1
|
Sharma R, Kim JJ, Qin L, Henning P, Akimoto M, VanSchouwen B, Kaur G, Sankaran B, MacKenzie KR, Melacini G, Casteel DE, Herberg FW, Kim CW. An auto-inhibited state of protein kinase G and implications for selective activation. eLife 2022; 11:79530. [PMID: 35929723 PMCID: PMC9417419 DOI: 10.7554/elife.79530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
Cyclic GMP-dependent protein kinases (PKGs) are key mediators of the nitric oxide/cyclic guanosine monophosphate (cGMP) signaling pathway that regulates biological functions as diverse as smooth muscle contraction, cardiac function, and axon guidance. Understanding how cGMP differentially triggers mammalian PKG isoforms could lead to new therapeutics that inhibit or activate PKGs, complementing drugs that target nitric oxide synthases and cyclic nucleotide phosphodiesterases in this signaling axis. Alternate splicing of PRKG1 transcripts confers distinct leucine zippers, linkers, and auto-inhibitory (AI) pseudo-substrate sequences to PKG Iα and Iβ that result in isoform-specific activation properties, but the mechanism of enzyme auto-inhibition and its alleviation by cGMP is not well understood. Here, we present a crystal structure of PKG Iβ in which the AI sequence and the cyclic nucleotide-binding (CNB) domains are bound to the catalytic domain, providing a snapshot of the auto-inhibited state. Specific contacts between the PKG Iβ AI sequence and the enzyme active site help explain isoform-specific activation constants and the effects of phosphorylation in the linker. We also present a crystal structure of a PKG I CNB domain with an activating mutation linked to Thoracic Aortic Aneurysms and Dissections. Similarity of this structure to wildtype cGMP-bound domains and differences with the auto-inhibited enzyme provide a mechanistic basis for constitutive activation. We show that PKG Iβ auto-inhibition is mediated by contacts within each monomer of the native full-length dimeric protein, and using the available structural and biochemical data we develop a model for the regulation and cooperative activation of PKGs.
Collapse
Affiliation(s)
- Rajesh Sharma
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
| | - Jeong Joo Kim
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
| | - Liying Qin
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
| | - Philipp Henning
- Department of Biochemistry, University of Kassel, kassel, Germany
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, Ontario, Canada
| | - Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, Ontario, Canada
| | - Gundeep Kaur
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Kevin R MacKenzie
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Fritz W Herberg
- Department of Biochemistry, University of Kassel, kassel, Germany
| | - Choel W Kim
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
2
|
Byun JA, VanSchouwen B, Huang J, Baryar U, Melacini G. Divergent allostery reveals critical differences between structurally homologous regulatory domains of Plasmodium falciparum and human protein kinase G. J Biol Chem 2022; 298:101691. [PMID: 35143840 PMCID: PMC8931422 DOI: 10.1016/j.jbc.2022.101691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria is a life-threatening infectious disease primarily caused by the Plasmodium falciparum parasite. The increasing resistance to current antimalarial drugs and their side effects has led to an urgent need for novel malaria drug targets, such as the P. falciparum cGMP-dependent protein kinase (pfPKG). However, PKG plays an essential regulatory role also in the human host. Human PKG (hPKG) and pfPKG are controlled by structurally homologs cGMP-binding domains (CBDs). Here, we show that despite the structural similarities between the essential CBDs in pfPKG and hPKG, their respective allosteric networks differ significantly. Through comparative analyses of CHESCA, molecular dynamics simulations, and backbone internal dynamics measurements, we found that conserved allosteric elements within the essential CBDs are wired differently in pfPKG and hPKG to implement cGMP-dependent kinase activation. Such pfPKG vs. hPKG rewiring of allosteric networks was unexpected due to the structural similarity between the two essential CBDs. Yet, such finding provides crucial information on which elements to target for selective inhibition of pfPKG vs. hPKG, which may potentially reduce undesired side-effects in malaria treatments.
Collapse
Affiliation(s)
- Jung Ah Byun
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W. Hamilton, Canada
| | - Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W. Hamilton, Canada
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W. Hamilton, Canada
| | - Ubaidullah Baryar
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W. Hamilton, Canada
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W. Hamilton, Canada; Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W. Hamilton, Canada.
| |
Collapse
|
3
|
Mutual Protein-Ligand Conformational Selection Drives cGMP vs. cAMP Selectivity in Protein Kinase G. J Mol Biol 2021; 433:167202. [PMID: 34400180 DOI: 10.1016/j.jmb.2021.167202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022]
Abstract
Protein kinase G (PKG) is a major receptor of cGMP, and controls signaling pathways distinct from those regulated by cAMP. However, the contributions of the two substituents that differentiate cGMP from cAMP (i.e. 6-oxo and 2-NH2) to the cGMP-versus-cAMP selectivity of PKG remain unclear. Here, using NMR to map how binding affinity and dynamics of the protein and ligand vary along a ligand double-substitution cycle, we show that the contributions of the two substituents to binding affinity are surprisingly non-additive. Such non-additivity stems primarily from mutual protein-ligand conformational selection, whereby not only does the ligand select for a preferred protein conformation upon binding, but also, the protein selects for a preferred ligand conformation. The 6-oxo substituent mainly controls the conformational equilibrium of the bound protein, while the 2-NH2 substituent primarily controls the conformational equilibrium of the unbound ligand (i.e. syn versus anti). Therefore, understanding the conformational dynamics of both the protein and ligand is essential to explain the cGMP-versus-cAMP selectivity of PKG.
Collapse
|
4
|
Byun JA, VanSchouwen B, Parikh N, Akimoto M, McNicholl ET, Melacini G. State-selective frustration as a key driver of allosteric pluripotency. Chem Sci 2021; 12:11565-11575. [PMID: 34667558 PMCID: PMC8447923 DOI: 10.1039/d1sc01753e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Allosteric pluripotency arises when an allosteric effector switches from agonist to antagonist depending on the experimental conditions. For example, the Rp-cAMPS ligand of Protein Kinase A (PKA) switches from agonist to antagonist as the MgATP concentration increases and/or the kinase substrate affinity or concentration decreases. Understanding allosteric pluripotency is essential to design effective allosteric therapeutics with minimal side effects. Allosteric pluripotency of PKA arises from divergent allosteric responses of two homologous tandem cAMP-binding domains, resulting in a free energy landscape for the Rp-cAMPS-bound PKA regulatory subunit R1a in which the ground state is kinase inhibition-incompetent and the kinase inhibition-competent state is excited. The magnitude of the free energy difference between the ground non-inhibitory and excited inhibitory states (ΔGR,Gap) relative to the effective free energy of R1a binding to the catalytic subunit of PKA (ΔGR:C) dictates whether the antagonism-to-agonism switch occurs. However, the key drivers of ΔGR,Gap are not fully understood. Here, by analyzing an R1a mutant that selectively silences allosteric pluripotency, we show that a major determinant of ΔGR,Gap unexpectedly arises from state-selective frustration in the ground inhibition-incompetent state of Rp-cAMPS-bound R1a. Such frustration is caused by steric clashes between the phosphate-binding cassette and the helices preceding the lid, which interact with the phosphate and base of Rp-cAMPS, respectively. These clashes are absent in the excited inhibitory state, thus reducing the ΔGR,Gap to values comparable to ΔGR:C, as needed for allosteric pluripotency to occur. The resulting model of allosteric pluripotency is anticipated to assist the design of effective allosteric modulators. The Rp-cAMPS ligand of protein kinase A switches from agonist to antagonist depending on metabolite and proteomic contexts. We show that the state-selective frustration is a key driver of this allosteric pluripotency phenomenon.![]()
Collapse
Affiliation(s)
- Jung Ah Byun
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton ON L8S 4M1 Canada
| | - Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University Hamilton ON L8S 4M1 Canada
| | - Nishi Parikh
- Department of Chemistry and Chemical Biology, McMaster University Hamilton ON L8S 4M1 Canada
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University Hamilton ON L8S 4M1 Canada
| | - Eric Tyler McNicholl
- Department of Chemistry and Chemical Biology, McMaster University Hamilton ON L8S 4M1 Canada
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton ON L8S 4M1 Canada .,Department of Chemistry and Chemical Biology, McMaster University Hamilton ON L8S 4M1 Canada
| |
Collapse
|
5
|
Kim C, Sharma R. Cyclic nucleotide selectivity of protein kinase G isozymes. Protein Sci 2020; 30:316-327. [PMID: 33271627 DOI: 10.1002/pro.4008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 11/07/2022]
Abstract
The intrinsic activity of the C-terminal catalytic (C) domain of cyclic guanosine monophosphate (cGMP)-dependent protein kinases (PKG) is inhibited by interactions with the N-terminal regulatory (R) domain. Selective binding of cGMP to cyclic nucleotide binding (CNB) domains within the R-domain disrupts the inhibitory R-C interaction, leading to the release and activation of the C-domain. Affinity measurements of mammalian and plasmodium PKG CNB domains reveal different degrees of cyclic nucleotide affinity and selectivity; the CNB domains adjacent to the C-domain are more cGMP selective and therefore critical for cGMP-dependent activation. Crystal structures of isolated CNB domains in the presence and absence of cyclic nucleotides reveal isozyme-specific contacts that explain cyclic nucleotide selectivity and conformational changes that accompany CNB. Crystal structures of tandem CNB domains identify two types of CNB-mediated dimeric contacts that indicate cGMP-driven reorganization of domain-domain interfaces that include large conformational changes. Here, we review the available structural and functional information of PKG CNB domains that further advance our understanding of cGMP mediated regulation and activation of PKG isozymes.
Collapse
Affiliation(s)
- Choel Kim
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Rajesh Sharma
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Qin L, Sankaran B, Aminzai S, Casteel DE, Kim C. Structural basis for selective inhibition of human PKG Iα by the balanol-like compound N46. J Biol Chem 2018; 293:10985-10992. [PMID: 29769318 PMCID: PMC6052212 DOI: 10.1074/jbc.ra118.002427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/11/2018] [Indexed: 12/18/2022] Open
Abstract
Activation of protein kinase G (PKG) Iα in nociceptive neurons induces long-term hyperexcitability that causes chronic pain. Recently, a derivative of the fungal metabolite balanol, N46, has been reported to inhibit PKG Iα with high potency and selectivity and attenuate thermal hyperalgesia and osteoarthritic pain. Here we determined co-crystal structures of the PKG Iα C-domain and cAMP-dependent protein kinase (PKA) Cα, each bound with N46, at 1.98 Å and 2.65 Å, respectively. N46 binds the active site with its external phenyl ring, specifically interacting with the glycine-rich loop and the αC helix. Phe-371 at the PKG Iα glycine-rich loop is oriented parallel to the phenyl ring of N46, forming a strong π-stacking interaction, whereas the analogous Phe-54 in PKA Cα rotates 30° and forms a weaker interaction. Structural comparison revealed that steric hindrance between the preceding Ser-53 and the propoxy group of the phenyl ring may explain the weaker interaction with PKA Cα. The analogous Gly-370 in PKG Iα, however, causes little steric hindrance with Phe-371. Moreover, Ile-406 on the αC helix forms a hydrophobic interaction with N46 whereas its counterpart in PKA, Thr-88, does not. Substituting these residues in PKG Iα with those in PKA Cα increases the IC50 values for N46, whereas replacing these residues in PKA Cα with those in PKG Iα reduces the IC50, consistent with our structural findings. In conclusion, our results explain the structural basis for N46-mediated selective inhibition of human PKG Iα and provide a starting point for structure-guided design of selective PKG Iα inhibitors.
Collapse
Affiliation(s)
- Liying Qin
- From the Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Banumathi Sankaran
- the Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Sahar Aminzai
- the Department of Medicine, University of California, San Diego, La Jolla, California 92093, and
| | - Darren E Casteel
- the Department of Medicine, University of California, San Diego, La Jolla, California 92093, and
| | - Choel Kim
- From the Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030,
- the Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
7
|
Akimoto M, VanSchouwen B, Melacini G. The structure of the apo cAMP-binding domain of HCN4 - a stepping stone toward understanding the cAMP-dependent modulation of the hyperpolarization-activated cyclic-nucleotide-gated ion channels. FEBS J 2018; 285:2182-2192. [PMID: 29444387 DOI: 10.1111/febs.14408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/31/2018] [Accepted: 02/09/2018] [Indexed: 12/14/2022]
Abstract
The hyperpolarization-activated cyclic-nucleotide-gated (HCN) ion channels control nerve impulse transmission and cardiac pacemaker activity. The modulation by cAMP is critical for the regulatory function of HCN in both neurons and cardiomyocytes, but the underlying mechanism is not fully understood. Here, we show how the structure of the apo cAMP-binding domain of the HCN4 isoform has contributed to a model for the cAMP-dependent modulation of the HCN ion-channel. This model recapitulates the structural and dynamical changes that occur along the thermodynamic cycle arising from the coupling of cAMP-binding and HCN self-association equilibria. The proposed model addresses some of the questions previously open about the auto-inhibition of HCN and its cAMP-induced activation, while opening new opportunities for selectively targeting HCN through allosteric ligands. A remaining challenge is the investigation of HCN dimers and their regulatory role. Overcoming this challenge will require the integration of crystallography, cryo electron microscopy, NMR, electrophysiology and simulations.
Collapse
Affiliation(s)
- Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, ON, Canada
| | - Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, ON, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, ON, Canada
| |
Collapse
|
8
|
Gerlits O, Campbell JC, Blakeley MP, Kim C, Kovalevsky A. Neutron Crystallography Detects Differences in Protein Dynamics: Structure of the PKG II Cyclic Nucleotide Binding Domain in Complex with an Activator. Biochemistry 2018. [PMID: 29517905 DOI: 10.1021/acs.biochem.8b00010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As one of the main receptors of a second messenger, cGMP, cGMP-dependent protein kinase (PKG) isoforms I and II regulate distinct physiological processes. The design of isoform-specific activators is thus of great biomedical importance and requires detailed structural information about PKG isoforms bound with activators, including accurate positions of hydrogen atoms and a description of the hydrogen bonding and water architecture. Here, we determined a 2.2 Å room-temperature joint X-ray/neutron (XN) structure of the human PKG II carboxyl cyclic nucleotide binding (CNB-B) domain bound with a potent PKG II activator, 8-pCPT-cGMP. The XN structure directly visualizes intermolecular interactions and reveals changes in hydrogen bonding patterns upon comparison to the X-ray structure determined at cryo-temperatures. Comparative analysis of the backbone hydrogen/deuterium exchange patterns in PKG II:8-pCPT-cGMP and previously reported PKG Iβ:cGMP XN structures suggests that the ability of these agonists to activate PKG is related to how effectively they quench dynamics of the cyclic nucleotide binding pocket and the surrounding regions.
Collapse
Affiliation(s)
- Oksana Gerlits
- Bredesen Center , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - James C Campbell
- Department of Pharmacology and Chemical Biology , Baylor College of Medicine , Houston , Texas 77030 , United States
| | - Matthew P Blakeley
- Large-Scale Structures Group , Institut Laue Langevin , 38042 Grenoble Cedex 9, France
| | - Choel Kim
- Department of Pharmacology and Chemical Biology , Baylor College of Medicine , Houston , Texas 77030 , United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology , Baylor College of Medicine , Houston , Texas 77030 , United States
| | - Andrey Kovalevsky
- Neutron Scattering Division, Neutron Sciences Directorate , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| |
Collapse
|
9
|
VanSchouwen B, Ahmed R, Milojevic J, Melacini G. Functional dynamics in cyclic nucleotide signaling and amyloid inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1529-1543. [PMID: 28911813 DOI: 10.1016/j.bbapap.2017.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 12/28/2022]
Abstract
It is now established that understanding the molecular basis of biological function requires atomic resolution maps of both structure and dynamics. Here, we review several illustrative examples of functional dynamics selected from our work on cyclic nucleotide signaling and amyloid inhibition. Although fundamentally diverse, a central aspect common to both fields is that function can only be rationalized by considering dynamic equilibria between distinct states of the accessible free energy landscape. The dynamic exchange between ground and excited states of signaling proteins is essential to explain auto-inhibition and allosteric activation. The dynamic exchange between non-toxic monomeric species and toxic oligomers of amyloidogenic proteins provides a foundation to understand amyloid inhibition. NMR ideally probes both types of dynamic exchange at atomic resolution. Specifically, we will show how NMR was utilized to reveal the dynamical basis of cyclic nucleotide affinity, selectivity, agonism and antagonism in multiple eukaryotic cAMP and cGMP receptors. We will also illustrate how NMR revealed the mechanism of action of plasma proteins that act as extracellular chaperones and inhibit the self-association of the prototypical amyloidogenic Aβ peptide. The examples outlined in this review illustrate the widespread implications of functional dynamics and the power of NMR as an indispensable tool in molecular pharmacology and pathology.
Collapse
Affiliation(s)
- Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Julijana Milojevic
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
10
|
Campbell JC, VanSchouwen B, Lorenz R, Sankaran B, Herberg FW, Melacini G, Kim C. Crystal structure of cGMP-dependent protein kinase Iβ cyclic nucleotide-binding-B domain : Rp-cGMPS complex reveals an apo-like, inactive conformation. FEBS Lett 2016; 591:221-230. [PMID: 27914169 DOI: 10.1002/1873-3468.12505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/13/2016] [Accepted: 11/18/2016] [Indexed: 12/23/2022]
Abstract
The R-diastereomer of phosphorothioate analogs of cGMP, Rp-cGMPS, is one of few known inhibitors of cGMP-dependent protein kinase I (PKG I); however, its mechanism of inhibition is currently not fully understood. Here, we determined the crystal structure of the PKG Iβ cyclic nucleotide-binding domain (PKG Iβ CNB-B), considered a 'gatekeeper' for cGMP activation, bound to Rp-cGMPS at 1.3 Å. Our structural and NMR data show that PKG Iβ CNB-B bound to Rp-cGMPS displays an apo-like structure with its helical domain in an open conformation. Comparison with the cAMP-dependent protein kinase regulatory subunit (PKA RIα) showed that this conformation resembles the catalytic subunit-bound inhibited state of PKA RIα more closely than the apo or Rp-cAMPS-bound conformations. These results suggest that Rp-cGMPS inhibits PKG I by stabilizing the inactive conformation of CNB-B.
Collapse
Affiliation(s)
- James C Campbell
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, TX, USA.,Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Robin Lorenz
- Department of Biochemistry, University of Kassel, Kassel, Hesse, Germany
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, CA, USA
| | | | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Choel Kim
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, TX, USA.,Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|