1
|
Liu XH, Zhong NN, Yi JR, Lin H, Liu B, Man QW. Trends in Research of Odontogenic Keratocyst and Ameloblastoma. J Dent Res 2025; 104:347-368. [PMID: 39876078 DOI: 10.1177/00220345241282256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Odontogenic keratocyst (OKC) and ameloblastoma (AM) are common jaw lesions with high bone-destructive potential and recurrence rates. Recent advancements in technology led to significant progress in understanding these conditions. Single-cell and spatial omics have improved insights into the tumor microenvironment and cellular heterogeneity in OKC and AM. Fibroblast subsets in OKC and tumor cell subsets in AM have been analyzed, revealing mechanisms behind their biological behaviors, including OKC's osteolytic features and AM's recurrence tendencies. Spatial transcriptomics studies of AM have identified engineered fibroblasts and osteoblasts contributing to matrix remodeling gene and oncogene expression at the invasion frontier, driving AM progression. Three-dimensional culture technologies such as organoid models have refined analysis of AM subtypes; uncovered the role of AM fibroblasts in promoting tumor cell proliferation and invasion; and identified signaling pathways such as FOSL1, BRD4, EZH2, and Wnt as potential therapeutic targets. Organoid models also served as preclinical platforms for testing potential therapies. Although preclinical models for AM exist, reliable in vitro and in vivo models for OKC remain scarce. Promising mimic models, including human embryonic stem cells-derived epithelial cells, human oral keratinocytes, human immortalized oral epithelial cells, and HaCaT keratinocytes, show promise, but the advancements in 3-dimensional culture technology are expected to lead to further breakthroughs in this area. Artificial intelligence, including machine learning and deep learning, has enhanced radiomics-based diagnostic accuracy, distinguishing OKC and AM beyond clinician capability. Pathomics-based models further predict OKC prognosis and differentiate AM from ameloblastic carcinoma. Clinical studies have shown positive outcomes with targeted therapies. In a study investigating SMO-targeted treatments for nevoid basal cell carcinoma syndrome, nearly all OKC lesions resolved in 3 patients. A recent clinical trial with neoadjuvant BRAF-targeted therapy for AM demonstrated promising radiologic responses, potentially enabling organ preservation. This review highlights recent advancements and trends in OKC and AM research, aiming to inspire further exploration and progress in these fields.
Collapse
Affiliation(s)
- X-H Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - N-N Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J-R Yi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - B Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Q-W Man
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Correa-Arzate L, Portilla-Robertson J, Ramírez-Jarquín JO, Jacinto-Alemán LF, Mejía-Velázquez CP, Villanueva-Sánchez FG, Rodríguez-Vázquez M. LRP5, SLC6A3, and SOX10 Expression in Conventional Ameloblastoma. Genes (Basel) 2023; 14:1524. [PMID: 37628576 PMCID: PMC10453908 DOI: 10.3390/genes14081524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Cell proliferation and invasion are characteristic of many tumors, including ameloblastoma, and are important features to target in possible future therapeutic applications. OBJECTIVE The objective of this study was the identification of key genes and inhibitory drugs related to the cell proliferation and invasion of ameloblastoma using bioinformatic analysis. METHODS The H10KA_07_38 gene profile database was analyzed by Rstudio and ShinyGO Gene Ontology enrichment. String, Cytoscape-MCODE, and Kaplan-Meier plots were generated, which were subsequently validated by RT-qPCR relative expression and immunoexpression analyses. To propose specific inhibitory drugs, a bioinformatic search using Drug Gene Budger and DrugBank was performed. RESULTS A total of 204 significantly upregulated genes were identified. Gene ontology enrichment analysis identified four pathways related to cell proliferation and cell invasion. A total of 37 genes were involved in these pathways, and 11 genes showed an MCODE score of ≥0.4; however, only SLC6A3, SOX10, and LRP5 were negatively associated with overall survival (HR = 1.49 (p = 0.0072), HR = 1.55 (p = 0.0018), and HR = 1.38 (p = 0.025), respectively). The RT-qPCR results confirmed the significant differences in expression, with overexpression of >2 for SLC6A3 and SOX10. The immunoexpression analysis indicated positive LRP5 and SLC6A3 expression. The inhibitory drugs bioinformatically obtained for the above three genes were parthenolide and vorinostat. CONCLUSIONS We identify LRP5, SLC6A3, and SOX10 as potentially important genes related to cell proliferation and invasion in the pathogenesis of ameloblastomas, along with both parthenolide and vorinostat as inhibitory drugs that could be further investigated for the development of novel therapeutic approaches against ameloblastoma.
Collapse
Affiliation(s)
- Lorena Correa-Arzate
- Department of Oral Medicine and Pathology, Postgraduate Division, Dental School, National Autonomous University of Mexico, Mexico City 04510, Mexico (J.P.-R.); (C.P.M.-V.)
| | - Javier Portilla-Robertson
- Department of Oral Medicine and Pathology, Postgraduate Division, Dental School, National Autonomous University of Mexico, Mexico City 04510, Mexico (J.P.-R.); (C.P.M.-V.)
| | - Josué Orlando Ramírez-Jarquín
- Neurosciences Division, Cellular Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Luis Fernando Jacinto-Alemán
- Department of Oral Medicine and Pathology, Postgraduate Division, Dental School, National Autonomous University of Mexico, Mexico City 04510, Mexico (J.P.-R.); (C.P.M.-V.)
| | - Claudia Patricia Mejía-Velázquez
- Department of Oral Medicine and Pathology, Postgraduate Division, Dental School, National Autonomous University of Mexico, Mexico City 04510, Mexico (J.P.-R.); (C.P.M.-V.)
| | | | - Mariana Rodríguez-Vázquez
- Infectomic and Molecular Pathogenesis Department, CINVESTAV, National Polytechnic Institute, Mexico City 07738, Mexico;
| |
Collapse
|
3
|
Schwager SC, Young KM, Hapach LA, Carlson CM, Mosier JA, McArdle TJ, Wang W, Schunk C, Jayathilake AL, Bates ME, Bordeleau F, Antonyak MA, Cerione RA, Reinhart-King CA. Weakly migratory metastatic breast cancer cells activate fibroblasts via microvesicle-Tg2 to facilitate dissemination and metastasis. eLife 2022; 11:e74433. [PMID: 36475545 PMCID: PMC9767463 DOI: 10.7554/elife.74433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer cell migration is highly heterogeneous, and the migratory capability of cancer cells is thought to be an indicator of metastatic potential. It is becoming clear that a cancer cell does not have to be inherently migratory to metastasize, with weakly migratory cancer cells often found to be highly metastatic. However, the mechanism through which weakly migratory cells escape from the primary tumor remains unclear. Here, utilizing phenotypically sorted highly and weakly migratory human breast cancer cells, we demonstrate that weakly migratory metastatic cells disseminate from the primary tumor via communication with stromal cells. While highly migratory cells are capable of single cell migration, weakly migratory cells rely on cell-cell signaling with fibroblasts to escape the primary tumor. Weakly migratory cells release microvesicles rich in tissue transglutaminase 2 (Tg2) which activate murine fibroblasts and lead weakly migratory cancer cell migration in vitro. These microvesicles also induce tumor stiffening and fibroblast activation in vivo and enhance the metastasis of weakly migratory cells. Our results identify microvesicles and Tg2 as potential therapeutic targets for metastasis and reveal a novel aspect of the metastatic cascade in which weakly migratory cells release microvesicles which activate fibroblasts to enhance cancer cell dissemination.
Collapse
Affiliation(s)
- Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | - Katherine M Young
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | - Lauren A Hapach
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
- Department of Biomedical Engineering, Cornell UniversityIthacaUnited States
| | - Caroline M Carlson
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | - Jenna A Mosier
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | | | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | - Curtis Schunk
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | | | - Madison E Bates
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | - Francois Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology division), UniversitéLaval Cancer Research Center and Faculty of Medicine, Université LavalQuébeccCanada
| | - Marc A Antonyak
- Department of Biomedical Science, Cornell UniversityIthacaUnited States
| | - Richard A Cerione
- Department of Biomedical Science, Cornell UniversityIthacaUnited States
| | | |
Collapse
|
4
|
Bakkalci D, Zaki Abdullah Zubir A, Ali Khurram S, Pape J, Heikinheimo K, Fedele S, Cheema U. Modelling stromal compartments to recapitulate the ameloblastoma tumour microenvironment. Matrix Biol Plus 2022; 16:100125. [DOI: 10.1016/j.mbplus.2022.100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
|
5
|
Chairani E, Fuchigami T, Koyama H, Ono Y, Iijima M, Kishida M, Kibe T, Nakamura N, Kishida S. Intercellular signaling between ameloblastoma and osteoblasts. Biochem Biophys Rep 2022; 30:101233. [PMID: 35243014 PMCID: PMC8861578 DOI: 10.1016/j.bbrep.2022.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 11/30/2022] Open
Abstract
Ameloblastoma is an odontogenic tumor located in the bone jaw with clinical characteristics of extensive bone resorption. It is a locally invasive tumor with a high recurrence rate despite adequate surgical removal. In bone disease, tumors and other cells including osteoblasts, osteoclasts, and osteocytes in the bone microenvironment contribute to the pathogenesis of tumor growth. However, the effect of osteoblasts on ameloblastoma cells is not well-understood, and there has been limited research on interactions between them. This study investigated interactions between ameloblastoma cells and osteoblasts using a human ameloblastoma cell line (AM-3 ameloblastoma cells) and a murine pre-osteoblast cell line (MC3T3-E1 cells). We treated each cell type with the conditioned medium by the other cell type. We analyzed the effect on cytokine production by MC3T3-E1 cells and the production of MMPs by AM-3 cells. Treatment with AM-3-conditioned medium induced inflammatory cytokine production of IL-6, MCP-1, and RANTES from MC3T3-E1 cells. The use of an IL-1 receptor antagonist suppressed the production of these inflammatory cytokines by MC3T3-E1 cells stimulated with AM-3-conditioned medium. The MC3T3-E1-conditioned medium triggered the expression of MMP-2 from AM-3 cells. Furthermore, we have shown that the proliferation and migration activity of AM-3 cells were accelerated by MC3T3-E1 conditioned media. In conclusion, these intercellular signalings between ameloblastoma cells and osteoblasts may play multiple roles in the pathogenesis of ameloblastoma. Ameloblastoma conditioned medium induced IL-6, MCP-1 and RANTES production from osteoblast cell in IL-1 dependent manner. Unidentified factors from osteoblast conditioned medium induced MMP-2 production and stimulate proliferation and cellular motility of ameloblastoma cells.
Collapse
|
6
|
Bioengineering the ameloblastoma tumour to study its effect on bone nodule formation. Sci Rep 2021; 11:24088. [PMID: 34916549 PMCID: PMC8677805 DOI: 10.1038/s41598-021-03484-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/03/2021] [Indexed: 01/09/2023] Open
Abstract
Ameloblastoma is a benign, epithelial cancer of the jawbone, which causes bone resorption and disfigurement to patients affected. The interaction of ameloblastoma with its tumour stroma drives invasion and progression. We used stiff collagen matrices to engineer active bone forming stroma, to probe the interaction of ameloblastoma with its native tumour bone microenvironment. This bone-stroma was assessed by nano-CT, transmission electron microscopy (TEM), Raman spectroscopy and gene analysis. Furthermore, we investigated gene correlation between bone forming 3D bone stroma and ameloblastoma introduced 3D bone stroma. Ameloblastoma cells increased expression of MMP-2 and -9 and RANK temporally in 3D compared to 2D. Our 3D biomimetic model formed bone nodules of an average surface area of 0.1 mm2 and average height of 92.37 [Formula: see text] 7.96 μm over 21 days. We demonstrate a woven bone phenotype with distinct mineral and matrix components and increased expression of bone formation genes in our engineered bone. Introducing ameloblastoma to the bone stroma, completely inhibited bone formation, in a spatially specific manner. Multivariate gene analysis showed that ameloblastoma cells downregulate bone formation genes such as RUNX2. Through the development of a comprehensive bone stroma, we show that an ameloblastoma tumour mass prevents osteoblasts from forming new bone nodules and severely restricted the growth of existing bone nodules. We have identified potential pathways for this inhibition. More critically, we present novel findings on the interaction of stromal osteoblasts with ameloblastoma.
Collapse
|
7
|
Fuchigami T, Ono Y, Kishida S, Nakamura N. Molecular biological findings of ameloblastoma. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:27-32. [PMID: 33737992 PMCID: PMC7946346 DOI: 10.1016/j.jdsr.2020.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/17/2020] [Accepted: 12/13/2020] [Indexed: 01/10/2023] Open
Abstract
Ameloblastoma is benign odontogenic tumours that mainly occur in the jawbone. This tumour induces aggressive invasion into the surrounding bone and has a high recurrence rate after surgery. Therefore, mandibular resection is performed in many patients with this tumour, causing aesthetic and functional problems. It is necessary to develop a novel treatment strategy for ameloblastoma, but there are currently no innovative treatments. Although our understanding of the molecular biological mechanisms of ameloblastoma is still insufficient, there have been many recent reports of new molecular biological findings on ameloblastoma. Therefore, bioactive factors that have potential for novel therapeutic methods, such as molecular targeted therapy, have been discovered in ameloblastoma. In this review, we summarize the molecular biological findings of ameloblastoma reported over several decades, focusing on factors involved in invasion into surrounding tissues and disease-specific gene mutations. We also mention the effect of the interaction between tumour cells and stromal components in ameloblastoma on tumour development. Scientific field of dental Science: Oral surgery, Odontogenic tumor, Ameloblastoma.
Collapse
Affiliation(s)
- Takao Fuchigami
- Department of Oral and Maxillofacial Surgery, Field of Maxillofacial Rehabilitation Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Yusuke Ono
- Department of Oral and Maxillofacial Surgery, Field of Maxillofacial Rehabilitation Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Shosei Kishida
- Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Norifumi Nakamura
- Department of Oral and Maxillofacial Surgery, Field of Maxillofacial Rehabilitation Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| |
Collapse
|
8
|
Lima IFP, Matos FRD, Bernardino ÍDM, Santana ITS, Vieira WDA, Blumenberg C, Siqueira WL, Paranhos LR. RANK, RANKL, and OPG in Dentigerous Cyst, Odontogenic Keratocyst, and Ameloblastoma: A Meta-Analysis. Braz Dent J 2021; 32:16-25. [PMID: 33913997 DOI: 10.1590/0103-6440202103387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/12/2020] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to assess and compare RANK, RANKL, and OPG immunoexpression in dentigerous cyst, odontogenic keratocyst, and ameloblastoma. The protocol was registered in PROSPERO (CRD42018105543). Seven databases (Embase, Lilacs, LIVIVO, PubMed, Scopus, SciELO, and Web of Science) were the primary search sources and two databases (Open Grey and Open Thesis) partially captured the "grey literature". Only cross sectional studies were included. The JBI Checklist assessed the risk of bias. A meta-analysis with random effects model estimated the values from the OPG and RANKL ratio reported by the individual studies and respective 95% confidence intervals. The heterogeneity among studies was assessed with I2 statistics. Only nine studies met the inclusion criteria and were considered in the analyses. The studies were published from 2008 to 2018. Two studies presented low risk of bias, while seven studies presented moderate risk. The meta-analysis showed the highest OPG>RANKL ratio for dentigerous cyst (ES=43.3%; 95% CI=14.3-74.8) and odontogenic keratocyst (ES=36.8%; 95% CI=18.8-56.7). In contrast, the highest OPG<RANKL ratio was found for ameloblastoma (ES=73.4%; 95% CI=55.4-88.4) and it was higher in the stromal region compared to the odontogenic epithelial region. The results may explain the aggressive potential of ameloblastoma from the higher OPG<RANKL ratio in this tumor, while it was lower for dentigerous cyst and odontogenic keratocyst.
Collapse
Affiliation(s)
- Igor Felipe Pereira Lima
- Department of Oral Pathology, School of Dentistry, UFRGS - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | - Walbert de Andrade Vieira
- Department of Restorative Dentistry, Endodontics Division, School of Dentistry of Piracicaba, UNICAMP - Universidade Estadual de Campinas, Piracicaba, SP, Brazil
| | - Cauane Blumenberg
- Department of Social Medicine, UFPEL - Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Luiz Renato Paranhos
- Department of Preventive and Community Dentistry, UFU - Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
9
|
Ishikawa T, Terashima J, Sasaki D, Shimoyama Y, Yaegashi T, Sasaki M. Establishment and use of a three-dimensional ameloblastoma culture model to study the effects of butyric acid on the transcription of growth factors and laminin β3. Arch Oral Biol 2020; 118:104845. [PMID: 32712305 DOI: 10.1016/j.archoralbio.2020.104845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE This study aimed to establish a three-dimensional (3D) culture method for ameloblastoma cell lines and to use the model to investigate the effect of butyric acid (BA), a periodontopathic bacterial metabolite, on the malignant transformation of ameloblastoma. DESIGN Three ameloblastoma cell lines (HAM1, HAM2, and HAM3) established from the same tumor were used in this study. A 3D culture model was established in low absorption dishes and was incubated for 48 h. The effects of BA on the transcription of growth factors and LMβ3 were examined by real-time reverse transcription PCR. Various BA concentrations (0.02, 0.2, 2, and 20 mM) were used to stimulate the cell cultures for 6 and 12 h. RESULTS A 3D culture model was established. Gene expression levels of epithelial growth factor (EGF), transforming growth factor beta 1 (TGFβ1), and laminin β3 (LMβ3) were higher in 3D than in 2D cultures. Cell morphology in 3D cultures did not change, while the transcription levels of EGF, TGFβ1, and LMβ3 were upregulated by BA in all cell lines. CONCLUSION The 3D culture model is more responsive to BA than the 2D culture model, and there is a possibility that the malignancy and progression of ameloblastoma via laminin 332 (LM332) is mediated by BA.
Collapse
Affiliation(s)
- Taichi Ishikawa
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan.
| | - Jun Terashima
- Division of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan
| | - Daisuke Sasaki
- Division of Periodontology, Department of Conservative Dentistry, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka, Iwate, 020-8505, Japan
| | - Yu Shimoyama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan
| | - Takashi Yaegashi
- Division of Periodontology, Department of Conservative Dentistry, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka, Iwate, 020-8505, Japan
| | - Minoru Sasaki
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan
| |
Collapse
|
10
|
Chacham M, Almoznino G, Zlotogorski-Hurvitz A, Buchner A, Vered M. Expression of stem cell markers in stroma of odontogenic cysts and tumors. J Oral Pathol Med 2020; 49:1068-1077. [PMID: 32840915 DOI: 10.1111/jop.13102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The stroma of odontogenic cysts/tumors may confer them differential biological behavior. We aimed to investigate the immunoexpression of stem cell markers (Nanog, SOX2, Oct4, and CD34) in the stroma of odontogenic cysts and tumors. CD34 was investigated exclusively as a marker for stromal fibroblast/fibrocyte cells (CD34 + SFCs). CD34 + SFCs were also investigated ultrastructurally. METHODS Ten cases each of primary odontogenic keratocyst (OKC), recurrent OKC, dentigerous cyst, ameloblastoma, unicystic ameloblastoma, odontogenic myxoma, and 7 syndromic OKC were included. Results were represented as the mean score (%) of positive cells/field for each marker for each study group. For CD34 + SFCs, results are presented as the mean number of cells/field for each type of lesion. Kruskal-Wallis and Spearman's correlation statistical tests were used; significance was set at P < .05. RESULTS All markers except Oct4 were expressed by stromal cells in all lesions. Expression of SOX2 was significantly higher in tumors than in cysts (P < .05). CD34 + SFCs were more frequent in cysts than in tumors. Ultrastructurally, CD34 + SFCs were identified for the first time in odontogenic lesions and showed characteristic bipolar/dendritic morphology. CONCLUSION Among examined stromal stem cell markers, only SOX2 distinguished tumors from cysts. CD34 + SFCs may also contribute to the biological behavior of odontogenic lesions.
Collapse
Affiliation(s)
- Moran Chacham
- Department of Oral & Maxillofacial Surgery, Soroka Medical Center, Beer Sheva, Israel
| | - Galit Almoznino
- Big Biomedical Data Research Laboratory, Hebrew University, Hadassah School of Dental Medicine, Jerusalem, Israel.,Department of Oral Medicine, Sedation & Maxillofacial Imaging, Hebrew University, Hadassah School of Dentistry, Jerusalem, Israel
| | - Ayelet Zlotogorski-Hurvitz
- Department of Oral Pathology, Oral Medicine & Maxillofacial Imaging, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Oral & Maxillofacial Surgery, Rabin Medical Center, Petah Tikva, Israel
| | - Amos Buchner
- Department of Oral Pathology, Oral Medicine & Maxillofacial Imaging, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marilena Vered
- Department of Oral Pathology, Oral Medicine & Maxillofacial Imaging, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
11
|
Fuchigami T, Suzuki H, Yoshimura T, Kibe T, Chairani E, Kiyono T, Kishida M, Kishida S, Nakamura N. Ameloblastoma cell lines derived from different subtypes demonstrate distinct developmental patterns in a novel animal experimental model. J Appl Oral Sci 2020; 28:e20190558. [PMID: 32348439 PMCID: PMC7185982 DOI: 10.1590/1678-7757-2019-0558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/11/2019] [Indexed: 11/22/2022] Open
Abstract
Objective Ameloblastoma is a representative odontogenic tumor comprising several characteristic invasive forms, and its pathophysiology has not been sufficiently elucidated. A stable animal experimental model using immortalized cell lines is crucial to explain the factors causing differences among the subtypes of ameloblastoma, but this model has not yet been disclosed. In this study, a novel animal experimental model has been established, using immortalized human ameloblastoma-derived cell lines. Methodology Ameloblastoma cells suspended in Matrigel were subcutaneously transplanted into the heads of immunodeficient mice. Two immortalized human ameloblastoma cell lines were used: AM-1 cells derived from the plexiform type and AM-3 cells derived from the follicular type. The tissues were evaluated histologically 30, 60, and 90 days after transplantation. Results Tumor masses formed in all transplanted mice. In addition, the tumors formed in each group transplanted with different ameloblastoma cells were histologically distinct: the tumors in the group transplanted with AM-1 cells were similar to the plexiform type, and those in the group transplanted with AM-3-cells were similar to the follicular type. Conclusions A novel, stable animal experimental model of ameloblastoma was established using two cell lines derived from different subtypes of the tumor. This model can help clarify its pathophysiology and hasten the development of new ameloblastoma treatment strategies.
Collapse
Affiliation(s)
- Takao Fuchigami
- Department of Oral and Maxillofacial Surgery, School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hajime Suzuki
- Department of Oral and Maxillofacial Surgery, School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takuya Yoshimura
- Department of Oral and Maxillofacial Surgery, School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Toshiro Kibe
- Department of Oral and Maxillofacial Surgery, School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Elissa Chairani
- Department of Oral and Maxillofacial Surgery, School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tohru Kiyono
- National Cancer Center Research Institute, Tokyo, Japan
| | - Michiko Kishida
- Department of Biochemistry and Genetics, School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shosei Kishida
- Department of Biochemistry and Genetics, School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Norifumi Nakamura
- Department of Oral and Maxillofacial Surgery, School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
12
|
Han P, Liu J, Lei Y, Lin Z, Tian D, Yan W. Netrin-1 promotes the collective cell migration of liver cancer cells in a 3D cell culture model. J Physiol Biochem 2019; 75:489-498. [PMID: 31407237 DOI: 10.1007/s13105-019-00701-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/04/2019] [Indexed: 01/01/2023]
Abstract
Collective cell migration plays an important role in embryonic development, wound healing, and cancer metastasis. We aimed to investigate the expression, role, and mechanism of Netrin-1 in collective cell migration using a3D culture model. An immunohistochemical study showed that certain cells invaded surrounding tissue by collective migration and that Netrin-1 expression in these cells was increased, especially at the invasive front. In the 3D culture model, collective cell migration was clearly observed, as leader cells were followed by cells migrating along a canal. N-cadherin-mediated cell junctions were observed in collective cell migration, and Netrin-1 expression was elevated in these cells. Netrin-1 did not affect the expression of N-cadherin in 2D-cultured cells; however, in 3D culture, the overexpression of Netrin-1 increased N-cadherin and promoted the collective migration of Huh7 cells, while the knockdown of Netrin-1 decreased N-cadherin and inhibited collective migration in SK-Hep-1 cells. Interestingly, N-cadherin knockdown in Huh7 cells significantly diminished Netrin-1-promoted collective cell migration, while the overexpression of N-cadherin restored collective migration in Netrin-1-knockdown SK-Hep1 cells. These results suggest that Netrin-1 enhances N-cadherin junctions to promote liver cancer cell collective migration in 3D cell culture and may subsequently increase liver cancer metastasis.
Collapse
Affiliation(s)
- Ping Han
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Jingmei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Zhuoying Lin
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
13
|
Kim JY, Kim J, Bazarsad S, Cha IH, Cho SW, Kim J. Bcl-2 is a prognostic marker and its silencing inhibits recurrence in ameloblastomas. Oral Dis 2019; 25:1158-1168. [PMID: 30801855 DOI: 10.1111/odi.13070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Ameloblastomas are the most common odontogenic epithelial tumors with high recurrence rate. The aim of this study was to identify apoptosis-related genes with recurrence of ameloblastomas and to evaluate its feasibility as a prognostic marker and as a target molecule preventing from recurrence. MATERIALS AND METHODS Public microarray data were analyzed. To evaluate their expression in ameloblastoma patients, immunohistochemical staining was performed in 89 human ameloblastoma tissues. Quantitative PCR was performed by use of ameloblastoma cell line (AM-1). Fluorescence activated cell sorting analysis and western blotting were conducted following transfection with siRNA. Further, AM-1 cells were implanted in the renal subcapsular layer of immunodeficient mice. RESULTS Microarray data analysis revealed that osteoprotegerin (OPG) and B-cell lymphoma 2 (Bcl-2) were the two most upregulated genes in ameloblastoma. Only Bcl-2 expression was significantly (p = 0.020) associated with recurrence in conservative treatment group (n = 17) among 89 patients. Silencing of Bcl-2 increased apoptosis in AM-1 cells in vitro and inhibited tumor nodule formation of AM-1 cells in vivo. CONCLUSION These results suggest that Bcl-2 expression is a useful biomarker to predict recurrence of ameloblastomas, and as a therapeutic target molecule to prevent recurrence of ameloblastoma.
Collapse
Affiliation(s)
- Jue Young Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Seoul, Republic of Korea
| | - Jinsun Kim
- Division of Anatomy and Developmental Biology, Department of Oral Biology, Seoul, Republic of Korea
| | - Shadavlonjid Bazarsad
- Department of Oral Pathology, Oral Cancer Research Institute, Seoul, Republic of Korea
| | - In-Ho Cha
- Department of Oral and Maxillofacial Surgery, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sung-Won Cho
- Division of Anatomy and Developmental Biology, Department of Oral Biology, Seoul, Republic of Korea
| | - Jin Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Seoul, Republic of Korea
| |
Collapse
|
14
|
Hwang PY, Brenot A, King AC, Longmore GD, George SC. Randomly Distributed K14 + Breast Tumor Cells Polarize to the Leading Edge and Guide Collective Migration in Response to Chemical and Mechanical Environmental Cues. Cancer Res 2019; 79:1899-1912. [PMID: 30862718 DOI: 10.1158/0008-5472.can-18-2828] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/27/2018] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Collective cell migration is an adaptive, coordinated interactive process involving cell-cell and cell-extracellular matrix (ECM) microenvironmental interactions. A critical aspect of collective migration is the sensing and establishment of directional movement. It has been proposed that a subgroup of cells known as leader cells localize at the front edge of a collectively migrating cluster and are responsible for directing migration. However, it is unknown how and when leader cells arrive at the front edge and what environmental cues dictate leader cell development and behavior. Here, we addressed these questions by combining a microfluidic device design that mimics multiple tumor microenvironmental cues concurrently with biologically relevant primary, heterogeneous tumor cell organoids. Prior to migration, breast tumor leader cells (K14+) were present throughout a tumor organoid and migrated (polarized) to the leading edge in response to biochemical and biomechanical cues. Impairment of either CXCR4 (biochemical responsive) or the collagen receptor DDR2 (biomechanical responsive) abrogated polarization of leader cells and directed collective migration. This work demonstrates that K14+ leader cells utilize both chemical and mechanical cues from the microenvironment to polarize to the leading edge of collectively migrating tumors. SIGNIFICANCE: These findings demonstrate that pre-existing, randomly distributed leader cells within primary tumor organoids use CXCR4 and DDR2 to polarize to the leading edge and direct migration.
Collapse
Affiliation(s)
- Priscilla Y Hwang
- Department of Medicine (Oncology), Washington University in St. Louis, St. Louis, Missouri.,ICCE Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Audrey Brenot
- Department of Medicine (Oncology), Washington University in St. Louis, St. Louis, Missouri.,ICCE Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Ashley C King
- Department of Medicine (Oncology), Washington University in St. Louis, St. Louis, Missouri.,ICCE Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Gregory D Longmore
- Department of Medicine (Oncology), Washington University in St. Louis, St. Louis, Missouri. .,ICCE Institute, Washington University in St. Louis, St. Louis, Missouri.,Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, California.
| |
Collapse
|
15
|
Pierzchalska M, Panek M, Grabacka M. The migration and fusion events related to ROCK activity strongly influence the morphology of chicken embryo intestinal organoids. PROTOPLASMA 2019; 256:575-581. [PMID: 30327884 PMCID: PMC6514079 DOI: 10.1007/s00709-018-1312-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
The method of organoid culture has become a tool widely used in gastrointestinal research, but so far, the migration of organoids derived from gut epithelium and formed in 3D Matrigel matrix has not been reported and studied. The intestinal epithelial tissue derived from 19-day-old chicken embryo was cultured in Matrigel and the dynamic properties of the forming organoids were analyzed by time-lapse image analysis. It was observed that about one in ten organoids actively moved through the matrix, at a speed of 10-20 μm/h. Moreover, rotation was observed in the majority of organoids that did not migrate long distances. The fusion events took place between organoids, which collided during the movement or growth. In our previous paper, we showed that the presence of Toll-like receptor 4 ligand, Escherichia coli lipopolysaccharide (LPS, 1 μg/ml), increased the mean organoid diameter. Here, we confirm this result and demonstrate that the Rho-associated protein kinase (ROCK) inhibitor Y-27632 (10 μM) did not completely abolish organoid migration, but prevented the fusion events, in both LPS-treated and untreated cultures. In consequence, in the presence of Y-27632, the differences between cultures incubated with and without LPS were not visible. We conclude that migration and fusion of organoids may influence their morphology and suggest that these phenomena should be taken into account during the design of experimental settings.
Collapse
Affiliation(s)
- Małgorzata Pierzchalska
- Department of Food Biotechnology, Faculty of Food Technology, The University of Agriculture in Kraków, Balicka 122, 30-149, Kraków, Poland.
| | - Małgorzata Panek
- Department of Food Biotechnology, Faculty of Food Technology, The University of Agriculture in Kraków, Balicka 122, 30-149, Kraków, Poland
| | - Maja Grabacka
- Department of Food Biotechnology, Faculty of Food Technology, The University of Agriculture in Kraków, Balicka 122, 30-149, Kraków, Poland
| |
Collapse
|