1
|
Wrynn T, Min S, Horeth E, Osinski J, Sinha S, Romano RA. ΔNp63 regulates Sfrp1 expression to direct salivary gland branching morphogenesis. PLoS One 2024; 19:e0301082. [PMID: 38722977 PMCID: PMC11081224 DOI: 10.1371/journal.pone.0301082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/08/2024] [Indexed: 05/13/2024] Open
Abstract
Branching morphogenesis is a complex process shared by many organs including the lungs, kidney, prostate, as well as several exocrine organs including the salivary, mammary and lacrimal glands. This critical developmental program ensures the expansion of an organ's surface area thereby maximizing processes of cellular secretion or absorption. It is guided by reciprocal signaling from the epithelial and mesenchymal cells. While signaling pathways driving salivary gland branching morphogenesis have been relatively well-studied, our understanding of the underlying transcriptional regulatory mechanisms directing this program, is limited. Here, we performed in vivo and ex vivo studies of the embryonic mouse submandibular gland to determine the function of the transcription factor ΔNp63, in directing branching morphogenesis. Our studies show that loss of ΔNp63 results in alterations in the differentiation program of the ductal cells which is accompanied by a dramatic reduction in branching morphogenesis that is mediated by dysregulation of WNT signaling. We show that ΔNp63 modulates WNT signaling to promote branching morphogenesis by directly regulating Sfrp1 expression. Collectively, our findings have revealed a novel role for ΔNp63 in the regulation of this critical process and offers a better understanding of the transcriptional networks involved in branching morphogenesis.
Collapse
Affiliation(s)
- Theresa Wrynn
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Sangwon Min
- Department of Stem Cell and Regenerative Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Erich Horeth
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Jason Osinski
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Satrajit Sinha
- Department of Biochemistry, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Rose-Anne Romano
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
2
|
Kim U, Debnath R, Maiz JE, Rico J, Sinha S, Blanco MA, Chakrabarti R. ΔNp63 regulates MDSC survival and metabolism in triple-negative breast cancer. iScience 2024; 27:109366. [PMID: 38510127 PMCID: PMC10951988 DOI: 10.1016/j.isci.2024.109366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Triple-negative breast cancer (TNBC) contributes greatly to mortality of breast cancer, demanding new targetable options. We have shown that TNBC patients have high ΔNp63 expression in tumors. However, the function of ΔNp63 in established TNBC is yet to be explored. In current studies, targeting ΔNp63 with inducible CRISPR knockout and Histone deacetylase inhibitor Quisinostat showed that ΔNp63 is important for tumor progression and metastasis in established tumors by promoting myeloid-derived suppressor cell (MDSC) survival through tumor necrosis factor alpha. Decreasing ΔNp63 levels are associated with decreased CD4+ and FOXP3+ T-cells but increased CD8+ T-cells. RNA sequencing analysis indicates that loss of ΔNp63 alters multiple MDSC properties such as lipid metabolism, chemotaxis, migration, and neutrophil degranulation besides survival. We further demonstrated that targeting ΔNp63 sensitizes chemotherapy. Overall, we showed that ΔNp63 reprograms the MDSC-mediated immunosuppressive functions in TNBC, highlighting the benefit of targeting ΔNp63 in chemotherapy-resistant TNBC.
Collapse
Affiliation(s)
- Ukjin Kim
- Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rahul Debnath
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Javier E. Maiz
- Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua Rico
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Satrajit Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Mario Andrés Blanco
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rumela Chakrabarti
- Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Danev N, Harman RM, Oliveira L, Huntimer L, Van de Walle GR. Bovine milk-derived cells express transcriptome markers of pluripotency and secrete bioactive factors with regenerative and antimicrobial activity. Sci Rep 2023; 13:12600. [PMID: 37537239 PMCID: PMC10400535 DOI: 10.1038/s41598-023-39833-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
The bovine mammary stem/progenitor cell secretome stimulates regeneration in vitro and contains proteins associated with antimicrobial defense. This has led to the exploration of the secretome as a biologic treatment for mastitis, a costly inflammation of the udder commonly caused by bacteria. This study reports on a population of bovine mammary stem/progenitor cells isolated non-invasively from milk (MiDCs). MiDCs were characterized by immunophenotyping, mammosphere formation assays, and single cell RNA sequencing. They displayed epithelial morphology, exhibited markers of mammary stem/progenitor cells, and formed mammospheres, like mammary gland tissue-isolated stem/progenitor cells. Single cell RNA sequencing revealed two sub-populations of MiDCs: epithelial cells and macrophages. Functionally, the MiDC secretome increased fibroblast migration, promoted angiogenesis of endothelial cells, and inhibited the growth of mastitis-associated bacteria, including antibiotic-resistant strains, in vitro. These qualities of MiDCs render them a source of stem cells and stem cell products that may be used to treat diseases affecting the dairy industry, including mastitis.
Collapse
Affiliation(s)
- Nikola Danev
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA
| | - Leane Oliveira
- Elanco Animal Health, 2500 Innovation Way, Indianapolis, IN, 46241, USA
| | - Lucas Huntimer
- Elanco Animal Health, 2500 Innovation Way, Indianapolis, IN, 46241, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
5
|
Slepicka PF, Somasundara AVH, Dos Santos CO. The molecular basis of mammary gland development and epithelial differentiation. Semin Cell Dev Biol 2021; 114:93-112. [PMID: 33082117 PMCID: PMC8052380 DOI: 10.1016/j.semcdb.2020.09.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Our understanding of the molecular events underpinning the development of mammalian organ systems has been increasing rapidly in recent years. With the advent of new and improved next-generation sequencing methods, we are now able to dig deeper than ever before into the genomic and epigenomic events that play critical roles in determining the fates of stem and progenitor cells during the development of an embryo into an adult. In this review, we detail and discuss the genes and pathways that are involved in mammary gland development, from embryogenesis, through maturation into an adult gland, to the role of pregnancy signals in directing the terminal maturation of the mammary gland into a milk producing organ that can nurture the offspring. We also provide an overview of the latest research in the single-cell genomics of mammary gland development, which may help us to understand the lineage commitment of mammary stem cells (MaSCs) into luminal or basal epithelial cells that constitute the mammary gland. Finally, we summarize the use of 3D organoid cultures as a model system to study the molecular events during mammary gland development. Our increased investigation of the molecular requirements for normal mammary gland development will advance the discovery of targets to predict breast cancer risk and the development of new breast cancer therapies.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
6
|
Henry S, Trousdell MC, Cyrill SL, Zhao Y, Feigman MJ, Bouhuis JM, Aylard DA, Siepel A, Dos Santos CO. Characterization of Gene Expression Signatures for the Identification of Cellular Heterogeneity in the Developing Mammary Gland. J Mammary Gland Biol Neoplasia 2021; 26:43-66. [PMID: 33988830 PMCID: PMC8217035 DOI: 10.1007/s10911-021-09486-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
The developing mammary gland depends on several transcription-dependent networks to define cellular identities and differentiation trajectories. Recent technological advancements that allow for single-cell profiling of gene expression have provided an initial picture into the epithelial cellular heterogeneity across the diverse stages of gland maturation. Still, a deeper dive into expanded molecular signatures would improve our understanding of the diversity of mammary epithelial and non-epithelial cellular populations across different tissue developmental stages, mouse strains and mammalian species. Here, we combined differential mammary gland fractionation approaches and transcriptional profiles obtained from FACS-isolated mammary cells to improve our definitions of mammary-resident, cellular identities at the single-cell level. Our approach yielded a series of expression signatures that illustrate the heterogeneity of mammary epithelial cells, specifically those of the luminal fate, and uncovered transcriptional changes to their lineage-defined, cellular states that are induced during gland development. Our analysis also provided molecular signatures that identified non-epithelial mammary cells, including adipocytes, fibroblasts and rare immune cells. Lastly, we extended our study to elucidate expression signatures of human, breast-resident cells, a strategy that allowed for the cross-species comparison of mammary epithelial identities. Collectively, our approach improved the existing signatures of normal mammary epithelial cells, as well as elucidated the diversity of non-epithelial cells in murine and human breast tissue. Our study provides a useful resource for future studies that use single-cell molecular profiling strategies to understand normal and malignant breast development.
Collapse
Affiliation(s)
- Samantha Henry
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, US
- Graduate Program in Genetics, Stony Brook University, NY, 11794, US
| | | | | | - Yixin Zhao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, US
| | - Mary J Feigman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, US
| | | | - Dominik A Aylard
- College of Biological Sciences, University of California, Davis, CA, 95616, US
| | - Adam Siepel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, US
| | | |
Collapse
|
7
|
Kumar S, Nandi A, Singh S, Regulapati R, Li N, Tobias JW, Siebel CW, Blanco MA, Klein-Szanto AJ, Lengner C, Welm AL, Kang Y, Chakrabarti R. Dll1 + quiescent tumor stem cells drive chemoresistance in breast cancer through NF-κB survival pathway. Nat Commun 2021; 12:432. [PMID: 33462238 PMCID: PMC7813834 DOI: 10.1038/s41467-020-20664-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023] Open
Abstract
Development of chemoresistance in breast cancer patients greatly increases mortality. Thus, understanding mechanisms underlying breast cancer resistance to chemotherapy is of paramount importance to overcome this clinical challenge. Although activated Notch receptors have been associated with chemoresistance in cancer, the specific Notch ligands and their molecular mechanisms leading to chemoresistance in breast cancer remain elusive. Using conditional knockout and reporter mouse models, we demonstrate that tumor cells expressing the Notch ligand Dll1 is important for tumor growth and metastasis and bear similarities to tumor-initiating cancer cells (TICs) in breast cancer. RNA-seq and ATAC-seq using reporter models and patient data demonstrated that NF-κB activation is downstream of Dll1 and is associated with a chemoresistant phenotype. Finally, pharmacological blocking of Dll1 or NF-κB pathway completely sensitizes Dll1+ tumors to chemotherapy, highlighting therapeutic avenues for chemotherapy resistant breast cancer patients in the near future.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ajeya Nandi
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Snahlata Singh
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rohan Regulapati
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ning Li
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John W Tobias
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christian W Siebel
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Mario Andres Blanco
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Christopher Lengner
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Rumela Chakrabarti
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Min S, Oyelakin A, Gluck C, Bard JE, Song EAC, Smalley K, Che M, Flores E, Sinha S, Romano RA. p63 and Its Target Follistatin Maintain Salivary Gland Stem/Progenitor Cell Function through TGF-β/Activin Signaling. iScience 2020; 23:101524. [PMID: 32932139 PMCID: PMC7498843 DOI: 10.1016/j.isci.2020.101524] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/13/2020] [Accepted: 08/28/2020] [Indexed: 01/16/2023] Open
Abstract
Multipotent ΔNp63-positive cells maintain all epithelial cell lineages of the embryonic and adult salivary gland (SG). However, the molecular mechanisms by which ΔNp63 regulates stem/progenitor (SP) cell populations in the SG remains elusive. To understand the role of ΔNp63 in directing cell fate choices in this gland, we have generated ΔNp63-deleted adult mice and primary salivary cell cultures to probe alterations in SP cell differentiation and function. In parallel, we have leveraged RNA-seq and ChIP-seq-based characterization of the ΔNp63-driven cistrome and scRNA-seq analysis to molecularly interrogate altered SG cellular identities and differentiation states dependent on ΔNp63. Our studies reveal that ablation of ΔNp63 results in a loss of the SP cell population and skewed differentiation that is mediated by Follistatin-dependent dysregulated TGF-β/Activin signaling. These findings offer new revelations into the SP cell gene regulatory networks that are likely to be relevant for normal or diseased SG states.
Collapse
Affiliation(s)
- Sangwon Min
- Department of Oral Biology, State University of New York at Buffalo, School of Dental Medicine, 3435 Main Street, Buffalo, NY 14214, USA
| | - Akinsola Oyelakin
- Department of Oral Biology, State University of New York at Buffalo, School of Dental Medicine, 3435 Main Street, Buffalo, NY 14214, USA
| | - Christian Gluck
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jonathan E. Bard
- Genomics and Bioinformatics Core, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Eun-Ah Christine Song
- Department of Oral Biology, State University of New York at Buffalo, School of Dental Medicine, 3435 Main Street, Buffalo, NY 14214, USA
| | - Kirsten Smalley
- Department of Oral Biology, State University of New York at Buffalo, School of Dental Medicine, 3435 Main Street, Buffalo, NY 14214, USA
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Monika Che
- Department of Oral Biology, State University of New York at Buffalo, School of Dental Medicine, 3435 Main Street, Buffalo, NY 14214, USA
| | - Elsa Flores
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Rose-Anne Romano
- Department of Oral Biology, State University of New York at Buffalo, School of Dental Medicine, 3435 Main Street, Buffalo, NY 14214, USA
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|