1
|
Li H, Li J, Li X, Li J, Chen D, Zhang Y, Yu Q, Yang F, Liu Y, Dai W, Sun Y, Li P, Schranz ME, Ma F, Zhao T. Genomic investigation of plant secondary metabolism: insights from synteny network analysis of oxidosqualene cyclase flanking genes. THE NEW PHYTOLOGIST 2025; 245:2150-2169. [PMID: 39731256 DOI: 10.1111/nph.20357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/28/2024] [Indexed: 12/29/2024]
Abstract
The clustered distribution of genes involved in metabolic pathways within the plant genome has garnered significant attention from researchers. By comparing and analyzing changes in the flanking regions of metabolic genes across a diverse array of species, we can enhance our understanding of the formation and distribution of biosynthetic gene clusters (BGCs). In this study, we have designed a workflow that uncovers and assesses conserved positional relationships between genes in various species by using synteny neighborhood networks (SNN). This workflow is then applied to the analysis of flanking genes associated with oxidosqualene cyclases (OSCs). The method allows for the recognition and comparison of homologous blocks with unique flanking genes accompanying different subfamilies of OSCs. The examination of the flanking genes of OSCs in 122 plant species revealed multiple genes with conserved positional relationships with OSCs in angiosperms. Specifically, the earliest adjacency of OSC genes and CYP716 genes first appeared in basal eudicots, and the nonrandom occurrence of CYP716 genes in the flanking region of OSC persists across different lineages of eudicots. Our study showed the substitution of genes in the flanking region of the OSC varies across different plant lineages, and our approach facilitates the investigation of flanking gene rearrangements in the formation of OSC-related BGCs.
Collapse
Affiliation(s)
- Haochen Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Jiale Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Xinchu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Jialin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Dan Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Yangxin Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Qiaoming Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Fan Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Yunxiao Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Weidong Dai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China
| | - Yaqiang Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Pengmin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, 6708 PB, Wageningen, the Netherlands
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Tao Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
2
|
Nunna H, Palmer NA, Sarath G, Wegulo SN, Tatineni S. Synergistic interaction between wheat streak mosaic virus and Triticum mosaic virus modulates wheat transcriptome to favor disease severity. FRONTIERS IN PLANT SCIENCE 2025; 15:1504482. [PMID: 39845488 PMCID: PMC11750876 DOI: 10.3389/fpls.2024.1504482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025]
Abstract
Wheat streak mosaic virus (WSMV; Tritimovirus tritici) and Triticum mosaic virus (TriMV; Poacevirus tritici), the type members of the genera Tritimovirus and Poacevirus, respectively, in the family Potyviridae, are economically important wheat viruses in the Great Plains region of the USA. Co-infection of wheat by WSMV and TriMV results in disease synergism. Wheat transcriptome from singly (WSMV or TriMV) and doubly (WSMV+TriMV) infected upper uninoculated leaves were analyzed by RNA-Seq at 9, 12, and 21 days postinoculation. A total of 31,754 differentially expressed wheat genes were identified among all comparisons. Weighted gene co-expression network analysis resulted in 11 co-expression modules that broadly indicated gene expression profiles attributable to control, single, and double infections. Gene ontology, protein domain and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis revealed that genes specifically related to photosynthesis, growth, stress, senescence, and defense were differentially enriched. Analyses of transcription factor families indicated that genes encoding MADS-Box and ARFs were strongly enriched in control plants, moderately repressed in TriMV-infected plants, and more strongly repressed in WSMV- and doubly-infected plants, whereas genes encoding WRKYs and NACs were more enriched in WSMV or doubly infected plants. Synergistic interactions between WSMV and TriMV drastically enhanced disease phenotype compared to individual virus infections. The progression of disease phenotype was correlated to transcriptomic changes, indicating the strong disruption to plant metabolism and likely channeling of energy and metabolites for viral replication. There also appeared to be a connection between viral replication and plastid health, with stronger downregulation of genes needed for chloroplast functions and integrity and increased synergism between TriMV and WSMV. This study provides an overview of transcriptomic changes distinctly influenced by TriMV and WSMV either singly or in combination and provides a good correlation between specific transcription factors and genes associated with metabolism to observed phenotypic changes in plant growth and disease synergism.
Collapse
Affiliation(s)
- Haritha Nunna
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nathan A. Palmer
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Wheat, Sorghum, and Forage Research Unit, Lincoln, NE, United States
| | - Gautam Sarath
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Wheat, Sorghum, and Forage Research Unit, Lincoln, NE, United States
| | - Stephen N. Wegulo
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Satyanarayana Tatineni
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, United States
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Wheat, Sorghum, and Forage Research Unit, Lincoln, NE, United States
| |
Collapse
|
3
|
Wu X, Lei Z, Yuan Y, Shi X, Chen Y, Qi K, Xie Z, Bai M, Yin H, Zhang S. Integrated metabolomic and transcriptomic analysis revealed the role of PbrCYP94B in wax accumulation in pear fruit after bagging treatment. Int J Biol Macromol 2024; 282:136107. [PMID: 39343281 DOI: 10.1016/j.ijbiomac.2024.136107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Preharvest fruit bagging is a safe and environmentally friendly production measure. Cuticular wax, as the first protective layer on the fruit surface, has important functions. However, the effects of preharvest bagging on cuticular wax synthesis in pears and the related molecular mechanisms are still unclear. Here, the impact of fruit bagging with different materials on cuticular wax synthesis in pear fruit, and the underlying molecular mechanism, were revealed from metabolomic, transcriptomic, morphological, and molecular biological perspectives. Our results revealed that, compared with that in the not bagged (NB) treatment group (0.59 mg/cm2), the total wax concentration was 1.32- and 1.37-fold greater in the single-layered white paper bag (WPB, 1.37 mg/cm2) and double-layered yellow-white paper bag, (YWPB, 1.40 mg/cm2) treatment groups, while it was slightly lower in the double-layered yellow-black paper bag (YBPB, 0.45 mg/cm2) group, which was consistent with the scanning electron microscopy (SEM) results. Integrated metabolomic and transcriptomic analysis revealed 29 genes associated with cuticular wax synthesis. Overexpression of PbrCYP94B, which is a key gene in the wax synthesis pathway in pear fruit, increased the total wax and alkane contents. This study provides valuable insights for the creation of new pear germplasms with high wax contents.
Collapse
Affiliation(s)
- Xiao Wu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhijie Lei
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yubo Yuan
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinjie Shi
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangyang Chen
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Xie
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Mudan Bai
- Pomology Institute, Shanxi Agricultural University, China
| | - Hao Yin
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Yang C, Halitschke R, O'Connor SE, Baldwin IT. Roles of three cytochrome P450 monooxygenases in triterpene biosynthesis and their potential impact on growth and development. PLANT PHYSIOLOGY 2024; 196:1407-1425. [PMID: 39052981 PMCID: PMC11444297 DOI: 10.1093/plphys/kiae399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/18/2024] [Accepted: 07/06/2024] [Indexed: 07/27/2024]
Abstract
Pentacyclic triterpenoids, recognized for their natural bioactivity, display complex spatiotemporal accumulation patterns within the ecological model plant Nicotiana attenuata. Despite their ecological importance, the underlying biosynthetic enzymes and functional attributes of triterpenoid synthesis in N. attenuata remain unexplored. Here, we show that 3 cytochrome P450 monooxygenases (NaCYP716A419, NaCYP716C87, and NaCYP716E107) from N. attenuata oxidize the pentacyclic triterpene skeleton, as evidenced by heterologous expression in Nicotiana benthamiana. NaCYP716A419 catalyzed a consecutive 3-step oxidation reaction at the C28 position of β-amyrin/lupeol/lupanediol, yielding the corresponding alcohol, aldehyde, and carboxylic acid. NaCYP716C87 hydroxylated the C2α position of β-amyrin/lupeol/lupanediol/erythrodiol/oleanolic acid/betulinic acid, while NaCYP716E107 hydroxylated the C6β position of β-amyrin/oleanolic acid. The genes encoding these 3 CYP716 enzymes are highly expressed in flowers and respond to induction by ABA, MeJA, SA, GA3, and abiotic stress treatments. Using VIGS technology, we revealed that silencing of NaCYP716A419 affects the growth and reproduction of N. attenuata, suggesting the ecological significance of these specialized metabolite biosynthetic steps.
Collapse
Affiliation(s)
- Caiqiong Yang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena D-07745, Germany
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena D-07745, Germany
| | - Rayko Halitschke
- Mass Spectrometry and Metabolomics, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena D-07745, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena D-07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena D-07745, Germany
| |
Collapse
|
5
|
Zhang W, Iqbal J, Hou Z, Fan Y, Dong J, Liu C, Yang T, Che D, Zhang J, Xin D. Genome-Wide Identification of the CYP716 Gene Family in Platycodon grandiflorus (Jacq.) A. DC. and Its Role in the Regulation of Triterpenoid Saponin Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1946. [PMID: 39065473 PMCID: PMC11281222 DOI: 10.3390/plants13141946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
The main type of saponins occurring in the root of Platycodon grandiflorus (Jacq.) A. DC. are oleanolic acid glycosides. The CYP716 gene family plays a major role in catalyzing the conversion of β-amyrin into oleanolic acid. However, studies on the CYP716 genes in P. grandiflorus are limited, and its evolutionary history remains poorly understood. In this study, 22 PgCYP716 genes were identified, distributed among seven subfamilies. Cis-acting elements of the PgCYP716 promoters were mainly involved in plant hormone regulation and responses to abiotic stresses. PgCYP716A264, PgCYP716A391, PgCYP716A291, and PgCYP716BWv3 genes were upregulated in the root and during saponin accumulation, as shown by RNA-seq analysis, suggesting that these four genes play an important role in saponin synthesis. The results of subcellular localization indicated that these four genes encoded membrane proteins. Furthermore, the catalytic activity of these four genes was proved in the yeast, which catalyzed the conversion of β-amyrin into oleanolic acid. We found that the content of β-amyrin, platycodin D, platycoside E, platycodin D3, and total saponins increased significantly when either of the four genes was over expressed in the transgenic hair root. In addition, the expression of PgSS, PgGPPS2, PgHMGS, and PgSE was also upregulated while these four genes were overexpressed. These data support that these four PgCYP716 enzymes oxidize β-amyrin to produce oleanolic acid, ultimately promoting saponin accumulation by activating the expression of upstream pathway genes. Our results enhanced the understanding of the functional variation among the PgCYP716 gene family involved in triterpenoid biosynthesis and provided a theoretical foundation for improving saponin content and enriching the saponin biosynthetic pathway in P. grandiflorus.
Collapse
Affiliation(s)
- Wuhua Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Javed Iqbal
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Zhihui Hou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Yingdong Fan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Jie Dong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Chengzhi Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Tao Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Daidi Che
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Jinzhu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Dawei Xin
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Younkin GC, Alani ML, Capador AP, Fischer HD, Mirzaei M, Hastings AP, Agrawal AA, Jander G. Cardiac glycosides protect wormseed wallflower (Erysimum cheiranthoides) against some, but not all, glucosinolate-adapted herbivores. THE NEW PHYTOLOGIST 2024; 242:2719-2733. [PMID: 38229566 PMCID: PMC11116068 DOI: 10.1111/nph.19534] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
The chemical arms race between plants and insects is foundational to the generation and maintenance of biological diversity. We asked how the evolution of a novel defensive compound in an already well-defended plant lineage impacts interactions with diverse herbivores. Erysimum cheiranthoides (Brassicaceae), which produces both ancestral glucosinolates and novel cardiac glycosides, served as a model. We analyzed gene expression to identify cardiac glycoside biosynthetic enzymes in E. cheiranthoides and characterized these enzymes via heterologous expression and CRISPR/Cas9 knockout. Using E. cheiranthoides cardiac glycoside-deficient lines, we conducted insect experiments in both the laboratory and field. EcCYP87A126 initiates cardiac glycoside biosynthesis via sterol side-chain cleavage, and EcCYP716A418 has a role in cardiac glycoside hydroxylation. In EcCYP87A126 knockout lines, cardiac glycoside production was eliminated. Laboratory experiments with these lines revealed that cardiac glycosides were highly effective defenses against two species of glucosinolate-tolerant specialist herbivores, but did not protect against all crucifer-feeding specialist herbivores in the field. Cardiac glycosides had lesser to no effect on two broad generalist herbivores. These results begin elucidation of the E. cheiranthoides cardiac glycoside biosynthetic pathway and demonstrate in vivo that cardiac glycoside production allows Erysimum to escape from some, but not all, specialist herbivores.
Collapse
Affiliation(s)
- Gordon C. Younkin
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Martin L. Alani
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| | | | | | - Mahdieh Mirzaei
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| | - Amy P. Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Anurag A. Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Georg Jander
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Zhang S, Meng F, Pan X, Qiu X, Li C, Lu S. Chromosome-level genome assembly of Prunella vulgaris L. provides insights into pentacyclic triterpenoid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:731-752. [PMID: 38226777 DOI: 10.1111/tpj.16629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 12/08/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Prunella vulgaris is one of the bestselling and widely used medicinal herbs. It is recorded as an ace medicine for cleansing and protecting the liver in Chinese Pharmacopoeia and has been used as the main constitutions of many herbal tea formulas in China for centuries. It is also a traditional folk medicine in Europe and other countries of Asia. Pentacyclic triterpenoids are a major class of bioactive compounds produced in P. vulgaris. However, their biosynthetic mechanism remains to be elucidated. Here, we report a chromosome-level reference genome of P. vulgaris using an approach combining Illumina, ONT, and Hi-C technologies. It is 671.95 Mb in size with a scaffold N50 of 49.10 Mb and a complete BUSCO of 98.45%. About 98.31% of the sequence was anchored into 14 pseudochromosomes. Comparative genome analysis revealed a recent WGD in P. vulgaris. Genome-wide analysis identified 35 932 protein-coding genes (PCGs), of which 59 encode enzymes involved in 2,3-oxidosqualene biosynthesis. In addition, 10 PvOSC, 358 PvCYP, and 177 PvUGT genes were identified, of which five PvOSCs, 25 PvCYPs, and 9 PvUGTs were predicted to be involved in the biosynthesis of pentacyclic triterpenoids. Biochemical activity assay of PvOSC2, PvOSC4, and PvOSC6 recombinant proteins showed that they were mixed amyrin synthase (MAS), lupeol synthase (LUS), and β-amyrin synthase (BAS), respectively. The results provide a solid foundation for further elucidating the biosynthetic mechanism of pentacyclic triterpenoids in P. vulgaris.
Collapse
Affiliation(s)
- Sixuan Zhang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Fanqi Meng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Xian Pan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Xiaoxiao Qiu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Caili Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Shanfa Lu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| |
Collapse
|
8
|
Liu Y, Zhou J, Liu P, Hu T, Liu X, Gao J, Ma L, Lu Y, Li D, Jiang Z, Zhang X, Huang L, Gao W, Wu X, Zhang Y, Liu C. Gene identification and semisynthesis of the anti-inflammatory oleanane-type triterpenoid wilforlide A. THE NEW PHYTOLOGIST 2024; 241:1720-1731. [PMID: 38013483 DOI: 10.1111/nph.19427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
Wilforlide A is one of the main active constituents produced in trace amounts in Tripterygium wilfordii Hook F, which has excellent anti-inflammatory and immune suppressive effects. Despite the seeming structural simplicity of the compound, the biosynthetic pathway of wilforlide A remains unknown. Gene-specific expression analysis and genome mining were used to identify the gene candidates, and their functions were studied in vitro and in vivo. A modularized two-step (M2S) technique and CRISPR-Cas9 methods were used to construct engineering yeast. Here, we identified a cytochrome P450, TwCYP82AS1, that catalyses C-22 hydroxylation during wilforlide A biosynthesis. We also found that TwCYP712K1 to K3 can further oxidize the C-29 carboxylation of oleanane-type triterpenes in addition to friedelane-type triterpenes. Reconstitution of the biosynthetic pathway in engineered yeast increased the precursor supply, and combining TwCYP82AS1 and TwCYP712Ks produced abrusgenic acid, which was briefly acidified to achieve the semisynthesis of wilforlide A. Our work presents an alternative metabolic engineering approach for obtaining wilforlide A without relying on extraction from plants.
Collapse
Affiliation(s)
- Yuan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiawei Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Panting Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Tianyuan Hu
- School of Pharmacy, College of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xuan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Jie Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Lin Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Dan Li
- School of Pharmaceutical Science, Capital Medical University, Beijing, 100069, China
| | - Zhouqian Jiang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Xianan Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Luqi Huang
- National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Xiaoyi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Yifeng Zhang
- National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Changli Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
9
|
Li Y, Wang J, Li L, Song W, Li M, Hua X, Wang Y, Yuan J, Xue Z. Natural products of pentacyclic triterpenoids: from discovery to heterologous biosynthesis. Nat Prod Rep 2023; 40:1303-1353. [PMID: 36454108 DOI: 10.1039/d2np00063f] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Covering: up to 2022Pentacyclic triterpenoids are important natural bioactive substances that are widely present in plants and fungi. They have significant medicinal efficacy, play an important role in reducing blood glucose and protecting the liver, and have anti-inflammatory, anti-oxidation, anti-fatigue, anti-viral, and anti-cancer activities. Pentacyclic triterpenoids are derived from the isoprenoid biosynthetic pathway, which generates common precursors of triterpenes and steroids, followed by cyclization with oxidosqualene cyclases (OSCs) and decoration via cytochrome P450 monooxygenases (CYP450s) and glycosyltransferases (GTs). Many biosynthetic pathways of triterpenoid saponins have been elucidated by studying their metabolic regulation network through the use of multiomics and identifying their functional genes. Unfortunately, natural resources of pentacyclic triterpenoids are limited due to their low content in plant tissues and the long growth cycle of plants. Based on the understanding of their biosynthetic pathway and transcriptional regulation, plant bioreactors and microbial cell factories are emerging as alternative means for the synthesis of desired triterpenoid saponins. The rapid development of synthetic biology, metabolic engineering, and fermentation technology has broadened channels for the accumulation of pentacyclic triterpenoid saponins. In this review, we summarize the classification, distribution, structural characteristics, and bioactivity of pentacyclic triterpenoids. We further discuss the biosynthetic pathways of pentacyclic triterpenoids and involved transcriptional regulation. Moreover, the recent progress and characteristics of heterologous biosynthesis in plants and microbial cell factories are discussed comparatively. Finally, we propose potential strategies to improve the accumulation of triterpenoid saponins, thereby providing a guide for their future biomanufacturing.
Collapse
Affiliation(s)
- Yanlin Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Jing Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Linyong Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Wenhui Song
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Min Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Xin Hua
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Yu Wang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, PR China.
| | - Zheyong Xue
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| |
Collapse
|
10
|
Zhang Z, Wu QY, Ge Y, Huang ZY, Hong R, Li A, Xu JH, Yu HL. Hydroxylases involved in terpenoid biosynthesis: a review. BIORESOUR BIOPROCESS 2023; 10:39. [PMID: 38647640 PMCID: PMC10992849 DOI: 10.1186/s40643-023-00656-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/10/2023] [Indexed: 04/25/2024] Open
Abstract
Terpenoids are pervasive in nature and display an immense structural diversity. As the largest category of plant secondary metabolites, terpenoids have important socioeconomic value in the fields of pharmaceuticals, spices, and food manufacturing. The biosynthesis of terpenoid skeletons has made great progress, but the subsequent modifications of the terpenoid framework are poorly understood, especially for the functionalization of inert carbon skeleton usually catalyzed by hydroxylases. Hydroxylase is a class of enzymes that plays an important role in the modification of terpenoid backbone. This review article outlines the research progress in the identification, molecular modification, and functional expression of this class of enzymes in the past decade, which are profitable for the discovery, engineering, and application of more hydroxylases involved in the plant secondary metabolism.
Collapse
Affiliation(s)
- Zihan Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Qing-Yang Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Yue Ge
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Zheng-Yu Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Ran Hong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Aitao Li
- School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
11
|
Qu Y, Shang X, Zeng Z, Yu Y, Bian G, Wang W, Liu L, Tian L, Zhang S, Wang Q, Xie D, Chen X, Liao Z, Wang Y, Qin J, Yang W, Sun C, Fu X, Zhang X, Fang S. Whole-genome Duplication Reshaped Adaptive Evolution in A Relict Plant Species, Cyclocarya paliurus. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:455-469. [PMID: 36775057 PMCID: PMC10787019 DOI: 10.1016/j.gpb.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/07/2022] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Cyclocarya paliurus is a relict plant species that survived the last glacial period and shows a population expansion recently. Its leaves have been traditionally used to treat obesity and diabetes with the well-known active ingredient cyclocaric acid B. Here, we presented three C. paliurus genomes from two diploids with different flower morphs and one haplotype-resolved tetraploid assembly. Comparative genomic analysis revealed two rounds of recent whole-genome duplication events and identified 691 genes with dosage effects that likely contribute to adaptive evolution through enhanced photosynthesis and increased accumulation of triterpenoids. Resequencing analysis of 45 C. paliurus individuals uncovered two bottlenecks, consistent with the known events of environmental changes, and many selectively swept genes involved in critical biological functions, including plant defense and secondary metabolite biosynthesis. We also proposed the biosynthesis pathway of cyclocaric acid B based on multi-omics data and identified key genes, in particular gibberellin-related genes, associated with the heterodichogamy in C. paliurus species. Our study sheds light on evolutionary history of C. paliurus and provides genomic resources to study the medicinal herbs.
Collapse
Affiliation(s)
- Yinquan Qu
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xulan Shang
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Ziyan Zeng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yanhao Yu
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Guoliang Bian
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Wenling Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Liu
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Li Tian
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Shengcheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qian Wang
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Dejin Xie
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xuequn Chen
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenyang Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yibin Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jian Qin
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Wanxia Yang
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Caowen Sun
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Xiangxiang Fu
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China.
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Shengzuo Fang
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China.
| |
Collapse
|
12
|
Julca I, Mutwil-Anderwald D, Manoj V, Khan Z, Lai SK, Yang LK, Beh IT, Dziekan J, Lim YP, Lim SK, Low YW, Lam YI, Tjia S, Mu Y, Tan QW, Nuc P, Choo LM, Khew G, Shining L, Kam A, Tam JP, Bozdech Z, Schmidt M, Usadel B, Kanagasundaram Y, Alseekh S, Fernie A, Li HY, Mutwil M. Genomic, transcriptomic, and metabolomic analysis of Oldenlandia corymbosa reveals the biosynthesis and mode of action of anti-cancer metabolites. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36807520 DOI: 10.1111/jipb.13469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Plants accumulate a vast array of secondary metabolites, which constitute a natural resource for pharmaceuticals. Oldenlandia corymbosa belongs to the Rubiaceae family, and has been used in traditional medicine to treat different diseases, including cancer. However, the active metabolites of the plant, their biosynthetic pathway and mode of action in cancer are unknown. To fill these gaps, we exposed this plant to eight different stress conditions and combined different omics data capturing gene expression, metabolic profiles, and anti-cancer activity. Our results show that O. corymbosa extracts are active against breast cancer cell lines and that ursolic acid is responsible for this activity. Moreover, we assembled a high-quality genome and uncovered two genes involved in the biosynthesis of ursolic acid. Finally, we also revealed that ursolic acid causes mitotic catastrophe in cancer cells and identified three high-confidence protein binding targets by Cellular Thermal Shift Assay (CETSA) and reverse docking. Altogether, these results constitute a valuable resource to further characterize the biosynthesis of active metabolites in the Oldenlandia group, while the mode of action of ursolic acid will allow us to further develop this valuable compound.
Collapse
Affiliation(s)
- Irene Julca
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | | | - Vaishnervi Manoj
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zahra Khan
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Soak Kuan Lai
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lay K Yang
- Shared Analytics, Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Ing T Beh
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jerzy Dziekan
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yoon P Lim
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Shen K Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Yee W Low
- Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Yuen I Lam
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Seth Tjia
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qiao W Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Przemyslaw Nuc
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, 61-614, Poland
| | - Le M Choo
- Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Gillian Khew
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
- Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Loo Shining
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Antony Kam
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | | | - Bjoern Usadel
- IBG-4 Bioinformatics, Forschungszentrum Jülich, Jülich, 52428, Germany
| | - Yoganathan Kanagasundaram
- Shared Analytics, Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Hoi Y Li
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
13
|
Marszalek-Zenczak M, Satyr A, Wojciechowski P, Zenczak M, Sobieszczanska P, Brzezinski K, Iefimenko T, Figlerowicz M, Zmienko A. Analysis of Arabidopsis non-reference accessions reveals high diversity of metabolic gene clusters and discovers new candidate cluster members. FRONTIERS IN PLANT SCIENCE 2023; 14:1104303. [PMID: 36778696 PMCID: PMC9909608 DOI: 10.3389/fpls.2023.1104303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Metabolic gene clusters (MGCs) are groups of genes involved in a common biosynthetic pathway. They are frequently formed in dynamic chromosomal regions, which may lead to intraspecies variation and cause phenotypic diversity. We examined copy number variations (CNVs) in four Arabidopsis thaliana MGCs in over one thousand accessions with experimental and bioinformatic approaches. Tirucalladienol and marneral gene clusters showed little variation, and the latter was fixed in the population. Thalianol and especially arabidiol/baruol gene clusters displayed substantial diversity. The compact version of the thalianol gene cluster was predominant and more conserved than the noncontiguous version. In the arabidiol/baruol cluster, we found a large genomic insertion containing divergent duplicates of the CYP705A2 and BARS1 genes. The BARS1 paralog, which we named BARS2, encoded a novel oxidosqualene synthase. The expression of the entire arabidiol/baruol gene cluster was altered in the accessions with the duplication. Moreover, they presented different root growth dynamics and were associated with warmer climates compared to the reference-like accessions. In the entire genome, paired genes encoding terpene synthases and cytochrome P450 oxidases were more variable than their nonpaired counterparts. Our study highlights the role of dynamically evolving MGCs in plant adaptation and phenotypic diversity.
Collapse
Affiliation(s)
| | - Anastasiia Satyr
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Pawel Wojciechowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Faculty of Computing and Telecommunications, Poznan University of Technology, Poznan, Poland
| | - Michal Zenczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | - Tetiana Iefimenko
- Department of Biology, National University of Kyiv-Mohyla Academy, Kyiv, Ukraine
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Agnieszka Zmienko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
14
|
Malhotra K, Franke J. Cytochrome P450 monooxygenase-mediated tailoring of triterpenoids and steroids in plants. Beilstein J Org Chem 2022; 18:1289-1310. [PMID: 36225725 PMCID: PMC9520826 DOI: 10.3762/bjoc.18.135] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
The cytochrome P450 monooxygenase (CYP) superfamily comprises hemethiolate enzymes that perform remarkable regio- and stereospecific oxidative chemistry. As such, CYPs are key agents for the structural and functional tailoring of triterpenoids, one of the largest classes of plant natural products with widespread applications in pharmaceuticals, food, cosmetics, and agricultural industries. In this review, we provide a full overview of 149 functionally characterised CYPs involved in the biosynthesis of triterpenoids and steroids in primary as well as in specialised metabolism. We describe the phylogenetic distribution of triterpenoid- and steroid-modifying CYPs across the plant CYPome, present a structure-based summary of their reactions, and highlight recent examples of particular interest to the field. Our review therefore provides a comprehensive up-to-date picture of CYPs involved in the biosynthesis of triterpenoids and steroids in plants as a starting point for future research.
Collapse
Affiliation(s)
- Karan Malhotra
- Institute of Botany, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Jakob Franke
- Institute of Botany, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
- Centre of Biomolecular Drug Research, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
15
|
Romsuk J, Yasumoto S, Seki H, Fukushima EO, Muranaka T. Identification of key amino acid residues toward improving the catalytic activity and substrate specificity of plant-derived cytochrome P450 monooxygenases CYP716A subfamily enzyme for triterpenoid production in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2022; 10:955650. [PMID: 36061436 PMCID: PMC9437279 DOI: 10.3389/fbioe.2022.955650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/26/2022] [Indexed: 12/14/2022] Open
Abstract
Triterpenoids constitute a group of specialized plant metabolites with wide structural diversity and high therapeutic value for human health. Cytochrome P450 monooxygenases (CYP) are a family of enzymes important for generating the structural diversity of triterpenoids by catalyzing the site-specific oxidization of the triterpene backbone. The CYP716 enzyme family has been isolated from various plant families as triterpenoid oxidases; however, their experimental crystal structures are not yet available and the detailed catalytic mechanism remains elusive. Here, we address this challenge by integrating bioinformatics approaches with data from other CYP families. Medicago truncatula CYP716A12, the first functionally characterized CYP716A subfamily enzyme, was chosen as the model for this study. We performed homology modeling, structural alignment, in silico site-directed mutagenesis, and molecular docking analysis to search and screen key amino acid residues relevant to the catalytic activity and substrate specificity of the CYP716A subfamily enzyme in triterpenoid biosynthesis. An in vivo functional analysis using engineered yeast that endogenously produced plant-derived triterpenes was performed to elucidate the results. When the amino acids in the signature region and substrate recognition sites (SRSs) were substituted, the product profile of CYP716A12 was modified. We identified amino acid residues that control the substrate contraction of the enzyme (D292) and engineered the enzyme to improve its catalytic activity and substrate specificity (D122, I212, and Q358) for triterpenoid biosynthesis. In addition, we demonstrated the versatility of this strategy by changing the properties of key residues in SRSs to improve the catalytic activity of Arabidopsis thaliana CYP716A1 (S356) and CYP716A2 (M206, F210) at C-28 on the triterpene backbone. This research has the potential to help in the production of desired triterpenoids in engineered yeast by increasing the catalytic activity and substrate specificity of plant CYP716A subfamily enzymes.
Collapse
Affiliation(s)
- Jutapat Romsuk
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Ery Odette Fukushima
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Plant Traslational Research Group, Universidad Regional Amazónica IKIAM, Tena, Ecuador
- *Correspondence: Ery Odette Fukushima, ; Toshiya Muranaka,
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- *Correspondence: Ery Odette Fukushima, ; Toshiya Muranaka,
| |
Collapse
|
16
|
Yang L, Gu Y, Zhou J, Yuan P, Jiang N, Wu Z, Tan X. Whole-Genome Identification and Analysis of Multiple Gene Families Reveal Candidate Genes for Theasaponin Biosynthesis in Camellia oleifera. Int J Mol Sci 2022; 23:ijms23126393. [PMID: 35742835 PMCID: PMC9223445 DOI: 10.3390/ijms23126393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 01/27/2023] Open
Abstract
Camellia oleifera is an economically important oilseed tree. Seed meals of C. oleifera have a long history of use as biocontrol agents in shrimp farming and as cleaning agents in peoples’ daily lives due to the presence of theasaponins, the triterpene saponins from the genus Camellia. To characterize the biosynthetic pathway of theasaponins in C. oleifera, members of gene families involved in triterpenoid biosynthetic pathways were identified and subjected to phylogenetic analysis with corresponding members in Arabidopsis thaliana, Camellia sinensis, Actinidia chinensis, Panax ginseng, and Medicago truncatula. In total, 143 triterpenoid backbone biosynthetic genes, 1169 CYP450s, and 1019 UGTs were identified in C. oleifera. The expression profiles of triterpenoid backbone biosynthetic genes were analyzed in different tissue and seed developmental stages of C. oleifera. The results suggested that MVA is the main pathway for triterpenoid backbone biosynthesis. Moreover, the candidate genes for theasaponin biosynthesis were identified by WGCNA and qRT-PCR analysis; these included 11 CYP450s, 14 UGTs, and eight transcription factors. Our results provide valuable information for further research investigating the biosynthetic and regulatory network of theasaponins.
Collapse
Affiliation(s)
- Liying Yang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
| | - Yiyang Gu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
| | - Junqin Zhou
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
- Correspondence: (J.Z.); (X.T.)
| | - Ping Yuan
- Hunan Horticultural Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Nan Jiang
- School of Packing and Material Engineering, Hunan University of Technology, Zhuzhou 412000, China;
| | - Zelong Wu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
- Correspondence: (J.Z.); (X.T.)
| |
Collapse
|
17
|
Roulé T, Christ A, Hussain N, Huang Y, Hartmann C, Benhamed M, Gutierrez-Marcos J, Ariel F, Crespi M, Blein T. The lncRNA MARS modulates the epigenetic reprogramming of the marneral cluster in response to ABA. MOLECULAR PLANT 2022; 15:840-856. [PMID: 35150931 DOI: 10.1016/j.molp.2022.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/05/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Clustered organization of biosynthetic non-homologous genes is emerging as a characteristic feature of plant genomes. The co-regulation of clustered genes seems to largely depend on epigenetic reprogramming and three-dimensional chromatin conformation. In this study, we identified the long non-coding RNA (lncRNA) MARneral Silencing (MARS), localized inside the Arabidopsis marneral cluster, which controls the local epigenetic activation of its surrounding region in response to abscisic acid (ABA). MARS modulates the POLYCOMB REPRESSIVE COMPLEX 1 (PRC1) component LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) binding throughout the cluster in a dose-dependent manner, determining H3K27me3 deposition and chromatin condensation. In response to ABA, MARS decoys LHP1 away from the cluster and promotes the formation of a chromatin loop bringing together the MARNERAL SYNTHASE 1 (MRN1) locus and a distal ABA-responsive enhancer. The enrichment of co-regulated lncRNAs in clustered metabolic genes in Arabidopsis suggests that the acquisition of novel non-coding transcriptional units may constitute an additional regulatory layer driving the evolution of biosynthetic pathways.
Collapse
Affiliation(s)
- Thomas Roulé
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Aurelie Christ
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Nosheen Hussain
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Ying Huang
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Caroline Hartmann
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | | | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe, Argentina
| | - Martin Crespi
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France.
| | - Thomas Blein
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France.
| |
Collapse
|
18
|
Liu HR, Ahmad N, Lv B, Li C. Advances in production and structural derivatization of the promising molecule ursolic acid. Biotechnol J 2021; 16:e2000657. [PMID: 34096160 DOI: 10.1002/biot.202000657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023]
Abstract
Ursolic acid (UA) is a ursane-type pentacyclic triterpenoid compound, naturally produced in plants via specialized metabolism and exhibits vast range of remarkable physiological activities and pharmacological manifestations. Owing to significant safety and efficacy in different medical conditions, UA may serve as a backbone to produce its derivatives with novel therapeutic functions. This review aims to provide ideas for exploring more diverse structures to improve UA pharmacological activity and increasing its biological yield to meet the industrial requirements by systematically reviewing the current research progress of UA. We first provides an overview of the pharmacological activities, acquisition methods and structural modifications of UA. Among them, we focused on the synthetic modifications of UA to yield valuable derivatives with enhanced therapeutic potential. Furthermore, harnessing the essential advances for green synthesis of UA and its derivatives by advent of metabolic engineering and synthetic biology are of great concern. In this regard, all pivotal advances for enhancing the production of UA have been discussed. In combination with the advantages of UA biosynthesis and transformation strategy, large-scale microbial production of UA is a promising platform for further exploration.
Collapse
Affiliation(s)
- Hao-Ran Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Nadeem Ahmad
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| |
Collapse
|
19
|
Li W, Ma X, Li G, Zhang A, Wang D, Fan F, Ma X, Zhang X, Dai Z, Qian Z. De Novo Biosynthesis of the Oleanane-Type Triterpenoids of Tunicosaponins in Yeast. ACS Synth Biol 2021; 10:1874-1881. [PMID: 34259519 DOI: 10.1021/acssynbio.1c00065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tunicosaponins are natural products extracted from Psammosilene tunicoides, which is an important ingredient of Yunnan Baiyao Powder, an ancient and famous Asian herbal medicine. The representative aglycones of tunicosaponins are the oleanane-type triterpenoids of gypsogenin and quillaic acid, which were found to manipulate a broad range of virus-host fusion via wrapping the heptad repeat-2 (HR2) domain prevalent in viral envelopes. However, the unknown biosynthetic pathway and difficulty in chemical synthesis hinder the therapeutic use of tunicosaponins. Here, two novel cytochrome P450-dependent monooxygenases that take part in the biosynthesis of tunicosaponins, CYP716A262 (CYP091) and CYP72A567 (CYP099), were identified from P. tunicoides. In addition, the whole biosynthesis pathway of the tunicosaponin aglycones was reconstituted in yeast by transforming the platform strain BY-bAS with the CYP716A262 and CYP716A567 genes, the resulting strain could produce 146.84 and 314.01 mg/L of gypsogenin and quillaic acid, respectively. This synthetic biology platform for complicated metabolic pathways elucidation and microbial cell factories construction can provide alternative sources of important natural products, helping conserve natural plant resources.
Collapse
Affiliation(s)
- Weixian Li
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Department of Pharmacy, The Third People’s Hospital of Kunming, Kunming, 650000, China
| | - Xiaohui Ma
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Guodong Li
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Aili Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Dong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Feiyu Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xiaolin Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhubo Dai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zigang Qian
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
| |
Collapse
|
20
|
Bharadwaj R, Kumar SR, Sharma A, Sathishkumar R. Plant Metabolic Gene Clusters: Evolution, Organization, and Their Applications in Synthetic Biology. FRONTIERS IN PLANT SCIENCE 2021; 12:697318. [PMID: 34490002 PMCID: PMC8418127 DOI: 10.3389/fpls.2021.697318] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/05/2021] [Indexed: 05/21/2023]
Abstract
Plants are a remarkable source of high-value specialized metabolites having significant physiological and ecological functions. Genes responsible for synthesizing specialized metabolites are often clustered together for a coordinated expression, which is commonly observed in bacteria and filamentous fungi. Similar to prokaryotic gene clustering, plants do have gene clusters encoding enzymes involved in the biosynthesis of specialized metabolites. More than 20 gene clusters involved in the biosynthesis of diverse metabolites have been identified across the plant kingdom. Recent studies demonstrate that gene clusters are evolved through gene duplications and neofunctionalization of primary metabolic pathway genes. Often, these clusters are tightly regulated at nucleosome level. The prevalence of gene clusters related to specialized metabolites offers an attractive possibility of an untapped source of highly useful biomolecules. Accordingly, the identification and functional characterization of novel biosynthetic pathways in plants need to be worked out. In this review, we summarize insights into the evolution of gene clusters and discuss the organization and importance of specific gene clusters in the biosynthesis of specialized metabolites. Regulatory mechanisms which operate in some of the important gene clusters have also been briefly described. Finally, we highlight the importance of gene clusters to develop future metabolic engineering or synthetic biology strategies for the heterologous production of novel metabolites.
Collapse
Affiliation(s)
- Revuru Bharadwaj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Sarma R. Kumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, Querétaro, Mexico
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
21
|
Istiandari P, Yasumoto S, Srisawat P, Tamura K, Chikugo A, Suzuki H, Seki H, Fukushima EO, Muranaka T. Comparative Analysis of NADPH-Cytochrome P450 Reductases From Legumes for Heterologous Production of Triterpenoids in Transgenic Saccharomyces cerevisiae. FRONTIERS IN PLANT SCIENCE 2021; 12:762546. [PMID: 34975947 PMCID: PMC8716914 DOI: 10.3389/fpls.2021.762546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/25/2021] [Indexed: 05/06/2023]
Abstract
Triterpenoids are plant specialized metabolites with various pharmacological activities. They are widely distributed in higher plants, such as legumes. Because of their low accumulation in plants, there is a need for improving triterpenoid production. Cytochrome P450 monooxygenases (CYPs) play critical roles in the structural diversification of triterpenoids. To perform site-specific oxidations, CYPs require the electrons that are transferred by NADPH-cytochrome P450 reductase (CPR). Plants possess two main CPR classes, class I and class II. CPR classes I and II have been reported to be responsible for primary and specialized (secondary) metabolism, respectively. In this study, we first analyzed the CPR expression level of three legumes species, Medicago truncatula, Lotus japonicus, and Glycyrrhiza uralensis, showing that the expression level of CPR class I was lower and more stable, while that of CPR class II was higher in almost all the samples. We then co-expressed different combinations of CYP716As and CYP72As with different CPR classes from these three legumes in transgenic yeast. We found that CYP716As worked better with CPR-I from the same species, while CYP72As worked better with any CPR-IIs. Using engineered yeast strains, CYP88D6 paired with class II GuCPR produced the highest level of 11-oxo-β-amyrin, the important precursor of high-value metabolites glycyrrhizin. This study provides insight into co-expressing genes from legumes for heterologous production of triterpenoids in yeast.
Collapse
Affiliation(s)
- Pramesti Istiandari
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Pisanee Srisawat
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Keita Tamura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Ayaka Chikugo
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Hideyuki Suzuki
- Department of Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Ery Odette Fukushima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
- Plant Translational Research Group, Universidad Regional Amazónica IKIAM, Tena, Ecuador
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- *Correspondence: Toshiya Muranaka,
| |
Collapse
|
22
|
Sun R, Gao JL, Chen H, Liu S, Tang ZZ. CbCYP716A261, a New β-Amyrin 28-Hydroxylase Involved in Conyzasaponin Biosynthesis from Conyza blinii. Mol Biol 2020. [DOI: 10.1134/s002689332005009x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Zhang Y, Liu C, Cheng H, Tian S, Liu Y, Wang S, Zhang H, Saqib M, Wei H, Wei Z. DNA methylation and its effects on gene expression during primary to secondary growth in poplar stems. BMC Genomics 2020; 21:498. [PMID: 32689934 PMCID: PMC7372836 DOI: 10.1186/s12864-020-06902-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Background As an important epigenetic mark, 5-methylcytosine (5mC) methylation is involved in many DNA-dependent biological processes and plays a role during development and differentiation of multicellular organisms. However, there is still a lack of knowledge about the dynamic aspects and the roles of global 5mC methylation in wood formation in tree trunks. In this study, we not only scrutinized single-base resolution methylomes of primary stems (PS), transitional stems (TS), and secondary stems (SS) of Populus trichocarpa using a high-throughput bisulfite sequencing technique, but also analyzed the effects of 5mC methylation on the expression of genes involved in wood formation. Results The overall average percentages of CG, CHG, and CHH methylation in poplar stems were ~ 53.6%, ~ 37.7%, and ~ 8.5%, respectively, and the differences of 5mC in genome-wide CG/CHG/CHH contexts among PS, TS, and SS were statistically significant (p < 0.05). The evident differences in CG, CHG, and CHH methylation contexts among 2 kb proximal promoters, gene bodies, and 2 kb downstream regions were observed among PS, TS, and SS. Further analysis revealed a perceptible global correlation between 5mC methylation levels of gene bodies and transcript levels but failed to reveal a correlation between 5mC methylation levels of proximal promoter regions and transcript levels. We identified 653 and 858 DMGs and 4978 and 4780 DEGs in PS vs TS and TS vs SS comparisons, respectively. Only 113 genes of 653 DMGs and 4978 DEGs, and 114 genes of 858 DMGs and 4780 DEG were common. Counterparts of some of these common genes in other species, including Arabidopsis thaliana, are known to be involved in secondary cell wall biosynthesis and hormone signaling. This indicates that methylation may directly modulate wood formation genes and indirectly attune hormone signaling genes, which in turn impact wood formation. Conclusions DNA methylation only marginally affects pathway genes or regulators involved in wood formation, suggesting that further studies of wood formation should lean towards the indirect effects of methylation. The information and data we provide here will be instrumental for understanding the roles of methylation in wood formation in tree species.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Cong Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - He Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Shuanghui Tian
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Shuang Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Huaxin Zhang
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Muhammad Saqib
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Zhigang Wei
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China.
| |
Collapse
|
24
|
Hansen NL, Miettinen K, Zhao Y, Ignea C, Andreadelli A, Raadam MH, Makris AM, Møller BL, Stærk D, Bak S, Kampranis SC. Integrating pathway elucidation with yeast engineering to produce polpunonic acid the precursor of the anti-obesity agent celastrol. Microb Cell Fact 2020; 19:15. [PMID: 31992268 PMCID: PMC6988343 DOI: 10.1186/s12934-020-1284-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/14/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Celastrol is a promising anti-obesity agent that acts as a sensitizer of the protein hormone leptin. Despite its potent activity, a sustainable source of celastrol and celastrol derivatives for further pharmacological studies is lacking. RESULTS To elucidate the celastrol biosynthetic pathway and reconstruct it in Saccharomyces cerevisiae, we mined a root-transcriptome of Tripterygium wilfordii and identified four oxidosqualene cyclases and 49 cytochrome P450s as candidates to be involved in the early steps of celastrol biosynthesis. Using functional screening of the candidate genes in Nicotiana benthamiana, TwOSC4 was characterized as a novel oxidosqualene cyclase that produces friedelin, the presumed triterpenoid backbone of celastrol. In addition, three P450s (CYP712K1, CYP712K2, and CYP712K3) that act downstream of TwOSC4 were found to effectively oxidize friedelin and form the likely celastrol biosynthesis intermediates 29-hydroxy-friedelin and polpunonic acid. To facilitate production of friedelin, the yeast strain AM254 was constructed by deleting UBC7, which afforded a fivefold increase in friedelin titer. This platform was further expanded with CYP712K1 to produce polpunonic acid and a method for the facile extraction of products from the yeast culture medium, resulting in polpunonic acid titers of 1.4 mg/L. CONCLUSION Our study elucidates the early steps of celastrol biosynthesis and paves the way for future biotechnological production of this pharmacologically promising compound in engineered yeast strains.
Collapse
Affiliation(s)
- Nikolaj L Hansen
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Karel Miettinen
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Yong Zhao
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Codruta Ignea
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Aggeliki Andreadelli
- Institute of Applied Biosciences-Centre for Research and Technology Hellas (INAB-CERTH), P.O. Box 60361, 57001, Thermi, Thessaloniki, Greece
| | - Morten H Raadam
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Antonios M Makris
- Institute of Applied Biosciences-Centre for Research and Technology Hellas (INAB-CERTH), P.O. Box 60361, 57001, Thermi, Thessaloniki, Greece
| | - Birger L Møller
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Dan Stærk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Søren Bak
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Sotirios C Kampranis
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
25
|
Mining genes associated with furanocoumarin biosynthesis in an endangered medicinal plant, Glehnia littoralis. J Genet 2020. [DOI: 10.1007/s12041-019-1170-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Suzuki H, Fukushima EO, Shimizu Y, Seki H, Fujisawa Y, Ishimoto M, Osakabe K, Osakabe Y, Muranaka T. Lotus japonicus Triterpenoid Profile and Characterization of the CYP716A51 and LjCYP93E1 Genes Involved in Their Biosynthesis In Planta. PLANT & CELL PHYSIOLOGY 2019; 60:2496-2509. [PMID: 31418782 DOI: 10.1093/pcp/pcz145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/12/2019] [Indexed: 05/23/2023]
Abstract
Lotus japonicus is an important model legume plant in several fields of research, such as secondary (specialized) metabolism and symbiotic nodulation. This plant accumulates triterpenoids; however, less information regarding its composition, content and biosynthesis is available compared with Medicago truncatula and Glycine max. In this study, we analyzed the triterpenoid content and composition of L. japonicus. Lotus japonicus accumulated C-28-oxidized triterpenoids (ursolic, betulinic and oleanolic acids) and soyasapogenols (soyasapogenol B, A and E) in a tissue-dependent manner. We identified an oxidosqualene cyclase (OSC) and two cytochrome P450 enzymes (P450s) involved in triterpenoid biosynthesis using a yeast heterologous expression system. OSC9 was the first enzyme derived from L. japonicus that showed α-amyrin (a precursor of ursolic acid)-producing activity. CYP716A51 showed triterpenoid C-28 oxidation activity. LjCYP93E1 converted β-amyrin into 24-hydroxy-β-amyrin, a metabolic intermediate of soyasapogenols. The involvement of the identified genes in triterpenoid biosynthesis in L. japonicus plants was evaluated by quantitative real-time PCR analysis. Furthermore, gene loss-of-function analysis of CYP716A51 and LjCYP93E1 was conducted. The cyp716a51-mutant L. japonicus hairy roots generated by the genome-editing technique produced no C-28 oxidized triterpenoids. Likewise, the complete abolition of soyasapogenols and soyasaponin I was observed in mutant plants harboring Lotus retrotransposon 1 (LORE1) in LjCYP93E1. These results indicate that the activities of these P450 enzymes are essential for triterpenoid biosynthesis in L. japonicus. This study increases our understanding of triterpenoid biosynthesis in leguminous plants and provides information that will facilitate further studies of the physiological functions of triterpenoids using L. japonicus.
Collapse
Affiliation(s)
- Hayato Suzuki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Ery Odette Fukushima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
- Universidad Regional Amaz�nica IKIAM, Km 7 Via Muyuna, Napo, Tena, Ecuador
| | - Yuko Shimizu
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Yukiko Fujisawa
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, Japan
| | - Masao Ishimoto
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, Japan
| | - Keishi Osakabe
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Yuriko Osakabe
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
27
|
Sun W, Qin L, Xue H, Yu Y, Ma Y, Wang Y, Li C. Novel trends for producing plant triterpenoids in yeast. Crit Rev Biotechnol 2019; 39:618-632. [DOI: 10.1080/07388551.2019.1608503] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Wentao Sun
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Lei Qin
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Haijie Xue
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yang Yu
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yihua Ma
- The High School Affiliated to Renmin University of China, Beijing, China
| | - Ying Wang
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
28
|
Shang Y, Huang S. Multi-omics data-driven investigations of metabolic diversity of plant triterpenoids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:101-111. [PMID: 30341835 DOI: 10.1111/tpj.14132] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/04/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
The vast majority of structurally diverse metabolites play essential roles in mediating the interactions between plant and environment, and constitute a valuable resource for industrial applications. Recent breakthroughs in sequencing technology have greatly accelerated metabolic studies of natural plant products, providing opportunities to investigate the molecular basis underlying the diversity of specialized plant metabolites through large-scale analysis. Here, we focus on the biosynthesis of plant triterpenoids, especially the three diversifying reactions (cyclization, oxidation and glycosylation) that largely contribute to the structural diversity of triterpenoids. Gene mining through large-scale omics data and functional characterization of metabolic genes including enzymes, transcription factors and transporters could provide important insights into the evolution of specialized plant metabolism and pave the way for the production of high-value metabolites or derivatives using synthetic biology approaches.
Collapse
Affiliation(s)
- Yi Shang
- The CAAS-YNNU-YINMORE Joint Academy of Potato Science, Yunnan Normal University, Kunming, 650500, China
| | - Sanwen Huang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100084, China
| |
Collapse
|
29
|
Xiao H, Zhang Y, Wang M. Discovery and Engineering of Cytochrome P450s for Terpenoid Biosynthesis. Trends Biotechnol 2018; 37:618-631. [PMID: 30528904 DOI: 10.1016/j.tibtech.2018.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/28/2018] [Accepted: 11/15/2018] [Indexed: 01/29/2023]
Abstract
Terpenoids represent 60% of known natural products, including many drugs and drug candidates, and their biosynthesis is attracting great interest. However, the unknown cytochrome P450s (CYPs) in terpenoid biosynthetic pathways make the heterologous production of related terpenoids impossible, while the slow kinetics of some known CYPs greatly limit the efficiency of terpenoid biosynthesis. Thus, there is a compelling need to discover and engineer CYPs for terpenoid biosynthesis to fully realize their great potential for industrial application. This review article summarizes the current state of CYP discovery and engineering in terpenoid biosynthesis, focusing on recent synthetic biology approaches toward prototyping CYPs in heterologous hosts. We also propose several strategies for further accelerating CYP discovery and engineering.
Collapse
Affiliation(s)
- Han Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China; Co-first author with equal contribution.
| | - Yue Zhang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Co-first author with equal contribution
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
30
|
Zhao YJ, Li C. Biosynthesis of Plant Triterpenoid Saponins in Microbial Cell Factories. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12155-12165. [PMID: 30387353 DOI: 10.1021/acs.jafc.8b04657] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Triterpenoid saponins are triterpenoid glycoside compounds which have been widely used in pharmaceutical, agricultural, and food industries. Traditionally, they are extracted from plants, which is time-consuming and environmentally unfriendly. Recently, de novo synthesis of triterpenoid saponins in microbial cell factories was realized, which provides a promising and green approach to alter the traditional supply way. However, the complex biosynthetic pathway and the poor suitability between the endogenous and heterogeneous pathways tremendously limit the yield of triterpenoid saponins. We introduce the biosynthetic pathways of triterpenoid saponins first, and we then summarize the microbial cell factories developed to produce these compounds. Further, we discuss the strategies applied to enhance the production. This paper systematically illustrates the biosynthesis of plant triterpenoid saponins in microbial cell factories.
Collapse
Affiliation(s)
- Yu-Jia Zhao
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Chun Li
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| |
Collapse
|
31
|
Suzuki H, Fukushima EO, Umemoto N, Ohyama K, Seki H, Muranaka T. Comparative analysis of CYP716A subfamily enzymes for the heterologous production of C-28 oxidized triterpenoids in transgenic yeast. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:131-139. [PMID: 31819715 PMCID: PMC6879395 DOI: 10.5511/plantbiotechnology.18.0416a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/16/2018] [Indexed: 05/20/2023]
Abstract
Several enzymes of the CYP716A subfamily have been reported to be involved in triterpenoid biosynthesis. Members of this subfamily oxidize various positions along the triterpenoid backbone and the majority of them catalyze a three-step oxidation at the C-28 position. Interestingly, C-28 oxidation is a common feature in oleanolic acid, ursolic acid, and betulinic acid, which are widely distributed in plants and exhibit important biological activities. In this work, three additional CYP716A enzymes isolated from olive, sugar beet, and coffee, were characterized as multifunctional C-28 oxidases. Semi-quantitative comparisons of in vivo catalytic activity were made against the previously characterized enzymes CYP716A12, CYP716A15, and CYP716A52v2. When heterologously expressed in yeast, the isolated enzymes differed in both catalytic activity and substrate specificity. This study indicates that the screening of enzymes from different plants could be a useful means of identifying enzymes with enhanced catalytic activity and desired substrate specificity. Furthermore, we show that "naturally-evolved" enzymes can be useful in the heterologous production of pharmacologically and industrially important triterpenoids.
Collapse
Affiliation(s)
- Hayato Suzuki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ery Odette Fukushima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Open Innovation Research and Education, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoyuki Umemoto
- Central Laboratories for Frontier Technology, Kirin Holdings Co., Ltd., Sakura, Tochigi 329-1414, Japan
| | - Kiyoshi Ohyama
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa 244-0045, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa 244-0045, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa 244-0045, Japan
- E-mail: Tel: +81-6-6879-7423 Fax: +81-6-6879-7426
| |
Collapse
|
32
|
Kim OT, Um Y, Jin ML, Kim JU, Hegebarth D, Busta L, Racovita RC, Jetter R. A Novel Multifunctional C-23 Oxidase, CYP714E19, is Involved in Asiaticoside Biosynthesis. PLANT & CELL PHYSIOLOGY 2018; 59:1200-1213. [PMID: 29579306 DOI: 10.1093/pcp/pcy055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/06/2018] [Indexed: 05/23/2023]
Abstract
Centella asiatica is widely used as a medicinal plant due to accumulation of the ursane-type triterpene saponins asiaticoside and madecassoside. The molecular structure of both compounds suggests that they are biosynthesized from α-amyrin via three hydroxylations, and the respective Cyt P450-dependent monooxygenases (P450 enzymes) oxidizing the C-28 and C-2α positions have been reported. However, a third enzyme hydroxylating C-23 remained elusive. We previously identified 40,064 unique sequences in the transcriptome of C. asiatica elicited by methyl jasmonate, and among them we have now found 149 unigenes encoding putative P450 enzymes. In this set, 23 full-length cDNAs were recognized, 13 of which belonged to P450 subfamilies previously implicated in secondary metabolism. Four of these genes were highly expressed in response to jasmonate treatment, especially in leaves, in accordance with the accumulation patterns of asiaticoside. The functions of these candidate genes were tested using heterologous expression in yeast cells. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that yeast expressing only the oxidosqualene synthase CaDDS produced the asiaticoside precursor α-amyrin (along with its isomer β-amyrin), while yeast co-expressing CaDDS and CYP716A83 also contained ursolic acid along with oleanolic acid. This P450 enzyme thus acts as a multifunctional triterpenoid C-28 oxidase converting amyrins into corresponding triterpenoid acids. Finally, yeast strains co-expressing CaDDS, CYP716A83 and CYP714E19 produced hederagenin and 23-hydroxyursolic acid, showing that CYP714E19 is a multifunctional triterpenoid oxidase catalyzing the C-23 hydroxylation of oleanolic acid and ursolic acid. Overall, our results demonstrate that CaDDS, CYP716A83 and CYP714E19 are C. asiatica enzymes catalyzing consecutive steps in asiaticoside biosynthesis.
Collapse
Affiliation(s)
- Ok Tae Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, South Korea
| | - Yurry Um
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, South Korea
| | - Mei Lan Jin
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, South Korea
| | - Jang Uk Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, South Korea
| | - Daniela Hegebarth
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver V6T 1Z4, Canada
| | - Lucas Busta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, Canada
| | - Radu C Racovita
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, Canada
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, Canada
| |
Collapse
|
33
|
Joshi M, Baghel RS, Fogelman E, Stern RA, Ginzberg I. Identification of candidate genes mediating apple fruit-cracking resistance following the application of gibberellic acids 4 + 7 and the cytokinin 6-benzyladenine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:436-445. [PMID: 29684828 DOI: 10.1016/j.plaphy.2018.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 05/09/2023]
Abstract
Calyx-end cracking in 'Pink Lady' apple is treated by a solution of gibberellic acids 4 and 7 (GA4+7) and the cytokinin 6-benzyladenine (BA). Although the GA4+7 and BA mixture is applied early in apple fruit development, it mitigates cracking that becomes evident in the mature fruit, implying a long-term treatment effect. The reduced incidence of peel cracking is associated with increased epidermal cell density, which is maintained until fruit maturation. Presently, the expression of genes that have been previously reported to be associated with epidermal cell patterning and cuticle formation, or cracking resistance, was monitored in the peel during fruit development and following GA4+7 and BA treatment. For most of the genes whose expression is naturally upregulated during fruit development, the early GA4+7 and BA treatment maintained or further increased the high expression level in the mature peel. Where the expression of a gene was downregulated during development, no change was detected in the treated mature peel. Gene-networking analysis supported the interaction between gene clusters of cell-wall synthesis, cuticle formation and GA signaling. Overall, the data suggested that the GA4+7 and BA treatment did not modify developmental cues, but promoted or enhanced the innate developmental program.
Collapse
Affiliation(s)
- Mukul Joshi
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Ravi Singh Baghel
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Edna Fogelman
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Raphael A Stern
- MIGAL, Galilee Technology Center, P.O. Box 831, Kiryat Shmona 11016, Israel; Department of Biotechnology, Faculty of Life Sciences, Tel-Hai College, Upper Galilee 1220800, Israel
| | - Idit Ginzberg
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel.
| |
Collapse
|
34
|
Han JY, Chun JH, Oh SA, Park SB, Hwang HS, Lee H, Choi YE. Transcriptomic Analysis of Kalopanax septemlobus and Characterization of KsBAS, CYP716A94 and CYP72A397 Genes Involved in Hederagenin Saponin Biosynthesis. PLANT & CELL PHYSIOLOGY 2018; 59:319-330. [PMID: 29186583 DOI: 10.1093/pcp/pcx188] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/21/2017] [Indexed: 05/26/2023]
Abstract
Kalopanax septemlobus, commonly named the castor aralia tree, is a highly valued woody medicinal tree belonging to the family Araliaceae. Kalopanax septemlobus contains approximately 15 triterpenoid saponins primarily constituted of hederagenin aglycones. Hederagenin is a representative precursor for hemolytic saponin in plants. In the present study, transcriptome analysis was performed to discover genes involved in hederagenin saponin biosynthesis in K. septemlobus. De novo assembly generated 82,698 unique sequences, including 17,747 contigs and 64,951 singletons, following 454 pyrosequencing. Oxidosqualene cyclases (OSCs) are enzymes that catalyze the formation of diverse triterpene skeletons from 2,3-oxidosqualene. Heterologous expression of an OSC sequence in yeast revealed that KsBAS is a β-amyrin synthase gene. Cytochrome P450 genes (CYPs) make up a supergene family in the plant genome and play a key role in the biosynthesis of sapogenin aglycones. In total, 95 contigs and 110 singletons annotated as CYPs were obtained by sequencing the K. septemlobus transcriptome. By heterologous expression in yeast, we found that CYP716A94 was β-amyrin 28-oxidase involved in oleanolic acid production from β-amyrin, and CYP72A397 was oleanolic acid 23-hydroxylase involved in hederagenin production from oleanolic acid. Engineered yeast co-expressing KsBAS, CYP716A94 and CYP72A397 produced hederagenin. Kalopanax septemlobus CYP72A397 is a novel CYP enzyme that synthesizes hederagenin aglycone from oleanolic acid as a single product. In conclusion, we characterized three genes participating in sequential steps for hederagenin biosynthesis from β-amyrin, which are likely to play a major role in hederagenin saponin biosynthesis in K. septemlobus.
Collapse
Affiliation(s)
- Jung Yeon Han
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | - Ju-Hyeon Chun
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | - Se Ah Oh
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | - Seong-Bum Park
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | - Hwan-Su Hwang
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | - Hyoshin Lee
- Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 441-847, Korea
| | - Yong Eui Choi
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 200-701, Korea
| |
Collapse
|
35
|
Banerjee A, Hamberger B. P450s controlling metabolic bifurcations in plant terpene specialized metabolism. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2018; 17:81-111. [PMID: 29563859 PMCID: PMC5842272 DOI: 10.1007/s11101-017-9530-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/20/2017] [Indexed: 05/18/2023]
Abstract
ABSTRACT Catalyzing stereo- and regio-specific oxidation of inert hydrocarbon backbones, and a range of more exotic reactions inherently difficult in formal chemical synthesis, cytochromes P450 (P450s) offer outstanding potential for biotechnological engineering. Plants and their dazzling diversity of specialized metabolites have emerged as rich repository for functional P450s with the advances of deep transcriptomics and genome wide discovery. P450s are of outstanding interest for understanding chemical diversification throughout evolution, for gaining mechanistic insights through the study of their structure-function relationship, and for exploitation in Synthetic Biology. In this review, we highlight recent developments and examples in the discovery of plant P450s involved in the biosynthesis of industrially relevant monoterpenoids, sesquiterpenoids, diterpenoids and triterpenoids, throughout 2016 and early 2017. Examples were selected to illustrate the spectrum of value from commodity chemicals, flavor and fragrance compounds to pharmacologically active terpenoids. We focus on a recently emerging theme, where P450s control metabolic bifurcations and chemical diversity of the final product profile, either within a pathway, or through neo-functionalization in related species. The implications may inform approaches for rational assembly of recombinant pathways, biotechnological production of high value terpenoids and generation of novel chemical entities.
Collapse
Affiliation(s)
- Aparajita Banerjee
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824 USA
| | - Björn Hamberger
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824 USA
| |
Collapse
|
36
|
Reed J, Stephenson MJ, Miettinen K, Brouwer B, Leveau A, Brett P, Goss RJM, Goossens A, O'Connell MA, Osbourn A. A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules. Metab Eng 2017; 42:185-193. [PMID: 28687337 PMCID: PMC5555447 DOI: 10.1016/j.ymben.2017.06.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/19/2017] [Accepted: 06/30/2017] [Indexed: 01/09/2023]
Abstract
Plants are an excellent source of drug leads. However availability is limited by access to source species, low abundance and recalcitrance to chemical synthesis. Although plant genomics is yielding a wealth of genes for natural product biosynthesis, the translation of this genetic information into small molecules for evaluation as drug leads represents a major bottleneck. For example, the yeast platform for artemisinic acid production is estimated to have taken >150 person years to develop. Here we demonstrate the power of plant transient transfection technology for rapid, scalable biosynthesis and isolation of triterpenes, one of the largest and most structurally diverse families of plant natural products. Using pathway engineering and improved agro-infiltration methodology we are able to generate gram-scale quantities of purified triterpene in just a few weeks. In contrast to heterologous expression in microbes, this system does not depend on re-engineering of the host. We next exploit agro-infection for quick and easy combinatorial biosynthesis without the need for generation of multi-gene constructs, so affording an easy entrée to suites of molecules, some new-to-nature, that are recalcitrant to chemical synthesis. We use this platform to purify a suite of bespoke triterpene analogs and demonstrate differences in anti-proliferative and anti-inflammatory activity in bioassays, providing proof of concept of this system for accessing and evaluating medicinally important bioactives. Together with new genome mining algorithms for plant pathway discovery and advances in plant synthetic biology, this advance provides new routes to synthesize and access previously inaccessible natural products and analogs and has the potential to reinvigorate drug discovery pipelines.
Collapse
Affiliation(s)
- James Reed
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Michael J Stephenson
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Karel Miettinen
- Department of Plant Systems Biology, VIB, Ghent University, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Bastiaan Brouwer
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Aymeric Leveau
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paul Brett
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Rebecca J M Goss
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; School of Chemistry, University of St Andrews, KY16 9ST, UK
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, Ghent University, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Maria A O'Connell
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
37
|
Tamura K, Teranishi Y, Ueda S, Suzuki H, Kawano N, Yoshimatsu K, Saito K, Kawahara N, Muranaka T, Seki H. Cytochrome P450 Monooxygenase CYP716A141 is a Unique β-Amyrin C-16β Oxidase Involved in Triterpenoid Saponin Biosynthesis in Platycodon grandiflorus. PLANT & CELL PHYSIOLOGY 2017; 58:874-884. [PMID: 28371833 DOI: 10.1093/pcp/pcx043] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/15/2017] [Indexed: 05/08/2023]
Abstract
The roots of Platycodon grandiflorus are widely used as a crude drug. The active components include a variety of triterpenoid saponins. Recent studies have revealed that Cyt P450 monooxygenases (P450s) function as triterpene oxidases in triterpenoid saponin biosynthesis in many plant species. However, there have been no reports regarding triterpene oxidases in P. grandiflorus. In this study, we performed transcriptome analysis of three different P. grandiflorus tissues (roots, leaves and petals) using RNA sequencing (RNA-Seq) technology. We cloned six P450 genes that were highly expressed in roots, and classified them as belonging to the CYP716A, CYP716D and CYP72A subfamilies. We heterologously expressed these P450s in an engineered yeast strain that produces β-amyrin, one of the most common triterpenes in plants. Two of the CYP716A subfamily P450s catalyzed oxidation reactions of the β-amyrin skeleton. One of these P450s, CYP716A140v2, catalyzed a three-step oxidation reaction at C-28 on β-amyrin to produce oleanolic acid, a reaction performed by CYP716A subfamily P450s in a variety of plant species. The other P450, CYP716A141, catalyzed the hydroxylation of β-amyrin at C-16β. This reaction is unique among triterpene oxidases isolated to date. These results enhance our knowledge of functional variation among CYP716A subfamily enzymes involved in triterpenoid biosynthesis, and provide novel molecular tools for use in synthetic biology to produce triterpenoid saponins with pre-defined structures.
Collapse
Affiliation(s)
- Keita Tamura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Yuga Teranishi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Shinya Ueda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Hideyuki Suzuki
- Department of Research & Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Noriaki Kawano
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan
| | - Kayo Yoshimatsu
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan
| | - Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Nobuo Kawahara
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| |
Collapse
|
38
|
Wen L, Yun X, Zheng X, Xu H, Zhan R, Chen W, Xu Y, Chen Y, Zhang J. Transcriptomic Comparison Reveals Candidate Genes for Triterpenoid Biosynthesis in Two Closely Related Ilex Species. FRONTIERS IN PLANT SCIENCE 2017; 8:634. [PMID: 28503180 PMCID: PMC5408325 DOI: 10.3389/fpls.2017.00634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/07/2017] [Indexed: 05/26/2023]
Abstract
Native to Southern China, Ilex pubescens and Ilex asprella are frequently used in traditional Chinese medicine. Both of them produce a large variety of ursane-type triterpenoid saponins, which have been demonstrated to have different pharmacological effects. However, little is known about their biosynthesis. In this study, transcriptomic analysis of I. pubescens and comparison with its closely related specie I. asprella were carried out to identify potential genes involved in triterpenoid saponin biosynthesis. Through RNA sequencing (RNA-seq) and de novo transcriptome assembly of I. pubescens, a total of 68,688 UniGene clusters are obtained, of which 32,184 (46.86%) are successfully annotated by comparison with the sequences in major public databases (NCBI, Swiss-Prot, and KEGG). It includes 128 UniGenes related to triterpenoid backbone biosynthesis, 11 OSCs (oxidosqualene cyclases), 233 CYPs (cytochrome P450), and 269 UGTs (UDP-glycosyltransferases). By homology-based blast and phylogenetic analysis with well-characterized genes involved in triterpenoid saponin biosynthesis, 5 OSCs, 14 CYPs, and 1 UGT are further proposed as the most promising candidate genes. Transcriptomic comparison between two Ilex species using blastp and OrthoMCL method reveals high sequence similarity. All OSCs and UGTs as well as most CYPs are classified as orthologous genes, while only 5 CYPs in I. pubescens and 3 CYPs in I. asprella are species-specific. One of OSC candidates, named as IpAS1, was successfully cloned and expressed in Saccharomyces cerevisiae INVSc1. Analysis of the yeast extract by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) shows IpAS1 is a mixed amyrin synthase, producing α-amyrin and β-amyrin at ratio of 5:1, which is similar to its ortholog IaAS1 from I. asprella. This study is the first exploration to profile the transcriptome of I. pubescens, the generated data and gene models will facilitate further molecular studies on the physiology and metabolism in this plant. By comparative transcriptomic analysis, a series of candidate genes involved in the biosynthetic pathway of triterpenoid saponins are identified, providing new insight into their biosynthesis at transcriptome level.
Collapse
Affiliation(s)
- Lingling Wen
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese MedicineGuangzhou, China
| | - Xiaoyun Yun
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese MedicineGuangzhou, China
| | - Xiasheng Zheng
- Zhongshan Zhongzhi Pharmaceutical Group, Key Laboratory for Technologies and Applications of Ultrafine Granular Powder of Herbal Medicine, State Administration of Traditional Chinese MedicineZhongshan, China
| | - Hui Xu
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese MedicineGuangzhou, China
| | - Ruoting Zhan
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese MedicineGuangzhou, China
| | - Weiwen Chen
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese MedicineGuangzhou, China
| | - Yaping Xu
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese MedicineGuangzhou, China
| | - Ye Chen
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese MedicineGuangzhou, China
| | - Jie Zhang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese MedicineGuangzhou, China
| |
Collapse
|
39
|
Misra RC, Sharma S, Garg A, Chanotiya CS, Ghosh S. Two CYP716A subfamily cytochrome P450 monooxygenases of sweet basil play similar but nonredundant roles in ursane- and oleanane-type pentacyclic triterpene biosynthesis. THE NEW PHYTOLOGIST 2017; 214:706-720. [PMID: 28967669 DOI: 10.1111/nph.14412] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/23/2016] [Indexed: 05/23/2023]
Abstract
The medicinal plant sweet basil (Ocimum basilicum) accumulates bioactive ursane- and oleanane-type pentacyclic triterpenes (PCTs), ursolic acid and oleanolic acid, respectively, in a spatio-temporal manner; however, the biosynthetic enzymes and their contributions towards PCT biosynthesis remain to be elucidated. Two CYP716A subfamily cytochrome P450 monooxygenases (CYP716A252 and CYP716A253) are identified from a methyl jasmonate-responsive expression sequence tag collection and functionally characterized, employing yeast (Saccharomyces cerevisiae) expression platform and adapting virus-induced gene silencing (VIGS) in sweet basil. CYP716A252 and CYP716A253 catalyzed sequential three-step oxidation at the C-28 position of α-amyrin and β-amyrin to produce ursolic acid and oleanolic acid, respectively. Although CYP716A253 was more efficient than CYP716A252 for amyrin C-28 oxidation in yeast, VIGS revealed essential roles for both of these CYP716As in constitutive biosynthesis of ursolic acid and oleanolic acid in sweet basil leaves. However, CYP716A253 played a major role in elicitor-induced biosynthesis of ursolic acid and oleanolic acid. Overall, the results suggest similar as well as distinct roles of CYP716A252 and CYP716A253 for the spatio-temporal biosynthesis of PCTs. CYP716A252 and CYP716A253 might be useful for the alternative and sustainable production of PCTs in microbial host, besides increasing plant metabolite content through genetic modification.
Collapse
Affiliation(s)
- Rajesh Chandra Misra
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Shubha Sharma
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Anchal Garg
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Chandan Singh Chanotiya
- Analytical Chemistry Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Sumit Ghosh
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
40
|
Tamura K, Seki H, Suzuki H, Kojoma M, Saito K, Muranaka T. CYP716A179 functions as a triterpene C-28 oxidase in tissue-cultured stolons of Glycyrrhiza uralensis. PLANT CELL REPORTS 2017; 36:437-445. [PMID: 28008473 DOI: 10.1007/s00299-016-2092-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 12/02/2016] [Indexed: 05/23/2023]
Abstract
CYP716A179, a cytochrome P450 monooxygenase expressed predominantly in tissue-cultured stolons of licorice ( Glycyrrhiza uralensis ), functions as a triterpene C-28 oxidase in the biosynthesis of oleanolic acid and betulinic acid. Cytochrome P450 monooxygenases (P450s) play key roles in the structural diversification of plant triterpenoids. Among these, the CYP716A subfamily, which functions mainly as a triterpene C-28 oxidase, is common in plants. Licorice (Glycyrrhiza uralensis) produces bioactive triterpenoids, such as glycyrrhizin and soyasaponins, and relevant P450s (CYP88D6, CYP72A154, and CYP93E3) have been identified; however, no CYP716A subfamily P450 has been isolated. Here, we identify CYP716A179, which functions as a triterpene C-28 oxidase, by RNA sequencing analysis of tissue-cultured stolons of G. uralensis. Heterologous expression of CYP716A179 in engineered yeast strains confirmed the production of oleanolic acid, ursolic acid, and betulinic acid from β-amyrin, α-amyrin, and lupeol, respectively. The transcript level of CYP716A179 was about 500 times higher in tissue-cultured stolons than in intact roots. Oleanolic acid and betulinic acid were consistently detected only in tissue-cultured stolons. The discovery of CYP716A179 helps increase our understanding of the mechanisms of tissue-type-dependent triterpenoid metabolism in licorice and provides an additional target gene for pathway engineering to increase the production of glycyrrhizin in licorice tissue cultures by disrupting competing pathways.
Collapse
Affiliation(s)
- Keita Tamura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hideyuki Suzuki
- Department of Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Mareshige Kojoma
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Hokkaido, 061-0293, Japan
| | - Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
41
|
Miettinen K, Pollier J, Buyst D, Arendt P, Csuk R, Sommerwerk S, Moses T, Mertens J, Sonawane PD, Pauwels L, Aharoni A, Martins J, Nelson DR, Goossens A. The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis. Nat Commun 2017; 8:14153. [PMID: 28165039 PMCID: PMC5303825 DOI: 10.1038/ncomms14153] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 11/24/2016] [Indexed: 12/18/2022] Open
Abstract
Triterpenoids are widespread bioactive plant defence compounds with potential use as pharmaceuticals, pesticides and other high-value products. Enzymes belonging to the cytochrome P450 family have an essential role in creating the immense structural diversity of triterpenoids across the plant kingdom. However, for many triterpenoid oxidation reactions, the corresponding enzyme remains unknown. Here we characterize CYP716 enzymes from different medicinal plant species by heterologous expression in engineered yeasts and report ten hitherto unreported triterpenoid oxidation activities, including a cyclization reaction, leading to a triterpenoid lactone. Kingdom-wide phylogenetic analysis of over 400 CYP716s from over 200 plant species reveals details of their evolution and suggests that in eudicots the CYP716s evolved specifically towards triterpenoid biosynthesis. Our findings underscore the great potential of CYP716s as a source for generating triterpenoid structural diversity and expand the toolbox available for synthetic biology programmes for sustainable production of bioactive plant triterpenoids. Cytochrome P450 family enzymes have an essential role in the creation of triterpenoid diversity in plants. Here, the authors describe triterpenoid synthesis as mediated by CYP716 enzymes in medicinal plant species, and perform phylogenetic analysis to describe CYP716 molecular evolution in plants.
Collapse
Affiliation(s)
- Karel Miettinen
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Jacob Pollier
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Dieter Buyst
- Department of Organic Chemistry, Ghent University, B-9000 Ghent, Belgium
| | - Philipp Arendt
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.,Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium.,VIB Medical Biotechnology Center, B-9000 Ghent, Belgium
| | - René Csuk
- Department of Organic Chemistry, Martin-Luther-University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Sven Sommerwerk
- Department of Organic Chemistry, Martin-Luther-University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Tessa Moses
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Jan Mertens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Prashant D Sonawane
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Laurens Pauwels
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - José Martins
- Department of Organic Chemistry, Ghent University, B-9000 Ghent, Belgium
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
42
|
Yasumoto S, Seki H, Shimizu Y, Fukushima EO, Muranaka T. Functional Characterization of CYP716 Family P450 Enzymes in Triterpenoid Biosynthesis in Tomato. FRONTIERS IN PLANT SCIENCE 2017; 8:21. [PMID: 28194155 PMCID: PMC5278499 DOI: 10.3389/fpls.2017.00021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/04/2017] [Indexed: 05/08/2023]
Abstract
Triterpenoids are a group of structurally diverse specialized metabolites that frequently show useful bioactivities. These chemicals are biosynthesized from the common precursor 2,3-oxidosqualene in plants. The carbon skeletons produced by oxidosqualene cyclase (OSC) are usually modified by cytochrome P450 monooxygenases (P450s) and UDP-dependent glycosyltransferases. These biosynthetic enzymes contribute to the structural diversification of plant triterpenoids. Until now, many P450 enzymes have been characterized as triterpenoid oxidases. Among them, the CYP716 family P450 enzymes, which have been isolated from a wide range of plant families, seem to contribute to the triterpenoid structural diversification. Many CYP716 family P450 enzymes have been characterized as the multifunctional triterpene C-28 oxidases, which oxidize α-amyrin and β-amyrin to the widely distributed triterpenoids ursolic and oleanolic acids, respectively. Tomato (Solanum lycopersicum) is one of the most important solanaceous crops in the world. However, little information is known regarding its triterpenoid biosynthesis. To understand the mechanism of triterpenoid biosynthesis in tomato, we focused on the function of CYP716 family enzymes as triterpenoid oxidases. We isolated all six CYP716 family genes from the Micro-Tom cultivar of tomato, and functionally characterized them in the heterologous yeast expression system. The in vivo enzymatic assays showed that CYP716A44 and CYP716A46 exhibited the ordinary C-28 oxidation activity against α-amyrin and β-amyrin to produce ursolic and oleanolic acids, respectively. Interestingly, one CYP716E subfamily enzyme, CYP716E26, exhibited the previously unreported C-6β hydroxylation activity against β-amyrin to produce a rare bioactive triterpenoid, daturadiol (olean-12-ene-3β,6β-diol). To determine the roles of the CYP716 family genes in tomato triterpenoid biosynthesis, we analyzed the gene expression and triterpenoid accumulation patterns in different plant tissues by performing the quantitative real-time polymerase chain reaction (qPCR) and gas chromatography-mass spectrometry (GC-MS) analyses, respectively. High levels of the CYP716A44 gene expression and the accumulation of C-28-oxidized triterpenoids, ursolic acid, and oleanolic acid were observed in the roots, indicating a significant contribution of the CYP716A44 gene in the triterpenoid biosynthesis in tomato. Thus, our study partially elucidated the mechanism of triterpenoid biosynthesis in tomato, and identified CYP716E26 as a novel C-6β hydroxylase for its subsequent use in the combinatorial biosynthesis of bioactive triterpenoids.
Collapse
Affiliation(s)
- Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka UniversitySuita, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka UniversitySuita, Japan
| | - Yuko Shimizu
- Department of Biotechnology, Graduate School of Engineering, Osaka UniversitySuita, Japan
| | - Ery O. Fukushima
- Department of Biotechnology, Graduate School of Engineering, Osaka UniversitySuita, Japan
- Center for Open Innovation Research and Education, Graduate School of Engineering, Osaka UniversitySuita, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka UniversitySuita, Japan
- *Correspondence: Toshiya Muranaka
| |
Collapse
|
43
|
Ghosh S. Triterpene Structural Diversification by Plant Cytochrome P450 Enzymes. FRONTIERS IN PLANT SCIENCE 2017; 8:1886. [PMID: 29170672 PMCID: PMC5684119 DOI: 10.3389/fpls.2017.01886] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 10/18/2017] [Indexed: 05/06/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) represent the largest enzyme family of the plant metabolism. Plants typically devote about 1% of the protein-coding genes for the P450s to execute primary metabolism and also to perform species-specific specialized functions including metabolism of the triterpenes, isoprene-derived 30-carbon compounds. Triterpenes constitute a large and structurally diverse class of natural products with various industrial and pharmaceutical applications. P450-catalyzed structural modification is crucial for the diversification and functionalization of the triterpene scaffolds. In recent times, a remarkable progress has been made in understanding the function of the P450s in plant triterpene metabolism. So far, ∼80 P450s are assigned biochemical functions related to the plant triterpene metabolism. The members of the subfamilies CYP51G, CYP85A, CYP90B-D, CYP710A, CYP724B, and CYP734A are generally conserved across the plant kingdom to take part in plant primary metabolism related to the biosynthesis of essential sterols and steroid hormones. However, the members of the subfamilies CYP51H, CYP71A,D, CYP72A, CYP81Q, CYP87D, CYP88D,L, CYP93E, CYP705A, CYP708A, and CYP716A,C,E,S,U,Y are required for the metabolism of the specialized triterpenes that might perform species-specific functions including chemical defense toward specialized pathogens. Moreover, a recent advancement in high-throughput sequencing of the transcriptomes and genomes has resulted in identification of a large number of candidate P450s from diverse plant species. Assigning biochemical functions to these P450s will be of interest to extend our knowledge on triterpene metabolism in diverse plant species and also for the sustainable production of valuable phytochemicals.
Collapse
|
44
|
Fiallos-Jurado J, Pollier J, Moses T, Arendt P, Barriga-Medina N, Morillo E, Arahana V, de Lourdes Torres M, Goossens A, Leon-Reyes A. Saponin determination, expression analysis and functional characterization of saponin biosynthetic genes in Chenopodium quinoa leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:188-197. [PMID: 27457995 DOI: 10.1016/j.plantsci.2016.05.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 05/09/2023]
Abstract
Quinoa (Chenopodium quinoa Willd.) is a highly nutritious pseudocereal with an outstanding protein, vitamin, mineral and nutraceutical content. The leaves, flowers and seed coat of quinoa contain triterpenoid saponins, which impart bitterness to the grain and make them unpalatable without postharvest removal of the saponins. In this study, we quantified saponin content in quinoa leaves from Ecuadorian sweet and bitter genotypes and assessed the expression of saponin biosynthetic genes in leaf samples elicited with methyl jasmonate. We found saponin accumulation in leaves after MeJA treatment in both ecotypes tested. As no reference genes were available to perform qPCR in quinoa, we mined publicly available RNA-Seq data for orthologs of 22 genes known to be stably expressed in Arabidopsis thaliana using geNorm, NormFinder and BestKeeper algorithms. The quinoa ortholog of At2g28390 (Monensin Sensitivity 1, MON1) was stably expressed and chosen as a suitable reference gene for qPCR analysis. Candidate saponin biosynthesis genes were screened in the quinoa RNA-Seq data and subsequent functional characterization in yeast led to the identification of CqbAS1, CqCYP716A78 and CqCYP716A79. These genes were found to be induced by MeJA, suggesting this phytohormone might also modulate saponin biosynthesis in quinoa leaves. Knowledge of the saponin biosynthesis and its regulation in quinoa may aid the further development of sweet cultivars that do not require postharvest processing.
Collapse
Affiliation(s)
- Jennifer Fiallos-Jurado
- Laboratorio de Biotecnología Agrícola y de Alimentos, Ingeniería en Agroempresas, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Campus Cumbayá, 17-1200-841 Quito, Ecuador; Laboratorio de Biotecnología Vegetal, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Campus Cumbayá, 17-1200-841 Quito, Ecuador
| | - Jacob Pollier
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Tessa Moses
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Philipp Arendt
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; Inflammation Research Centre (IRC), VIB, 9052 Gent, Belgium; Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Noelia Barriga-Medina
- Laboratorio de Biotecnología Agrícola y de Alimentos, Ingeniería en Agroempresas, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Campus Cumbayá, 17-1200-841 Quito, Ecuador
| | - Eduardo Morillo
- Instituto Nacional de Investigaciones Agropecuarias (INIAP), Estación Experimental Santa Catalina, Quito, Ecuador
| | - Venancio Arahana
- Laboratorio de Biotecnología Vegetal, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Campus Cumbayá, 17-1200-841 Quito, Ecuador
| | - Maria de Lourdes Torres
- Laboratorio de Biotecnología Vegetal, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Campus Cumbayá, 17-1200-841 Quito, Ecuador
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Antonio Leon-Reyes
- Laboratorio de Biotecnología Agrícola y de Alimentos, Ingeniería en Agroempresas, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Campus Cumbayá, 17-1200-841 Quito, Ecuador.
| |
Collapse
|