2022; 12:1647. [PMID: 36358997 PMCID: PMC9687375 DOI: 10.3390/biom12111647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/02/2023] Open
Abstract
Multiple myeloma (MM) is a clonal plasma cell tumor originating from a post-mitotic lymphoid B-cell lineage. Bortezomib(BTZ), a first-generation protease inhibitor, has increased overall survival, progression-free survival, and remission rates in patients with MM since its clinical approval in 2003. However, the use of BTZ is challenged by the malignant features of MM and drug resistance. Polyphenols, classified into flavonoid and non-flavonoid polyphenols, have potential health-promoting activities, including anti-cancer. Previous preclinical studies have demonstrated the anti-MM potential of some dietary polyphenols. Therefore, these dietary polyphenols have the potential to be alternative therapies in anti-MM treatment regimens. This systematic review examines the synergistic effects of flavonoids and non-flavonoid polyphenols on the anti-MM impacts of BTZ. Preclinical studies on flavonoids and non-flavonoid polyphenols-BTZ synergism in MM were collected from PubMed, Web of Science, and Embase published between 2008 and 2020. 19 valid preclinical studies (Published from 2008 to 2020) were included in this systematic review. These studies demonstrated that eight flavonoids (icariin, icariside II, (-)-epigallocatechin-3-gallate, scutellarein, wogonin, morin, formononetin, daidzin), one plant extract rich in flavonoids (Punica granatum juice) and four non-flavonoid polyphenols (silibinin, resveratrol, curcumin, caffeic acid) synergistically enhanced the anti-MM effect of BTZ. These synergistic effects are mediated through the regulation of cellular signaling pathways associated with proliferation, apoptosis, and drug resistance. Given the above, flavonoids and non-flavonoid polyphenols can benefit MM patients by overcoming the challenges faced in BTZ treatment. Despite the positive nature of this preclinical evidence, some additional investigations are still needed before proceeding with clinical studies. For this purpose, we conclude by providing some suggestions for future research directions.
Collapse
|
27
|
Kardanova SA, Kirichenko YY, Bochkarnikova OV, Antyufeeva ON, Kochkareva YB, Vinogradova OY, Privalova EV, Ilgisonis IS, Belenkov YN. Relationship Between Markers of the Acute Phase of Inflammation, Parameters of Blood Lipid Composition and Intracardiac Hemodynamics During Chemotherapy in Patients With Multiple Myeloma. KARDIOLOGIIA 2022; 62:18-26. [PMID: 36206134 DOI: 10.18087/cardio.2022.9.n2183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/01/2022] [Indexed: 06/16/2023]
Abstract
Aim To evaluate in a pilot study time-related changes in the clinical state, indexes of the acute phase of inflammation, parameters of blood lipid profile, intracardiac hemodynamics, and disorders of cardiac rhythm/conduction in patients who are not candidates for autologous hemopoietic stem cell transplantation, during three bortezomib-containing chemotherapy courses (VCD) followed by a correlation analysis.Material and methods This pilot study included 20 patients diagnosed with myeloma, who were not candidates for autologous hemopoietic stem cell transplantation and who had undergone three courses of VCD chemotherapy (bortezomib, cyclophosphamide and dexamethasone). In addition to mandatory examinations, measurement of blood lipid profile, transthoracic echocardiography (EchoCG), and 24-h Holter electrocardiogram (ECG) monitoring were performed for all participants before and after a specific therapy.Results Following three bortezomib-containing courses of chemotherapy, patients of the study group had significant increases in the neutrophil-lymphocyte ratio (NLR) (1.6±0.2 and 2.5±0.4; р=0.05), cholesterol concentration (4.8±1.1 and 5.6±1.1 mmol/l, р=0.05), and low-density lipoprotein concentration (2.8±0.4 and 3.5±0.8 mmol/l, р=0.02). In comparing the changes in parameters of intracardiac hemodynamics, criteria for genuine cardiotoxicity were not met, however, a tendency to emergence/progression of myocardial diastolic dysfunction was noted. No clinically significant disorders of cardiac rhythm/conduction were observed. The correlation analysis performed prior to the start of chemotherapy, showed significant strong, direct correlations between the C-protein concentration and left atrial (LA) volume (r=0.793; p=0.006), right atrial (RA) volume (r=0.857; p=0.002), left ventricular (LV) end-diastolic dimension (EDD) (r=0.589; p=0.043), and LV end-diastolic volume (EDV) (r=0.726; p=0.017). Following the specific treatment, significant, medium-power and strong correlations were found between NLR and EDV (r= -0.673; p=0.033), NLR and end systolic volume (ESV) (r= -0.710; p=0.021), respectively. Significant direct correlations were found between the bortezomib dose per one injection and the serum concentration of triglycerides following the treatment (r=0.78; p=0.05); a single bortezomib dose and parameters of intracardiac hemodynamics: LA (r=0.71; p=0.026), RA (r=0.74; p=0.014), EDD (r=0.837; p=0.003), EDV (r=0.749; p=0.013), ESV (r=0.553; p=0.049).Conclusion For the first time, a comprehensive evaluation was performed in patients with multiple myeloma, including the dynamics of blood lipid profile, intracardiac hemodynamics and disorders of cardiac rhythm/conduction during bortezomib-containing antitumor therapy, with an analysis of correlation with levels of acute inflammation phase markers. Although in the observation window for genuine cardiotoxicity, clinically significant cardiovascular complications were not detected, the found correlations may evidence a potential role of systemic inflammation activity in myocardial remodeling in the studied patient cohort.
Collapse
Affiliation(s)
- S A Kardanova
- Sechenov First Moscow State Medical University, Moscow
| | | | | | | | - Yu B Kochkareva
- S.P. Botkin City Clinical Hospital of the Moscow Department of Health
| | - O Yu Vinogradova
- S.P. Botkin City Clinical Hospital of the Moscow Department of Health
| | - E V Privalova
- Sechenov First Moscow State Medical University, Moscow
| | - I S Ilgisonis
- Sechenov First Moscow State Medical University, Moscow
| | - Yu N Belenkov
- Sechenov First Moscow State Medical University, Moscow
| |
Collapse
|
28
|
Radiomics Models Based on Magnetic Resonance Imaging for Prediction of the Response to Bortezomib-Based Therapy in Patients with Multiple Myeloma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6911246. [PMID: 36105939 PMCID: PMC9467708 DOI: 10.1155/2022/6911246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/04/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
Purpose. To identify significant radiomics features based on MRI and establish effective models for predicting the response to bortezomib-based regimens. Materials and Methods. In total, 95 MM patients treated with bortezomib-based therapy were enrolled, including 77 with bortezomib, cyclophosphamide, and dexamethasone (BCD) and 18 with bortezomib, lenalidomide, and dexamethasone (VRD). Based on T1-weighted imaging (T1WI) and T2-weighted imaging with fat suppression (T2WI-fs), radiomics features were extracted and then selected. The random forest (RF),
-nearest neighbor, support vector machine, logistic regression, decision tree, and Bayes models were built using the selected features. The predictive power of six models for response to BCD and VRD regimens were evaluated. The correlation between the selected features and progression-free survival (PFS) was also analyzed. Results. Four wavelet features were correlated with BCD treatment response. The six models all showed predictive power for BCD regimen (AUC: 0.84-0.896 in the training set, 0.801-0.885 in the validation set), and RF performed relatively better than others. Nevertheless, all the BCD-based models were incapable of predicting the VRD treatment response. The wavelet-HLH_firstorder_kurtosis was also associated with PFS (log-rank
). Conclusion. The four wavelet features were valuable biomarkers for predicting the response to BCD regimen. The six models based on these features showed predictive power, and RF was the best. One wavelet feature was also a survival-related biomarker. MRI-based radiomics had the potential to guide clinicians in MM management.
Collapse
|
29
|
Cantadori LO, Gaiolla RD, Nunes-Nogueira VDS. Effect of bortezomib on the treatment of multiple myeloma: a systematic review protocol. BMJ Open 2022; 12:e061808. [PMID: 35768117 PMCID: PMC9240935 DOI: 10.1136/bmjopen-2022-061808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Multiple myeloma (MM) is an incurable malignant neoplasm that accounts for approximately 1% of all cancers and 10% of haematological malignancies. Bortezomib is one of the most commonly used medications in first-line treatment and subsequent relapses, either as a single agent or in combination with other therapies. This study aims to assess the effects of bortezomib on the overall survival (OS), progression-free survival, overall response rate, time to next treatment, health-related quality of life, compliance, adverse events and treatment-related death in patients with MM. METHODS AND ANALYSIS We have performed a systematic review and meta-analysis and will include both randomised and non-randomised controlled studies where the effect of bortezomib was compared in similar or dissimilar background therapies in each arm. General and adaptive search strategies have been created for the following electronic health databases: Embase, Medline, LILACS and CENTRAL. Two reviewers have independently selected eligible studies, will assess the risk of bias, and will extract data from the included studies. Similar outcomes will be plotted in the meta-analysis using the Stata Statistical Software V.17. The relative risk will be calculated with a 95% CI as the effect size of bortezomib. For the OS and progression-free survival, we calculate the overall OR from the HRs of each included study. Peto's one-step OR will be calculated for event rates below 1%. We will use the Grading of Recommendations Assessment, Development and Evaluation system to evaluate the certainty of evidence. ETHICS AND DISSEMINATION As no primary data collection will be undertaken, formal ethical assessment is not required. We plan to present the results of this systematic review in a peer-reviewed scientific journal, conferences and popular press. PROSPERO REGISTRATION NUMBER CRD42020151142.
Collapse
Affiliation(s)
- Lucas Oliveira Cantadori
- Department of Internal Medicine, Universidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, Brazil
| | - Rafael Dezen Gaiolla
- Department of Internal Medicine, Universidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, Brazil
| | - Vania Dos Santos Nunes-Nogueira
- Department of Internal Medicine, Universidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, Brazil
| |
Collapse
|
30
|
Daks A, Fedorova O, Parfenyev S, Nevzorov I, Shuvalov O, Barlev NA. The Role of E3 Ligase Pirh2 in Disease. Cells 2022; 11:1515. [PMID: 35563824 PMCID: PMC9101203 DOI: 10.3390/cells11091515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
The p53-dependent ubiquitin ligase Pirh2 regulates a number of proteins involved in different cancer-associated processes. Targeting the p53 family proteins, Chk2, p27Kip1, Twist1 and others, Pirh2 participates in such cellular processes as proliferation, cell cycle regulation, apoptosis and cellular migration. Thus, it is not surprising that Pirh2 takes part in the initiation and progression of different diseases and pathologies including but not limited to cancer. In this review, we aimed to summarize the available data on Pirh2 regulation, its protein targets and its role in various diseases and pathological processes, thus making the Pirh2 protein a promising therapeutic target.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (O.F.); (S.P.); (I.N.); (O.S.)
| | | | | | | | | | - Nickolai A. Barlev
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (O.F.); (S.P.); (I.N.); (O.S.)
| |
Collapse
|
31
|
Utilizing Three-Dimensional Culture Methods to Improve High-Throughput Drug Screening in Anaplastic Thyroid Carcinoma. Cancers (Basel) 2022; 14:cancers14081855. [PMID: 35454763 PMCID: PMC9031362 DOI: 10.3390/cancers14081855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive endocrine neoplasm, with a median survival of just four to six months post-diagnosis. Even with surgical and chemotherapeutic interventions, the five-year survival rate is less than 5%. Although combination dabrafenib/trametinib therapy was recently approved for treatment of the ~25% of ATCs harboring BRAFV600E mutations, there are no approved, effective treatments for BRAF-wildtype disease. Herein, we perform a screen of 1525 drugs and evaluate therapeutic candidates using monolayer cell lines and four corresponding spheroid models of anaplastic thyroid carcinoma. We utilize three-dimensional culture methods, as they have been shown to more accurately recapitulate tumor responses in vivo. These three-dimensional cultures include four distinct ATC spheroid lines representing unique morphology and mutational drivers to provide drug prioritization that will be more readily translatable to the clinic. Using this screen, we identify three exceptionally potent compounds (bortezomib, cabazitaxel, and YM155) that have established safety profiles and could potentially be moved into clinical trial for the treatment of anaplastic thyroid carcinoma, a disease with few treatment options.
Collapse
|
32
|
Shang Y, Wang W, Liang Y, Kaweme NM, Wang Q, Liu M, Chen X, Xia Z, Zhou F. Development of a Risk Assessment Model for Early Grade ≥ 3 Infection During the First 3 Months in Patients Newly Diagnosed With Multiple Myeloma Based on a Multicenter, Real-World Analysis in China. Front Oncol 2022; 12:772015. [PMID: 35372017 PMCID: PMC8967980 DOI: 10.3389/fonc.2022.772015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose The study aimed to assess factors associated with early infection and identify patients at high risk of developing infection in multiple myeloma. Methods The study retrospectively analyzed patients with MM seen at two medical centers between January 2013 and June 2019. One medical center reported 745 cases, of which 540 of the cases were available for analysis and were further subdivided into training cohort and internal validation cohort. 169 cases from the other medical center served as an external validation cohort. The least absolute shrinkage and selection operator (Lasso) regression model was used for data dimension reduction, feature selection, and model building. Results Bacteria and the respiratory tract were the most common pathogen and localization of infection, respectively. In the training cohort, PS≥2, HGB<35g/L of the lower limit of normal range, β2MG≥6.0mg/L, and GLB≥2.1 times the upper limit of normal range were identified as factors associated with early grade ≥ 3 infections by Lasso regression. An infection risk model of MM (IRMM) was established to define high-, moderate- and low-risk groups, which showed significantly different rates of infection in the training cohort (46.5% vs. 22.1% vs. 8.8%, p<0.0001), internal validation cohort (37.9% vs. 24.1% vs. 13.0%, p=0.009) and external validation cohort (40.0% vs. 29.2% vs. 8.5%, p=0.0003). IRMM displayed good calibration (p<0.05) and discrimination with AUC values of 0.76, 0.67 and 0.71 in the three cohorts, respectively. Furthermore, IRMM still showed good classification ability in immunomodulatory (IMiD) based regimens, proteasome-inhibitors (PI) based regimens and combined IMiD and PI regimens. Conclusion In this study, we determined risk factors for early grade ≥ 3 infection and established a predictive model to help clinicians identify MM patients with high-risk infection.
Collapse
Affiliation(s)
- Yufeng Shang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weida Wang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Hematologic Oncology, State Key Laboratory of Oncology in South China/Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuxing Liang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | | - Qian Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Minghui Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoqin Chen
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhongjun Xia
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Hematologic Oncology, State Key Laboratory of Oncology in South China/Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
33
|
Matrone A, Gambale C, Prete A, Elisei R. Sporadic Medullary Thyroid Carcinoma: Towards a Precision Medicine. Front Endocrinol (Lausanne) 2022; 13:864253. [PMID: 35422765 PMCID: PMC9004483 DOI: 10.3389/fendo.2022.864253] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022] Open
Abstract
Medullary thyroid carcinoma (MTC) is a neuroendocrine malignant tumor originating from parafollicular C-cells producing calcitonin. Most of cases (75%) are sporadic while the remaining (25%) are hereditary. In these latter cases medullary thyroid carcinoma can be associated (multiple endocrine neoplasia type IIA and IIB) or not (familial medullary thyroid carcinoma), with other endocrine diseases such as pheochromocytoma and/or hyperparathyroidism. RET gene point mutation is the main molecular alteration involved in MTC tumorigenesis, both in sporadic and in hereditary cases. Total thyroidectomy with prophylactic/therapeutic central compartment lymph nodes dissection is the initial treatment of choice. Further treatments are needed according to tumor burden and rate of progression. Surgical treatments and local therapies are advocated in the case of single or few local or distant metastasis and slow rate of progression. Conversely, systemic treatments should be initiated in cases with large metastatic and rapidly progressive disease. In this review, we discuss the details of systemic treatments in advanced and metastatic sporadic MTC, focusing on multikinase inhibitors, both those already used in clinical practice and under investigation, and on emerging treatments such as highly selective RET inhibitors and radionuclide therapy.
Collapse
Affiliation(s)
| | | | | | - Rossella Elisei
- Department of Clinical and Experimental Medicine, Endocrine Unit, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
34
|
Lee HJ, Lee DM, Seo MJ, Kang HC, Kwon SK, Choi KS. PSMD14 Targeting Triggers Paraptosis in Breast Cancer Cells by Inducing Proteasome Inhibition and Ca 2+ Imbalance. Int J Mol Sci 2022; 23:ijms23052648. [PMID: 35269789 PMCID: PMC8910635 DOI: 10.3390/ijms23052648] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
PSMD14, a subunit of the 19S regulatory particles of the 26S proteasome, was recently identified as a potential prognostic marker and therapeutic target in diverse human cancers. Here, we show that the silencing and pharmacological blockade of PSMD14 in MDA-MB 435S breast cancer cells induce paraptosis, a non-apoptotic cell death mode characterized by extensive vacuolation derived from the endoplasmic reticulum (ER) and mitochondria. The PSMD14 inhibitor, capzimin (CZM), inhibits proteasome activity but differs from the 20S proteasome subunit-inhibiting bortezomib (Bz) in that it does not induce aggresome formation or Nrf1 upregulation, which underlie Bz resistance in cancer cells. In addition to proteasome inhibition, the release of Ca2+ from the ER into the cytosol critically contributes to CZM-induced paraptosis. Induction of paraptosis by targeting PSMD14 may provide an attractive therapeutic strategy against cancer cells resistant to proteasome inhibitors or pro-apoptotic drugs.
Collapse
Affiliation(s)
- Hong-Jae Lee
- Department of Biochemistry and Molecular Biology, Ajou University, Suwon 16499, Korea; (H.-J.L.); (D.-M.L.); (M.-J.S.)
| | - Dong-Min Lee
- Department of Biochemistry and Molecular Biology, Ajou University, Suwon 16499, Korea; (H.-J.L.); (D.-M.L.); (M.-J.S.)
| | - Min-Ji Seo
- Department of Biochemistry and Molecular Biology, Ajou University, Suwon 16499, Korea; (H.-J.L.); (D.-M.L.); (M.-J.S.)
| | - Ho-Chul Kang
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Seok-Kyu Kwon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science & Technology (UST), Daejeon 34113, Korea
| | - Kyeong-Sook Choi
- Department of Biochemistry and Molecular Biology, Ajou University, Suwon 16499, Korea; (H.-J.L.); (D.-M.L.); (M.-J.S.)
- Correspondence: ; Tel.: +82-31-219-4552; Fax: +82-31-219-5059
| |
Collapse
|
35
|
Bortezomib Rescues Ovariectomy-Induced Bone Loss via SMURF-Mediated Ubiquitination Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:9661200. [PMID: 35003523 PMCID: PMC8741347 DOI: 10.1155/2021/9661200] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022]
Abstract
A balance between bone formation by osteoblasts and bone resorption by osteoclasts is necessary to maintain bone health and homeostasis. As a cancer of plasma cells, multiple myeloma (MM) is accompanied with rapid bone loss and fragility fracture. Bortezomib has been used as a first-line for treating MM for decades. Recently, the potential protection of bortezomib on osteoporosis (OP) is reported; however, the specific mechanism involving bortezomib-mediated antiosteoporotic effect is undetermined. In the present study, we assessed the effects of in vitro bortezomib treatment on osteogenesis and osteoclastogenesis and the protective effect on bone loss in ovariectomized (OVX) mice. Our results indicated that bortezomib treatment increased osteogenic differentiation of MC3T3-E1 cells as evidenced by increased levels of matrix mineralization and osteoblast-specific markers. In bortezomib-treated bone marrow monocytes (BMMs), osteoclast differentiation was suppressed, substantiated by downregulated tartrate-resistant acid phosphatase- (TRAP-) positive multinucleated cells, areas of actin rings, pit formation, and osteoclast-specific genes. Mechanistically, bortezomib exerted a protective effect against OP through the Smad ubiquitination regulatory factor- (SMURF-) mediated ubiquitination pathway. Furthermore, in vivo intraperitoneal injection of bortezomib attenuated the bone microarchitecture in OVX mice. Accordingly, our findings corroborated that bortezomib might have future applications in the treatment of postmenopausal OP.
Collapse
|
36
|
Mikulski D, Robak P, Perdas E, Węgłowska E, Łosiewicz A, Dróżdż I, Jarych D, Misiewicz M, Szemraj J, Fendler W, Robak T. Pretreatment Serum Levels of IL-1 Receptor Antagonist and IL-4 Are Predictors of Overall Survival in Multiple Myeloma Patients Treated with Bortezomib. J Clin Med 2021; 11:112. [PMID: 35011853 PMCID: PMC8745099 DOI: 10.3390/jcm11010112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple myeloma (MM) is characterized by the malignant proliferation of monoclonal plasma cells in the bone marrow with an elevation in monoclonal paraprotein, renal impairment, hypercalcemia, lytic bony lesions, and anemia. Immune cells and associated cytokines play a significant role in MM growth, progression, and dissemination. While some cytokines and their clinical significance are well described in MM biology, others remain relatively unknown. The present study examines the influence on progression-free survival (PFS) and overall survival (OS) by the serum levels of 27 selected cytokines in 61 newly diagnosed MM patients receiving first-line therapy with bortezomib-based regimens. The measurements were performed using a Bio-Rad Bio-Plex Pro Human Cytokine 27-Plex Assay and a MAGPIX Multiplex Reader, based on the Bio-Plex® 200 System (Bio-Rad). The following levels were determined: IL-1β, IL-1Ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-15, IL-17, Eotaxin, FGF, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF-BB, RANTES, TNF-α, and VEGF. Most patients received a VCD chemotherapy regimen (bortezomib, cyclophosphamide, and dexamethasone). In the final multivariate model, IL-13 cytokine level (HR 0.1411, 95% CI: 0.0240-0.8291, p = 0.0302) and ASCT (HR 0.3722, 95% CI: 0.1826-0.7585, p = 0.0065) significantly impacted PFS. Furthermore, ASCT (HR 0.142, 95% CI: 0.046-0.438, p = 0.0007), presence of bone disease at diagnosis (HR 3.826, 95% CI: 1.471-9.949, p = 0.0059), and two cytokine levels-IL-1Ra (HR 1.017, 95% CI: 1.004-1.030, p = 0.0091) and IL-4 (HR 0.161, 95% CI: 0.037-0.698, p = 0.0147)-were independent predictors of OS. Three clusters of MM patients were identified with different cytokine profiles. In conclusion, serum pretreatment levels of IL-13 and IL-4 are predictors of better PFS and OS, respectively, whereas IL-1Ra pretreatment levels negatively impact OS in MM patients treated with bortezomib-based chemotherapy. Cytokine signature profile may have a potential influence on the outcome of patients treated with bortezomib.
Collapse
Affiliation(s)
- Damian Mikulski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 93-215 Lodz, Poland; (D.M.); (E.P.); (A.Ł.); (W.F.)
- Copernicus Memorial Hospital, 93-510 Lodz, Poland; (P.R.); (M.M.)
| | - Paweł Robak
- Copernicus Memorial Hospital, 93-510 Lodz, Poland; (P.R.); (M.M.)
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland
| | - Ewelina Perdas
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 93-215 Lodz, Poland; (D.M.); (E.P.); (A.Ł.); (W.F.)
| | - Edyta Węgłowska
- Laboratory of Personalized Medicine, Bionanopark, 93-465 Lodz, Poland; (E.W.); (D.J.)
| | - Aleksandra Łosiewicz
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 93-215 Lodz, Poland; (D.M.); (E.P.); (A.Ł.); (W.F.)
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Dariusz Jarych
- Laboratory of Personalized Medicine, Bionanopark, 93-465 Lodz, Poland; (E.W.); (D.J.)
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Małgorzata Misiewicz
- Copernicus Memorial Hospital, 93-510 Lodz, Poland; (P.R.); (M.M.)
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 93-215 Lodz, Poland; (D.M.); (E.P.); (A.Ł.); (W.F.)
| | - Tadeusz Robak
- Copernicus Memorial Hospital, 93-510 Lodz, Poland; (P.R.); (M.M.)
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
| |
Collapse
|
37
|
Chen TC, da Fonseca CO, Levin D, Schönthal AH. The Monoterpenoid Perillyl Alcohol: Anticancer Agent and Medium to Overcome Biological Barriers. Pharmaceutics 2021; 13:2167. [PMID: 34959448 PMCID: PMC8709132 DOI: 10.3390/pharmaceutics13122167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 12/20/2022] Open
Abstract
Perillyl alcohol (POH) is a naturally occurring monoterpenoid related to limonene that is present in the essential oils of various plants. It has diverse applications and can be found in household items, including foods, cosmetics, and cleaning supplies. Over the past three decades, it has also been investigated for its potential anticancer activity. Clinical trials with an oral POH formulation administered to cancer patients failed to realize therapeutic expectations, although an intra-nasal POH formulation yielded encouraging results in malignant glioma patients. Based on its amphipathic nature, POH revealed the ability to overcome biological barriers, primarily the blood-brain barrier (BBB), but also the cytoplasmic membrane and the skin, which appear to be characteristics that critically contribute to POH's value for drug development and delivery. In this review, we present the physicochemical properties of POH that underlie its ability to overcome the obstacles placed by different types of biological barriers and consequently shape its multifaceted promise for cancer therapy and applications in drug development. We summarized and appraised the great variety of preclinical and clinical studies that investigated the use of POH for intranasal delivery and nose-to-brain drug transport, its intra-arterial delivery for BBB opening, and its permeation-enhancing function in hybrid molecules, where POH is combined with or conjugated to other therapeutic pharmacologic agents, yielding new chemical entities with novel mechanisms of action and applications.
Collapse
Affiliation(s)
- Thomas C. Chen
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Clovis O. da Fonseca
- Department of Neurological Surgery, Federal Hospital of Ipanema, Rio de Janeiro 22411-020, Brazil;
| | | | - Axel H. Schönthal
- Department of Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
38
|
Cheng T, Kiser K, Grasse L, Iles L, Bartholomeusz G, Samaniego F, Orlowski RZ, Chandra J. Expression of histone deacetylase (HDAC) family members in bortezomib-refractory multiple myeloma and modulation by panobinostat. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:888-902. [PMID: 34888496 PMCID: PMC8653980 DOI: 10.20517/cdr.2021.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIM Multiple myeloma (MM) is a hematological malignancy of antibody-producing mature B cells or plasma cells. The proteasome inhibitor, bortezomib, was the first-in-class compound to be FDA approved for MM and is frequently utilized in induction therapy. However, bortezomib refractory disease is a major clinical concern, and the efficacy of the pan-histone deacetylase inhibitor (HDACi), panobinostat, in bortezomib refractory disease indicates that HDAC targeting is a viable strategy. Here, we utilized isogenic bortezomib resistant models to profile HDAC expression and define baseline and HDACi-induced expression patterns of individual HDAC family members in sensitive vs. resistant cells to better understanding the potential for targeting these enzymes. METHODS Gene expression of HDAC family members in two sets of isogenic bortezomib sensitive or resistant myeloma cell lines was examined. These cell lines were subsequently treated with HDAC inhibitors: panobinostat or vorinostat, and HDAC expression was evaluated. CRISPR/Cas9 knockdown and pharmacological inhibition of specific HDAC family members were conducted. RESULTS Interestingly, HDAC6 and HDAC7 were significantly upregulated and downregulated, respectively, in bortezomib-resistant cells. Panobinostat was effective at inducing cell death in these lines and modulated HDAC expression in cell lines and patient samples. Knockdown of HDAC7 inhibited cell growth while pharmacologically inhibiting HDAC6 augmented cell death by panobinostat. CONCLUSION Our data revealed heterogeneous expression of individual HDACs in bortezomib sensitive vs. resistant isogenic cell lines and patient samples treated with panobinostat. Cumulatively our findings highlight distinct roles for HDAC6 and HDAC7 in regulating cell death in the context of bortezomib resistance.
Collapse
Affiliation(s)
- Tiewei Cheng
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kendall Kiser
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Leslie Grasse
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lakesla Iles
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Geoffrey Bartholomeusz
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Felipe Samaniego
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert Z Orlowski
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joya Chandra
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
39
|
Relationship between Serum Bortezomib Concentration and Emergence of Diarrhea in Patients with Multiple Myeloma and/or AL Amyloidosis. Cancers (Basel) 2021; 13:cancers13225674. [PMID: 34830830 PMCID: PMC8616141 DOI: 10.3390/cancers13225674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: multiple myeloma patients have benefited from bortezomib therapy, though it has often been discontinued owing to diarrhea. The objective of this study was to verify serum bortezomib concentration in the emergence of diarrhea. (2) Methods: this prospective, observational case-control, and monocentric study was performed with an approval by the Ethics Committee of Kumamoto University Hospital in 2015 (No. 1121) from February 2015 to April 2017. (3) Results: twenty-four patients with bortezomib therapy were recruited; eight patients (33.3%) developed diarrhea at day 3 as median. Median measured trough bortezomib concentration at 24 h after first or second dose for patients with or without diarrhea was 0.87 or 0.48 ng/mL, respectively (p = 0.04, Wilcoxon signed rank test). Receiver operation characteristic (ROC) analysis produced the cut-off concentration of 0.857 ng/mL (area under the ROC curve of 0.797, sensitivity of 0.625, specificity of 0.875). The survival curves between patients with and without diarrhea were similar (p = 0.667); those between patients with higher and lower concentration than median value (0.61 ng/mL) were also similar (p = 0.940). (4) Conclusions: this study indicated the possible involvement of serum bortezomib concentration in the emergence of diarrhea in bortezomib therapy in patients with multiple myeloma.
Collapse
|
40
|
Keerthiga R, Pei DS, Fu A. Mitochondrial dysfunction, UPR mt signaling, and targeted therapy in metastasis tumor. Cell Biosci 2021; 11:186. [PMID: 34717757 PMCID: PMC8556915 DOI: 10.1186/s13578-021-00696-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022] Open
Abstract
In modern research, mitochondria are considered a more crucial energy plant in cells. Mitochondrial dysfunction, including mitochondrial DNA (mtDNA) mutation and denatured protein accumulation, is a common feature of tumors. The dysfunctional mitochondria reprogram molecular metabolism and allow tumor cells to proliferate in the hostile microenvironment. One of the crucial signaling pathways of the mitochondrial dysfunction activation in the tumor cells is the retrograde signaling of mitochondria-nucleus interaction, mitochondrial unfolded protein response (UPRmt), which is initiated by accumulation of denatured protein and excess ROS production. In the process of UPRmt, various components are activitated to enhance the mitochondria-nucleus retrograde signaling to promote carcinoma progression, including hypoxia-inducible factor (HIF), activating transcription factor ATF-4, ATF-5, CHOP, AKT, AMPK. The retrograde signaling molecules of overexpression ATF-5, SIRT3, CREB, SOD1, SOD2, early growth response protein 1 (EGR1), ATF2, CCAAT/enhancer-binding protein-d, and CHOP also involved in the process. Targeted blockage of the UPRmt pathway could obviously inhibit tumor proliferation and metastasis. This review indicates the UPRmt pathways and its crucial role in targeted therapy of metastasis tumors.
Collapse
Affiliation(s)
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
41
|
Hu L, Pan X, Hu J, Zeng H, Liu X, Jiang M, Jiang B. Proteasome inhibitors decrease paclitaxel‑induced cell death in nasopharyngeal carcinoma with the accumulation of CDK1/cyclin B1. Int J Mol Med 2021; 48:193. [PMID: 34435645 PMCID: PMC8416144 DOI: 10.3892/ijmm.2021.5026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Southeast Asia is a region with high incidence of nasopharyngeal carcinoma (NPC). Paclitaxel is the mainstay for the treatment of advanced nasopharyngeal cancer. The present study investigated the effect of proteasome inhibitors on the therapeutic effect of paclitaxel and its related mechanism. The present data from Cell Counting Kit-8 and flow cytometry assays demonstrated that appropriate concentrations of proteasome inhibitors (30 nM PS341 or 700 nM MG132) reduced the lethal effect of paclitaxel on the nasopharyngeal cancer cells. While 400 nM paclitaxel effectively inhibited cell division and induced cell death, proteasome inhibitors (PS341 30 nM or MG132 700 nM) could reverse these effects. Additionally, the western blotting results demonstrated accumulation of cell cycle regulation protein CDK1 and cyclin B1 in proteasome inhibitor-treated cells. In addition, proteasome inhibitors combined with paclitaxel led to decreased MCL1 apoptosis regulator, BCL2 family member/Caspase-9/poly (ADP-ribose) polymerase apoptosis signaling triggered by CDK1/cyclin B1. Therefore, dysfunction of CDK1/cyclin B1 could be defining the loss of paclitaxel lethality against cancer cells, a phenomenon affirmed by the CDK1 inhibitor Ro3306. Overall, the present results demonstrated that a combination of paclitaxel with proteasome inhibitors or CDK1 inhibitors is antagonistic to effective clinical management of NPC.
Collapse
Affiliation(s)
- Ling Hu
- Medical Research Center, Changsha Central Hospital, University of South China, Changsha, Hunan 410004, P.R. China
| | - Xi Pan
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jinyue Hu
- Medical Research Center, Changsha Central Hospital, University of South China, Changsha, Hunan 410004, P.R. China
| | - Hong Zeng
- Reproductive Medicine Center, Foshan Maternal and Child Health Care Hospital, Southern Medical University, Foshan, Guangdong 528000, P.R. China
| | - Xueting Liu
- Medical Research Center, Changsha Central Hospital, University of South China, Changsha, Hunan 410004, P.R. China
| | - Manli Jiang
- Medical Research Center, Changsha Central Hospital, University of South China, Changsha, Hunan 410004, P.R. China
| | - Binyuan Jiang
- Medical Research Center, Changsha Central Hospital, University of South China, Changsha, Hunan 410004, P.R. China
| |
Collapse
|
42
|
Abid H, Wu JF, Abid MB. Risk for infections with selinexor in patients with relapsed/refractory multiple myeloma: a systematic review of clinical trials. Eur J Cancer 2021; 154:7-10. [PMID: 34217910 DOI: 10.1016/j.ejca.2021.05.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/11/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Haisam Abid
- Division of General Internal Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James F Wu
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Muhammad Bilal Abid
- Divisions of Hematology, Oncology & Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
43
|
Selvy M, Kerckhove N, Pereira B, Barreau F, Nguyen D, Busserolles J, Giraudet F, Cabrespine A, Chaleteix C, Soubrier M, Bay JO, Lemal R, Balayssac D. Prevalence of Chemotherapy-Induced Peripheral Neuropathy in Multiple Myeloma Patients and its Impact on Quality of Life: A Single Center Cross-Sectional Study. Front Pharmacol 2021; 12:637593. [PMID: 33967771 PMCID: PMC8101543 DOI: 10.3389/fphar.2021.637593] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Bortezomib is a pivotal drug for the management of multiple myeloma. However, bortezomib is a neurotoxic anticancer drug responsible for chemotherapy-induced peripheral neuropathy (CIPN). CIPN is associated with psychological distress and a decrease of health-related quality of life (HRQoL), but little is known regarding bortezomib-related CIPN. This single center, cross-sectional study assessed the prevalence and severity of sensory/motor CIPN, neuropathic pain and ongoing pain medications, anxiety, depression, and HRQoL, in multiple myeloma patients after the end of bortezomib treatment. Paper questionnaires were sent to patients to record the scores of sensory and motor CIPNs (QLQ-CIPN20), neuropathic pain (visual analogue scale and DN4 interview), anxiety and depression (HADS), the scores of HRQoL (QLQ-C30 and QLQ-MY20) and ongoing pain medications. Oncological data were recorded using chemotherapy prescription software and patient medical records. The prevalence of sensory CIPN was 26.9% (95% CI 16.7; 39.1) among the 67 patients analyzed and for a mean time of 2.9 ± 2.8 years since the last bortezomib administration. The proportion of sensory CIPN was higher among patients treated by intravenous and subcutaneous routes than intravenous or subcutaneous routes (p = 0.003). QLQ-CIPN20 motor scores were higher for patients with a sensory CIPN than those without (p < 0.001) and were correlated with the duration of treatment and the cumulative dose of bortezomib (coefficient: 0.31 and 0.24, p = 0.01 and 0.0475, respectively), but not sensory scores. Neuropathic pain was screened in 44.4% of patients with sensory CIPN and 66.7% of them had ongoing pain medications, but none were treated with duloxetine (recommended drug). Multivariable analysis revealed that thalidomide treatment (odds-ratio: 6.7, 95% CI 1.3; 35.5, p = 0.03) and both routes of bortezomib administration (odds-ratio: 13.4, 95% CI 1.3; 139.1, p = 0.03) were associated with sensory CIPN. Sensory and motor CIPNs were associated with anxiety, depression, and deterioration of HRQoL. Sensory CIPN was identified in a quarter of patients after bortezomib treatment and associated with psychological distress that was far from being treated optimally. There is a need to improve the management of patients with CIPN, which may include better training of oncologists regarding its diagnosis and pharmacological treatment.
Collapse
Affiliation(s)
- Marie Selvy
- INSERM U1107 NEURO-DOL, Université Clermont Auvergne, Clermont-Ferrand, France.,Service de Chirurgie digestive, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas Kerckhove
- INSERM U1107 NEURO-DOL, Université Clermont Auvergne, Clermont-Ferrand, France.,Service de Pharmacologie, CHU Clermont-Ferrand, Clermont-Ferrand, France.,Institut Analgesia, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Bruno Pereira
- CHU Clermont-Ferrand, Direction de La Recherche Clinique et de l'Innovation, Clermont-Ferrand, France
| | - Fantine Barreau
- Service d'Hématologie clinique adulte, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Daniel Nguyen
- College of Pharmacy, University of Oklahoma, Oklahoma City, OK, United States
| | - Jérôme Busserolles
- INSERM U1107 NEURO-DOL, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Fabrice Giraudet
- INSERM U1107 NEURO-DOL, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Aurélie Cabrespine
- Service d'Hématologie clinique adulte, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Carine Chaleteix
- Service d'Hématologie clinique adulte, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Martin Soubrier
- Service de Rhumatologie, CHU Clermont-Ferrand, Clermont-Ferrand, France.,UNH-UMR 1019, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jacques-Olivier Bay
- Service d'Hématologie clinique adulte, CHU Clermont-Ferrand, Clermont-Ferrand, France.,EA 7453 CHELTER, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Richard Lemal
- Service d'Hématologie clinique adulte, CHU Clermont-Ferrand, Clermont-Ferrand, France.,EA 7453 CHELTER, Université Clermont Auvergne, Clermont-Ferrand, France
| | - David Balayssac
- INSERM U1107 NEURO-DOL, Université Clermont Auvergne, Clermont-Ferrand, France.,CHU Clermont-Ferrand, Direction de La Recherche Clinique et de l'Innovation, Clermont-Ferrand, France
| |
Collapse
|
44
|
Liu Y, Duan C, Zhang C. E3 Ubiquitin Ligase in Anticancer Drugdsla Resistance: Recent Advances and Future Potential. Front Pharmacol 2021; 12:645864. [PMID: 33935743 PMCID: PMC8082683 DOI: 10.3389/fphar.2021.645864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
Drug therapy is the primary treatment for patients with advanced cancer. The use of anticancer drugs will inevitably lead to drug resistance, which manifests as tumor recurrence. Overcoming chemoresistance may enable cancer patients to have better therapeutic effects. However, the mechanisms underlying drug resistance are poorly understood. E3 ubiquitin ligases (E3s) are a large class of proteins, and there are over 800 putative functional E3s. E3s play a crucial role in substrate recognition and catalyze the final step of ubiquitin transfer to specific substrate proteins. The diversity of the set of substrates contributes to the diverse functions of E3s, indicating that E3s could be desirable drug targets. The E3s MDM2, FBWX7, and SKP2 have been well studied and have shown a relationship with drug resistance. Strategies targeting E3s to combat drug resistance include interfering with their activators, degrading the E3s themselves and influencing the interaction between E3s and their substrates. Research on E3s has led to the discovery of possible therapeutic methods to overcome the challenging clinical situation imposed by drug resistance. In this article, we summarize the role of E3s in cancer drug resistance from the perspective of drug class.
Collapse
Affiliation(s)
- Yuanqi Liu
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| |
Collapse
|
45
|
Liu JH, Fan HS, Deng SH, Sui WW, Fu MW, Yi SH, Huang WY, Li ZJ, Zhang CX, Zou DH, Zhao YZ, Qiu LG, An G. [Central nervous system toxicity caused by bortezomib: five case reports and a review of literature]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:63-69. [PMID: 33677871 PMCID: PMC7957256 DOI: 10.3760/cma.j.issn.0253-2727.2021.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
目的 探讨硼替佐米中枢神经系统(CNS)毒性的临床特点、诊断和治疗。 方法 报道5例由硼替佐米引起的CNS毒性患者并结合现有文献探讨其临床特点。 结果 5例患者中有4例在应用硼替佐米后出现了中枢性发热,主要表现为持续性高热、周身无汗、未能找到感染病灶、对退热药不敏感,停用硼替佐米后症状好转。4例患者中有3例伴随顽固性低钠血症,1例明确诊断为抗利尿不当综合征(SIAD),可能是硼替佐米同时影响了下丘脑体温调节中枢和抗利尿激素神经分泌细胞所致。1例患者诊断为可逆性后部脑病综合征(PRES),表现为应用硼替佐米后出现意识障碍,头CT示双侧半卵圆中心白质密度减低,停用硼替佐米后患者症状消失且未再复发。此外,我们还发现血小板计数可能与硼替佐米CNS毒性的严重程度相关。 结论 硼替佐米的CNS毒性非常罕见,表现为3种形式:SIAD、PRES和中枢性发热,及时识别和治疗对于预防不可逆的神经并发症非常重要。
Collapse
Affiliation(s)
- J H Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - H S Fan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - S H Deng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - W W Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - M W Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - S H Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - W Y Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Z J Li
- Shandong Cancer Hospital, Jinan 250117, China
| | - C X Zhang
- Tangshan People's Hospital &Tangshan Cancer Hospital, Tangshan 063001, China
| | - D H Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Y Z Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - L G Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - G An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
46
|
In Vitro Investigation of the Cytotoxic Activity of Emodin 35 Derivative on Multiple Myeloma Cell Lines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6682787. [PMID: 33564319 PMCID: PMC7850823 DOI: 10.1155/2021/6682787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 11/24/2022]
Abstract
Background Bortezomib is used for treating multiple myeloma (MM); however, it has considerable adverse effects. Emodin has been reported to exhibit inhibitory effects on MM cell lines. We investigated the efficacy of emodin 35 (E35), an emodin derivative, using U266 and MM1s cell lines in treating MM and the efficacy of combining bortezomib and E35. Methods MTT assays were used to observe the effects of E35 on MM cell growth. The effects on cellular apoptosis were then observed using Annexin V/propidium iodide (PI) staining assay. The expression of apoptosis-related genes, including the caspase family, was examined. The efficacy of combining bortezomib and E35 was investigated by examining the expression of the Akt/mTOR/4EBP1 signaling pathway-related proteins. Results We report that E35 inhibited the growth of U266 and MM1s cells by inducing cellular apoptosis. Moreover, E35 downregulated the expression of apoptosis-related genes and suppressed the phosphorylation of Akt/mTOR/4EBP1 signaling pathway-related genes, thus exhibiting synergistic effects with bortezomib. All observed effects were dose-dependent. Conclusion The results showed that E35 exhibited cytotoxic effects in MM cell lines in protein levels. Thus, E35, particularly in combination with bortezomib, may be considered as a promising treatment for MM; however, this requires further investigation in vivo.
Collapse
|
47
|
Vallet N, Boissel N, Elefant E, Chevillon F, Pasquer H, Calvo C, Dhedin N, Poirot C. Can Some Anticancer Treatments Preserve the Ovarian Reserve? Oncologist 2021; 26:492-503. [PMID: 33458904 DOI: 10.1002/onco.13675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Preventing premature ovarian failure (POF) is a major challenge in oncology. With conventional regimens, cytotoxicity-associated POF involves primordial follicles (PF) pool depletion by apoptosis or overactivation mechanisms, notably mediated by the ABL/TAp63 and PI3K/Akt/mTOR pathways. New anticancer treatments have been designed to target pathways implicated in tumor growth. Although concerns regarding fertility arise with these targeted therapies, we hypothesized that targeted therapies may exert off-tumor effects on PF that might delay POF. We provide an overview of evidence concerning these off-tumor effects on PF. Limitations and future potential implications of these findings are discussed. DESIGN PubMed was searched by combining Boolean operators with the following keywords: fertility, ovarian, follicle, anti-tumoral, cancer, targeted, cytotoxic, and chemotherapy. RESULTS Cisplatin-related PF apoptosis via the ABL/TAp63 pathway was targeted with a tyrosine kinase inhibitor, imatinib, in mice, but effects were recently challenged by findings on human ovarian xenografts in mice. In cyclophosphamide-treated mice, PI3K/Akt/mTOR pathway inhibition with mTOR inhibitors and AS101 preserved the PF pool. Proteasome and GSK3 inhibitors were evaluated for direct and indirect follicle DNA damage prevention. Surprisingly, evidence for cytotoxic drug association with PF pool preservation was found. We also describe selected non-anticancer molecules that may minimize gonadotoxicity. CONCLUSION Not all anticancer treatments are associated with POF, particularly since the advent of targeted therapies. The feasibility of associating a protective drug targeting PF exhaustion mechanisms with cytotoxic treatments should be evaluated, as a way of decreasing the need for conventional fertility preservation techniques. Further evaluations are required for transfer into clinical practice. IMPLICATIONS FOR PRACTICE Anticancer therapies are associated with infertility in 10%-70% of patients, which is the result of primordial follicles pool depletion. Alone or associated with gonadotoxic treatments, some targeted therapies may exert favorable off-targets effects on the primordial follicle pool by slowing down their exhaustion. Current evidence of these effects relies on murine models or human in vitro models. Evaluation of these protective strategies in humans is challenging; however, if these results are confirmed with clinical and biological data, it not only could be a new approach to female fertility preservation but also would change standard fertility strategies.
Collapse
Affiliation(s)
- Nicolas Vallet
- Department of Hematology and Cellular Therapy, Tours University Hospital, Tours, France
| | - Nicolas Boissel
- Department of Hematology, Adolescent and Young Adults Unit, Fertility Preservation, Saint Louis Hospital, AP-, HP, Paris, France.,Paris University, Paris, France
| | - Elisabeth Elefant
- Centre de Référence sur les Agents Tératogènes (CRAT), Armand Trousseau Hospital, AP-, HP, Paris, France.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Florian Chevillon
- Department of Hematology, Adolescent and Young Adults Unit, Fertility Preservation, Saint Louis Hospital, AP-, HP, Paris, France
| | - Hélène Pasquer
- Department of Hematology, Adolescent and Young Adults Unit, Fertility Preservation, Saint Louis Hospital, AP-, HP, Paris, France
| | - Charlotte Calvo
- Pediatric Hematology Department, Robert Debré Hospital, AP-, HP, Paris, France
| | - Nathalie Dhedin
- Department of Hematology, Adolescent and Young Adults Unit, Fertility Preservation, Saint Louis Hospital, AP-, HP, Paris, France
| | - Catherine Poirot
- Department of Hematology, Adolescent and Young Adults Unit, Fertility Preservation, Saint Louis Hospital, AP-, HP, Paris, France.,Faculty of Medicine, Sorbonne University, Paris, France
| |
Collapse
|
48
|
Suo C, Gui Z, Wang Z, Zhou J, Zheng M, Chen H, Fei S, Gu M, Tan R. Bortezomib limits renal allograft interstitial fibrosis by inhibiting NF-κB/TNF-α/Akt/mTOR/P70S6K/Smurf2 pathway via IκBα protein stabilization. Clin Sci (Lond) 2021; 135:53-69. [PMID: 33289516 DOI: 10.1042/cs20201038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 01/06/2023]
Abstract
Chronic allograft dysfunction is a major cause of late graft failure after kidney transplantation. One of the histological changes is interstitial fibrosis, which is associated with epithelial-mesenchymal transition. Bortezomib has been reported to prevent the progression of fibrosis in organs. We used rat renal transplantation model and human kidney 2 cell line treated with tumor necrosis factor-α (TNF-α) to examine their response to bortezomib. To explore the mechanism behind it, we assessed the previously studied TNF-α/protein kinase B (Akt)/Smad ubiquitin regulatory factor 2 (Smurf2) signaling and performed RNA sequencing. Our results suggested that bortezomib could attenuate the TNF-α-induced epithelial-mesenchymal transition and renal allograft interstitial fibrosis in vitro and in vivo. In addition to blocking Akt/mammalian target of rapamycin (mTOR)/p70S6 kinase/Smurf2 signaling, bortezomib's effect on the epithelial-mesenchymal transition was associated with inhibition of nuclear factor kappa B (NF-κB) pathway by stabilizing inhibitor of NF-κB. The study highlighted the therapeutic potential of bortezomib on renal allograft interstitial fibrosis. Such an effect may result from inhibition of NF-κB/TNF-α/Akt/mTOR/p70S6 kinase/Smurf2 signaling via stabilizing protein of inhibitor of NF-κB.
Collapse
Affiliation(s)
- Chuanjian Suo
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Zeping Gui
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Zijie Wang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Jiajun Zhou
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Ming Zheng
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Hao Chen
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Shuang Fei
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Min Gu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Ruoyun Tan
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| |
Collapse
|
49
|
Giannotta JA, Fattizzo B, Cavallaro F, Barcellini W. Infectious Complications in Autoimmune Hemolytic Anemia. J Clin Med 2021; 10:E164. [PMID: 33466516 PMCID: PMC7796467 DOI: 10.3390/jcm10010164] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022] Open
Abstract
Autoimmune hemolytic anemia (AIHA) may be frequently challenged by infectious complications, mainly as a result of immunosuppressive treatments administered. Furthermore, infectious agents are known triggers of AIHA onset and relapse. Although being risk factors for mortality, infections are an underestimated issue in AIHA. This review will collect the available evidence on the frequency and type of infectious complications in AIHA, detailing the risk related to each treatment (i.e., steroids, rituximab, splenectomy, classic immunosuppressive agents, and new target drugs). Moreover, we will briefly discuss the infectious complications in AIHA secondary to other diseases that harbor an intrinsic infectious risk (e.g., primary immunodeficiencies, systemic autoimmune diseases, lymphoproliferative disorders, solid organ and hematopoietic stem cell transplants). Finally, viral and bacterial reactivations during immune suppressive therapies will be discussed, along with suggested screening and prophylactic strategies.
Collapse
Affiliation(s)
- Juri Alessandro Giannotta
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20100 Milan, Italy; (B.F.); (F.C.); (W.B.)
| | - Bruno Fattizzo
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20100 Milan, Italy; (B.F.); (F.C.); (W.B.)
- Department of Oncology and Oncohematology, University of Milan, Via Festa del Perdono 7, 20100 Milan, Italy
| | - Francesca Cavallaro
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20100 Milan, Italy; (B.F.); (F.C.); (W.B.)
- Department of Oncology and Oncohematology, University of Milan, Via Festa del Perdono 7, 20100 Milan, Italy
| | - Wilma Barcellini
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20100 Milan, Italy; (B.F.); (F.C.); (W.B.)
| |
Collapse
|
50
|
Wang J, Chen J, Qiu D, Zeng Z. Regulatory role of DEPTOR‑mediated cellular autophagy and mitochondrial reactive oxygen species in angiogenesis in multiple myeloma. Int J Mol Med 2020; 47:643-658. [PMID: 33416146 PMCID: PMC7797453 DOI: 10.3892/ijmm.2020.4831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/25/2020] [Indexed: 11/09/2022] Open
Abstract
DEPTOR, an inhibitor of mammalian target of rapamycin (mTOR), is essential for the survival of multiple myeloma (MM) cells. The expression level of DEPTOR is closely related to the prognosis of patients with MM treated with the antiangiogenic agent thalidomide; however, its role in the regulation of angiogenesis has not yet been elucidated. In the present study, the expression levels of DEPTOR and vascular endothelial growth factor (VEGF), and the microvessel density (MVD) of bone marrow (BM) from patients with MM assessed. DEPTORoverexpression plasmid or CRISPR-associated protein 9 (Cas9) and single guided RNAs (sgRNAs) were used to modulate DEPTOR expression. The DEPTOR-mediated angiogenic effects were assessed using a tube formation assay of human umbilical vein endothelial cells (HUVECs) cultured in the collected conditioned medium from MM cell lines with different expression levels of DEPTOR. It was found that the expression level of DEPTOR negatively correlated with the VEGF level and BM MVD in MM. Autophagic activity was regulated by DEPTOR expression, but was not related to thalidomide-binding protein CRBN, which is required for thalidomide to play an anti-tumor and antiangiogenic role in MM cells. The disruption of DEPTOR protein decreased cellular autophagy, increased VEGF expression in MM cells, and inhibited the tube formation of HUVECs, while a high expression of DEPTOR exerted the opposite effect. Moreover, targeting DEPTOR also resulted in the production of mitochondrial reactive oxygen species (mtROS), the phosphorylation of nuclear factor-κB (NF-κB) and an increase in interleukin 6 (IL-6) secretion. Of note, these effects are fully abrogated by treatment with autophagy activator (SMER28) or mitochondrial-specific antioxidant (Mito-TEMPO). Taken together, the present study demonstrates the role of DEPTOR in the regulation of autophagy/mtROS and subsequent angiogenesis. The results provide a novel mechanism for the further understanding of the therapeutic effects of thalidomide on MM.
Collapse
Affiliation(s)
- Jizhen Wang
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Junmin Chen
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Dongbiao Qiu
- Department of Blood Transfusion, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Zhiyong Zeng
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|