1
|
Wan M, Pan S, Shan B, Diao H, Jin H, Wang Z, Wang W, Han S, Liu W, He J, Zheng Z, Pan Y, Han X, Zhang J. Lipid metabolic reprograming: the unsung hero in breast cancer progression and tumor microenvironment. Mol Cancer 2025; 24:61. [PMID: 40025508 PMCID: PMC11874147 DOI: 10.1186/s12943-025-02258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025] Open
Abstract
Aberrant lipid metabolism is a well-recognized hallmark of cancer. Notably, breast cancer (BC) arises from a lipid-rich microenvironment and depends significantly on lipid metabolic reprogramming to fulfill its developmental requirements. In this review, we revisit the pivotal role of lipid metabolism in BC, underscoring its impact on the progression and tumor microenvironment. Firstly, we delineate the overall landscape of lipid metabolism in BC, highlighting its roles in tumor progression and patient prognosis. Given that lipids can also act as signaling molecules, we next describe the lipid signaling exchanges between BC cells and other cellular components in the tumor microenvironment. Additionally, we summarize the therapeutic potential of targeting lipid metabolism from the aspects of lipid metabolism processes, lipid-related transcription factors and immunotherapy in BC. Finally, we discuss the possibilities and problems associated with clinical applications of lipid‑targeted therapy in BC, and propose new research directions with advances in spatiotemporal multi-omics.
Collapse
Affiliation(s)
- Mengting Wan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuaikang Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Benjie Shan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Haizhou Diao
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwei Jin
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Ziqi Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Shuya Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wan Liu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiaying He
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Graduate School of Bengbu Medical University, Bengbu, Anhui Province, China
| | - Zihan Zheng
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Yueyin Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xinghua Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
2
|
Devericks EN, Brosnan BH, Ho AN, Glenny EM, Malian HM, Teegarden D, Wendt MK, Coleman MF, Hursting SD. Glutathione peroxidase 4 (GPX4) and obesity interact to impact tumor progression and treatment response in triple negative breast cancer. Cancer Metab 2025; 13:11. [PMID: 40001204 PMCID: PMC11863593 DOI: 10.1186/s40170-025-00380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC), which tends to be more advanced when diagnosed and more aggressive than other breast cancer subtypes, is accelerated by obesity. Hypertrophic adipocytes and cancer cells exhibit increased oxidative stress and altered redox homeostasis, influencing therapeutic outcomes. Enzymes implicated in both redox regulation and TNBC include glutathione peroxidase 4 (GPX4; reduces lipid peroxides) and pyruvate carboxylase (PC; essential in oxidative stress protection). Using preclinical models, we characterized interactions between GPX4, PC, and oxidative stress in TNBC cells, and established effects of GPX4 suppression on TNBC progression. In TNBC cells, PC knockdown increased GPX4 expression, while GPX4 knockdown increased PC expression. GPX4 inhibition by erastin or RSL3 enhanced TNBC cell death in vitro, and antioxidants mitigated the cytotoxicity. In obese mice, GPX4 knockdown, versus scramble control: (i) reduced tumor burden following orthotopic transplantation of TNBC cells; and (ii) reduced lung metastasis following tail vein injection of TNBC cells in combination with chemotherapy (carboplatin) but not immunotherapy (anti-CTLA4 plus anti-PD1). We conclude that GPX4 and PC expression are inversely related in TNBC cells, and GPX4 and obesity interact to impact TNBC progression and treatment responses. Moreover, GPX4-mediated redox defense, alone or in combination with chemotherapy, is a targetable vulnerability for treating TNBC, including obesity-related TNBC. IMPLICATION GPX4 suppression, alone or with current TNBC therapies, impacts outcomes in preclinical TNBC models with or without obesity and offers a new, plausible mechanistic target for TNBC treatment.
Collapse
Affiliation(s)
- Emily N Devericks
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Bennett H Brosnan
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Alyssa N Ho
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Elaine M Glenny
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Hannah M Malian
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Dorothy Teegarden
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
- Purdue University, Purdue University Institute for Cancer Research, West Lafayette, IN, USA
| | - Michael K Wendt
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael F Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC, USA.
| |
Collapse
|
3
|
Kisar Tunca S, Unal R. Adipocyte-derived fatty acid uptake induces obesity-related breast cancer progression: a review. Mol Biol Rep 2024; 52:39. [PMID: 39644365 DOI: 10.1007/s11033-024-10139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Obesity is a metabolic disorder that occurs when excess energy taken into the body is stored as fat. It is known that this metabolic imbalance affects the development of other diseases such as cancer, cardiovascular diseases, insulin resistance, and diabetes. The main cellular component of adipose tissue is adipocytes, and the environmental interactions of adipocytes are important to study the mechanism of disorder formation. Breast tissue is rich in adipose tissue and obesity is known to be an important risk factor in the development of breast cancer. Altered adipogenesis and lipogenesis processes in adipocytes in breast tissue support tumor development through the transfer of fatty acids released from adipocytes. We believe that blending adipocyte biology with breast cancer development is important for investigating the mechanisms that regulate breast tumor malignant behavior and providing new targets for treatment. Fatty acids, which are an energy source for breast cancer cells, are discussed from molecular perspectives in this review.
Collapse
Affiliation(s)
- Selin Kisar Tunca
- Faculty of Science, Department of Molecular Biology and Genetics, Mugla Sitki Kocman University, Mugla, Turkey
| | - Resat Unal
- Faculty of Science, Department of Molecular Biology and Genetics, Mugla Sitki Kocman University, Mugla, Turkey.
| |
Collapse
|
4
|
Chang Y, Du R, Xia F, Xu X, Wang H, Chen X. Dysregulation of Fatty Acid Metabolism in Breast Cancer and Its Targeted Therapy. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:825-844. [PMID: 39628960 PMCID: PMC11614585 DOI: 10.2147/bctt.s496322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/13/2024] [Indexed: 12/06/2024]
Abstract
Breast cancer has become the number one cancer worldwide, there are challenges in its prevention, diagnosis and treatment, especially the pathogenesis of triple negative breast cancer has not been clear and the treatment dilemma of metastatic breast cancer. Metabolic reprogramming is currently considered to be one of the hallmarks of cancer, and metabolic alterations in breast cancer, including enhanced glycolysis, tricarboxylic acid cycle activity, glutamine catabolism, and fatty acid biosynthesis, are manifested differently in different breast cancer subtypes and have a complex relationship with tumor growth, metastasis, death, and drug resistance. At present, inhibitors of fatty acid synthesis and oxidation related enzymes have a certain effect in the treatment of breast cancer. In this paper, we review the studies on fatty acid metabolism in breast cancer to better understand the mechanism of fatty acid metabolism in breast cancer pathogenesis and hope to provide new ideas for targeting fatty acid metabolism in the treatment of breast cancer.
Collapse
Affiliation(s)
- Yue Chang
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, Anhui, People’s Republic of China
| | - Rui Du
- Department of Anorectal Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei First People’s Hospital, Hefei, Anhui, People’s Republic of China
| | - Fan Xia
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, Anhui, People’s Republic of China
| | - Xiuli Xu
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, Anhui, People’s Republic of China
| | - Hongzhi Wang
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, Anhui, People’s Republic of China
| | - Xueran Chen
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, Anhui, People’s Republic of China
| |
Collapse
|
5
|
Zhao Z, Pang H, Yu Q, Zeng F, He X, Sun Q, Chang P. The acyltransferase transmembrane protein 68 regulates breast cancer cell proliferation by modulating triacylglycerol metabolism. Lipids Health Dis 2024; 23:378. [PMID: 39543690 PMCID: PMC11566564 DOI: 10.1186/s12944-024-02369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Cellular carcinogenesis is often marked by the accumulation of lipid droplets (LDs) due to reprogrammed lipid metabolism. LDs are dynamic organelles that primarily store intracellular triacylglycerol (TAG) and cholesteryl esters (CEs). Transmembrane protein 68 (TMEM68), a potential modifier of human breast cancer risk and outcomes, functions as a diacylglycerol acyltransferase, synthesizing TAG. However, the specific roles of TMEM68 in breast cancer cells remain unclear. METHODS Gene expression profiling interactive analysis and survival analysis were conducted. TMEM68 was overexpressed or knockdown in breast cancer cells to assess its impact on cell proliferation, migration and invasion. Targeted quantitative lipidomic analysis and quantitative polymerase chain reaction were used to profile lipid alterations and examine gene expression related to lipid metabolism following changes in TMEM68 levels. RESULTS TMEM68 gene was upregulated in breast cancer patients and higher TMEM68 levels were associated with poorer survival outcomes. Overexpression of TMEM68 increased breast cancer cell proliferation and invasion, whereas knockdown had minimal or no impact on reducing proliferation and invasion. Altering TMEM68 levels resulted in corresponding changes in TAG levels and cytoplasmic LDs, with overexpression increasing both and knockdown decreasing them. Lipidomic analysis revealed that TMEM68 regulated TAG levels and altered diacylglycerol content in breast cancer cells. Additionally, TMEM68 influenced the metabolism of glycerophospholipids, CEs and acylcarnitines. TMEM68 also modified the expression of key genes encoding enzymes related to neutral lipid metabolism, including TAG and CEs. CONCLUSIONS TMEM68 is highly expressed in breast cancer and negatively correlated with survival. Its overexpression promotes breast cancer cell proliferation while knockdown has varied effects depending on TMEM68 levels. TMEM68 regulates intracellular TAG and LDs contents along with alterations in glycerophospholipids. These findings suggest that TMEM68 may drive breast cancer cells proliferation by modulating TAG and LD content.
Collapse
Affiliation(s)
- Zheng Zhao
- Chongqing Key Laboratory of Big Data for Bio-Intelligence, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Huimin Pang
- Chongqing Key Laboratory of Big Data for Bio-Intelligence, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Qing Yu
- Chongqing Key Laboratory of Big Data for Bio-Intelligence, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Fansi Zeng
- Chongqing Key Laboratory of Big Data for Bio-Intelligence, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Xiaohong He
- Chongqing Key Laboratory of Big Data for Bio-Intelligence, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Quan Sun
- Chongqing Key Laboratory of Big Data for Bio-Intelligence, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Pingan Chang
- Chongqing Key Laboratory of Big Data for Bio-Intelligence, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| |
Collapse
|
6
|
Zhang H, Li Y, Huang J, Shen L, Xiong Y. Precise targeting of lipid metabolism in the era of immuno-oncology and the latest advances in nano-based drug delivery systems for cancer therapy. Acta Pharm Sin B 2024; 14:4717-4737. [PMID: 39664426 PMCID: PMC11628863 DOI: 10.1016/j.apsb.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 12/13/2024] Open
Abstract
Over the past decade, research has increasingly identified unique dysregulations in lipid metabolism within the tumor microenvironment (TME). Lipids, diverse biomolecules, not only constitute biological membranes but also function as signaling molecules and energy sources. Enhanced synthesis or uptake of lipids in the TME significantly promotes tumorigenesis and proliferation. Moreover, lipids secreted into the TME influence tumor-resident immune cells (TRICs), thereby aiding tumor survival against chemotherapy and immunotherapy. This review aims to highlight recent advancements in understanding lipid metabolism in both tumor cells and TRICs, with a particular emphasis on exogenous lipid uptake and endogenous lipid de novo synthesis. Targeting lipid metabolism for intervention in anticancer therapies offers a promising therapeutic avenue for cancer treatment. Nano-drug delivery systems (NDDSs) have emerged as a means to maximize anti-tumor effects by rewiring tumor metabolism. This review provides a comprehensive overview of recent literature on the development of NDDSs targeting tumor lipid metabolism, particularly in the context of tumor immunotherapy. It covers four key aspects: reprogramming lipid uptake, reprogramming lipolysis, reshaping fatty acid oxidation (FAO), and reshuffling lipid composition on the cell membrane. The review concludes with a discussion of future prospects and challenges in this burgeoning field of research.
Collapse
Affiliation(s)
- Hongyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yujie Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jingyi Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Limei Shen
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Yang Xiong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
7
|
Araújo R, Fabris V, Lamb CA, Elía A, Lanari C, Helguero LA, Gil AM. Tumor Lipid Signatures Are Descriptive of Acquisition of Therapy Resistance in an Endocrine-Related Breast Cancer Mouse Model. J Proteome Res 2024; 23:2815-2829. [PMID: 37497607 PMCID: PMC11301694 DOI: 10.1021/acs.jproteome.3c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Indexed: 07/28/2023]
Abstract
The lipid metabolism adaptations of estrogen and progesterone receptor-positive breast cancer tumors from a mouse syngeneic model are investigated in relation to differences across the transition from hormone-dependent (HD) to hormone-independent (HI) tumor growth and the acquisition of endocrine therapy (ET) resistance (HIR tumors). Results are articulated with reported polar metabolome results to complete a metabolic picture of the above transitions and suggest markers of tumor progression and aggressiveness. Untargeted nuclear magnetic resonance metabolomics was used to analyze tumor and mammary tissue lipid extracts. Tumor progression (HD-HI-HIR) was accompanied by increased nonesterified cholesterol forms and phospholipids (phosphatidylcholine, phosphatidylethanolamine, sphingomyelins, and plasmalogens) and decreased relative contents of triglycerides and fatty acids. Predominating fatty acids became shorter and more saturated on average. These results were consistent with gradually more activated cholesterol synthesis, β-oxidation, and phospholipid biosynthesis to sustain tumor growth, as well as an increase in cholesterol (possibly oxysterol) forms. Particular compound levels and ratios were identified as potential endocrine tumor HD-HI-HIR progression markers, supporting new hypotheses to explain acquired ET resistance.
Collapse
Affiliation(s)
- Rita Araújo
- Department
of Chemistry and CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Victoria Fabris
- IByME
− Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, C1428 ADN Buenos Aires, Argentina
| | - Caroline A. Lamb
- IByME
− Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, C1428 ADN Buenos Aires, Argentina
| | - Andrés Elía
- IByME
− Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, C1428 ADN Buenos Aires, Argentina
| | - Claudia Lanari
- IByME
− Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, C1428 ADN Buenos Aires, Argentina
| | - Luisa A. Helguero
- iBIMED
- Institute of Biomedicine, Department of Medical Sciences, Universidade de Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal
| | - Ana M. Gil
- Department
of Chemistry and CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Yang S, Hu C, Chen X, Tang Y, Li J, Yang H, Yang Y, Ying B, Xiao X, Li SZ, Gu L, Zhu Y. Crosstalk between metabolism and cell death in tumorigenesis. Mol Cancer 2024; 23:71. [PMID: 38575922 PMCID: PMC10993426 DOI: 10.1186/s12943-024-01977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
It is generally recognized that tumor cells proliferate more rapidly than normal cells. Due to such an abnormally rapid proliferation rate, cancer cells constantly encounter the limits of insufficient oxygen and nutrient supplies. To satisfy their growth needs and resist adverse environmental events, tumor cells modify the metabolic pathways to produce both extra energies and substances required for rapid growth. Realizing the metabolic characters special for tumor cells will be helpful for eliminating them during therapy. Cell death is a hot topic of long-term study and targeting cell death is one of the most effective ways to repress tumor growth. Many studies have successfully demonstrated that metabolism is inextricably linked to cell death of cancer cells. Here we summarize the recently identified metabolic characters that specifically impact on different types of cell deaths and discuss their roles in tumorigenesis.
Collapse
Affiliation(s)
- Shichao Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Caden Hu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Xiaomei Chen
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Tang
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, P. R. China
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Juanjuan Li
- Department of breast and thyroid surgery, Renmin hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Hanqing Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Yang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Key Laboratory of Tumor Immunopathology, Third Military Medical University (Army Medical University, Ministry of Education of China, Chongqing, 400038, P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, P. R. China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.
| | - Shang-Ze Li
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| | - Li Gu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Yahui Zhu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| |
Collapse
|
9
|
Cheung SM, Chan KS, Zhou W, Husain E, Gagliardi T, Masannat Y, He J. Spatial heterogeneity of peri-tumoural lipid composition in postmenopausal patients with oestrogen receptor positive breast cancer. Sci Rep 2024; 14:4699. [PMID: 38409583 PMCID: PMC10897464 DOI: 10.1038/s41598-024-55458-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
Deregulation of lipid composition in adipose tissue adjacent to breast tumour is observed in ex vivo and animal models. Novel non-invasive magnetic resonance imaging (MRI) allows rapid lipid mapping of the human whole breast. We set out to elucidate the spatial heterogeneity of peri-tumoural lipid composition in postmenopausal patients with oestrogen receptor positive (ER +) breast cancer. Thirteen participants (mean age, 62 ± [SD] 6 years) with ER + breast cancer and 13 age-matched postmenopausal healthy controls were scanned on MRI. The number of double bonds in triglycerides was computed from MRI images to derive lipid composition maps of monounsaturated, polyunsaturated, and saturated fatty acids (MUFA, PUFA, SFA). The spatial heterogeneity measures (mean, median, skewness, entropy and kurtosis) of lipid composition in the peri-tumoural region and the whole breast of participants and in the whole breast of controls were computed. The Ki-67 proliferative activity marker and CD163 antibody on tumour-associated macrophages were assessed histologically. Mann Whitney U or Wilcoxon tests and Spearman's coefficients were used to assess group differences and correlations, respectively. For comparison against the whole breast in participants, peri-tumoural MUFA had a lower mean (median (IQR), 0.40 (0.02), p < .001), lower median (0.42 (0.02), p < .001), a negative skewness with lower magnitude (- 1.65 (0.77), p = .001), higher entropy (4.35 (0.64), p = .007) and lower kurtosis (5.13 (3.99), p = .001). Peri-tumoural PUFA had a lower mean (p < .001), lower median (p < .001), a positive skewness with higher magnitude (p = .005) and lower entropy (p = .002). Peri-tumoural SFA had a higher mean (p < .001), higher median (p < .001), a positive skewness with lower magnitude (p < .001) and lower entropy (p = .012). For comparison against the whole breast in controls, peri-tumoural MUFA had a negative skewness with lower magnitude (p = .01) and lower kurtosis (p = .009), however there was no difference in PUFA or SFA. CD163 moderately correlated with peri-tumoural MUFA skewness (rs = - .64), PUFA entropy (rs = .63) and SFA skewness (rs = .59). There was a lower MUFA and PUFA while a higher SFA, and a higher heterogeneity of MUFA while a lower heterogeneity of PUFA and SFA, in the peri-tumoural region in comparison with the whole breast tissue. The degree of lipid deregulation was associated with inflammation as indicated by CD163 antibody on macrophages, serving as potential marker for early diagnosis and response to therapy.
Collapse
Affiliation(s)
- Sai Man Cheung
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| | - Kwok-Shing Chan
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Wenshu Zhou
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Ehab Husain
- Department of Pathology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Tanja Gagliardi
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- Department of Radiology, Royal Marsden Hospital, London, UK
| | - Yazan Masannat
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- Broomfield Breast Unit, Broomfield Hospital, Mid and South Essex NHS Trust, Chelmsford, UK
- London Breast Institute, Princess Grace Hospital, London, UK
| | - Jiabao He
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
- Faculty of Medical Sciences, Newcastle Magnetic Resonance Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
10
|
Jiang N, Li W, Jiang S, Xie M, Liu R. Acetylation in pathogenesis: Revealing emerging mechanisms and therapeutic prospects. Biomed Pharmacother 2023; 167:115519. [PMID: 37729729 DOI: 10.1016/j.biopha.2023.115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Protein acetylation modifications play a central and pivotal role in a myriad of biological processes, spanning cellular metabolism, proliferation, differentiation, apoptosis, and beyond, by effectively reshaping protein structure and function. The metabolic state of cells is intricately connected to epigenetic modifications, which in turn influence chromatin status and gene expression patterns. Notably, pathological alterations in protein acetylation modifications are frequently observed in diseases such as metabolic syndrome, cardiovascular disorders, and cancer. Such abnormalities can result in altered protein properties and loss of function, which are closely associated with developing and progressing related diseases. In recent years, the advancement of precision medicine has highlighted the potential value of protein acetylation in disease diagnosis, treatment, and prevention. This review includes provocative and thought-provoking papers outlining recent breakthroughs in acetylation modifications as they relate to cardiovascular disease, mitochondrial metabolic regulation, liver health, neurological health, obesity, diabetes, and cancer. Additionally, it covers the molecular mechanisms and research challenges in understanding the role of acetylation in disease regulation. By summarizing novel targets and prognostic markers for the treatment of related diseases, we aim to contribute to the field. Furthermore, we discuss current hot topics in acetylation research related to health regulation, including N4-acetylcytidine and liquid-liquid phase separation. The primary objective of this review is to provide insights into the functional diversity and underlying mechanisms by which acetylation regulates proteins in disease contexts.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenyong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Shuanglin Jiang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Ming Xie
- North China Petroleum Bureau General Hospital, Renqiu 062550, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
11
|
Activation of β-Adrenoceptors Promotes Lipid Droplet Accumulation in MCF-7 Breast Cancer Cells via cAMP/PKA/EPAC Pathways. Int J Mol Sci 2023; 24:ijms24010767. [PMID: 36614209 PMCID: PMC9820888 DOI: 10.3390/ijms24010767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Physiologically, β-adrenoceptors are major regulators of lipid metabolism, which may be reflected in alterations in lipid droplet dynamics. β-adrenoceptors have also been shown to participate in breast cancer carcinogenesis. Since lipid droplets may be seen as a hallmark of cancer, the present study aimed to investigate the role of β-adrenoceptors in the regulation of lipid droplet dynamics in MCF-7 breast cancer cells. Cells were treated for up to 72 h with adrenaline (an endogenous adrenoceptor agonist), isoprenaline (a non-selective β-adrenoceptor agonist) and salbutamol (a selective β2-selective agonist), and their effects on lipid droplets were evaluated using Nile Red staining. Adrenaline or isoprenaline, but not salbutamol, caused a lipid-accumulating phenotype in the MCF-7 cells. These effects were significantly reduced by selective β1- and β3-antagonists (10 nM atenolol and 100 nM L-748,337, respectively), indicating a dependence on both β1- and β3-adrenoceptors. These effects were dependent on the cAMP signalling pathway, involving both protein kinase A (PKA) and cAMP-dependent guanine-nucleotide-exchange (EPAC) proteins: treatment with cAMP-elevating agents (forskolin or 8-Br-cAMP) induced lipid droplet accumulation, whereas either 1 µM H-89 or 1 µM ESI-09 (PKA or EPAC inhibitors, respectively) abrogated this effect. Taken together, the present results demonstrate the existence of a β-adrenoceptor-mediated regulation of lipid droplet dynamics in breast cancer cells, likely involving β1- and β3-adrenoceptors, revealing a new mechanism by which adrenergic stimulation may influence cancer cell metabolism.
Collapse
|
12
|
Zipinotti Dos Santos D, Santos Guimaraes ID, Hakeem-Sanni MF, Cochran BJ, Rye KA, Grewal T, Hoy AJ, Rangel LBA. Atorvastatin improves cisplatin sensitivity through modulation of cholesteryl ester homeostasis in breast cancer cells. Discov Oncol 2022; 13:135. [PMID: 36481936 PMCID: PMC9732177 DOI: 10.1007/s12672-022-00598-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Acquired treatment resistance is a significant problem in breast cancer management, and alterations in lipid metabolism have been proposed to contribute to the development of drug resistance as well as other aspects of tumor progression. The present study aimed to identify the role of cholesterol metabolism in MCF-7 and MDA-MB-231 breast cancer cell response to cisplatin (CDDP) treatment in the acute setting and in a model of CDDP resistance. METHODS MCF-7 (luminal A), MDA-MB-231 (triple-negative) and CDDP-resistant MDA-MB-231 (MDACR) cell lines were grown in the presence or absence of CDDP in combination with atorvastatin (ATV), lipid depletion or low-density lipoprotein loading and were analyzed by a variety of biochemical and radiometric techniques. RESULTS Co-administration of CDDP and ATV strongly reduced cell proliferation and viability to a greater extent than CDDP alone, especially in MDA-MB-231 cells. These findings were associated with reduced cholesteryl ester synthesis and storage in MDA-MB-231 cells. In MDACR cells, acetyl-CoA acetyltransferase 1 (ACAT-1) was upregulated compared to naïve MDA-MB-231 cells and ATV treatment restored CDDP sensitivity, suggesting that aberrant ACAT-1 expression and associated changes in cholesterol metabolism contribute to CDDP resistance in MDA-MB-231 cells. CONCLUSION These findings indicate that the elevated susceptibility of MDA-MB-231 cells to co-administration of CDDP and ATV, is associated with an increased reliance on cholesteryl ester availability. Our data from these cell culture-based studies identifies altered cholesterol homeostasis as an adaptive response to CDDP treatment that contributes to aggressiveness and chemotherapy resistance.
Collapse
Affiliation(s)
- Diandra Zipinotti Dos Santos
- Biotechnology Program/RENORBIO, Health Sciences Center, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil
| | | | - Mariam F Hakeem-Sanni
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Blake J Cochran
- School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW, Australia
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Leticia B A Rangel
- Biotechnology Program/RENORBIO, Health Sciences Center, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil.
- Biochemistry Program, Health Sciences Center, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil.
- Department of Pharmaceutical Sciences, Universidade Federal do Espírito Santo, Vitória, Brazil.
| |
Collapse
|
13
|
Zhou X, Zhang J, Lv W, Zhao C, Xia Y, Wu Y, Zhang Q. The pleiotropic roles of adipocyte secretome in remodeling breast cancer. J Exp Clin Cancer Res 2022; 41:203. [PMID: 35701840 PMCID: PMC9199207 DOI: 10.1186/s13046-022-02408-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Breast cancer is the leading female cancer type and the cause of cancer-related mortality worldwide. Adipocytes possess important functions of energy supply, metabolic regulation, and cytokine release, and are also the matrix cell that supports mammary gland tissue. In breast cancer tumor microenvironment (TME), adipocytes are the prominent stromal cells and are implicated in inflammation, metastatic formation, metabolic remodeling, and cancer susceptibility.
Main body
It is well-established that adipocyte secretome is a reservoir engaged in the regulation of tumor cell behavior by secreting a large number of cytokines (IL-6, IL-8, and chemokines), adipokines (leptin, adiponectin, autotaxin, and resistin), lipid metabolites (free fatty acids and β-hydroxybutyrate), and other exosome-encapsulated substances. These released factors influence the evolution and clinical outcome of breast cancer through complex mechanisms. The progression of breast cancer tumors revolves around the tumor-adipose stromal network, which may contribute to breast cancer aggressiveness by increasing the pro-malignant potential of TME and tumor cells themselves. Most importantly, the secretome alterations of adipocytes are regarded as distinctly important targets for breast cancer diagnosis, treatment, and drug resistance.
Conclusion
Therefore, this review will provide a comprehensive description of the specific adipocyte secretome characteristics and interactions within TME cell populations, which will enable us to better tailor strategies for tumor stratification management and treatment.
Collapse
|
14
|
Zeng Q, Jiang H, Lu F, Fu M, Bi Y, Zhou Z, Cheng J, Qin J. Prediction of the immunological and prognostic value of five signatures related to fatty acid metabolism in patients with cervical cancer. Front Oncol 2022; 12:1003222. [PMID: 36408178 PMCID: PMC9671136 DOI: 10.3389/fonc.2022.1003222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/29/2022] [Indexed: 10/27/2023] Open
Abstract
A growing attention has been attached to the role of fatty acid metabolism (FAM) in the development of cancer, and cervical cancer (CC) is still the primary cause of cancer-associated death in women worldwide. Therefore, it is imperative to explore the possible prognostic significance of FAM in CC. In this study, CC samples and corresponding normal samples were acquired from the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). Single sample gene set enrichment analysis (ssGSEA) was conducted for calculating FAM-related scores (FAMRs) to screen FAM-related genes (FAMRGs). Two subtypes related to FAM were identified by consistent clustering. Among them, subtype C2 had a poor prognosis, and C1 had a high level of immune cell infiltration, while C2 had a high possibility of immune escape and was insensitive to chemotherapy drugs. Based on the differentially expressed genes (DEGs) in the two subtypes, a 5-gene signature (PLCB4, FBLN5, TSPAN8, CST6, and SERPINB7) was generated by the least absolute shrinkage and selection operator (LASSO) and Akaike information criterion (AIC). The model demonstrated a high prognostic accuracy (area under the curve (AUC)>0.7) in multiple cohorts and was one independent prognostic factor for CC patients. Accordingly, FAMRGs can be adopted as a biomarker for the prediction of CC patients' prognosis and help guide the immunotherapy of CC.
Collapse
Affiliation(s)
- Qiongjing Zeng
- Department of Obstetrics and Gynecology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huici Jiang
- Department of Obstetrics and Gynecology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fang Lu
- Department of Obstetrics and Gynecology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mingxu Fu
- Department of Obstetrics and Gynecology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingying Bi
- Department of Obstetrics and Gynecology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zengding Zhou
- Department of Burn Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajing Cheng
- Department of Obstetrics and Gynecology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinlong Qin
- Department of Obstetrics and Gynecology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
15
|
Apoptosis induction in human prostate cancer cells related to the fatty acid metabolism by wogonin-mediated regulation of the AKT-SREBP1-FASN signaling network. Food Chem Toxicol 2022; 169:113450. [DOI: 10.1016/j.fct.2022.113450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/04/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
|
16
|
Kieu TLV, Pierre L, Derangère V, Perrey S, Truntzer C, Jalil A, Causse S, Groetz E, Dumont A, Guyard L, Arnould L, de Barros JPP, Apetoh L, Rébé C, Limagne E, Jourdan T, Demizieux L, Masson D, Thomas C, Ghiringhelli F, Rialland M. Downregulation of Elovl5 promotes breast cancer metastasis through a lipid-droplet accumulation-mediated induction of TGF-β receptors. Cell Death Dis 2022; 13:758. [PMID: 36056008 PMCID: PMC9440092 DOI: 10.1038/s41419-022-05209-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 01/21/2023]
Abstract
Metastatic breast cancer cannot be cured, and alteration of fatty acid metabolism contributes to tumor progression and metastasis. Here, we were interested in the elongation of very long-chain fatty acids protein 5 (Elovl5) in breast cancer. We observed that breast cancer tumors had a lower expression of Elovl5 than normal breast tissues. Furthermore, low expression of Elovl5 is associated with a worse prognosis in ER+ breast cancer patients. In accordance with this finding, decrease of Elovl5 expression was more pronounced in ER+ breast tumors from patients with metastases in lymph nodes. Although downregulation of Elovl5 expression limited breast cancer cell proliferation and cancer progression, suppression of Elovl5 promoted EMT, cell invasion and lung metastases in murine breast cancer models. The loss of Elovl5 expression induced upregulation of TGF-β receptors mediated by a lipid-droplet accumulation-dependent Smad2 acetylation. As expected, inhibition of TGF-β receptors restored proliferation and dampened invasion in low Elovl5 expressing cancer cells. Interestingly, the abolition of lipid-droplet formation by inhibition of diacylglycerol acyltransferase activity reversed induction of TGF-β receptors, cell invasion, and lung metastasis triggered by Elovl5 knockdown. Altogether, we showed that Elovl5 is involved in metastasis through lipid droplets-regulated TGF-β receptor expression and is a predictive biomarker of metastatic ER+ breast cancer.
Collapse
Affiliation(s)
- Trinh-Le-Vi Kieu
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR, 1231 Dijon, France ,grid.5613.10000 0001 2298 9313UFR Sciences de la Vie, Terre et Environnement, Université de Bourgogne Franche-Comté, Dijon, France ,LipSTIC LabEx, Dijon, France
| | - Léa Pierre
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR, 1231 Dijon, France ,grid.5613.10000 0001 2298 9313UFR Sciences de la Vie, Terre et Environnement, Université de Bourgogne Franche-Comté, Dijon, France
| | - Valentin Derangère
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR, 1231 Dijon, France ,grid.5613.10000 0001 2298 9313UFR des sciences de santé, Université de Bourgogne Franche-Comté, Dijon, France ,grid.418037.90000 0004 0641 1257Centre Georges François Leclerc, Dijon, France
| | - Sabrina Perrey
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR, 1231 Dijon, France ,grid.5613.10000 0001 2298 9313UFR Sciences de la Vie, Terre et Environnement, Université de Bourgogne Franche-Comté, Dijon, France ,LipSTIC LabEx, Dijon, France
| | - Caroline Truntzer
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR, 1231 Dijon, France ,grid.5613.10000 0001 2298 9313UFR des sciences de santé, Université de Bourgogne Franche-Comté, Dijon, France ,grid.418037.90000 0004 0641 1257Centre Georges François Leclerc, Dijon, France
| | - Antoine Jalil
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR, 1231 Dijon, France ,LipSTIC LabEx, Dijon, France ,grid.5613.10000 0001 2298 9313UFR des sciences de santé, Université de Bourgogne Franche-Comté, Dijon, France
| | - Sébastien Causse
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR, 1231 Dijon, France ,grid.5613.10000 0001 2298 9313UFR Sciences de la Vie, Terre et Environnement, Université de Bourgogne Franche-Comté, Dijon, France
| | - Emma Groetz
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR, 1231 Dijon, France ,LipSTIC LabEx, Dijon, France
| | - Adélie Dumont
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR, 1231 Dijon, France ,grid.5613.10000 0001 2298 9313UFR Sciences de la Vie, Terre et Environnement, Université de Bourgogne Franche-Comté, Dijon, France
| | - Laura Guyard
- grid.418037.90000 0004 0641 1257Centre Georges François Leclerc, Dijon, France
| | - Laurent Arnould
- grid.418037.90000 0004 0641 1257Centre Georges François Leclerc, Dijon, France
| | - Jean-Paul Pais de Barros
- LipSTIC LabEx, Dijon, France ,grid.5613.10000 0001 2298 9313Lipidomic Analytic Platform, Université de Bourgogne, Dijon, France
| | - Lionel Apetoh
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR, 1231 Dijon, France ,LipSTIC LabEx, Dijon, France
| | - Cédric Rébé
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR, 1231 Dijon, France ,grid.418037.90000 0004 0641 1257Centre Georges François Leclerc, Dijon, France
| | - Emeric Limagne
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR, 1231 Dijon, France ,grid.418037.90000 0004 0641 1257Centre Georges François Leclerc, Dijon, France
| | - Tony Jourdan
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR, 1231 Dijon, France ,LipSTIC LabEx, Dijon, France
| | - Laurent Demizieux
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR, 1231 Dijon, France ,grid.5613.10000 0001 2298 9313UFR Sciences de la Vie, Terre et Environnement, Université de Bourgogne Franche-Comté, Dijon, France ,LipSTIC LabEx, Dijon, France
| | - David Masson
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR, 1231 Dijon, France ,LipSTIC LabEx, Dijon, France
| | - Charles Thomas
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR, 1231 Dijon, France ,grid.5613.10000 0001 2298 9313UFR Sciences de la Vie, Terre et Environnement, Université de Bourgogne Franche-Comté, Dijon, France ,LipSTIC LabEx, Dijon, France
| | - François Ghiringhelli
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR, 1231 Dijon, France ,LipSTIC LabEx, Dijon, France ,grid.5613.10000 0001 2298 9313UFR des sciences de santé, Université de Bourgogne Franche-Comté, Dijon, France ,grid.418037.90000 0004 0641 1257Centre Georges François Leclerc, Dijon, France
| | - Mickaël Rialland
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR, 1231 Dijon, France ,grid.5613.10000 0001 2298 9313UFR Sciences de la Vie, Terre et Environnement, Université de Bourgogne Franche-Comté, Dijon, France ,LipSTIC LabEx, Dijon, France
| |
Collapse
|
17
|
Chan KS, Cheung SM, Senn N, Husain E, Masannat Y, Heys S, He J. Peri-tumoural spatial distribution of lipid composition and tubule formation in breast cancer. BMC Cancer 2022; 22:285. [PMID: 35300617 PMCID: PMC8928628 DOI: 10.1186/s12885-022-09362-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Response guided treatment in breast cancer is highly desirable, but the effectiveness is only established based on residual cellularity from histopathological analysis after surgery. Tubule formation, a key component of grading score, is directly associated with cellularity, with significant implications on prognosis. Peri-tumoural lipid composition, a potential marker, can be rapidly mapped across the entire breast using novel method of chemical shift-encoded imaging, enabling the quantification of spatial distribution. We hypothesise that peri-tumoural spatial distribution of lipid composition is sensitive to tumour cellular differentiation and proliferative activity. METHODS Twenty whole tumour specimens freshly excised from patients with invasive ductal carcinoma (9 Score 2 and 11 Score 3 in tubule formation) were scanned on a 3 T clinical scanner (Achieva TX, Philips Healthcare). Quantitative lipid composition maps were acquired for polyunsaturated, monounsaturated, and saturated fatty acids (PUFA, MUFA, SFA). The peri-tumoural spatial distribution (mean, skewness, entropy and kurtosis) of each lipid constituent were then computed. The proliferative activity marker Ki-67 and tumour-infiltrating lymphocytes (TILs) were assessed histologically. RESULTS For MUFA, there were significant differences between groups in mean (p = 0.0119), skewness (p = 0.0116), entropy (p = 0.0223), kurtosis (p = 0.0381), and correlations against Ki-67 in mean (ρ = -0.5414), skewness (ρ = 0.6045) and entropy (ρ = 0.6677), and TILs in mean (ρ = -0.4621). For SFA, there were significant differences between groups in mean (p = 0.0329) and skewness (p = 0.0111), and correlation against Ki-67 in mean (ρ = 0.5910). For PUFA, there was no significant difference in mean, skewness, entropy or kurtosis between the groups. CONCLUSIONS There was an association between peri-tumoural spatial distribution of lipid composition with tumour cellular differentiation and proliferation. Peri-tumoural lipid composition imaging might have potential in non-invasive quantitative assessment of patients with breast cancer for treatment planning and monitoring.
Collapse
Affiliation(s)
- Kwok-Shing Chan
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Sai Man Cheung
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK.
| | - Nicholas Senn
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK
| | - Ehab Husain
- Pathology Department, Aberdeen Royal Infirmary, Aberdeen, UK
| | | | - Steven Heys
- Breast Unit, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Jiabao He
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
18
|
Zhou H, Zhang J, Yan Z, Qu M, Zhang G, Han J, Wang F, Sun K, Wang L, Yang X. DECR1 directly activates HSL to promote lipolysis in cervical cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159090. [PMID: 34896618 DOI: 10.1016/j.bbalip.2021.159090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 11/30/2022]
Abstract
Fatty acids have a high turnover rate in cancer cells to supply energy for tumor growth and proliferation. Lipolysis is particularly important for the regulation of fatty acid homeostasis and in the maintenance of cancer cells. In the current study, we explored how 2,4-Dienoyl-CoA reductase (DECR1), a short-chain dehydrogenase/reductase associated with mitochondrial and cytoplasmic compartments, promotes cancer cell growth. We report that DECR1 overexpression significantly reduced the triglyceride (TAG) content in HeLa cells; conversely, DECR1 silencing increased intracellular TAG content. Subsequently, our experiments demonstrate that DECR1 promotes lipolysis via effects on hormone sensitive lipase (HSL). The direct interaction of DECR1 with HSL increases HSL phosphorylation and activity, facilitating the translocation of HSL to lipid droplets. The ensuing enhancement of lipolysis thus increases the release of free fatty acids. Downstream effects include the promotion of cervical cancer cell migration and growth, associated with the enhanced levels of p62 protein. In summary, high levels of DECR1 serves to enhance lipolysis and the release of fatty acid energy stores to support cervical cancer cell growth.
Collapse
Affiliation(s)
- Huijuan Zhou
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui Hefei, Anhui 230601, PR China
| | - Jie Zhang
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui Hefei, Anhui 230601, PR China
| | - ZhongKang Yan
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui Hefei, Anhui 230601, PR China
| | - Min Qu
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui Hefei, Anhui 230601, PR China
| | - Gaojian Zhang
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui Hefei, Anhui 230601, PR China
| | - Jianxiong Han
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui Hefei, Anhui 230601, PR China
| | - Feifei Wang
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui Hefei, Anhui 230601, PR China
| | - Kai Sun
- School of Life Science, Anhui University, Hefei, Anhui Hefei, Anhui 230601, PR China
| | - Lili Wang
- School of Life Science, Anhui University, Hefei, Anhui Hefei, Anhui 230601, PR China
| | - Xingyuan Yang
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui Hefei, Anhui 230601, PR China.
| |
Collapse
|
19
|
Extra-Virgin Olive Oil and Its Minor Compounds Influence Apoptosis in Experimental Mammary Tumors and Human Breast Cancer Cell Lines. Cancers (Basel) 2022; 14:cancers14040905. [PMID: 35205652 PMCID: PMC8870719 DOI: 10.3390/cancers14040905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Breast cancer is a disease influenced by dietetic factors, such as the type and amount of lipids in a diet. In this work, we aimed to elucidate the different effects of two high-fat diets on the histopathological and molecular characteristics of mammary tumors in an experimental model. Animals fed with a diet high in extra-virgin olive oil (EVOO), compared to those fed with a diet high in seed oil, developed tumors with less aggressiveness and proliferation. Tumor molecular analyses of several cell death pathways also suggested an effect of EVOO in this process. In vitro experiments indicated the role of EVOO minor compounds on the effects of this oil. Obtaining insights into the influence and the mechanisms of action of dietary compounds are necessary to understand the relevance that dietetic habits from childhood may have on health and the risk of disease. Abstract Breast cancer is the most common malignancy among women worldwide. Modifiable factors such as nutrition have a role in its etiology. In experimental tumors, we have observed the differential influence of high-fat diets in metabolic pathways, suggesting a different balance in proliferation/apoptosis. In this work, we analyzed the effects of a diet high in n-6 polyunsaturated fatty acids (PUFA) and a diet high in extra-virgin olive oil (EVOO) on the histopathological features and different cell death pathways in the dimethylbenz(a)anthracene-induced breast cancer model. The diet high in n-6 PUFA had a stimulating effect on the morphological aggressiveness of tumors and their proliferation, while no significant differences were found in groups fed the EVOO-enriched diet in comparison to a low-fat control group. The high-EVOO diet induced modifications in proteins involved in several cell death pathways. In vitro analysis in different human breast cancer cell lines showed an effect of EVOO minor compounds (especially hydroxytyrosol), but not of fatty acids, decreasing viability while increasing apoptosis. The results suggest an effect of dietary lipids on tumor molecular contexts that result in the modulation of different pathways, highlighting the importance of apoptosis in the interplay of survival processes and how dietary habits may have an impact on breast cancer risk.
Collapse
|
20
|
Corchado-Cobos R, García-Sancha N, Mendiburu-Eliçabe M, Gómez-Vecino A, Jiménez-Navas A, Pérez-Baena MJ, Holgado-Madruga M, Mao JH, Cañueto J, Castillo-Lluva S, Pérez-Losada J. Pathophysiological Integration of Metabolic Reprogramming in Breast Cancer. Cancers (Basel) 2022; 14:322. [PMID: 35053485 PMCID: PMC8773662 DOI: 10.3390/cancers14020322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Metabolic changes that facilitate tumor growth are one of the hallmarks of cancer. The triggers of these metabolic changes are located in the tumor parenchymal cells, where oncogenic mutations induce an imperative need to proliferate and cause tumor initiation and progression. Cancer cells undergo significant metabolic reorganization during disease progression that is tailored to their energy demands and fluctuating environmental conditions. Oxidative stress plays an essential role as a trigger under such conditions. These metabolic changes are the consequence of the interaction between tumor cells and stromal myofibroblasts. The metabolic changes in tumor cells include protein anabolism and the synthesis of cell membranes and nucleic acids, which all facilitate cell proliferation. They are linked to catabolism and autophagy in stromal myofibroblasts, causing the release of nutrients for the cells of the tumor parenchyma. Metabolic changes lead to an interstitium deficient in nutrients, such as glucose and amino acids, and acidification by lactic acid. Together with hypoxia, they produce functional changes in other cells of the tumor stroma, such as many immune subpopulations and endothelial cells, which lead to tumor growth. Thus, immune cells favor tissue growth through changes in immunosuppression. This review considers some of the metabolic changes described in breast cancer.
Collapse
Affiliation(s)
- Roberto Corchado-Cobos
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Natalia García-Sancha
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Marina Mendiburu-Eliçabe
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Aurora Gómez-Vecino
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Alejandro Jiménez-Navas
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Manuel Jesús Pérez-Baena
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Marina Holgado-Madruga
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Cañueto
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
- Departamento de Dermatología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain
- Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
| | - Sonia Castillo-Lluva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| |
Collapse
|
21
|
Mentoor I, Engelbrecht AM, van de Vyver M, van Jaarsveld PJ, Nell T. The paracrine effects of adipocytes on lipid metabolism in doxorubicin-treated triple negative breast cancer cells. Adipocyte 2021; 10:505-523. [PMID: 34812105 PMCID: PMC8632082 DOI: 10.1080/21623945.2021.1979758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adipocytes in the breast tumour microenvironment promotes acquired treatment resistance. We used an in vitro adipocyte-conditioned media approach to investigate the direct paracrine effects of adipocyte secretory factors on MDA-MB-231 breast cancer cells treated with doxorubicin to clarify the underlying treatment resistance mechanisms. Cell-viability assays, and Western blots were performed to determine alterations in apoptotic, proliferation and lipid metabolism protein markers. Free fatty acids (FFA) and inflammatory markers in the collected treatment-conditioned media were also quantified. Adipocyte secretory factors increased the cell-viability of doxorubicin-treated cells (p < 0.0001), which did not correspond to apoptosis or proliferation pathways. Adipocyte secretory factors increased the protein expression of hormone-sensitive lipase (p < 0.05) in doxorubicin-treated cells. Adipocyte secretory factors increased the utilization of leptin (p < 0.05) and MCP-1 (p < 0.01) proteins and possibly inhibited release of linoleic acid by doxorubicin-treated cells (treatment-conditioned media FFA profiles). Adipocyte secretory factors induced doxorubicin treatment resistance, by increasing the utilization of inflammatory mediators and inhibiting the release of FFA by doxorubicin-treated cells. This further promotes inflammation and lipid metabolic reprogramming (lipid storage) in the tumour microenvironment, which breast cancer cells use to evade the toxic effects induced by doxorubicin and confers to acquired treatment resistance.
Collapse
Affiliation(s)
- Ilze Mentoor
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, South Africa
- African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, South Africa
- African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Mari van de Vyver
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Paul J. van Jaarsveld
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Theo Nell
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, South Africa
- Centre for Cardio-Metabolic Research in Africa (CARMA), Department of Biomedical Sciences, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
22
|
Hoy AJ, Nagarajan SR, Butler LM. Tumour fatty acid metabolism in the context of therapy resistance and obesity. Nat Rev Cancer 2021; 21:753-766. [PMID: 34417571 DOI: 10.1038/s41568-021-00388-4] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Fatty acid metabolism is known to support tumorigenesis and disease progression as well as treatment resistance through enhanced lipid synthesis, storage and catabolism. More recently, the role of membrane fatty acid composition, for example, ratios of saturated, monounsaturated and polyunsaturated fatty acids, in promoting cell survival while limiting lipotoxicity and ferroptosis has been increasingly appreciated. Alongside these insights, it has become clear that tumour cells exhibit plasticity with respect to fatty acid metabolism, responding to extratumoural and systemic metabolic signals, such as obesity and cancer therapeutics, to promote the development of aggressive, treatment-resistant disease. Here, we describe cellular fatty acid metabolic changes that are connected to therapy resistance and contextualize obesity-associated changes in host fatty acid metabolism that likely influence the local tumour microenvironment to further modify cancer cell behaviour while simultaneously creating potential new vulnerabilities.
Collapse
Affiliation(s)
- Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| | - Shilpa R Nagarajan
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
23
|
Wu H, Xu J, Gong G, Zhang Y, Wu S. CircARL8B Contributes to the Development of Breast Cancer Via Regulating miR-653-5p/HMGA2 Axis. Biochem Genet 2021; 59:1648-1665. [PMID: 34050452 DOI: 10.1007/s10528-021-10082-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/15/2021] [Indexed: 02/05/2023]
Abstract
Circular RNAs (circRNAs) act as essential regulators in breast cancer (BC) progression. In this paper, we aimed to investigate the functions of circARL8B in BC. The levels of circARL8B, ADP Ribosylation Factor Like GTPase 8B (ARL8B), miR-653-5p and high-mobility group AT-hook 2 (HMGA2) mRNA were examined by qRT-PCR. The stability of circARL8B was determined by RNase R assay and Actinomycin D assay. Cell viability and metastasis were evaluated by Cell Counting Kit-8 (CCK-8) assay and transwell assay, respectively. The levels of cellular phospholipids and triglycerides were measured using relevant kits. Protein levels were measured by western blot analysis. The association between miR-653-5p and circARL8B or HMGA2 was verified by dual-luciferase reporter assay. A murine xenograft model was established to explore the function of circARL8B in vivo. CircARL8B was increased in BC tissues and cells. CircARL8B silencing inhibited cell viability, migration, invasion and fatty acid metabolism in BC cells in vitro and blocked tumor growth in vivo. MiR-653-5p was identified as the target of circARL8B and miR-653-5p was negatively modulated by circARL8B. The suppressive role of circARL8B silencing in BC cell progression was abolished by miR-653-5p downregulation. Moreover, HMGA2 was the target gene of miR-653-5p. HMGA2 overexpression abrogated the effect of miR-653-5p on BC cell development. In addition, circARL8B knockdown might block PGE2/PI3K/AKT/GSK-3β/Wnt/β-catenin pathway. Silencing of circARL8B inhibited cell viability, migration, invasion and fatty acid metabolism via miR-653-5p/HMGA2 axis in BC.
Collapse
Affiliation(s)
- Hansheng Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jingyun Xu
- Department of Pathology, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Shantou, 515041, Guangdong, China
| | - Guoliang Gong
- Department of Pathology, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Shantou, 515041, Guangdong, China.
- Department of Pathology, Chaonan Minsheng Hospital of Shantou, Shantou, Guangdong, China.
| | - Yuanxin Zhang
- Department of Pathology, Chaonan Minsheng Hospital of Shantou, Shantou, Guangdong, China
| | - Shenggui Wu
- Department of Pathology, Chaonan Minsheng Hospital of Shantou, Shantou, Guangdong, China
| |
Collapse
|
24
|
Tanaka K, Kandori S, Sakka S, Nitta S, Tanuma K, Shiga M, Nagumo Y, Negoro H, Kojima T, Mathis BJ, Shimazui T, Watanabe M, Sato TA, Miyamoto T, Matsuzaka T, Shimano H, Nishiyama H. ELOVL2 promotes cancer progression by inhibiting cell apoptosis in renal cell carcinoma. Oncol Rep 2021; 47:23. [PMID: 34841437 PMCID: PMC8674704 DOI: 10.3892/or.2021.8234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
Renal cell carcinoma (RCC) is an aggressive genitourinary malignancy which has been associated with a poor prognosis, particularly in patients with metastasis, its major subtypes being clear cell RCC (ccRCC), papillary PCC (pRCC) and chromophobe RCC (chRCC). The presence of intracellular lipid droplets (LDs) is considered to be a hallmark of ccRCC. The importance of an altered lipid metabolism in ccRCC has been widely recognized. The elongation of very-long-chain fatty acid (ELOVL) catalyzes the elongation of fatty acids (FAs), modulating lipid composition, and is required for normal bodily functions. However, the involvement of elongases in RCC remains unclear. In the present study, the expression of ELOVL2 in ccRCC was examined; in particular, high levels of seven ELOVL isozymes were observed in primary tumors. Of note, elevated ELOVL2 expression levels were observed in ccRCC, as well as in pRCC and chRCC. Furthermore, a higher level of ELOVL2 was significantly associated with the increased incidence of a poor prognosis of patients with ccRCC and pRCC. The CRISPR/Cas9-mediated knockdown of ELOVL2 resulted in the suppression of the elongation of long-chain polyunsaturated FAs and increased LD production in renal cancer cells. Moreover, ELOVL2 ablation resulted in the suppression of cellular proliferation via the induction of apoptosis in vitro and the attenuation of tumor growth in vivo. On the whole, the present study provides new insight into the tumor proliferation mechanisms involving lipid metabolism, and suggests that ELOVL2 may be an attractive novel target for RCC therapy.
Collapse
Affiliation(s)
- Ken Tanaka
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Shuya Kandori
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Shotaro Sakka
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Satoshi Nitta
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Kozaburo Tanuma
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Masanobu Shiga
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Yoshiyuki Nagumo
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Hiromitsu Negoro
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Takahiro Kojima
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Bryan J Mathis
- International Medical Center, University of Tsukuba Affiliated Hospital, Tsukuba, Ibaraki 305‑8576, Japan
| | - Toru Shimazui
- Department of Urology, Ibaraki Prefectural Central Hospital, Kasama, Ibaraki 309‑1793, Japan
| | - Makoto Watanabe
- Life Science Research Center, Technology Research Laboratory, Shimadzu Corporation, Kyoto 604‑8511, Japan
| | - Taka-Aki Sato
- Life Science Research Center, Technology Research Laboratory, Shimadzu Corporation, Kyoto 604‑8511, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8575, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8575, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8575, Japan
| | - Hiroyuki Nishiyama
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| |
Collapse
|
25
|
Cacciola NA, Sgadari M, Sepe F, Petillo O, Margarucci S, Martano M, Maiolino P, Restucci B. Metabolic Flexibility in Canine Mammary Tumors: Implications of the Carnitine System. Animals (Basel) 2021; 11:ani11102969. [PMID: 34679988 PMCID: PMC8532965 DOI: 10.3390/ani11102969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Deregulation of fatty acid catabolism provides an alternative energy source to glycolysis for cancer cell survival and proliferation. The regulator enzymes of the carnitine system (CS), responsible for the transport of fatty acids across mitochondrial membranes for β-oxidation are deregulated in tumorigenesis. Recently, we found that Carnitine Palmitoyl Transferase 1 (CPT1), a crucial regulator of CS components, is expressed and dysregulated in canine mammary tumor (CMT) tissues and cells. In this study, we examined the protein expression of the three remaining enzymes of CS (Carnitine Acylcarnitine Translocase (CACT), Carnitine Palmitoyl Transferase 2 (CPT2), Carnitine O-acetyltransferase (CrAT), in canine mammary cells and tissues by Western blot and immunohistochemistry. Protein expression of the components of CS was found in normal mammary glands and a concomitant deregulation of expression in CMT tissues that inversely correlated with the degree of tumor differentiation. Moreover, the expression and a different deregulation of CS-related proteins was also observed in CF33, CMT-U27, CMT-U309, and P114 cell lines used as in vitro model. These results demonstrate for the first time the expression of CS components in CMT tissues and cancer cells; however, further studies are needed to elucidate their roles in dogs as well.
Collapse
Affiliation(s)
- Nunzio Antonio Cacciola
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via F. Delpino, 1, 80138 Naples, Italy; (M.S.); (F.S.); (M.M.); (P.M.); (B.R.)
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via P. Castellino, 111, 80131 Naples, Italy; (O.P.); (S.M.)
- Correspondence: ; Tel.: +39-08-1613-2282
| | - Mariafrancesca Sgadari
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via F. Delpino, 1, 80138 Naples, Italy; (M.S.); (F.S.); (M.M.); (P.M.); (B.R.)
| | - Fabrizia Sepe
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via F. Delpino, 1, 80138 Naples, Italy; (M.S.); (F.S.); (M.M.); (P.M.); (B.R.)
| | - Orsolina Petillo
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via P. Castellino, 111, 80131 Naples, Italy; (O.P.); (S.M.)
| | - Sabrina Margarucci
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via P. Castellino, 111, 80131 Naples, Italy; (O.P.); (S.M.)
| | - Manuela Martano
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via F. Delpino, 1, 80138 Naples, Italy; (M.S.); (F.S.); (M.M.); (P.M.); (B.R.)
| | - Paola Maiolino
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via F. Delpino, 1, 80138 Naples, Italy; (M.S.); (F.S.); (M.M.); (P.M.); (B.R.)
| | - Brunella Restucci
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via F. Delpino, 1, 80138 Naples, Italy; (M.S.); (F.S.); (M.M.); (P.M.); (B.R.)
| |
Collapse
|
26
|
Katz L, Tata A, Woolman M, Zarrine-Afsar A. Lipid Profiling in Cancer Diagnosis with Hand-Held Ambient Mass Spectrometry Probes: Addressing the Late-Stage Performance Concerns. Metabolites 2021; 11:metabo11100660. [PMID: 34677375 PMCID: PMC8537725 DOI: 10.3390/metabo11100660] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Untargeted lipid fingerprinting with hand-held ambient mass spectrometry (MS) probes without chromatographic separation has shown promise in the rapid characterization of cancers. As human cancers present significant molecular heterogeneities, careful molecular modeling and data validation strategies are required to minimize late-stage performance variations of these models across a large population. This review utilizes parallels from the pitfalls of conventional protein biomarkers in reaching bedside utility and provides recommendations for robust modeling as well as validation strategies that could enable the next logical steps in large scale assessment of the utility of ambient MS profiling for cancer diagnosis. Six recommendations are provided that range from careful initial determination of clinical added value to moving beyond just statistical associations to validate lipid involvements in disease processes mechanistically. Further guidelines for careful selection of suitable samples to capture expected and unexpected intragroup variance are provided and discussed in the context of demographic heterogeneities in the lipidome, further influenced by lifestyle factors, diet, and potential intersect with cancer lipid pathways probed in ambient mass spectrometry profiling studies.
Collapse
Affiliation(s)
- Lauren Katz
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; (L.K.); (M.W.)
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON M5G 1P5, Canada
| | - Alessandra Tata
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico delle Venezie, Viale Fiume 78, 36100 Vicenza, Italy;
| | - Michael Woolman
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; (L.K.); (M.W.)
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON M5G 1P5, Canada
| | - Arash Zarrine-Afsar
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; (L.K.); (M.W.)
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON M5G 1P5, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Correspondence: ; Tel.: +1-416-581-8473
| |
Collapse
|
27
|
Vecchio E, Caiazza C, Mimmi S, Avagliano A, Iaccino E, Brusco T, Nisticò N, Maisano D, Aloisio A, Quinto I, Renna M, Divisato G, Romano S, Tufano M, D’Agostino M, Vigliar E, Iaccarino A, Mignogna C, Andreozzi F, Mannino GC, Spiga R, Stornaiuolo M, Arcucci A, Mallardo M, Fiume G. Metabolites Profiling of Melanoma Interstitial Fluids Reveals Uridine Diphosphate as Potent Immune Modulator Capable of Limiting Tumor Growth. Front Cell Dev Biol 2021; 9:730726. [PMID: 34604232 PMCID: PMC8486041 DOI: 10.3389/fcell.2021.730726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor interstitial fluid (TIF) surrounds and perfuses tumors and collects ions, metabolites, proteins, and extracellular vesicles secreted by tumor and stromal cells. Specific metabolites, accumulated within the TIF, could induce metabolic alterations of immune cells and shape the tumor microenvironment. We deployed a metabolomic approach to analyze the composition of melanoma TIF and compared it to the plasma of C57BL6 mice, engrafted or not with B16-melanoma cells. Among the classes of metabolites analyzed, monophosphate and diphosphate nucleotides resulted enriched in TIF compared to plasma samples. The analysis of the effects exerted by guanosine diphosphate (GDP) and uridine diphosphate (UDP) on immune response revealed that GDP and UDP increased the percentage of CD4+CD25+FoxP3- and, on isolated CD4+ T-cells, induced the phosphorylation of ERK, STAT1, and STAT3; increased the activity of NF-κB subunits p65, p50, RelB, and p52; increased the expression of Th1/Th17 markers including IFNγ, IL17, T-bet, and RORγt; and reduced the expression of IL13, a Th2 marker. Finally, we observed that local administrations of UDP in B16-engrafted C57BL6 mice reduced tumor growth and necrotic areas. In addition, UDP-treated tumors showed a higher presence of MHCIIhi tumor-associated macrophage (TAM) and of CD3+CD8+ and CD3+CD4+ tumor-infiltrating T-lymphocytes (TILs), both markers of anti-tumor immune response. Consistent with this, intra-tumoral gene expression analysis revealed in UDP-treated tumors an increase in the expression of genes functionally linked to anti-tumor immune response. Our analysis revealed an important metabolite acting as mediator of immune response, which could potentially represent an additional tool to be used as an adjuvant in cancer immunotherapy.
Collapse
Affiliation(s)
- Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Angelica Avagliano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Teresa Brusco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nancy Nisticò
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Domenico Maisano
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Annamaria Aloisio
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Maurizio Renna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Divisato
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Martina Tufano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Massimo D’Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Chiara Mignogna
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rosangela Spiga
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | | | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| |
Collapse
|
28
|
Qi X, Li Q, Che X, Wang Q, Wu G. The Uniqueness of Clear Cell Renal Cell Carcinoma: Summary of the Process and Abnormality of Glucose Metabolism and Lipid Metabolism in ccRCC. Front Oncol 2021; 11:727778. [PMID: 34604067 PMCID: PMC8479096 DOI: 10.3389/fonc.2021.727778] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022] Open
Abstract
Kidney cancer is a cancer with an increasing incidence in recent years. Clear cell renal cell carcinoma (ccRCC) accounts for up to 80% of all kidney cancers. The understanding of the pathogenesis, tumor progression, and metastasis of renal carcinoma is not yet perfect. Kidney cancer has some characteristics that distinguish it from other cancers, and the metabolic aspect is the most obvious. The specificity of glucose and lipid metabolism in kidney cancer cells has also led to its being studied as a metabolic disease. As the most common type of kidney cancer, ccRCC has many characteristics that represent the specificity of kidney cancer. There are features that we are very concerned about, including the presence of lipid droplets in cells and the obesity paradox. These two points are closely related to glucose metabolism and lipid metabolism. Therefore, we hope to explore whether metabolic changes affect the occurrence and development of kidney cancer by looking for evidence of changes on expression at the genomic and protein levels in glucose metabolism and lipid metabolism in ccRCC. We begin with the representative phenomenon of abnormal cancer metabolism: the Warburg effect, through the collection of popular metabolic pathways and related genes in the last decade, as well as some research hotspots, including the role of ferroptosis and glutamine in cancer, systematically elaborated the factors affecting the incidence and metastasis of kidney cancer. This review also identifies the similarities and differences between kidney cancer and other cancers in order to lay a theoretical foundation and provide a valid hypothesis for future research.
Collapse
Affiliation(s)
| | | | | | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
29
|
Qiu J, Zheng Q, Meng X. Hyperglycemia and Chemoresistance in Breast Cancer: From Cellular Mechanisms to Treatment Response. Front Oncol 2021; 11:628359. [PMID: 33718202 PMCID: PMC7947364 DOI: 10.3389/fonc.2021.628359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Female breast cancer is a complex, multifactorial disease. Studies have shown that hyperglycemia is one of the most important contributing factors to increasing the risk of breast cancer that also has a major impact on the efficacy of chemotherapy. At the cellular level, hyperglycemia can promote the proliferation, invasion, and migration of breast cancer cells and can also induce anti-apoptotic responses to enhance the chemoresistance of tumors via abnormal glucose metabolism. In this article, we focus on the latest progress in defining the mechanisms of chemotherapy resistance in hyperglycemic patients including the abnormal behaviors of cancer cells in the hyperglycemic microenvironment and the impact of abnormal glucose metabolism on key signaling pathways. To better understand the advantages and challenges of breast cancer treatments, we explore the causes of drug resistance in hyperglycemic patients that may help to better inform the development of effective treatments.
Collapse
Affiliation(s)
- Jie Qiu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinghui Zheng
- Department of Breast Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Xuli Meng
- Department of Breast Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
| |
Collapse
|
30
|
Nagarajan SR, Butler LM, Hoy AJ. The diversity and breadth of cancer cell fatty acid metabolism. Cancer Metab 2021; 9:2. [PMID: 33413672 PMCID: PMC7791669 DOI: 10.1186/s40170-020-00237-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor cellular metabolism exhibits distinguishing features that collectively enhance biomass synthesis while maintaining redox balance and cellular homeostasis. These attributes reflect the complex interactions between cell-intrinsic factors such as genomic-transcriptomic regulation and cell-extrinsic influences, including growth factor and nutrient availability. Alongside glucose and amino acid metabolism, fatty acid metabolism supports tumorigenesis and disease progression through a range of processes including membrane biosynthesis, energy storage and production, and generation of signaling intermediates. Here, we highlight the complexity of cellular fatty acid metabolism in cancer, the various inputs and outputs of the intracellular free fatty acid pool, and the numerous ways that these pathways influence disease behavior.
Collapse
Affiliation(s)
- Shilpa R Nagarajan
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
31
|
Downes DP, Daurio NA, McLaren DG, Carrington P, Previs SF, Williams KB. Impact of Extracellular Fatty Acids and Oxygen Tension on Lipid Synthesis and Assembly in Pancreatic Cancer Cells. ACS Chem Biol 2020; 15:1892-1900. [PMID: 32396332 DOI: 10.1021/acschembio.0c00219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipid oxidation and biosynthesis are crucial for cell survival, especially for rapidly proliferating cancer cells in a heterogeneous metabolic environment. The storage of high-energy lipid reservoirs competitively advantages the cancer cell over non-neoplastic tissue. Disrupting lipid biosynthetic processes, through modulation of fatty acid (FA) esterification or de novo lipogenesis (DNL), is of interest in drug discovery. Mimicking the in vivo environment in vitro is also vital for testing the efficacy of potential drug compounds. We present here a stable isotope tracer-based approach for examining the impact of exogenous FA and oxygen tension on the pathways that affect lipid biosynthesis, including the rates of metabolic flux. By applying tandem mass spectrometry (MS/MS) analyses to studies using parallel tracers, we characterized the impact of FA bioavailability on the positional enrichment within specific lipids. Our observations suggest that adding bioavailable FA as a carbon source preferentially biases the cellular metabolism away from DNL and toward esterification of free fatty acid pools. Additionally, we have found that this FA addition, under hypoxic conditions, led to a biased increase in the total triglyceride pool (nearly 5-fold, as compared to phospholipids), regardless of the isotope tracer utilized. We discuss the implications of this metabolic flexibility on studies that aim to characterize apparent drug efficacy.
Collapse
Affiliation(s)
- Daniel P. Downes
- Merck & Co., Inc, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Natalie A. Daurio
- Merck & Co., Inc, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - David G. McLaren
- Merck & Co., Inc, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Paul Carrington
- Merck & Co., Inc, 213 East Grand Avenue, South San Francisco, California 94080, United States
| | - Stephen F. Previs
- Merck & Co., Inc, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Katharine B. Williams
- Merck & Co., Inc, 213 East Grand Avenue, South San Francisco, California 94080, United States
| |
Collapse
|
32
|
Feng WW, Kurokawa M. Lipid metabolic reprogramming as an emerging mechanism of resistance to kinase inhibitors in breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3. [PMID: 32226926 PMCID: PMC7100881 DOI: 10.20517/cdr.2019.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancer is one of the leading causes of death in women in the United States. In general, patients with breast cancer undergo surgical resection of the tumor and/or receive drug treatment to kill or suppress the growth of cancer cells. In this regard, small molecule kinase inhibitors serve as an important class of drugs used in clinical and research settings. However, the development of resistance to these compounds, in particular HER2 and CDK4/6 inhibitors, often limits durable clinical responses to therapy. Emerging evidence indicates that PI3K/AKT/mTOR pathway hyperactivation is one of the most prominent mechanisms of resistance to many small molecule inhibitors as it bypasses upstream growth factor receptor inhibition. Importantly, the PI3K/AKT/mTOR pathway also plays a pertinent role in regulating various aspects of cancer metabolism. Recent studies from our lab and others have demonstrated that altered lipid metabolism mediates the development of acquired drug resistance to HER2-targeted therapies in breast cancer, raising an interesting link between reprogrammed kinase signaling and lipid metabolism. It appears that, upon development of resistance to HER2 inhibitors, breast cancer cells rewire lipid metabolism to somehow circumvent the inhibition of kinase signaling. Here, we review various mechanisms of resistance observed for kinase inhibitors and discuss lipid metabolism as a potential therapeutic target to overcome acquired drug resistance.
Collapse
Affiliation(s)
- William W Feng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Manabu Kurokawa
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
33
|
Mentoor I, Nell T, Emjedi Z, van Jaarsveld PJ, de Jager L, Engelbrecht AM. Decreased Efficacy of Doxorubicin Corresponds With Modifications in Lipid Metabolism Markers and Fatty Acid Profiles in Breast Tumors From Obese vs. Lean Mice. Front Oncol 2020; 10:306. [PMID: 32257945 PMCID: PMC7089940 DOI: 10.3389/fonc.2020.00306] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer cells modulate lipid and fatty acid metabolism to sustain proliferation. The role of adipocytes in cancer treatment efficacy remains, however, to be fully elucidated. We investigated whether diet-induced obesity (DIO) affects the efficacy of doxorubicin treatment in a breast tumor-bearing mouse model. Female C57BL6 mice were fed a high fat or low fat diet for the full duration of the study (12 weeks). After 8 weeks, mice were inoculated with E0771 triple-negative breast cancer cells in the fourth mammary gland to develop breast tumor allographs. Tumor-bearing mice received either vehicle (Hank's balanced salt solution) or doxorubicin (chemotherapy). Plasma inflammatory markers, tumor, and mammary adipose tissue fatty acid composition, as well as protein expression of lipid metabolism markers were determined. The high fat diet (HFD) attenuated the treatment efficacy of doxorubicin. Both leptin and resistin concentrations were significantly increased in the HFD group treated with doxorubicin. Suppressed lipogenesis (decreased stearoyl CoA-desaturase-1) and lipolysis (decreased hormone-sensitive lipase) were observed in mammary adipose tissue of the DIO animals, whereas increased expression was observed in the tumor tissue of doxorubicin treated HFD mice. Obesogenic conditions induced altered tissue fatty acid (FA) compositions, which reduced doxorubicin's treatment efficacy. In mammary adipose tissue breast cancer cells suppressed the storage of FAs, thereby increasing the availability of free FAs and favored inflammation under obesogenic conditions.
Collapse
Affiliation(s)
- Ilze Mentoor
- Department of Physiological Sciences, Faculty of Natural Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Theo Nell
- Department of Physiological Sciences, Faculty of Natural Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Zaakiyah Emjedi
- Department of Physiological Sciences, Faculty of Natural Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Paul J van Jaarsveld
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Louis de Jager
- Division of Anatomical Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Natural Sciences, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
34
|
Saeidi J, Motaghipur R, Sepehrian A, Mohtashami M, Forooghi Nia F, Ghasemi A. Dietary fats promote inflammation in Wistar rats as well as induce proliferation, invasion of SKOV3 ovarian cancer cells. J Food Biochem 2020; 44:e13177. [PMID: 32157714 DOI: 10.1111/jfbc.13177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 11/30/2022]
Abstract
The role of high fat diet (HFD) in ovarian cancer and its underlying mechanisms are poorly known. In current investigation, we investigated inflammatory and oncogenic effect of dietary fats in female Wistar rats and ovarian cancer cell line (SKOV3). The ELISA kits were used for adipokines and inflammatory factors analyses in sera collected from rats fed with high fat diet (SR-HFD). Cell growth, proliferation, apoptosis, migration, and invasion were measured in SKOV3 cells treated with the SR-HFD and FA mix. IL6, IL1β, TNFα, NF-kβ, and p53 expression were measured in cells incubated with the mentioned treatments. Leptin and inflammatory factors increased, while adiponectin decreased in SR-HFD. Moreover, FA mix significantly induced proliferation, migration, and invasion, promoted the expression of inflammatory factors and NF-κB and inhibited apoptosis markers in SKOV3 cells. Taken together, our findings revealed that diet might be a crucial factor in ovarian cancer progression through altering the inflammatory factors. PRACTICAL APPLICATIONS: The HFD-mediated obesity promotes cancer progression in various tissues. This study highlights the progression of inflammation in female Wistar rats and the growth of ovarian cancer cells by dietary fats. Thus, dietary factors can be considered as key factors for the prevention of ovarian cancer.
Collapse
Affiliation(s)
- Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Reza Motaghipur
- Department of Genetic, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Atefe Sepehrian
- Department of Genetic, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Fatemeh Forooghi Nia
- Department of Biology, School of Basic Science, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Ahmad Ghasemi
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Department of Basic Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
35
|
Zhang F, Liu S. Mechanistic insights of adipocyte metabolism in regulating breast cancer progression. Pharmacol Res 2020; 155:104741. [PMID: 32151679 DOI: 10.1016/j.phrs.2020.104741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/20/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Adipocyte account for the largest component in breast tissue. Dysfunctional adipocyte metabolism, such as metaflammation in metabolically abnormal obese patients, will cause hyperplasia and hypertrophy of its constituent adipocytes. Inflamed adipose tissue is one of the biggest risk factors causing breast cancer. Factors linking adipocyte metabolism to breast cancer include dysfunctional secretion of proinflammatory mediators, proangiogenic factors and estrogens. The accumulation of tumor supporting cells and systemic effects, such as insulin resistance, dyslipidemia and oxidative stress, which are caused by abnormal adipocyte metabolism, further contribute to a more aggressive tumor microenvironment and stimulate breast cancer stem cell to influence the development and progression of breast cancer. Here, in this review, we focus on the adipocyte metabolism in regulating breast cancer progression, and discuss the potential targets which can be used for breast cancer therapy.
Collapse
Affiliation(s)
- Fuchuang Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Key Laboratory of Medical Epigenetics and Metabolism, Innovation Center for Cell Signaling Network, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Key Laboratory of Medical Epigenetics and Metabolism, Innovation Center for Cell Signaling Network, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
36
|
Ocaña MC, Martínez-Poveda B, Quesada AR, Medina MÁ. Glucose Favors Lipid Anabolic Metabolism in the Invasive Breast Cancer Cell Line MDA-MB-231. BIOLOGY 2020; 9:biology9010016. [PMID: 31936882 PMCID: PMC7168317 DOI: 10.3390/biology9010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
Metabolic reprogramming in tumor cells is considered one of the hallmarks of cancer. Many studies have been carried out in order to elucidate the effects of tumor cell metabolism on invasion and tumor progression. However, little is known about the immediate substrate preference in tumor cells. In this work, we wanted to study this short-time preference using the highly invasive, hormone independent breast cancer cell line MDA-MB-231. By means of Seahorse and uptake experiments, our results point to a preference for glucose. However, although both glucose and glutamine are required for tumor cell proliferation, MDA-MB-231 cells can survive two days in the absence of glucose, but not in the absence of glutamine. On the other hand, the presence of glucose increased palmitate uptake in this cell line, which accumulates in the cytosol instead of going to the plasma membrane. In order to exert this effect, glucose needs to be converted to glycerol-3 phosphate, leading to palmitate metabolism through lipid synthesis, most likely to the synthesis of triacylglycerides. The effect of glucose on the palmitate uptake was also found in other triple-negative, invasive breast cancer cell lines, but not in the non-invasive ones. The results presented in this work suggest an important and specific role of glucose in lipid biosynthesis in triple-negative breast cancer.
Collapse
Affiliation(s)
- Mª Carmen Ocaña
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (M.C.O.); (B.M.-P.); (A.R.Q.)
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
| | - Beatriz Martínez-Poveda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (M.C.O.); (B.M.-P.); (A.R.Q.)
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
| | - Ana R. Quesada
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (M.C.O.); (B.M.-P.); (A.R.Q.)
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (M.C.O.); (B.M.-P.); (A.R.Q.)
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain
- Correspondence: ; Tel.: +34-952137132
| |
Collapse
|
37
|
SIRT3 promotes the invasion and metastasis of cervical cancer cells by regulating fatty acid synthase. Mol Cell Biochem 2019; 464:11-20. [DOI: 10.1007/s11010-019-03644-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022]
|
38
|
Dias AS, Almeida CR, Helguero LA, Duarte IF. Metabolic crosstalk in the breast cancer microenvironment. Eur J Cancer 2019; 121:154-171. [PMID: 31581056 DOI: 10.1016/j.ejca.2019.09.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023]
Abstract
During tumorigenesis, breast tumour cells undergo metabolic reprogramming, which generally includes enhanced glycolysis, tricarboxylic acid cycle activity, glutaminolysis and fatty acid biosynthesis. However, the extension and functional importance of these metabolic alterations may diverge not only according to breast cancer subtypes, but also depending on the interaction of cancer cells with the complex surrounding microenvironment. This microenvironment comprises a variety of non-cancerous cells, such as immune cells (e.g. macrophages, lymphocytes, natural killer cells), fibroblasts, adipocytes and endothelial cells, together with extracellular matrix components and soluble factors, which influence cancer progression and are predictive of clinical outcome. The continuous interaction between cancer and stromal cells results in metabolic competition and symbiosis, with oncogenic-driven metabolic reprogramming of cancer cells shaping the metabolism of neighbouring cells and vice versa. This review addresses current knowledge on this metabolic crosstalk within the breast tumour microenvironment (TME). Improved understanding of how metabolism in the TME modulates cancer development and evasion of tumour-suppressive mechanisms may provide clues for novel anticancer therapeutics directed to metabolic targets.
Collapse
Affiliation(s)
- Ana S Dias
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, Aveiro, Portugal; iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Catarina R Almeida
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Luisa A Helguero
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Iola F Duarte
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, Aveiro, Portugal.
| |
Collapse
|
39
|
Ni K, Wang D, Xu H, Mei F, Wu C, Liu Z, Zhou B. miR-21 promotes non-small cell lung cancer cells growth by regulating fatty acid metabolism. Cancer Cell Int 2019; 19:219. [PMID: 31462892 PMCID: PMC6708160 DOI: 10.1186/s12935-019-0941-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/18/2019] [Indexed: 12/11/2022] Open
Abstract
Background Lung cancer is one of the most common malignant tumors worldwide. CD36 is a receptor for fatty acids and plays an important role in regulating fatty acid metabolism, which is closely related to tumorigenesis and development. The regulation of miR-21 and its role in tumorigenesis have been extensively studied in recent years. However, the relationship between miR-21 and CD36 regulated fatty acid metabolism in human non-small cell lung cancer remains unknown. Methods In this study, lentivirus transfection, qRT-PCR, cell migration, immunofluorescence, and western blot were used to examine the relationship between miR-21 and CD36 regulated fatty acid metabolism and the regulation role of miR-21 in human non-small cell lung cancer. Results This study demonstrated that up-regulation of miR-21 promoted cell migration and cell growth in human non-small cell lung cancer cells. Moreover, the intracellular contents of lipids including cellular content of phospholipids, neutral lipids content, cellular content of triglycerides were significantly increased following miR-21 mimic treatment compared with control, and the levels of key lipid metabolic enzymes FASN, ACC1 and FABP5 were obviously enhanced in human non-small cell lung cancer cells. Furthermore, down-regulation of CD36 suppressed miR-21 regulated cell growth, migration and intracellular contents of lipids in human non-small cell lung cancer cells, which suggested that miR-21 promoted cell growth and migration of human non-small cell lung cancer cells through CD36 mediated fatty acid metabolism. Inhibition of miR-21 was revealed to inhibit cell growth, migration, intracellular contents of lipids, and CD36 protein expression level in human non-small cell lung cancer cells. In addition, PPARGC1B was a direct target of miR-21, and down-regulation of PPARGC1B reversed the inhibition of CD36 expression induced by miR-21 inhibitor. Conclusions These results explored the mechanism of miR-21 promoted non-small cell lung cancer and might provide a novel therapeutic method in treating non-small cell lung cancer in clinic.
Collapse
Affiliation(s)
- Kewei Ni
- Department of Cardiothoracic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014 Zhejiang People's Republic of China
| | - Dimin Wang
- 2College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Heyun Xu
- Department of Cardiothoracic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014 Zhejiang People's Republic of China
| | - Fuyang Mei
- Department of Cardiothoracic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014 Zhejiang People's Republic of China
| | - Changhao Wu
- Department of Cardiothoracic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014 Zhejiang People's Republic of China
| | - Zhifang Liu
- Department of Cardiothoracic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014 Zhejiang People's Republic of China
| | - Bing Zhou
- Department of Cardiothoracic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014 Zhejiang People's Republic of China
| |
Collapse
|
40
|
Meerson A, Eliraz Y, Yehuda H, Knight B, Crundwell M, Ferguson D, Lee BP, Harries LW. Obesity impacts the regulation of miR-10b and its targets in primary breast tumors. BMC Cancer 2019; 19:86. [PMID: 30658617 PMCID: PMC6339293 DOI: 10.1186/s12885-019-5300-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Obesity increases breast cancer (BC) risk in post-menopausal women by mostly unknown molecular mechanisms which may partly be regulated by microRNAs (miRNAs). METHODS We isolated RNA from paired benign and malignant biopsies from 83 BC patients and determined miRNA profiles in samples from 12 women at the extremes of the BMI distribution by RNA-seq. Candidates were validated in all samples. Associations between miR-10b expression and validated target transcript levels, and effects of targeted manipulation of miR-10b levels in a primary BC cell line on proliferation and invasion potential, were explored. RESULTS Of the 148 miRNAs robustly expressed in breast tissues, the levels of miR-21, miR-10b, miR-451a, miR-30c, and miR-378d were significantly associated with presence of cancer. Of these, miR-10b showed a stronger down-regulation in the tumors of the obese subjects, as opposed to the lean. In ductal but not lobular tumors, significant inverse correlations were observed between the tumor levels of miR-10b and miR-30c and the mRNA levels of cancer-relevant target genes SRSF1, PIEZO1, MAPRE1, CDKN2A, TP-53 and TRA2B, as well as tumor grade. Suppression of miR-10b levels in BT-549 primary BC-derived cells increased cell proliferation and invasive capacity, while exogenous miR-10b mimic decreased invasion. Manipulation of miR-10b levels also inversely affected the mRNA levels of miR-10b targets BCL2L11, PIEZO1 and NCOR2. CONCLUSIONS Our findings suggest that miR-10b may be a mediator between obesity and cancer in post-menopausal women, regulating several known cancer-relevant genes. MiR-10b expression may have diagnostic and therapeutic implications for the incidence and prognosis of BC in obese women.
Collapse
Affiliation(s)
- Ari Meerson
- MIGAL - Galilee Research Institute, PO Box 831, 11016 Kiryat Shmona, Israel
- Tel Hai Academic College, Tel Hai, Israel
| | - Yaniv Eliraz
- MIGAL - Galilee Research Institute, PO Box 831, 11016 Kiryat Shmona, Israel
- Tel Hai Academic College, Tel Hai, Israel
| | - Hila Yehuda
- MIGAL - Galilee Research Institute, PO Box 831, 11016 Kiryat Shmona, Israel
- Tel Hai Academic College, Tel Hai, Israel
| | - Bridget Knight
- Royal Devon and Exeter NHS Foundation Trust, Royal Devon and Exeter Hospital, Barrack Road, Exeter, UK
| | - Malcolm Crundwell
- Royal Devon and Exeter NHS Foundation Trust, Royal Devon and Exeter Hospital, Barrack Road, Exeter, UK
- University of Exeter Medical School, Barrack Road, Exeter, UK
| | - Douglas Ferguson
- Royal Devon and Exeter NHS Foundation Trust, Royal Devon and Exeter Hospital, Barrack Road, Exeter, UK
- University of Exeter Medical School, Barrack Road, Exeter, UK
| | - Benjamin P. Lee
- University of Exeter Medical School, Barrack Road, Exeter, UK
| | | |
Collapse
|
41
|
Balaban S, Nassar ZD, Zhang AY, Hosseini-Beheshti E, Centenera MM, Schreuder M, Lin HM, Aishah A, Varney B, Liu-Fu F, Lee LS, Nagarajan SR, Shearer RF, Hardie RA, Raftopulos NL, Kakani MS, Saunders DN, Holst J, Horvath LG, Butler LM, Hoy AJ. Extracellular Fatty Acids Are the Major Contributor to Lipid Synthesis in Prostate Cancer. Mol Cancer Res 2019; 17:949-962. [PMID: 30647103 DOI: 10.1158/1541-7786.mcr-18-0347] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/22/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
Prostate cancer cells exhibit altered cellular metabolism but, notably, not the hallmarks of Warburg metabolism. Prostate cancer cells exhibit increased de novo synthesis of fatty acids (FA); however, little is known about how extracellular FAs, such as those in the circulation, may support prostate cancer progression. Here, we show that increasing FA availability increased intracellular triacylglycerol content in cultured patient-derived tumor explants, LNCaP and C4-2B spheroids, a range of prostate cancer cells (LNCaP, C4-2B, 22Rv1, PC-3), and prostate epithelial cells (PNT1). Extracellular FAs are the major source (∼83%) of carbons to the total lipid pool in all cell lines, compared with glucose (∼13%) and glutamine (∼4%), and FA oxidation rates are greater in prostate cancer cells compared with PNT1 cells, which preferentially partitioned extracellular FAs into triacylglycerols. Because of the higher rates of FA oxidation in C4-2B cells, cells remained viable when challenged by the addition of palmitate to culture media and inhibition of mitochondrial FA oxidation sensitized C4-2B cells to palmitate-induced apoptosis. Whereas in PC-3 cells, palmitate induced apoptosis, which was prevented by pretreatment of PC-3 cells with FAs, and this protective effect required DGAT-1-mediated triacylglycerol synthesis. These outcomes highlight for the first-time heterogeneity of lipid metabolism in prostate cancer cells and the potential influence that obesity-associated dyslipidemia or host circulating has on prostate cancer progression. IMPLICATIONS: Extracellular-derived FAs are primary building blocks for complex lipids and heterogeneity in FA metabolism exists in prostate cancer that can influence tumor cell behavior.
Collapse
Affiliation(s)
- Seher Balaban
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Zeyad D Nassar
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Alison Y Zhang
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute for Medical Research, Darlinghurst, New South Wales, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Elham Hosseini-Beheshti
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Margaret M Centenera
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Mark Schreuder
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia.,Faculty of Medicine, University of Utrecht, Utrecht, the Netherlands
| | - Hui-Ming Lin
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute for Medical Research, Darlinghurst, New South Wales, Australia
| | - Atqiya Aishah
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Bianca Varney
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Frank Liu-Fu
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Lisa S Lee
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Shilpa R Nagarajan
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Robert F Shearer
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute for Medical Research, Darlinghurst, New South Wales, Australia
| | - Rae-Anne Hardie
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Origins of Cancer Program, Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - Nikki L Raftopulos
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Meghna S Kakani
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Darren N Saunders
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jeff Holst
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Origins of Cancer Program, Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - Lisa G Horvath
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute for Medical Research, Darlinghurst, New South Wales, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia.,School of Medicine, University of New South Wales Australia, Sydney, New South Wales, Australia.,Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia.
| |
Collapse
|