1
|
Wei B, Zheng J, Chai J, Huang J, Duan H, Han S, Yang X, Zhang W, Hu F, Qu Y, Liu X, Liu T, Wu Y, Chi Y. Metabolomic and proteomic profiling of a burn-hemorrhagic shock swine model reveals a metabolomic signature associated with fatal outcomes. Eur J Med Res 2025; 30:10. [PMID: 39773520 PMCID: PMC11706163 DOI: 10.1186/s40001-024-02245-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Burn-hemorrhagic shock combined injury, a severe condition causing complex stress responses and metabolic disturbances that significantly affect clinical outcomes in both military and civilian settings, was modeled in swine to investigate the associated metabolomic and proteomic changes and identify potential biomarkers for disease prognosis. METHODS Eight clean-grade adult male Landrace pigs (4-5 months, average weight 60-70 kg) were used to model burn-hemorrhagic shock combined injury. Serum samples collected at 0 h and 2 h post-injury were analyzed using metabolomic and proteomic measurements. The metabolomic and proteomic data were processed through partial least squares-discriminant analysis (PLS-DA) and the KEGG enrichment etc. Furthermore, the integrate analysis of the metabolomic and proteomic data was generalized by canonical correlation discriminant analysis, and the correlation between metabolites and mortality of the swine model was predicted using a multiple linear regression model by Pearson analysis. RESULTS PLS-DA revealed a global shift in each of the metabolomic and proteomic profiles following injury. The levels of 87 signature metabolites including various types of amino acids, fatty acids and acyl-carnitines of different lengths, and many metabolites in the gluconeogenesis, glycolysis, and tricarboxylic acid (TCA) cycle are generally increased (P < 0.05) after injury and can be used as biomarkers. Pathways related to amino acids metabolism and TCA cycle were significantly enriched (P < 0.01). In proteome analysis, we found dramatically altered (P < 0.05) levels of matrix and red blood cell-related proteins, such as type I collagen and hemoglobin. Most importantly, we found that the markedly elevated (P < 0.01) succinic acid, glutaric acid, and malic acid are closely associated (r = 0.863, 0.861, and 0.821, respectively) with injury severity by Pearson analysis, and can predict mortality using a multiple linear regression model. CONCLUSIONS The study provides compelling observations that burn-shock swine model undergoes dramatic changes in the acute phase and present a valuable panel for clinical use of prognosis.
Collapse
Affiliation(s)
- Bin Wei
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
- The First Department of Surgery, Chinese People's Armed Police Force Hospital of Beijing, Beijing, 100027, China
| | - Jinguang Zheng
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Jiake Chai
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China.
| | - Jianxiang Huang
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Hongjie Duan
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Shaofang Han
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Xiaolin Yang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Wenjia Zhang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Fangchao Hu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Yirui Qu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Xiangyu Liu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Tian Liu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Yushou Wu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Yunfei Chi
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China.
| |
Collapse
|
2
|
Morinaga H, Sugawara Y, Kitagawa Y, Chen J, Yasuda N, Ogata H, Yamaguchi Y, Kaneki M, Jeevendra Martyn JA, Yasuhara S. Mito-kaede photoactivation and chase experiment for mitophagy: optimizing flux measurement via fluid exchange system. Biotechniques 2024; 76:381-393. [PMID: 39258780 DOI: 10.1080/07366205.2024.2372955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/18/2024] [Indexed: 09/12/2024] Open
Abstract
Modulating autophagy and mitophagy, vital cellular quality control systems, offer therapeutic potential for critical illnesses. However, limited drug screening options hinder progress. We present a novel assay using the photoswitchable fluorescent reporter, mito-Kaede, to quantify mitophagy flux. Mito-Kaede's superior UV-induced photoconversion and brightness post-conversion make it ideal for prolonged mitochondrial dynamics tracking. Its specificity in responding to mitophagy, confirmed by parkin-knockout cells, adds value. When coupled with a custom fluid exchange system, enabling efficient medium changes, precise mitophagy observations become feasible. This mitophagy assay, alongside our methodological insights, can decipher mitophagy's role in pathology and supports drug screening efforts.
Collapse
Affiliation(s)
- Hiroyuki Morinaga
- Department of Anesthesiology, Critical Care & Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, & Harvard Medical School
- Department of Trauma & Critical Care Medicine, Kyorin University,Faculty of Medicine
| | - Yoh Sugawara
- Department of Anesthesiology, Critical Care & Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, & Harvard Medical School
- Department of Anesthesiology & Critical Care Medicine, Yokohama City University, Graduate School of Medicine
| | - Yoshinori Kitagawa
- Department of Anesthesiology, Critical Care & Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, & Harvard Medical School
| | - Jingyuan Chen
- Department of Anesthesiology, Critical Care & Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, & Harvard Medical School
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, 510080
| | | | - Hiroki Ogata
- Department of Anesthesiology, Critical Care & Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, & Harvard Medical School
| | - Yoshihiro Yamaguchi
- Department of Trauma & Critical Care Medicine, Kyorin University,Faculty of Medicine
| | - Masao Kaneki
- Department of Anesthesiology, Critical Care & Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, & Harvard Medical School
| | - Joseph A Jeevendra Martyn
- Department of Anesthesiology, Critical Care & Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, & Harvard Medical School
| | - Shingo Yasuhara
- Department of Anesthesiology, Critical Care & Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, & Harvard Medical School
| |
Collapse
|
3
|
Hernandez M, Recalde S, Bezunartea J, Moreno-Orduña M, Belza I, Chas-Prat A, Perugini E, Garcia-Layana A, Fernández-Robredo P. The Scavenging Activity of Coenzyme Q 10 Plus a Nutritional Complex on Human Retinal Pigment Epithelial Cells. Int J Mol Sci 2024; 25:8070. [PMID: 39125641 PMCID: PMC11311961 DOI: 10.3390/ijms25158070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Age-related macular degeneration (AMD) and diabetic retinopathy (DR) are common retinal diseases responsible for most blindness in working-age and elderly populations. Oxidative stress and mitochondrial dysfunction play roles in these pathogenesis, and new therapies counteracting these contributors could be of great interest. Some molecules, like coenzyme Q10 (CoQ10), are considered beneficial to maintain mitochondrial homeostasis and contribute to the prevention of cellular apoptosis. We investigated the impact of adding CoQ10 (Q) to a nutritional antioxidant complex (Nutrof Total®; N) on the mitochondrial status and apoptosis in an in vitro hydrogen peroxide (H2O2)-induced oxidative stress model in human retinal pigment epithelium (RPE) cells. H2O2 significantly increased 8-OHdG levels (p < 0.05), caspase-3 (p < 0.0001) and TUNEL intensity (p < 0.01), and RANTES (p < 0.05), caspase-1 (p < 0.05), superoxide (p < 0.05), and DRP-1 (p < 0.05) levels, and also decreased IL1β, SOD2, and CAT gene expression (p < 0.05) vs. control. Remarkably, Q showed a significant recovery in IL1β gene expression, TUNEL, TNFα, caspase-1, and JC-1 (p < 0.05) vs. H2O2, and NQ showed a synergist effect in caspase-3 (p < 0.01), TUNEL (p < 0.0001), mtDNA, and DRP-1 (p < 0.05). Our results showed that CoQ10 supplementation is effective in restoring/preventing apoptosis and mitochondrial stress-related damage, suggesting that it could be a valid strategy in degenerative processes such as AMD or DR.
Collapse
Affiliation(s)
- Maria Hernandez
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, Navarra Institute for Health Research, IdiSNA, (RICORS-TERAV), 31008 Pamplona, Spain; (M.H.); (S.R.); (J.B.); (A.C.-P.); (A.G.-L.)
| | - Sergio Recalde
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, Navarra Institute for Health Research, IdiSNA, (RICORS-TERAV), 31008 Pamplona, Spain; (M.H.); (S.R.); (J.B.); (A.C.-P.); (A.G.-L.)
| | - Jaione Bezunartea
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, Navarra Institute for Health Research, IdiSNA, (RICORS-TERAV), 31008 Pamplona, Spain; (M.H.); (S.R.); (J.B.); (A.C.-P.); (A.G.-L.)
| | - Maite Moreno-Orduña
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.M.-O.); (I.B.); (E.P.)
| | - Idoia Belza
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.M.-O.); (I.B.); (E.P.)
| | - Ainara Chas-Prat
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, Navarra Institute for Health Research, IdiSNA, (RICORS-TERAV), 31008 Pamplona, Spain; (M.H.); (S.R.); (J.B.); (A.C.-P.); (A.G.-L.)
| | - Elena Perugini
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.M.-O.); (I.B.); (E.P.)
| | - Alfredo Garcia-Layana
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, Navarra Institute for Health Research, IdiSNA, (RICORS-TERAV), 31008 Pamplona, Spain; (M.H.); (S.R.); (J.B.); (A.C.-P.); (A.G.-L.)
| | - Patricia Fernández-Robredo
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, Navarra Institute for Health Research, IdiSNA, (RICORS-TERAV), 31008 Pamplona, Spain; (M.H.); (S.R.); (J.B.); (A.C.-P.); (A.G.-L.)
| |
Collapse
|
4
|
Kiani Z, Khorsand N, Beigi F, Askari G, Sharma M, Bagherniya M. Coenzyme Q10 supplementation in burn patients: a double-blind placebo-controlled randomized clinical trial. Trials 2024; 25:160. [PMID: 38431600 PMCID: PMC10908042 DOI: 10.1186/s13063-024-08006-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Burn injuries are important medical problems that, aside from skin damage, cause a systemic response including inflammation, oxidative stress, endocrine disorders, immune response, and hypermetabolic and catabolic responses which affect all the organs in the body. The aim of this study was to determine the effect of coenzyme Q10 (CoQ10) supplementation on inflammation, oxidative stress, and clinical outcomes in burn patients. METHODS In a double-blind placebo-controlled randomized clinical trial, 60 burn patients were randomly assigned to receive 100 mg CoQ10 three times a day (total 300 mg/day) or a placebo for 10 days. Inflammatory markers including erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), oxidative stress markers including total antioxidant capacity (TAC), malondialdehyde (MDA) and superoxide dismutase (SOD) activity, fasting blood glucose (FBG), blood urea nitrogen (BUN), creatinine, white blood cells (WBC), and body temperature were assessed as primary outcomes and albumin, prothrombin time (PT), partial thromboplastin time (PTT), international normalized ratio (INR), other hematological parameters, blood pressure, O2 saturation, ICU duration, and 28-mortality rate were assessed as secondary outcomes. RESULTS Fifty-two participants completed the trial. CRP and ESR levels were not significantly different between CoQ10 and placebo groups at the end of the study (P = 0.550 and P = 0.306, respectively). No significant differences between groups were observed for TAC (P = 0.865), MDA (P = 0.692), and SOD activity (P = 0.633) as well. Administration of CoQ10 resulted in a significant increase in albumin levels compared to placebo (P = 0.031). There was no statistically significant difference between the two groups in other measured outcomes (P > 0.05). CONCLUSION Results showed that in patients with burn injury, CoQ10 administration had no effect on inflammatory markers and oxidative stress, although serum albumin levels were improved after supplementation. Further studies with albumin as the primary outcome are needed to confirm this finding.
Collapse
Affiliation(s)
- Zahra Kiani
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nadereh Khorsand
- Department of Internal Medicine, Imam Musa Kazem Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Beigi
- Pharmaceutical Biotechnology Department, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Science, Isfahan, Iran
- Research and Development Unit, Imam Muss Kazim Hospital, Isfahan University of Medical Science, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Manoj Sharma
- Department of Social and Behavioral Health, School of Public Health, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Tan X, Yang X, Xu X, Peng Y, Li X, Deng Y, Zhang X, Qiu W, Wu D, Ruan Y, Zhi C. Investigation of anti-diabetic effect of a novel coenzyme Q10 derivative. Front Chem 2023; 11:1280999. [PMID: 37927560 PMCID: PMC10620959 DOI: 10.3389/fchem.2023.1280999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction: The rising incidence of type 2 diabetes has seriously affected international public health. The search for more drugs that can effectively treat diabetes has become a cutting-edge trend in research. Coenzyme Q10 (CoQ10) has attracted much attention in the last decade due to its wide range of biological activities. Many researchers have explored the clinical effects of CoQ10 in patients with type 2 diabetes. However, CoQ10 has low bio-availability due to its high lipophilicity. Therefore, we have structurally optimized CoQ10 in an attempt to exploit the potential of its pharmacological activity. Methods: A novel coenzyme Q10 derivative (L-50) was designed and synthesized by introducing a group containing bromine atom and hydroxyl at the terminal of coenzyme Q10 (CoQ10), and the antidiabetic effect of L-50 was investigated by cellular assays and animal experiments. Results: Cytotoxicity results showed that L-50 was comparatively low toxicity to HepG2 cells. Hypoglycemic assays indicated that L-50 could increase glucose uptake in IR-HepG2 cells, with significantly enhanced hypoglycemic capacity compared to the CoQ10. In addition, L-50 improved cellular utilization of glucose through reduction of reactive oxygen species (ROS) accumulated in insulin-resistant HepG2 cells (IR-HepG2) and regulation of JNK/AKT/GSK3β signaling pathway, resulting in hypoglycemic effects. Furthermore, the animal experiments demonstrated that L-50 could restore the body weight of HFD/STZ mice. Notably, the findings suggested that L-50 could improve glycemic and lipid metabolism in HFD/STZ mice. Moreover, L-50 could increase fasting insulin levels (FINS) in HFD/STZ mice, leading to a decrease in fasting blood glucose (FBG) and hepatic glycogen. Furthermore, L-50 could recover triglycerides (TG), total cholesterol (T-CHO), lipoprotein (LDL-C) and high-density lipoprotein (HDL-C) levels in HFD/STZ mice. Discussion: The addition of a bromine atom and a hydroxyl group to CoQ10 could enhance its anti-diabetic activity. It is anticipated that L-50 could be a promising new agent for T2DM.
Collapse
Affiliation(s)
- Xiaojun Tan
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xinyi Yang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xun Xu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yuwei Peng
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xin Li
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yongxing Deng
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xueyang Zhang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Wenlong Qiu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Dudu Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yongdui Ruan
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
| | - Chen Zhi
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
6
|
Wang X, Ouyang L, Chen W, Cao Y, Zhang L. Efficient expansion and delayed senescence of hUC-MSCs by microcarrier-bioreactor system. Stem Cell Res Ther 2023; 14:284. [PMID: 37794520 PMCID: PMC10552362 DOI: 10.1186/s13287-023-03514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Human umbilical cord mesenchymal stem cells (hUC-MSCs) are widely used in cell therapy due to their robust immunomodulatory and tissue regenerative capabilities. Currently, the predominant method for obtaining hUC-MSCs for clinical use is through planar culture expansion, which presents several limitations. Specifically, continuous cell passaging can lead to cellular aging, susceptibility to contamination, and an absence of process monitoring and control, among other limitations. To overcome these challenges, the technology of microcarrier-bioreactor culture was developed with the aim of ensuring the therapeutic efficacy of cells while enabling large-scale expansion to meet clinical requirements. However, there is still a knowledge gap regarding the comparison of biological differences in cells obtained through different culture methods. METHODS We developed a culture process for hUC-MSCs using self-made microcarrier and stirred bioreactor. This study systematically compares the biological properties of hUC-MSCs amplified through planar culture and microcarrier-bioreactor systems. Additionally, RNA-seq was employed to compare the differences in gene expression profiles between the two cultures, facilitating the identification of pathways and genes associated with cell aging. RESULTS The findings revealed that hUC-MSCs expanded on microcarriers exhibited a lower degree of cellular aging compared to those expanded through planar culture. Additionally, these microcarrier-expanded hUC-MSCs showed an enhanced proliferation capacity and a reduced number of cells in the cell cycle retardation period. Moreover, bioreactor-cultured cells differ significantly from planar cultures in the expression of genes associated with the cytoskeleton and extracellular matrix. CONCLUSIONS The results of this study demonstrate that our microcarrier-bioreactor culture method enhances the proliferation efficiency of hUC-MSCs. Moreover, this culture method exhibits the potential to delay the process of cell aging while preserving the essential stem cell properties of hUC-MSCs.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Wenxia Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yulin Cao
- Beijing Tang Yi Hui Kang Biomedical Technology Co., LTD, Beijing, 100032, People's Republic of China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
7
|
Ye J, Hu X, Wang Z, Li R, Gan L, Zhang M, Wang T. The role of mtDAMPs in the trauma-induced systemic inflammatory response syndrome. Front Immunol 2023; 14:1164187. [PMID: 37533869 PMCID: PMC10391641 DOI: 10.3389/fimmu.2023.1164187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is a non-specific exaggerated defense response caused by infectious or non-infectious stressors such as trauma, burn, surgery, ischemia and reperfusion, and malignancy, which can eventually lead to an uncontrolled inflammatory response. In addition to the early mortality due to the "first hits" after trauma, the trauma-induced SIRS and multiple organ dysfunction syndrome (MODS) are the main reasons for the poor prognosis of trauma patients as "second hits". Unlike infection-induced SIRS caused by pathogen-associated molecular patterns (PAMPs), trauma-induced SIRS is mainly mediated by damage-associated molecular patterns (DAMPs) including mitochondrial DAMPs (mtDAMPs). MtDAMPs released after trauma-induced mitochondrial injury, including mitochondrial DNA (mtDNA) and mitochondrial formyl peptides (mtFPs), can activate inflammatory response through multiple inflammatory signaling pathways. This review summarizes the role and mechanism of mtDAMPs in the occurrence and development of trauma-induced SIRS.
Collapse
Affiliation(s)
- Jingjing Ye
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Xiaodan Hu
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
- School of Basic Medicine, Peking University, Beijing, China
| | - Zhiwei Wang
- Orthopedics Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Li
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Lebin Gan
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Mengwei Zhang
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Tianbing Wang
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| |
Collapse
|
8
|
Bagheri S, Haddadi R, Saki S, Kourosh-Arami M, Rashno M, Mojaver A, Komaki A. Neuroprotective effects of coenzyme Q10 on neurological diseases: a review article. Front Neurosci 2023; 17:1188839. [PMID: 37424991 PMCID: PMC10326389 DOI: 10.3389/fnins.2023.1188839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Neurological disorders affect the nervous system. Biochemical, structural, or electrical abnormalities in the spinal cord, brain, or other nerves lead to different symptoms, including muscle weakness, paralysis, poor coordination, seizures, loss of sensation, and pain. There are many recognized neurological diseases, like epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), stroke, autosomal recessive cerebellar ataxia 2 (ARCA2), Leber's hereditary optic neuropathy (LHON), and spinocerebellar ataxia autosomal recessive 9 (SCAR9). Different agents, such as coenzyme Q10 (CoQ10), exert neuroprotective effects against neuronal damage. Online databases, such as Scopus, Google Scholar, Web of Science, and PubMed/MEDLINE were systematically searched until December 2020 using keywords, including review, neurological disorders, and CoQ10. CoQ10 is endogenously produced in the body and also can be found in supplements or foods. CoQ10 has antioxidant and anti-inflammatory effects and plays a role in energy production and mitochondria stabilization, which are mechanisms, by which CoQ10 exerts its neuroprotective effects. Thus, in this review, we discussed the association between CoQ10 and neurological diseases, including AD, depression, MS, epilepsy, PD, LHON, ARCA2, SCAR9, and stroke. In addition, new therapeutic targets were introduced for the next drug discoveries.
Collapse
Affiliation(s)
- Shokufeh Bagheri
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasool Haddadi
- Department of Pharmacology, School of Pharmacy, Hamadan University of Medical Science, Hamadan, Iran
| | - Sahar Saki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran
- Student Research Committee, Asadabad School of Medical Sciences, Asadabad, Iran
| | - Ali Mojaver
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
9
|
Yu T, Wang L, Zhang L, Deuster PA. Mitochondrial Fission as a Therapeutic Target for Metabolic Diseases: Insights into Antioxidant Strategies. Antioxidants (Basel) 2023; 12:1163. [PMID: 37371893 DOI: 10.3390/antiox12061163] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondrial fission is a crucial process in maintaining metabolic homeostasis in normal physiology and under conditions of stress. Its dysregulation has been associated with several metabolic diseases, including, but not limited to, obesity, type 2 diabetes (T2DM), and cardiovascular diseases. Reactive oxygen species (ROS) serve a vital role in the genesis of these conditions, and mitochondria are both the main sites of ROS production and the primary targets of ROS. In this review, we explore the physiological and pathological roles of mitochondrial fission, its regulation by dynamin-related protein 1 (Drp1), and the interplay between ROS and mitochondria in health and metabolic diseases. We also discuss the potential therapeutic strategies of targeting mitochondrial fission through antioxidant treatments for ROS-induced conditions, including the effects of lifestyle interventions, dietary supplements, and chemicals, such as mitochondrial division inhibitor-1 (Mdivi-1) and other mitochondrial fission inhibitors, as well as certain commonly used drugs for metabolic diseases. This review highlights the importance of understanding the role of mitochondrial fission in health and metabolic diseases, and the potential of targeting mitochondrial fission as a therapeutic approach to protecting against these conditions.
Collapse
Affiliation(s)
- Tianzheng Yu
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Li Wang
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Lei Zhang
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Patricia A Deuster
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
10
|
Nemati M, Ebrahimi Z, Karbalaei N, Dastghaib S, Khakshournia S, Sargazi M. In Vitro and In Vivo Improvement of Islet Quality and Transplantation Successes following Islet Treatment with Biomaterials in Diabetic Rats. J Diabetes Res 2023; 2023:1399917. [PMID: 37265573 PMCID: PMC10232112 DOI: 10.1155/2023/1399917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023] Open
Abstract
Background Loss of islet survival and function, caused by native niche disruption and oxidative stress induction during mechanical and enzymatic isolation, limits the effectiveness of islet transplantation. Reconstitution of islet microenvironment, vascularization, and decreased oxidative stress with biomaterials may improve islet quality and graft outcomes. We investigated effects of two biomaterials, platelet-rich plasma and pancreatic islets homogenate combination on islet recovery and quality by evaluating in vitro islet survival, secretory function, and oxidative stress parameters and assessing in vivo transplantation outcomes. Methods In vitro, islet viability and secretory function of isolated islets were assessed after 24 h and 72 h incubation with biomaterials. Also, oxidative stress markers were measured once after isolation and 24 h after incubation with biomaterials. For evaluating in vivo effects, cultured islets for 24 h were transplanted into subscapular space of diabetic rat kidney, and outcomes were analyzed by measuring serum glucose and insulin concentrations, glucose tolerance test, level of oxidative parameters, and pancreatic gene expression. Results Treating islets with biomaterials significantly increased their viability and secretory function, reduced MDA level, and elevate SOD and CAT activity. Decreased level of glucose and MDA improved insulin level, increased SOD activity, and also enhanced pdx1 and insulin gene expression in diabetic rats after islet transplantation. Conclusions Biomaterials used in the present study should be consider as beneficial materials for increasing islet transplantation outcome. These materials may hamper transplantation limitation to some extent.
Collapse
Affiliation(s)
- Marzieh Nemati
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ebrahimi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Narges Karbalaei
- Department of physiology, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Authophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Khakshournia
- Department of Biochemistry, Shiraz University of Medical Science, Shiraz, Iran
| | - Mojtaba Sargazi
- Department of physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Farnesysltransferase Inhibitor Prevents Burn Injury-Induced Metabolome Changes in Muscle. Metabolites 2022; 12:metabo12090800. [PMID: 36144205 PMCID: PMC9506277 DOI: 10.3390/metabo12090800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 01/01/2023] Open
Abstract
Burn injury remains a significant public health issue worldwide. Metabolic derangements are a major complication of burn injury and negatively affect the clinical outcomes of severely burned patients. These metabolic aberrations include muscle wasting, hypermetabolism, hyperglycemia, hyperlactatemia, insulin resistance, and mitochondrial dysfunction. However, little is known about the impact of burn injury on the metabolome profile in skeletal muscle. We have previously shown that farnesyltransferase inhibitor (FTI) reverses burn injury-induced insulin resistance, mitochondrial dysfunction, and the Warburg effect in mouse skeletal muscle. To evaluate metabolome composition, targeted quantitative analysis was performed using capillary electrophoresis mass spectrometry in mouse skeletal muscle. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and hierarchical cluster analysis demonstrated that burn injury induced a global change in metabolome composition. FTI treatment almost completely prevented burn injury-induced alterations in metabolite levels. Pathway analysis revealed that the pathways most affected by burn injury were purine, glutathione, β-alanine, glycine, serine, and threonine metabolism. Burn injury induced a suppressed oxidized to reduced nicotinamide adenine dinucleotide (NAD+/NADH) ratio as well as oxidative stress and adenosine triphosphate (ATP) depletion, all of which were reversed by FTI. Moreover, our data raise the possibility that burn injury may lead to increased glutaminolysis and reductive carboxylation in mouse skeletal muscle.
Collapse
|
12
|
Kuriyama N, Nakamura T, Nakazawa H, Wen T, Berra L, Bittner EA, Goverman J, Kaneki M. Bioavailability of Reduced Coenzyme Q10 (Ubiquinol-10) in Burn Patients. Metabolites 2022; 12:613. [PMID: 35888737 PMCID: PMC9321044 DOI: 10.3390/metabo12070613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of inflammation and multi-organ dysfunction in major trauma, including burn injury. Coenzyme Q10 (CoQ10) is a metabolite of the mevalonate pathway and an essential cofactor for the electron transport in the mitochondria. In addition, its reduced form (ubiquinol) functions as an antioxidant. Little is known as to whether oral CoQ10 supplementation effectively increases intracellular CoQ10 levels in humans. To study the bioavailability of CoQ10 supplementation, we conducted a randomized, double-blind, placebo-controlled study of reduced CoQ10 (ubiquinol-10) (1800 mg/day, t.i.d.) in burn patients at a single, tertiary-care hospital. Baseline plasma CoQ10 levels were significantly lower in burn patients than in healthy volunteers, although plasma CoQ10/cholesterol ratio did not differ between the groups. CoQ10 supplementation increased plasma concentrations of total and reduced CoQ10 and total CoQ10 content in peripheral blood mononuclear cells (PBMCs) in burn patients compared with the placebo group. CoQ10 supplementation did not significantly change circulating levels of mitochondrial DNA, inflammatory markers (e.g., interleukins, TNF-α, IFN-γ), or Sequential Organ Failure Assessment (SOFA) scores compared with the placebo group. This study showed that a relatively high dose of reduced CoQ10 supplementation increased the intracellular CoQ10 content in PBMCs as well as plasma concentrations in burn patients.
Collapse
Affiliation(s)
- Naohide Kuriyama
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA; (N.K.); (T.N.); (H.N.); (T.W.); (L.B.); (E.A.B.)
- Shriners Hospitals for Children, 51 Blossom Steet, Boston, MA 02114, USA
| | - Tomoyuki Nakamura
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA; (N.K.); (T.N.); (H.N.); (T.W.); (L.B.); (E.A.B.)
- Shriners Hospitals for Children, 51 Blossom Steet, Boston, MA 02114, USA
| | - Harumasa Nakazawa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA; (N.K.); (T.N.); (H.N.); (T.W.); (L.B.); (E.A.B.)
- Shriners Hospitals for Children, 51 Blossom Steet, Boston, MA 02114, USA
| | - Tyler Wen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA; (N.K.); (T.N.); (H.N.); (T.W.); (L.B.); (E.A.B.)
- Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA; (N.K.); (T.N.); (H.N.); (T.W.); (L.B.); (E.A.B.)
| | - Edward A. Bittner
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA; (N.K.); (T.N.); (H.N.); (T.W.); (L.B.); (E.A.B.)
| | - Jeremy Goverman
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA;
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA; (N.K.); (T.N.); (H.N.); (T.W.); (L.B.); (E.A.B.)
- Shriners Hospitals for Children, 51 Blossom Steet, Boston, MA 02114, USA
| |
Collapse
|
13
|
Mitochondria play a key role in oxidative stress-induced pancreatic islet dysfunction after severe burns. J Trauma Acute Care Surg 2022; 92:1012-1019. [PMID: 34882597 DOI: 10.1097/ta.0000000000003490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Severe burns are often complicated with hyperglycemia in part caused by pancreatic islet dysfunction. Previous studies have revealed that in diabetes mellitus, the pancreatic islet dysfunction is partly attributed to oxidative stress. However, the role and mechanism of oxidative stress in hyperglycemia after severe burns remain unclear. Therefore, the purpose of this study was to explore the level and mechanism of oxidative stress in pancreatic islets after severe burns and the antioxidant effect of sodium pyruvate. METHODS A 30% total body surface area full-thickness burn model was established using male C57BL/6 mice. Fasting blood glucose and glucose-stimulated insulin secretion (GSIS) 24 hours post severe burns were detected. The levels of reactive oxygen species (ROS) and mitochondrial ROS of islets were detected. The activities of complexes in the mitochondrial respiratory chain of islets were measured. The main antioxidant defense system, glutaredoxin system, and thioredoxin system-related indexes were detected, and the expression of manganese superoxide dismutase (Mn-SOD) was measured. In addition, the antioxidant activity of sodium pyruvate was evaluated post severe burns. RESULTS After severe burns, fasting blood glucose levels increased, while GSIS levels decreased, with significantly elevated ROS levels of pancreatic islets. The activity of complex III decreased and the level of mitochondrial ROS increased significantly post severe burns. For the detoxification of ROS, the expressions of thioredoxin 2, thioredoxin reductase 2, and Mn-SOD located in mitochondria decreased. Sodium pyruvate reduced the level of mitochondrial ROS in islet cells and improved the GSIS of islets after severe burns. CONCLUSION The high level of mitochondrial ROS of islets is caused by reducing the activity of complex III in mitochondrial respiratory chain, inhibiting mitochondrial thioredoxin system, and downregulating Mn-SOD post severe burns. Sodium pyruvate plays an antioxidant role post severe burns in mice islets and improves the islet function.
Collapse
|
14
|
Ma J, Fu X, Zhou S, Meng E, Yang Z, Zhang H. Study on the serum level of CoQ10B in patients with Moyamoya disease and its mechanism of affecting disease progression. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:469-474. [PMID: 35613207 DOI: 10.1590/0004-282x-anp-2021-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/21/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND At present, the etiology and pathogenesis of Moyamoya disease (MMD) are not completely clear. Patients are usually diagnosed after cerebrovascular events. Therefore, it is of great clinical significance to explore the predictive factors of MMD. OBJECTIVE This study aimed to investigate the serum level of CoQ10B, the amount of endothelial progenitor cells (EPCs), and mitochondrial function of EPCs in MMD patients. METHODS Forty-one MMD patients and 20 healthy controls were recruited in this study. Patients with MMD were divided into two groups: Ischemic type (n=23) and hemorrhagic type (n=18). Blood samples were collected from the antecubital vein and analyzed by CoQ10B ELISA and flow cytometry. Measures of mitochondrial function of EPCs include oxygen consumption rate (OCR), mitochondrial membrane potential, Ca2+ concentration, adenosine triphosphatases activity and ROS level. RESULTS The serum CoQ10B level in MMD patients was significantly lower than that in healthy controls (p<0.001). The relative number of EPCs in MMD patients was significantly higher than that in healthy controls (p<0.001). Moreover, the OCR, mitochondrial membrane potential and ATPase activity were decreased and the Ca2+ and reactive oxygen species levels were increased in MMD patients (p<0.001). CONCLUSIONS Our results showed obviously decreased serum CoQ10B level and increased EPCs number in patients with MMD compared with healthy patients, and the mitochondria function of EPCs in MMD patients was abnormal.
Collapse
Affiliation(s)
- Jian Ma
- Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou, Department of Neurosurgery, Henan, China
| | - Xudong Fu
- Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou, Department of Neurosurgery, Henan, China
| | - Shaolong Zhou
- Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou, Department of Neurosurgery, Henan, China
| | - Enping Meng
- Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou, Department of Neurosurgery, Henan, China
| | - Zhuo Yang
- Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou, Department of Neurosurgery, Henan, China
| | - Hengwei Zhang
- Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou, Department of Neurosurgery, Henan, China
| |
Collapse
|
15
|
Barcena ML, Aslam M, Pozdniakova S, Norman K, Ladilov Y. Cardiovascular Inflammaging: Mechanisms and Translational Aspects. Cells 2022; 11:cells11061010. [PMID: 35326461 PMCID: PMC8946971 DOI: 10.3390/cells11061010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/07/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Aging is one of the major non-reversible risk factors for several chronic diseases, including cancer, type 2 diabetes, dementia, and cardiovascular diseases (CVD), and it is a key cause of multimorbidity, disability, and frailty (decreased physical activity, fatigue, and weight loss). The underlying cellular mechanisms are complex and consist of multifactorial processes, such as telomere shortening, chronic low-grade inflammation, oxidative stress, mitochondrial dysfunction, accumulation of senescent cells, and reduced autophagy. In this review, we focused on the molecular mechanisms and translational aspects of cardiovascular aging-related inflammation, i.e., inflammaging.
Collapse
Affiliation(s)
- Maria Luisa Barcena
- Department of Geriatrics and Medical Gerontology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (S.P.); (K.N.); (Y.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-525-359
| | - Muhammad Aslam
- Experimental Cardiology, Department of Internal Medicine I, Justus Liebig University, Aulweg 129, 35392 Giessen, Germany;
- Department of Cardiology, Kerckhoff Clinic GmbH, 61231 Bad Nauheim, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Rhein-Main, 61231 Bad Nauheim, Germany
| | - Sofya Pozdniakova
- Department of Geriatrics and Medical Gerontology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (S.P.); (K.N.); (Y.L.)
- Barcelona Biomedical Research Park (PRBB), Barcelona Institute for Global Health (ISGlobal), Doctor Aiguader, 88, 08003 Barcelona, Spain
| | - Kristina Norman
- Department of Geriatrics and Medical Gerontology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (S.P.); (K.N.); (Y.L.)
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- Department of Nutrition & Gerontology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Yury Ladilov
- Department of Geriatrics and Medical Gerontology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (S.P.); (K.N.); (Y.L.)
- Department of Cardiovascular Surgery, Heart Center Brandenburg, Brandenburg Medical School Theodor Fontane, University Hospital, Ladeburger Str. 17, 16321 Bernau, Germany
| |
Collapse
|
16
|
Protective effects of farnesyltransferase inhibitor on sepsis-induced morphological aberrations of mitochondria in muscle and increased circulating mitochondrial DNA levels in mice. Biochem Biophys Res Commun 2021; 556:93-98. [PMID: 33845310 PMCID: PMC8757346 DOI: 10.1016/j.bbrc.2021.03.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022]
Abstract
Sepsis remains a leading cause of mortality in critically ill patients and is characterized by multi-organ dysfunction. Mitochondrial damage has been proposed to be involved in the pathophysiology of sepsis. In addition to metabolic impairments resulting from mitochondrial dysfunction, mitochondrial DNA (mtDNA) causes systemic inflammation as a damage-associated molecular pattern when it is released to the circulation. Metabolic derangements in skeletal muscle are a major complication of sepsis and negatively affects clinical outcomes of septic patients. However, limited knowledge is available about sepsis-induced mitochondrial damage in skeletal muscle. Here, we show that sepsis induced profound abnormalities in cristae structure, rupture of the inner and outer membranes and enlargement of the mitochondria in mouse skeletal muscle in a time-dependent manner, which was associated with increased plasma mtDNA levels. Farnesyltransferase inhibitor, FTI-277, prevented sepsis-induced morphological aberrations of the mitochondria, and blocked the increased plasma mtDNA levels along with improved survival. These results indicate that protein farnesylation plays a role in sepsis-induced damage of the mitochondria in mouse skeletal muscle. Our findings suggest that mitochondrial disintegrity in skeletal muscle may contribute to elevated circulating mtDNA levels in sepsis.
Collapse
|
17
|
Awotunsin KO, Oridupa OA, Ogunsola JO, Obisesan AD, Saba AB. Simulation of hemo- and biochemical toxicities associated with chronic inhalation exposure to 2,2-Dichlorovinyl dimethyl phosphate (DDVP) in Wistar rat. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 82:103547. [PMID: 33188889 DOI: 10.1016/j.etap.2020.103547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
DDVP is a commonly used pesticide in Nigeria and those involved with DDVP manufacturing, packaging or utilizing facilities seldom use PPE to limit pesticide exposure. The study aim was to determine the impact of chronic exposure to DDVP by monitoring hematological and biochemical changes in Wistar rats. Male rats (n = 60; 150-180 g) were exposed to graded DDVP concentrations (0%, 20 %, 40 %, 60 %, 80 % and 100 %) via inhalation route for 60 days. Body weights were initially measured and then at 20-day intervals. Blood samples were collected for hematology and serum biochemistry on day 61. Results showed significant (p < 0.05) polycythemia, neutrophilia, thrombocytosis, hepatic and renal derangement in rats exposed to DDVP. Also, albumin, AST, ALP, creatinine, blood urea nitrogen, bilirubin levels and dyslipidemia significantly increased. Cholinergic signs and stunted growth were observed in higher concentrations. Study emphasized hazards of DDVP mishandling and risks of non-compliance with PPE use by workers in-contact with DDVP, as well as misuse/abuse in animals.
Collapse
Affiliation(s)
| | | | - John O Ogunsola
- Veterinary Teaching Hospital, University of Ibadan, Ibadan, Nigeria
| | | | - Adebowale Bernard Saba
- Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
18
|
Turton N, Heaton RA, Ismail F, Roberts S, Nelder S, Phillips S, Hargreaves IP. The Effect of Organophosphate Exposure on Neuronal Cell Coenzyme Q 10 Status. Neurochem Res 2021; 46:131-139. [PMID: 32306167 PMCID: PMC7829235 DOI: 10.1007/s11064-020-03033-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022]
Abstract
Organophosphate (OP) compounds are widely used as pesticides and herbicides and exposure to these compounds has been associated with both chronic and acute forms of neurological dysfunction including cognitive impairment, neurophysiological problems and cerebral ataxia with evidence of mitochondrial impairment being associated with this toxicity. In view of the potential mitochondrial impairment, the present study aimed to investigate the effect of exposure to commonly used OPs, dichlorvos, methyl-parathion (parathion) and chloropyrifos (CPF) on the cellular level of the mitochondrial electron transport chain (ETC) electron carrier, coenzyme Q10 (CoQ10) in human neuroblastoma SH-SY5Y cells. The effect of a perturbation in CoQ10 status was also evaluated on mitochondrial function and cell viability. A significant decreased (P < 0.0001) in neuronal cell viability was observed following treatment with all three OPs (100 µM), with dichlorvos appearing to be the most toxic to cells and causing an 80% loss of viability. OP treatment also resulted in a significant diminution in cellular CoQ10 status, with levels of this isoprenoid being decreased by 72% (P < 0.0001), 62% (P < 0.0005) and 43% (P < 0.005) of control levels following treatment with dichlorvos, parathion and CPF (50 µM), respectively. OP exposure was also found to affect the activities of the mitochondrial enzymes, citrate synthase (CS) and mitochondrial electron transport chain (ETC) complex II+III. Dichlorvos and CPF (50 µM) treatment significantly decreased CS activity by 38% (P < 0.0001) and 35% (P < 0.0005), respectively compared to control levels in addition to causing a 54% and 57% (P < 0.0001) reduction in complex II+III activity, respectively. Interestingly, although CoQ10 supplementation (5 μM) was able to restore cellular CoQ10 status and CS activity to control levels following OP treatment, complex II+III activity was only restored to control levels in neuronal cells exposed to dichlorvos (50 µM). However, post supplementation with CoQ10, complex II+III activity significantly increased by 33% (P < 0.0005), 25% (P < 0.005) and 35% (P < 0.0001) in dichlorvos, parathion and CPF (100 µM) treated cells respectively compared to non-CoQ10 supplemented cells. In conclusion, the results of this study have indicated evidence of neuronal cell CoQ10 deficiency with associated mitochondrial dysfunction following OP exposure. Although CoQ10 supplementation was able to ameliorate OP induced deficiencies in CS activity, ETC complex II+III activity appeared partially refractory to this treatment. Accordingly, these results indicate the therapeutic potential of CoQ10 supplementation in the treatment of OP poisoning. However, higher doses may be required to engender therapeutic efficacy.
Collapse
Affiliation(s)
- Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Robert A Heaton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Fahima Ismail
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Sioned Roberts
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Sian Nelder
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Sue Phillips
- The Royal Liverpool University Hospital, Royal Liverpool and Broadgreen NHS Trust, Prescot Street, Liverpool, UK
| | - Iain P Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
19
|
Shin JY, Choi JW, Kim DG, Zhou ZQ, Shin YK, Seo JH, Song HJ, Choi BM, Bae GS, Park SJ. Protective effects of Coenzyme Q10 against acute pancreatitis. Int Immunopharmacol 2020; 88:106900. [PMID: 32829089 DOI: 10.1016/j.intimp.2020.106900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/05/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Acute pancreatitis (AP) refers to inflammation in the pancreas, which may lead to death in severe cases. Coenzyme Q10 (Q10), generally known to generate energy, plays an important role as an anti-oxidant and anti-inflammatory effector. Here, we showed the effect of Q10 on inflammatory response in murine AP model. For this study, we induced AP by injection of cerulein intraperitoneally or pancreatic duct ligation (PDL) in mice. The level of cytokines and digestive enzymes were measured in pancreas, and blood. All pancreatic tissues were excised for investigation such as histological changes, infiltration of immune cells. Administration of Q10 attenuated the severity of AP and its associated pulmonary complication as shown by reduction of acinar cell death, parenchymal edema, inflammatory cell infiltration and alveolar thickening in both cerulein-induced AP and PDL-induced AP. Moreover, reduction of the cytokines such as interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α were observed in pancreas and pancreatic acinar cells by Q10. Furthermore, Q10 reduced the infiltration of immune cells such as monocytes and neutrophils and augmentation of chemokines such as CC chemokine-2 (CCL2) and C-X-C chemokine-2 (CXCL2) in pancreas of AP mice. In addition, Q10 deactivates the phosphorylation of extracellular signal-regulated kinase (ERK) and c-jun NH2-terminal kinase (JNK) in pancreas. In conclusion, these observations suggest that Q10 could attenuate the pancreatic damage and its associated pulmonary complications via inhibition of inflammatory cytokines and inflammatory cell infiltration and that the deactivation of ERK and JNK by Q10 might contribute to the attenuation of AP.
Collapse
Affiliation(s)
- Joon Yeon Shin
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Ji-Won Choi
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Dong-Gu Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Zi Qi Zhou
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Yong Kook Shin
- Department of Bio Pharmaceutical Industry, Semyung University, Semyeong-ro 65, Jecheon, Chungcheongbuk-do 27136, Republic of Korea
| | - Jae Ho Seo
- Department of Biochemistry, School of Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Ho-Joon Song
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Byung-Min Choi
- Department of Biochemistry, School of Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea.
| | - Gi-Sang Bae
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Research Center of Traditional Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea.
| | - Sung-Joo Park
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea.
| |
Collapse
|
20
|
MitoQ and CoQ10 supplementation mildly suppresses skeletal muscle mitochondrial hydrogen peroxide levels without impacting mitochondrial function in middle-aged men. Eur J Appl Physiol 2020; 120:1657-1669. [DOI: 10.1007/s00421-020-04396-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/16/2020] [Indexed: 12/14/2022]
|
21
|
Functional Mechanisms of Mitochondrial Respiratory Chain Supercomplex Assembly Factors and Their Involvement in Muscle Quality. Int J Mol Sci 2020; 21:ijms21093182. [PMID: 32365950 PMCID: PMC7246575 DOI: 10.3390/ijms21093182] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
Impairment of skeletal muscle function causes disabilities in elderly people. Therefore, in an aged society, prevention and treatment of sarcopenia are important for expanding healthy life expectancy. In addition to aging, adipose tissue disfunction and inflammation also contribute to the pathogenesis of sarcopenia by causing the combined state called ‘sarcopenic obesity’. Muscle quality as well as muscle mass contributes to muscle strength and physical performance. Mitochondria in the skeletal muscles affect muscle quality by regulating the production of energy and reactive oxygen species. A certain portion of the mitochondrial respiratory chain complexes form a higher-order structure called a “supercomplex”, which plays important roles in efficient energy production, stabilization of respiratory chain complex I, and prevention of reactive oxygen species (ROS) generation. Several molecules including phospholipids, proteins, and certain chemicals are known to promote or stabilize mitochondrial respiratory chain supercomplex assembly directly or indirectly. In this article, we review the distinct mechanisms underlying the promotion or stabilization of mitochondrial respiratory chain supercomplex assembly by supercomplex assembly factors. Further, we introduce regulatory pathways of mitochondrial respiratory chain supercomplex assembly and discuss the roles of supercomplex assembly factors and regulatory pathways in skeletal muscles and adipose tissues, believing that this will lead to discovery of potential targets for prevention and treatment of muscle disorders such as sarcopenia.
Collapse
|
22
|
Sharebiani H, Fazeli B, Maniscalco R, Ligi D, Mannello F. The Imbalance among Oxidative Biomarkers and Antioxidant Defense Systems in Thromboangiitis Obliterans (Winiwarter-Buerger Disease). J Clin Med 2020; 9:E1036. [PMID: 32272606 PMCID: PMC7231233 DOI: 10.3390/jcm9041036] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Thromboangiitis obliterans or Winiwarter-Buerger disease (WBD), is an inflammatory, thrombotic occlusive, peripheral vascular disease, usually occurring in young smokers. The pathophysiological mechanisms underlying the disease are not clearly understood. The aim of this study is to investigate the imbalance between oxidants and antioxidants occurring in these patients. (2) Patients and Methods: In this cross-sectional study, 22 male patients with WBD and 20 healthy male smoking habit matched control group were included. To evaluate the possible sources of oxidative stress, the antioxidant biomarkers, and the markers of lipid peroxidation and protein oxidation, serum samples were analyzed for total oxidative status (TOS), total antioxidant capacity (TAC), myeloperoxidase (MPO), coenzyme Q10 (CoQ10), superoxide dismutase (SOD), glutathione reductase (GR), malondialdehyde (MDA), and protein carbonyl (PC) activity and/or content. (3) Results: The circulating levels of TOS, TAC, and CoQ10 were significantly higher in WBD patients, with respect to healthy smokers as controls. No significant difference was found among the serum level of PC, total cholesterol, MPO, and GR activity in WBD patients and healthy smoker controls. The activity of SOD and the mean serum level of MDA were significantly lower in WBD patients, with respect to healthy smoker controls. (4) Conclusion: Considerably high levels of oxidative stress were detected in WBD patients, which were greater than the antioxidant capacity. The low level of MDA may be associated with the enzymatic degradation of lipid peroxidation products. High levels of CoQ10 and low levels of SOD may be related to a harmful oxidative cooperation, leading to the vasoconstriction of WBD, representing a promising tool to discern possible different clinical risks of this poorly understood peripheral occlusive disease.
Collapse
Affiliation(s)
- Hiva Sharebiani
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (H.S.); or (B.F.)
| | - Bahare Fazeli
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (H.S.); or (B.F.)
- Vascular Independent Research and Education, European Organization, 20157 Milan, Italy
| | - Rosanna Maniscalco
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University “Carlo Bo” of Urbino, 61029 Urbino (PU), Italy; (R.M.); (D.L.)
| | - Daniela Ligi
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University “Carlo Bo” of Urbino, 61029 Urbino (PU), Italy; (R.M.); (D.L.)
| | - Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University “Carlo Bo” of Urbino, 61029 Urbino (PU), Italy; (R.M.); (D.L.)
| |
Collapse
|
23
|
|
24
|
Berlanga-Acosta J, Iglesias-Marichal I, Rodríguez-Rodríguez N, Mendoza-Marí Y, García-Ojalvo A, Fernández-Mayola M, Playford RJ. Review: Insulin resistance and mitochondrial dysfunction following severe burn injury. Peptides 2020; 126:170269. [PMID: 32045621 DOI: 10.1016/j.peptides.2020.170269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
The insulin signaling pathway plays a pivotal role in glucose metabolism and metabolic homeostasis. Disruption of this pathway is commonly seen in critical illness such as following severe burn injuries where homeostatic control is lost, leading to "insulin resistance" with poor blood glucose control. The aberrant signaling pathways involved in insulin resistance following burn injury include increases in hyperglycemic stress hormones, pro-inflammatory cytokines and free radical production. Leakage of mitochondrial sequestered self-antigens and signaling between mitochondria and endoplasmic reticulum also contribute to insulin resistance. Greater understanding of molecular processes involved in burn-related insulin resistance could potentially lead to the development of novel therapeutic approaches to improve patient management.
Collapse
Affiliation(s)
- Jorge Berlanga-Acosta
- Tissue Repair and Cytoprotection Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave 31 e/158 and 190. Playa, Havana, 10600, Cuba
| | | | - Nadia Rodríguez-Rodríguez
- Tissue Repair and Cytoprotection Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave 31 e/158 and 190. Playa, Havana, 10600, Cuba
| | - Yssel Mendoza-Marí
- Tissue Repair and Cytoprotection Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave 31 e/158 and 190. Playa, Havana, 10600, Cuba
| | - Ariana García-Ojalvo
- Tissue Repair and Cytoprotection Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave 31 e/158 and 190. Playa, Havana, 10600, Cuba
| | - Maday Fernández-Mayola
- Tissue Repair and Cytoprotection Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave 31 e/158 and 190. Playa, Havana, 10600, Cuba
| | - Raymond J Playford
- University of Plymouth, Peninsula Schools of Medicine and Dentistry, Plymouth, UK.
| |
Collapse
|
25
|
Guo Y, You Y, Lv D, Yan J, Shang FF, Wang X, Zhang C, Fan Q, Luo S. Inducible nitric oxide synthase contributes to insulin resistance and cardiac dysfunction after burn injury in mice. Life Sci 2019; 239:116912. [PMID: 31634465 DOI: 10.1016/j.lfs.2019.116912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/12/2019] [Accepted: 09/24/2019] [Indexed: 11/18/2022]
Abstract
AIMS Cardiac dysfunction is a major cause of multi-organ dysfunction in critical care units following severe burns. The purpose of this study was to investigate the role of inducible nitric oxide synthase (iNOS) in cardiac dysfunction in burned mice. MATERIALS AND METHODS Wild-type and iNOS-knockout mice were subjected to 30% total body surface area burns. Next, the expression of iNOS was measured at 1, 3 and 7 days post-burn. Cardiac function, insulin sensitivity, inflammation, oxidative stress, and apoptosis in the hearts of the mice were assessed at 3 days post-burn. KEY FINDINGS Compared to control mice, iNOS expression was increased and reached a maximum in the heart of burned mice at 3 days post-burn. iNOS deficiency significantly alleviated the cardiac dysfunction and insulin resistance in burned mice. In addition, burn-induced inflammation, oxidative stress, and apoptosis in the heart were markedly reduced in iNOS-knockout burned mice when compared to corresponding values in wild-type burned mice. SIGNIFICANCE Our study demonstrates that iNOS contributes to insulin resistance in the hearts of mice following burn injury, and iNOS deficiency protects cardiac function against burn injury in mice, suggesting iNOS as a potential therapeutic target to treat burn injuries.
Collapse
Affiliation(s)
- Yongzheng Guo
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Yuehua You
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Dingyi Lv
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Jianghong Yan
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Fei-Fei Shang
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qingdan Fan
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Suxin Luo
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|