1
|
Aroor AR, Naz H, Hulse J, Kelty TJ, Sharma N, Jia G, Whaley-Connell A, Rector RS, Manrique-Acevedo C, Lastra G. Vascular Smooth Muscle Cell TG2 Promotes DOCA/Salt-Induced Arterial Stiffness and Hypertension. Hypertension 2025; 82:e31-e33. [PMID: 39970250 DOI: 10.1161/hypertensionaha.124.23518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Affiliation(s)
- Annayya R Aroor
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine (A.R.A., H.N., J.H., N.S., G.J., C.M.-A., G.L.), University of Missouri, Columbia
- Research Services, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (A.R.A., H.N., A.W.-C., R.S.R., C.M.-A., G.L.)
| | - Huma Naz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine (A.R.A., H.N., J.H., N.S., G.J., C.M.-A., G.L.), University of Missouri, Columbia
- Research Services, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (A.R.A., H.N., A.W.-C., R.S.R., C.M.-A., G.L.)
| | - Jack Hulse
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine (A.R.A., H.N., J.H., N.S., G.J., C.M.-A., G.L.), University of Missouri, Columbia
| | - Taylor J Kelty
- Department of Nutrition and Exercise Physiology (T.J.K., R.S.R.), University of Missouri, Columbia
- NextGen Precision Health (T.K., R.S.R., C.M.-A.), University of Missouri, Columbia
| | - Neekun Sharma
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine (A.R.A., H.N., J.H., N.S., G.J., C.M.-A., G.L.), University of Missouri, Columbia
| | - Guanghong Jia
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine (A.R.A., H.N., J.H., N.S., G.J., C.M.-A., G.L.), University of Missouri, Columbia
| | - Adam Whaley-Connell
- Division of Nephrology and Hypertension, Department of Medicine (A.W.-C.), University of Missouri, Columbia
- Research Services, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (A.R.A., H.N., A.W.-C., R.S.R., C.M.-A., G.L.)
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology (T.J.K., R.S.R.), University of Missouri, Columbia
- NextGen Precision Health (T.K., R.S.R., C.M.-A.), University of Missouri, Columbia
- Division of Gastroenterology and Hepatology, Department of Medicine (R.S.R.), University of Missouri, Columbia
- Research Services, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (A.R.A., H.N., A.W.-C., R.S.R., C.M.-A., G.L.)
| | - Camila Manrique-Acevedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine (A.R.A., H.N., J.H., N.S., G.J., C.M.-A., G.L.), University of Missouri, Columbia
- NextGen Precision Health (T.K., R.S.R., C.M.-A.), University of Missouri, Columbia
- Research Services, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (A.R.A., H.N., A.W.-C., R.S.R., C.M.-A., G.L.)
| | - Guido Lastra
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine (A.R.A., H.N., J.H., N.S., G.J., C.M.-A., G.L.), University of Missouri, Columbia
- Research Services, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (A.R.A., H.N., A.W.-C., R.S.R., C.M.-A., G.L.)
| |
Collapse
|
2
|
Ayhan S, Dursun A. ELFN1 is a new extracellular matrix (ECM)-associated protein. Life Sci 2024; 352:122900. [PMID: 38986898 DOI: 10.1016/j.lfs.2024.122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
AIMS The ELFN1, discovered in 2007, is a single-pass transmembrane protein. Studies conducted thus far to elucidate the function of the Elfn1 have been limited only to animal studies. These studies have reported that ELFN1 is a universal binding partner of metabotropic glutamate receptors (mGluRs) in the central nervous system and its functional deficiency has been associated with the pathogenesis of neurological and neuropsychiatric diseases. In 2021, we described the first disease-associated human ELFN1 pathogenic gene mutation. Severe joint laxity, which was the most striking finding of this new disease and was clearly seen in the patients since early infancy, showed that the ELFN1 may have a possible function in the connective tissue besides the nervous system. Here, we present the first experimental evidence of the extracellular matrix (ECM)-related function of the ELFN1. MATERIALS AND METHODS Primary skin fibroblasts were isolated from the skin biopsies of ELFN1 mutated patients and healthy foreskin donors. For the clinical trial in a dish, in vitro ECM and DEM (decellularized ECM) models were created from skin fibroblasts. All the in vitro models were comparatively characterized and analyzed. KEY FINDINGS The mutation in the ELFN1 signal peptide region of patients resulted in a severe lack of ELFN1 expression and dramatically altered the characteristic morphology and behavior (growth, proliferation, and motility) of fibroblasts. SIGNIFICANCE We propose that ELFN1 is involved in the cell-ECM attachment, and its deficiency is critical enough to cause a loss of cell motility and soft ECM stiffness.
Collapse
Affiliation(s)
- Selda Ayhan
- Department of Pediatrics Metabolism, Institute of Child Health, Hacettepe University, Sıhhıye, Ankara 06100, Turkey.
| | - Ali Dursun
- Department of Pediatrics Metabolism, Faculty of Medicine, Hacettepe University, Sıhhıye, Ankara 06100, Turkey.
| |
Collapse
|
3
|
James EA, Joglekar AV, Linnemann AK, Russ HA, Kent SC. The beta cell-immune cell interface in type 1 diabetes (T1D). Mol Metab 2023; 78:101809. [PMID: 37734713 PMCID: PMC10622886 DOI: 10.1016/j.molmet.2023.101809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND T1D is an autoimmune disease in which pancreatic islets of Langerhans are infiltrated by immune cells resulting in the specific destruction of insulin-producing islet beta cells. Our understanding of the factors leading to islet infiltration and the interplay of the immune cells with target beta cells is incomplete, especially in human disease. While murine models of T1D have provided crucial information for both beta cell and autoimmune cell function, the translation of successful therapies in the murine model to human disease has been a challenge. SCOPE OF REVIEW Here, we discuss current state of the art and consider knowledge gaps concerning the interface of the islet beta cell with immune infiltrates, with a focus on T cells. We discuss pancreatic and immune cell phenotypes and their impact on cell function in health and disease, which we deem important to investigate further to attain a more comprehensive understanding of human T1D disease etiology. MAJOR CONCLUSIONS The last years have seen accelerated development of approaches that allow comprehensive study of human T1D. Critically, recent studies have contributed to our revised understanding that the pancreatic beta cell assumes an active role, rather than a passive position, during autoimmune disease progression. The T cell-beta cell interface is a critical axis that dictates beta cell fate and shapes autoimmune responses. This includes the state of the beta cell after processing internal and external cues (e.g., stress, inflammation, genetic risk) that that contributes to the breaking of tolerance by hyperexpression of human leukocyte antigen (HLA) class I with presentation of native and neoepitopes and secretion of chemotactic factors to attract immune cells. We anticipate that emerging insights about the molecular and cellular aspects of disease initiation and progression processes will catalyze the development of novel and innovative intervention points to provide additional therapies to individuals affected by T1D.
Collapse
Affiliation(s)
- Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alok V Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amelia K Linnemann
- Center for Diabetes and Metabolic Diseases, and Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Sally C Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Transglutaminase type 2-dependent crosslinking of IRF3 in dying melanoma cells. Cell Death Dis 2022; 8:498. [PMID: 36572679 PMCID: PMC9792452 DOI: 10.1038/s41420-022-01278-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/27/2022]
Abstract
cGAS/STING axis is the major executor of cytosolic dsDNA sensing that leads to the production of type I interferon (IFNI) not only upon bacterial infection, but also in cancer cells, upon DNA damage. In fact, DNA damage caused by ionizing radiations and/or topoisomerase inhibitors leads to a release of free DNA into the cytosol, which activates the cGAS/STING pathway and the induction of IFNI expression. Doxorubicin-induced apoptotic cancer cells release damage-associated molecular patterns (DAMPs), including IFNI, which are able to stimulate the immune system. Our results indicate that Transglutaminase type 2 (TG2) is directly involved in the formation of a covalent cross-linked IRF3 (Interferon regulatory factor 3) dimers, thereby limiting the production of IFNI. Indeed, we demonstrated that upon doxorubicin treatment TG2 translocates into the nucleus of apoptotic melanoma cells interacting with IRF3 dimers. Interestingly, we show that both the knockdown of the enzyme as well as the inhibition of its transamidating activity lead to a decrease in the dimerization of IRF3 correlated with an increase in the IFNI mRNA levels. Taken together, these data demonstrate that TG2 negatively regulates the IRF3 pathway in human melanoma cells suggesting a so far unknown TG2-dependent mechanism by which cancer cells reduce the IFNI production after DNA damage to limit the immune system response.
Collapse
|
5
|
Nanosecond pulsed electric fields induce extracellular release of chromosomal DNA and histone citrullination in neutrophil-differentiated HL-60 cells. Sci Rep 2019; 9:8451. [PMID: 31186478 PMCID: PMC6559984 DOI: 10.1038/s41598-019-44817-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022] Open
Abstract
Nanosecond pulsed electric fields (nsPEFs) have gained attention as a novel physical stimulus for life sciences. Although cancer therapy is currently their promising application, nsPEFs have further potential owing to their ability to elicit various cellular responses. This study aimed to explore stimulatory actions of nsPEFs, and we used HL-60 cells that were differentiated into neutrophils under cultured conditions. Exposure of neutrophil-differentiated HL-60 cells to nsPEFs led to the extracellular release of chromosomal DNA, which appears to be equivalent to neutrophil extracellular traps (NETs) that serve as a host defense mechanism against pathogens. Fluorometric measurement of extracellular DNA showed that DNA extrusion was rapidly induced after nsPEF exposure and increased over time. Western blot analysis demonstrated that nsPEFs induced histone citrullination that is the hydrolytic conversion of arginine to citrulline on histones and facilitates chromatin decondensation. DNA extrusion and histone citrullination by nsPEFs were cell type-specific and Ca2+-dependent events. Taken together, these observations suggest that nsPEFs drive the mechanism for neutrophil-specific immune response without infection, highlighting a novel aspect of nsPEFs as a physical stimulus.
Collapse
|
6
|
Sharma S, Wu SY, Jimenez H, Xing F, Zhu D, Liu Y, Wu K, Tyagi A, Zhao D, Lo HW, Metheny-Barlow L, Sun P, Bourland JD, Chan MD, Thomas A, Barbault A, D'Agostino RB, Whitlow CT, Kirchner V, Blackman C, Pasche B, Watabe K. Ca 2+ and CACNA1H mediate targeted suppression of breast cancer brain metastasis by AM RF EMF. EBioMedicine 2019; 44:194-208. [PMID: 31129098 PMCID: PMC6604768 DOI: 10.1016/j.ebiom.2019.05.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Brain metastases are a major cause of death in patients with metastatic breast cancer. While surgical resection and radiation therapy are effective treatment modalities, the majority of patients will succumb from disease progression. We have developed a novel therapy for brain metastases that delivers athermal radiofrequency electromagnetic fields that are amplitude-modulated at breast cancer specific frequencies (BCF). METHODS 27.12 MHz amplitude-modulated BCF were administered to a patient with a breast cancer brain metastasis by placing a spoon-shaped antenna on the anterior part of the tongue for three one-hour treatments every day. In preclinical models, a BCF dose, equivalent to that delivered to the patient's brain, was administered to animals implanted with either brain metastasis patient derived xenografts (PDXs) or brain-tropic cell lines. We also examined the efficacy of combining radiation therapy with BCF treatment. Additionally, the mechanistic underpinnings associated with cancer inhibition was identified using an agnostic approach. FINDINGS Animal studies demonstrated a significant decrease in growth and metastases of brain-tropic cell lines. Moreover, BCF treatment of PDXs established from patients with brain metastases showed strong suppression of their growth ability. Importantly, BCF treatment led to significant and durable regression of brain metastasis of a patient with triple negative breast cancer. The tumour inhibitory effect was mediated by Ca2+ influx in cancer cells through CACNA1H T-type voltage-gated calcium channels, which, acting as the cellular antenna for BCF, activated CAMKII/p38 MAPK signalling and inhibited cancer stem cells through suppression of β-catenin/HMGA2 signalling. Furthermore, BCF treatment downregulated exosomal miR-1246 level, which in turn decreased angiogenesis in brain environment. Therefore, targeted growth inhibition of breast cancer metastases was achieved through CACNA1H. INTERPRETATION We demonstrate that BCF, as a single agent or in combination with radiation, is a novel treatment approach to the treatment of brain metastases. This paradigm shifting modality warrants further clinical trials for this unmet medical need.
Collapse
Affiliation(s)
- Sambad Sharma
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States of America
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States of America
| | - Hugo Jimenez
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States of America
| | - Fei Xing
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States of America
| | - Dongqin Zhu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States of America
| | - Yin Liu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States of America
| | - Kerui Wu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States of America
| | - Abhishek Tyagi
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States of America
| | - Dan Zhao
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States of America
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States of America
| | - Linda Metheny-Barlow
- Department of Radiation Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States of America
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States of America
| | - John D Bourland
- Department of Radiation Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States of America
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States of America
| | - Alexandra Thomas
- Department of Hematology and Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States of America
| | | | - Ralph B D'Agostino
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States of America
| | - Christopher T Whitlow
- Department of Radiology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States of America
| | | | - Carl Blackman
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States of America
| | - Boris Pasche
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States of America
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States of America.
| |
Collapse
|
7
|
Halicka HD, Li J, Zhao H, Darzynkiewicz Z. Concurrent detection of lysosome and tissue transglutaminase activation in relation to cell cycle position during apoptosis induced by different anticancer drugs. Cytometry A 2018; 95:683-690. [PMID: 30422397 DOI: 10.1002/cyto.a.23652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/18/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022]
Abstract
Described is the new cytometric approach do detect either stimulation or a collapse of lysosomal proton pump (lysosomes rupture) combined with activation of transglutaminase 2 (TG2) during induction of apoptosis. Apoptosis of human lymphoblastoid TK6 cells was induced by combination of 2-deoxyglucose with the isoquinoline alkaloid berberine, by DNA topoisomerase I inhibitor camptothecin, its analog topotecan, topoisomerase II inhibitors etoposide or mitoxantrone, as well as by the cytotoxic anticancer ribonuclease ranpirnase (onconase). Activity of the proton pump of lysosomes was assessed by measuring entrapment and accumulation of the basic fluorochrome acridine orange (AO) resulting in its metachromatic red luminescence (F>640 ) within these organelles. Activation of TG2 was detected in the same cell subpopulation by the evidence of crosslinking of cytoplasmic proteins revealed by the increased intensity of the side light scatter (SSC) as well as following cell lysis by detergent, by its red fluorescence after staining by sulforhodamine 101. Because at low AO concentration nuclear DNA of the lysed cells was stoichiometrically stained green (F530 ) its quantity provided information on effects of the drug treatments on cell cycle in relation to activation of TG2. The data reveal that activation of lysosomal proton pump was evident in subpopulations of cells treated with 2-deoxyglucose plus berberine, topotecan, etoposide and mitoxantrone but not with ranpirnase. The collapse of lysosomal proton pump possibly reporting rupture of these organelles was observed in definite cell subpopulations after treatment with each of the studied drugs. Because regardless of the inducer of apoptosis TG2 activation invariably was correlated with lysosomes rupture it is likely that it was triggered by calcium ions or protons released from the ruptured lysosomes. This new methodological approach offers the means to investigate mechanisms and factors affecting autophagic lysosomes proton pump activity vis-à-vis TG2 activation that are common in several pathological states. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- H Dorota Halicka
- Department of Pathology, New York Medical College, Brander Cancer Research Institute, Valhalla, New York
| | - Jiangwei Li
- Department of Pathology, New York Medical College, Brander Cancer Research Institute, Valhalla, New York
| | - Hong Zhao
- Department of Pathology, New York Medical College, Brander Cancer Research Institute, Valhalla, New York
| | - Zbigniew Darzynkiewicz
- Department of Pathology, New York Medical College, Brander Cancer Research Institute, Valhalla, New York
| |
Collapse
|