1
|
Hergenroeder GW, Molina ST, Herrera JJ. Administration of anti-GFAP antibodies increases CGRP expression and increases pain hypersensitivity in spinal cord injured animals. Int J Immunopathol Pharmacol 2025; 39:3946320251320754. [PMID: 40019103 PMCID: PMC11873870 DOI: 10.1177/03946320251320754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Spinal cord injury (SCI) results in a multitude of cellular and pathological changes including neuronal loss, axonal damage, gliosis, and loss of motor and sensory function. In 40%-70% of patients, SCI can also trigger the development of neuropathic pain. Our previous study demonstrated that SCI patients who developed autoantibodies to glial fibrillary acidic protein (GFAP) were at increased risk for the subsequent development of neuropathic pain. However, whether GFAP autoantibodies (GFAPab) contribute to the development of neuropathic pain after SCI had yet to be examined. OBJECTIVE Using a mid-thoracic contusion model of SCI in male Sprague-Dawley rats, we examined the effect of exogenous anti-GFAP antibodies on SCI pathology, pain-associated molecular changes, and behavior. METHODS Anti-GFAP or IgG was administered at 7- and 14-days post-injury. Immunohistochemistry was performed to measure the relative levels of calcitonin gene-related peptide (CGRP), and inflammatory proteins in dorsal horn tissue. To assess the development of neuropathic pain, the von Frey test and the Mechanical Conflict-Avoidance Paradigm (MCAP) were performed. RESULTS CGRP immunoreactivity was significantly higher in the anti-GFAP-treated injured rats compared to control SCI IgG-treated rats. As anticipated, SCI rats had a lower pain threshold at 1- and 2-months post-injury compared to laminectomy-only controls. However, pain withdrawal threshold was not significantly affected by post-injury administration of the anti-GFAP. Operant testing revealed that SCI rats treated with the anti-GFAP had a trending increase in pain sensitivity. CONCLUSION Taken together, these data suggest that autoantibodies to GFAP following SCI may contribute to developing pain states following SCI.
Collapse
Affiliation(s)
- Georgene W Hergenroeder
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Samuel T Molina
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Juan J Herrera
- Department of Diagnostic and Interventional Imaging, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
2
|
Zhang W, Yuan X, Wang Z, Xu J, Ye S, Jiang P, Du X, Liu F, Lin F, Zhang R, Ma L, Li C. Study on the Treatment of ITP Mice with IVIG Sourced from Distinct Sex-Special Plasma (DSP-IVIG). Int J Mol Sci 2023; 24:15993. [PMID: 37958975 PMCID: PMC10648144 DOI: 10.3390/ijms242115993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Intravenous immunoglobulin (IVIG) is a first-line drug prepared from human plasma for the treatment of autoimmune diseases (AIDs), especially immune thrombocytopenia (ITP). Significant differences exist in protein types and expression levels between male and female plasma, and the prevalence of autoimmune diseases varies between sexes. The present study seeks to explore potential variations in IVIG sourced from distinct sex-specific plasma (DSP-IVIG), including IVIG sourced from female plasma (F-IVIG), IVIG sourced from male plasma (M-IVIG), and IVIG sourced from a blend of male and female plasma (Mix-IVIG). To address this question, we used an ITP mouse model and a monocyte-macrophage inflammation model treated with DSP IVIG. The analysis of proteomics in mice suggested that the pathogenesis and treatment of ITP may involve FcγRs mediated phagocytosis, apoptosis, Th17, cytokines, chemokines, and more. Key indicators, including the mouse spleen index, CD16+ macrophages, M1, M2, IL-6, IL-27, and IL-13, all indicated that the efficacy in improving ITP was highest for M-IVIG. Subsequent cell experiments revealed that M-IVIG exhibited a more potent ability to inhibit monocyte phagocytosis. It induced more necrotic M2 cells and fewer viable M2, resulting in weaker M2 phagocytosis. M-IVIG also demonstrated superiority in the downregulation of surface makers CD36, CD68, and CD16 on M1 macrophages, a weaker capacity to activate complement, and a stronger binding ability to FcγRs on the THP-1 surface. In summary, DSP-IVIG effectively mitigated inflammation in ITP mice and monocytes and macrophages. However, M-IVIG exhibited advantages in improving the spleen index, regulating the number and typing of M1 and M2 macrophages, and inhibiting macrophage-mediated inflammation compared to F-IVIG and Mix-IVIG.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Li Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China; (W.Z.); (Z.W.); (J.X.); (S.Y.); (P.J.); (X.D.); (F.L.); (F.L.); (R.Z.)
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China; (W.Z.); (Z.W.); (J.X.); (S.Y.); (P.J.); (X.D.); (F.L.); (F.L.); (R.Z.)
| |
Collapse
|
3
|
Willis EF, Gillespie ER, Guse K, Zuercher AW, Käsermann F, Ruitenberg MJ, Vukovic J. Intravenous immunoglobulin (IVIG) promotes brain repair and improves cognitive outcomes after traumatic brain injury in a FcγRIIB receptor-dependent manner. Brain Behav Immun 2023; 109:37-50. [PMID: 36581304 DOI: 10.1016/j.bbi.2022.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) is a promising immune-modulatory therapy for limiting harmful inflammation and associated secondary tissue loss in neurotrauma. Here, we show that IVIG therapy attenuates spatial learning and memory deficits following a controlled cortical impact mouse model of traumatic brain injury (TBI). These improvements in cognitive outcomes were associated with increased neuronal survival, an overall reduction in brain tissue loss, and a greater preservation of neural connectivity. Furthermore, we demonstrate that the presence of the main inhibitory FcγRIIB receptor is required for the beneficial effects of IVIG treatment in TBI, with our results simultaneously highlighting the role of this receptor in reducing secondary damage arising from brain injury.
Collapse
Affiliation(s)
- Emily F Willis
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Ellen R Gillespie
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Kirsten Guse
- CSL Behring, Research, CSL Biologics Research Center, Bern, Switzerland
| | - Adrian W Zuercher
- CSL Behring, Research, CSL Biologics Research Center, Bern, Switzerland
| | - Fabian Käsermann
- CSL Behring, Research, CSL Biologics Research Center, Bern, Switzerland
| | - Marc J Ruitenberg
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Jana Vukovic
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia; Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
Segú-Vergés C, Caño S, Calderón-Gómez E, Bartra H, Sardon T, Kaveri S, Terencio J. Systems biology and artificial intelligence analysis highlights the pleiotropic effect of IVIg therapy in autoimmune diseases with a predominant role on B cells and complement system. Front Immunol 2022; 13:901872. [PMID: 36248801 PMCID: PMC9563374 DOI: 10.3389/fimmu.2022.901872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Intravenous immunoglobulin (IVIg) is used as treatment for several autoimmune and inflammatory conditions, but its specific mechanisms are not fully understood. Herein, we aimed to evaluate, using systems biology and artificial intelligence techniques, the differences in the pathophysiological pathways of autoimmune and inflammatory conditions that show diverse responses to IVIg treatment. We also intended to determine the targets of IVIg involved in the best treatment response of the evaluated diseases. Our selection and classification of diseases was based on a previously published systematic review, and we performed the disease characterization through manual curation of the literature. Furthermore, we undertook the mechanistic evaluation with artificial neural networks and pathway enrichment analyses. A set of 26 diseases was selected, classified, and compared. Our results indicated that diseases clearly benefiting from IVIg treatment were mainly characterized by deregulated processes in B cells and the complement system. Indeed, our results show that proteins related to B-cell and complement system pathways, which are targeted by IVIg, are involved in the clinical response. In addition, targets related to other immune processes may also play an important role in the IVIg response, supporting its wide range of actions through several mechanisms. Although B-cell responses and complement system have a key role in diseases benefiting from IVIg, protein targets involved in such processes are not necessarily the same in those diseases. Therefore, IVIg appeared to have a pleiotropic effect that may involve the collaborative participation of several proteins. This broad spectrum of targets and 'non-specificity' of IVIg could be key to its efficacy in very different diseases.
Collapse
Affiliation(s)
| | - Silvia Caño
- Grifols Innovation and New Technologies (GIANT) Ltd., Dublin, Ireland
| | | | - Helena Bartra
- Health Department, Anaxomics Biotech, Barcelona, Spain
| | - Teresa Sardon
- Health Department, Anaxomics Biotech, Barcelona, Spain
| | - Srini Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - José Terencio
- Grifols Innovation and New Technologies (GIANT) Ltd., Dublin, Ireland
| |
Collapse
|
5
|
Chio JCT, Xu KJ, Popovich P, David S, Fehlings MG. Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Exp Neurol 2021; 341:113704. [PMID: 33745920 DOI: 10.1016/j.expneurol.2021.113704] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) has a complex pathophysiology. Following the initial physical trauma to the spinal cord, which may cause vascular disruption, hemorrhage, mechanical injury to neural structures and necrosis, a series of biomolecular cascades is triggered to evoke secondary injury. Neuroinflammation plays a major role in the secondary injury after traumatic SCI. To date, the administration of systemic immunosuppressive medications, in particular methylprednisolone sodium succinate, has been the primary pharmacological treatment. This medication is given as a complement to surgical decompression of the spinal cord and maintenance of spinal cord perfusion through hemodynamic augmentation. However, the impact of neuroinflammation is complex with harmful and beneficial effects. The use of systemic immunosuppressants is further complicated by the natural onset of post-injury immunosuppression, which many patients with SCI develop. It has been hypothesized that immunomodulation to attenuate detrimental aspects of neuroinflammation after SCI, while avoiding systemic immunosuppression, may be a superior approach. To accomplish this, a detailed understanding of neuroinflammation and the systemic immune responses after SCI is required. Our review will strive to achieve this goal by first giving an overview of SCI from a clinical and basic science context. The role that neuroinflammation plays in the pathophysiology of SCI will be discussed. Next, the positive and negative attributes of the innate and adaptive immune systems in neuroinflammation after SCI will be described. With this background established, the currently existing immunosuppressive and immunomodulatory therapies for treating SCI will be explored. We will conclude with a summary of topics that can be explored by neuroimmunology research. These concepts will be complemented by points to be considered by neuroscientists developing therapies for SCI and other injuries to the central nervous system.
Collapse
Affiliation(s)
- Jonathon Chon Teng Chio
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| | - Katherine Jiaxi Xu
- Human Biology Program, University of Toronto, Wetmore Hall, 300 Huron St., Room 105, Toronto, Ontario M5S 3J6, Canada.
| | - Phillip Popovich
- Department of Neuroscience, Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Neurological Institute, The Ohio State University, Wexner Medical Center, 410 W. 10(th) Ave., Columbus 43210, USA.
| | - Samuel David
- Centre for Research in Neuroscience and BRaIN Program, The Research Institute of the McGill University Health Centre, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada.
| | - Michael G Fehlings
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Yates AG, Jogia T, Gillespie ER, Couch Y, Ruitenberg MJ, Anthony DC. Acute IL-1RA treatment suppresses the peripheral and central inflammatory response to spinal cord injury. J Neuroinflammation 2021; 18:15. [PMID: 33407641 PMCID: PMC7788822 DOI: 10.1186/s12974-020-02050-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The acute phase response (APR) to CNS insults contributes to the overall magnitude and nature of the systemic inflammatory response. Aspects of this response are thought to drive secondary inflammatory pathology at the lesion site, and suppression of the APR can therefore afford some neuroprotection. In this study, we examined the APR in a mouse model of traumatic spinal cord injury (SCI), along with its relationship to neutrophil recruitment during the immediate aftermath of the insult. We specifically investigated the effect of IL-1 receptor antagonist (IL-1RA) administration on the APR and leukocyte recruitment to the injured spinal cord. METHODS Adult female C57BL/6 mice underwent either a 70kD contusive SCI, or sham surgery, and tissue was collected at 2, 6, 12, and 24 hours post-operation. For IL-1RA experiments, SCI mice received two intraperitoneal injections of human IL-1RA (100mg/kg), or saline as control, immediately following, and 5 hours after impact, and animals were sacrificed 6 hours later. Blood, spleen, liver and spinal cord were collected to study markers of central and peripheral inflammation by flow cytometry, immunohistochemistry and qPCR. Results were analysed by two-way ANOVA or student's t-test, as appropriate. RESULTS SCI induced a robust APR, hallmarked by elevated hepatic expression of pro-inflammatory marker genes and a significantly increased neutrophil presence in the blood, liver and spleen of these animals, as early as 2 hours after injury. This peripheral response preceded significant neutrophil infiltration of the spinal cord, which peaked 24 hours post-SCI. Although expression of IL-1RA was also induced in the liver following SCI, its response was delayed compared to IL-1β. Exogenous administration of IL-1RA during this putative therapeutic window was able to suppress the hepatic APR, as evidenced by a reduction in CXCL1 and SAA-2 expression as well as a significant decrease in neutrophil infiltration in both the liver and the injured spinal cord itself. CONCLUSIONS Our data indicate that peripheral administration of IL-1RA can attenuate the APR which in turn reduces immune cell infiltration at the spinal cord lesion site. We propose IL-1RA treatment as a viable therapeutic strategy to minimise the harmful effects of SCI-induced inflammation.
Collapse
Affiliation(s)
- Abi G Yates
- Department of Pharmacology, The University of Oxford, Mansfield Road, Oxford, UK
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Trisha Jogia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Ellen R Gillespie
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Yvonne Couch
- Acute Stroke Programme, RDM-Investigative Medicine, The University of Oxford, Oxford, UK
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Daniel C Anthony
- Department of Pharmacology, The University of Oxford, Mansfield Road, Oxford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
7
|
Chio JCT, Wang J, Surendran V, Li L, Zavvarian MM, Pieczonka K, Fehlings MG. Delayed administration of high dose human immunoglobulin G enhances recovery after traumatic cervical spinal cord injury by modulation of neuroinflammation and protection of the blood spinal cord barrier. Neurobiol Dis 2020; 148:105187. [PMID: 33249350 DOI: 10.1016/j.nbd.2020.105187] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/INTRODUCTION The neuroinflammatory response plays a major role in the secondary injury cascade after traumatic spinal cord injury (SCI). To date, systemic anti-inflammatory medications such as methylprednisolone sodium succinate (MPSS) have shown promise in SCI. However, systemic immunosuppression can have detrimental side effects. Therefore, immunomodulatory approaches including the use of human immunoglobulin G (hIgG) could represent an attractive alternative. While emerging preclinical data suggests that hIgG is neuroprotective after SCI, the optimal time window of administration and the mechanism of action remain incompletely understood. These knowledge gaps were the focus of this research study. METHODS Female adult Wistar rats received a clip compression-contusion SCI at the C7/T1 level of the spinal cord. Injured rats were randomized, in a blinded manner, to receive a single intravenous bolus of hIgG (2 g/kg) or control buffer at 15 minutes (min), 1 hour (h) or 4 h post-SCI. At 24 h and 8 weeks post-SCI, molecular, histological and neurobehavioral analyses were undertaken. RESULTS At all 3 administration time points, hIgG (2 g/kg) resulted in significantly better short-term and long-term outcomes as compared to control buffer. No significant differences were observed when comparing outcomes between the different time points of administration. At 24 h post-injury, hIgG (2 g/kg) administration enhanced the integrity of the blood spinal cord barrier (BSCB) by increasing expression of tight junction proteins and reducing inflammatory enzyme expression. Improvements in BSCB integrity were associated with reduced immune cell infiltration, lower amounts of albumin and Evans Blue in the injured spinal cord and greater expression of anti-inflammatory cytokines. Furthermore, hIgG (2 g/kg) increased expression of neutrophil chemoattractants in the spleen and sera. After hIgG (2 g/kg) treatment, there were more neutrophils in the spleen and fewer neutrophils in the blood. hIgG also co-localized with endothelial cell ligands that mediate neutrophil extravasation into the injured spinal cord. Importantly, short-term effects of delayed hIgG (2 g/kg) administration were associated with enhanced tissue and neuron preservation, as well as neurobehavioral and sensory recovery at 8 weeks post-SCI. DISCUSSION AND CONCLUSION hIgG (2 g/kg) shows promise as a therapeutic approach for SCI. The anti-inflammatory effects mediated by hIgG (2 g/kg) in the injured spinal cord might be explained in twofold. First, hIgG might antagonize neutrophil infiltration into the spinal cord by co-localizing with endothelial cell ligands that mediate various steps in neutrophil extravasation. Second, hIgG could traffic neutrophils towards the spleen by increasing expression of neutrophil chemoattractants in the spleen and sera. Overall, we demonstrate that delayed administration of hIgG (2 g/kg) at 1 and 4-h post-injury enhances short-term and long-term benefits after SCI by modulating local and systemic neuroinflammatory cascades.
Collapse
Affiliation(s)
- Jonathon Chon Teng Chio
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| | - Jian Wang
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
| | - Vithushan Surendran
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
| | - Lijun Li
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
| | - Mohammad-Masoud Zavvarian
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| | - Katarzyna Pieczonka
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| | - Michael G Fehlings
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Al Mamun A, Monalisa I, Tul Kubra K, Akter A, Akter J, Sarker T, Munir F, Wu Y, Jia C, Afrin Taniya M, Xiao J. Advances in immunotherapy for the treatment of spinal cord injury. Immunobiology 2020; 226:152033. [PMID: 33321368 DOI: 10.1016/j.imbio.2020.152033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/19/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a leading cause of morbidity and disability in the world. Over the past few decades, the exact molecular mechanisms describing secondary, persistent injuries, as well as primary and transient injuries, have attracted massive attention to the clinicians and researchers. Recent investigations have distinctly shown the critical roles of innate and adaptive immune responses in regulating sterile neuroinflammation and functional outcomes after SCI. In past years, some promising advances in immunotherapeutic options have efficaciously been identified for the treatment of SCI. In our narrative review, we have mainly focused on the new therapeutic strategies such as the maturation and apoptosis of immune cells by several agents, mesenchymal stem cells (MSCs) as well as multi-factor combination therapy, which have recently provided novel ideas and prospects for the future treatment of SCI. This article also illustrates the latest progress in clarifying the potential roles of innate and adaptive immune responses in SCI, the progression and specification of prospective immunotherapy and outstanding issues in the area.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China
| | - Ilma Monalisa
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Khadija Tul Kubra
- Department of Pharmacy, University of Development Alternative, Dhaka 1209, Bangladesh
| | - Afroza Akter
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Jaheda Akter
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chattogram-4318, Chittagong, Bangladesh
| | - Tamanna Sarker
- Department of Pharmacy, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035 Zhejiang Province, China
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang Province, China
| | - Masuma Afrin Taniya
- Department of Life Sciences, School of Environment and Life Sciences, Independent University, Bangladesh, Dhaka 1229, Bangladesh
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China.
| |
Collapse
|
9
|
Gillespie ER, Ruitenberg MJ. Neuroinflammation after SCI: Current Insights and Therapeutic Potential of Intravenous Immunoglobulin. J Neurotrauma 2020; 39:320-332. [PMID: 32689880 DOI: 10.1089/neu.2019.6952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traumatic spinal cord injury (SCI) elicits a complex cascade of cellular and molecular inflammatory events. Although certain aspects of the inflammatory response are essential to wound healing and repair, post-SCI inflammation is, on balance, thought to be detrimental to recovery by causing "bystander damage" and the spread of pathology into spared but vulnerable regions of the spinal cord. Much of the research to date has therefore focused on understanding the inflammatory drivers of secondary tissue loss after SCI, to define therapeutic targets and positively modulate this response. Numerous experimental studies have demonstrated that modulation of the inflammatory response to SCI can indeed lead to significant neuroprotection and improved recovery. However, it is now also recognized that broadscale immunosuppression is not necessarily beneficial and may even carry the risk of contributing to the development of serious adverse events. Immune modulation rather than suppression is therefore now considered a more promising approach to target harmful post-traumatic inflammation following a major neurotraumatic event such as SCI. One promising immunomodulatory agent is intravenous immunoglobulin (IVIG), a plasma product that contains mostly immunoglobulin G (IgG) from thousands of healthy donors. IVIG is currently already widely used to treat a range of autoimmune diseases, but recent studies have found that it also holds great promise for treating acute neurological conditions, including SCI. This review provides an overview of the inflammatory response to SCI, immunomodulatory approaches that are currently in clinical trials, proposed mechanisms of action for IVIG therapy, and the putative relevance of these in the context of neurotraumatic events.
Collapse
Affiliation(s)
- Ellen R Gillespie
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Trauma, Critical Care, and Recovery, Brisbane Diamantina Health Partners, Brisbane, Australia
| |
Collapse
|
10
|
Wang S, Smith GM, Selzer ME, Li S. Emerging molecular therapeutic targets for spinal cord injury. Expert Opin Ther Targets 2019; 23:787-803. [PMID: 31460807 DOI: 10.1080/14728222.2019.1661381] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: Spinal cord injury (SCI) is a complicated and devastating neurological disorder. Patients with SCI usually have dramatically reduced quality of life. In recent years, numerous studies have reported advances in understanding the pathophysiology of SCI and developing preclinical therapeutic strategies for SCI, including various molecular therapies, and yet there is still no cure. Areas covered: After SCI, tissue damage, responses and repair involve interactions among many cellular components, including neurons, axons, glia, leukocytes, and other cells. Accordingly, numerous cellular genes and molecules have become therapeutic targets for neural tissue repair, circuit reconstruction, and behavioral restoration. Here, we review the major recent advances in biological and molecular strategies to enhance neuroprotection, axon regeneration, remyelination, neuroplasticity and functional recovery in preclinical studies of SCI. Expert opinion: Researchers have made tremendous progress in identifying individual and combined molecular therapies in animal studies. It is very important to identify additional highly effective treatments for early neuroprotective intervention and for functionally meaningful axon regeneration and neuronal reconnections. Because multiple mechanisms contribute to the functional loss after SCI, combining the most promising approaches that target different pathophysiological and molecular mechanisms should exhibit synergistic actions for maximal functional restoration. [Databases searched: PubMed; inclusive dates: 6/27/2019].
Collapse
Affiliation(s)
- Shuo Wang
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine , Philadelphia , PA , USA.,Department of Anatomy and Cell Biology, Temple University School of Medicine , Philadelphia , PA , USA
| | - George M Smith
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine , Philadelphia , PA , USA.,Department of Neuroscience, Temple University School of Medicine , Philadelphia , PA , USA
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine , Philadelphia , PA , USA.,Department of Neurology, Temple University School of Medicine , Philadelphia , PA , USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine , Philadelphia , PA , USA.,Department of Anatomy and Cell Biology, Temple University School of Medicine , Philadelphia , PA , USA
| |
Collapse
|
11
|
Ong W, Pinese C, Chew SY. Scaffold-mediated sequential drug/gene delivery to promote nerve regeneration and remyelination following traumatic nerve injuries. Adv Drug Deliv Rev 2019; 149-150:19-48. [PMID: 30910595 DOI: 10.1016/j.addr.2019.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Neural tissue regeneration following traumatic injuries is often subpar. As a result, the field of neural tissue engineering has evolved to find therapeutic interventions and has seen promising outcomes. However, robust nerve and myelin regeneration remain elusive. One possible reason may be the fact that tissue regeneration often follows a complex sequence of events in a temporally-controlled manner. Although several other fields of tissue engineering have begun to recognise the importance of delivering two or more biomolecules sequentially for more complete tissue regeneration, such serial delivery of biomolecules in neural tissue engineering remains limited. This review aims to highlight the need for sequential delivery to enhance nerve regeneration and remyelination after traumatic injuries in the central nervous system, using spinal cord injuries as an example. In addition, possible methods to attain temporally-controlled drug/gene delivery are also discussed for effective neural tissue regeneration.
Collapse
|
12
|
Chio JCT, Wang J, Badner A, Hong J, Surendran V, Fehlings MG. The effects of human immunoglobulin G on enhancing tissue protection and neurobehavioral recovery after traumatic cervical spinal cord injury are mediated through the neurovascular unit. J Neuroinflammation 2019; 16:141. [PMID: 31288834 PMCID: PMC6615094 DOI: 10.1186/s12974-019-1518-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/11/2019] [Indexed: 12/30/2022] Open
Abstract
Background Spinal cord injury (SCI) is a condition with few effective treatment options. The blood-spinal cord barrier consists of pericytes, astrocytes, and endothelial cells, which are collectively termed the neurovascular unit. These cells support spinal cord homeostasis by expressing tight junction proteins. Physical trauma to the spinal cord disrupts the barrier, which leads to neuroinflammation by facilitating immune cell migration to the damaged site in a process involving immune cell adhesion. Immunosuppressive strategies, including methylprednisolone (MPSS), have been investigated to treat SCI. However, despite some success, MPSS has the potential to increase a patient’s susceptibility to wound infection and impaired wound healing. Hence, immunomodulation may be a more attractive approach than immunosuppression. Approved for modulating neuroinflammation in certain disorders, including Guillain-Barre syndrome, intravenous administration of human immunoglobulin G (hIgG) has shown promise in the setting of experimental SCI, though the optimal dose and mechanism of action remain undetermined. Methods Female adult Wistar rats were subjected to moderate-severe clip compression injury (35 g) at the C7-T1 level and randomized to receive a single intravenous (IV) bolus of hIgG (0.02, 0.2, 0.4, 1, 2 g/kg), MPSS (0.03 g/kg), or control buffer at 15 min post-SCI. At 24 h and 6 weeks post-SCI, molecular, histological, and neurobehavioral effects of hIgG were analyzed. Results At 24 h post-injury, human immunoglobulin G co-localized with spinal cord pericytes, astrocytes, and vessels. hIgG (2 g/kg) protected the spinal cord neurovasculature after SCI by increasing tight junction protein expression and reducing inflammatory enzyme expression. Improvements in vascular integrity were associated with changes in spinal cord inflammation. Interestingly, hIgG (2 g/kg) increased serum expression of inflammatory cytokines and co-localized (without decreasing protein expression) with spinal cord vascular cell adhesion molecule-1, a protein used by immune cells to enter into inflamed tissue. Acute molecular benefits of hIgG (2 g/kg) led to greater tissue preservation, functional blood flow, and neurobehavioral recovery at 6 weeks post-SCI. Importantly, the effects of hIgG (2 g/kg) were superior to control buffer and hIgG (0.4 g/kg), and comparable with MPSS (0.03 g/kg). Conclusions hIgG (2 g/kg) is a promising therapeutic approach to mitigate secondary pathology in SCI through antagonizing immune cell infiltration at the level of the neurovascular unit.
Collapse
Affiliation(s)
- Jonathon Chon Teng Chio
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 7KD-430, Toronto, Ontario, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Spinal Program, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Jian Wang
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 7KD-430, Toronto, Ontario, M5T 2S8, Canada
| | - Anna Badner
- Sue and Bill Gross Stem Cell Research Centre, University of California, 845 Health Sciences Road, Irvine, CA, 92617, USA
| | - James Hong
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 7KD-430, Toronto, Ontario, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Spinal Program, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | | | - Michael G Fehlings
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 7KD-430, Toronto, Ontario, M5T 2S8, Canada. .,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada. .,Spinal Program, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada. .,University of Toronto, Toronto, Ontario, Canada. .,Gerry and Tootsie Halbert Chair in Neural Repair and Regeneration, University of Toronto, Toronto, Canada. .,Krembil Neuroscience Program, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada.
| |
Collapse
|
13
|
Arevalo-Martin A, Grassner L, Garcia-Ovejero D, Paniagua-Torija B, Barroso-Garcia G, Arandilla AG, Mach O, Turrero A, Vargas E, Alcobendas M, Rosell C, Alcaraz MA, Ceruelo S, Casado R, Talavera F, Palazón R, Sanchez-Blanco N, Maier D, Esclarin A, Molina-Holgado E. Elevated Autoantibodies in Subacute Human Spinal Cord Injury Are Naturally Occurring Antibodies. Front Immunol 2018; 9:2365. [PMID: 30364218 PMCID: PMC6193075 DOI: 10.3389/fimmu.2018.02365] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/24/2018] [Indexed: 01/02/2023] Open
Abstract
Spinal cord injury (SCI) results in long-term neurological and systemic consequences, including antibody-mediated autoimmunity, which has been related to impaired functional recovery. Here we show that autoantibodies that increase at the subacute phase of human SCI, 1 month after lesion, are already present in healthy subjects and directed against non-native proteins rarely present in the normal spinal cord. The increase of these autoantibodies is a fast phenomenon–their levels are already elevated before 5 days after lesion–characteristic of secondary immune responses, further supporting their origin as natural antibodies. By proteomics studies we have identified that the increased autoantibodies are directed against 16 different nervous system and systemic self-antigens related to changes known to occur after SCI, including alterations in neural cell cytoskeleton, metabolism and bone remodeling. Overall, in the context of previous studies, our results offer an explanation to why autoimmunity develops after SCI and identify novel targets involved in SCI pathology that warrant further investigation.
Collapse
Affiliation(s)
- Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Lukas Grassner
- Center for Spinal Cord Injuries, Trauma Center, Murnau, Germany.,Department of Neurosurgery, Trauma Center, Murnau, Germany.,Spinal Cord Injury and Tissue Regeneration Center Salzburg, Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | | | - Gemma Barroso-Garcia
- Proteomics Core Facility, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Alba G Arandilla
- Proteomics Core Facility, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Orpheus Mach
- Center for Spinal Cord Injuries, Trauma Center, Murnau, Germany
| | - Angela Turrero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Eduardo Vargas
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Monica Alcobendas
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Carmen Rosell
- Department of Occupational Health, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Maria A Alcaraz
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Silvia Ceruelo
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Rosa Casado
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Francisco Talavera
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Ramiro Palazón
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | | | - Doris Maier
- Center for Spinal Cord Injuries, Trauma Center, Murnau, Germany
| | - Ana Esclarin
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| |
Collapse
|
14
|
Okada N, Sasaki A, Saito J, Mitani Y, Yachie A, Takahashi H, Matsubara S, Tenkumo C, Tanaka H, Hata T, Motomura K, Nagasawa J, Wada Y, Sako M, Yamaguchi K, Matsumoto K, Nakamura H, Sago H, Mizuta K. The Japanese experience and pharmacokinetics of antenatal maternal high-dose immunoglobulin treatment as a prophylaxis for neonatal hemochromatosis in siblings. J Matern Fetal Neonatal Med 2018; 33:142-148. [PMID: 29890876 DOI: 10.1080/14767058.2018.1487940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Background: Neonatal hemochromatosis (NH) is a rare but serious disease causing fulminant hepatic failure. The recurrence rate of NH in a subsequent infant of a mother with an affected infant is 70-90%. Recently, antenatal maternal high-dose intravenous immunoglobulin (IVIG) treatment has been reported to be effective for preventing NH recurrence. However, data on the IgG concentrations during this treatment are limited.Objective: We report a Japanese experience and present a pharmacokinetic simulation model of IgG during IVIG treatment.Methods: Women with histories of pregnancy diagnosed with NH were treated with IVIG weekly from the second trimester until the end of gestation. Serum IgG levels during treatment were collected frequently and pharmacokinetics were simulated by a two-compartment model.Results: Six women were included during eight pregnancies. None experienced severe adverse events. Three out of eight infants showed temporary liver dysfunction, but none required any treatment. A simulation study showed that the estimated trough and peak levels of IgG concentrations during IVIG were 2000-3000 and 4000-5000 mg/dl, respectively.Conclusion: This treatment prevented the recurrence of NH in siblings in Japanese women. We examined the details of serum IgG concentrations and introduced a new pharmacokinetic simulation model of IgG concentrations during IVIG treatment.
Collapse
Affiliation(s)
- Noriki Okada
- Department of Transplant Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Aiko Sasaki
- Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Division of Obstetrics, Tokyo, Japan
| | - Jumpei Saito
- Department of Pharmacy, National Center for Child Health and Development, Tokyo, Japan
| | - Yusuke Mitani
- Perinatal Mother and Infant Care Center, Kanazawa University Hospital, Kanazawa, Japan
| | - Akihiro Yachie
- Department of Pediatrics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hironori Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Japan
| | - Shigeki Matsubara
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Japan
| | - Chiaki Tenkumo
- Department of Perinatology and Gynecology, Kagawa University Graduate School of Medicine, Miki, Japan
| | - Hirokazu Tanaka
- Department of Perinatology and Gynecology, Kagawa University Graduate School of Medicine, Miki, Japan
| | - Toshiyuki Hata
- Department of Perinatology and Gynecology, Kagawa University Graduate School of Medicine, Miki, Japan
| | - Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Junko Nagasawa
- Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Division of Obstetrics, Tokyo, Japan
| | - Yuka Wada
- Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Division of Obstetrics, Tokyo, Japan
| | - Mayumi Sako
- Division for Clinical Trials, Department of Clinical Research, Center for Clinical Research and Development, National Center for Child Health and Development, Tokyo, Japan
| | - Koshi Yamaguchi
- Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Division of Obstetrics, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Hidefumi Nakamura
- Department of Development Strategy, National Center for Child Health and Development, Tokyo, Japan
| | - Haruhiko Sago
- Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Division of Obstetrics, Tokyo, Japan
| | - Koichi Mizuta
- Department of Transplant Surgery, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
15
|
Putatunda R, Bethea JR, Hu WH. Potential immunotherapies for traumatic brain and spinal cord injury. Chin J Traumatol 2018; 21:125-136. [PMID: 29759918 PMCID: PMC6033730 DOI: 10.1016/j.cjtee.2018.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 02/08/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic injury of the central nervous system (CNS) including brain and spinal cord remains a leading cause of morbidity and disability in the world. Delineating the mechanisms underlying the secondary and persistent injury versus the primary and transient injury has been drawing extensive attention for study during the past few decades. The sterile neuroinflammation during the secondary phase of injury has been frequently identified substrate underlying CNS injury, but as of now, no conclusive studies have determined whether this is a beneficial or detrimental role in the context of repair. Recent pioneering studies have demonstrated the key roles for the innate and adaptive immune responses in regulating sterile neuroinflammation and CNS repair. Some promising immunotherapeutic strategies have been recently developed for the treatment of CNS injury. This review updates the recent progress on elucidating the roles of the innate and adaptive immune responses in the context of CNS injury, the development and characterization of potential immunotherapeutics, as well as outstanding questions in this field.
Collapse
Affiliation(s)
- Raj Putatunda
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA
| | - John R. Bethea
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Wen-Hui Hu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA,Corresponding author.
| |
Collapse
|
16
|
Noble BT, Brennan FH, Popovich PG. The spleen as a neuroimmune interface after spinal cord injury. J Neuroimmunol 2018; 321:1-11. [PMID: 29957379 DOI: 10.1016/j.jneuroim.2018.05.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 01/17/2023]
Abstract
Traumatic spinal cord injury (SCI) causes widespread damage to neurons, glia and endothelia located throughout the spinal parenchyma. In response to the injury, resident and blood-derived leukocytes orchestrate an intraspinal inflammatory response that propagates secondary neuropathology and also promotes tissue repair. SCI also negatively affects autonomic control over peripheral immune organs, notably the spleen. The spleen is the largest secondary lymphoid organ in mammals, with major roles in blood filtration and host defense. Splenic function is carefully regulated by neuroendocrine mechanisms that ensure that the immune responses to infection or injury are proportionate to the initiating stimulus, and can be terminated when the stimulus is cleared. After SCI, control over the viscera, including endocrine and lymphoid tissues is lost due to damage to spinal autonomic (sympathetic) circuitry. This review begins by examining the normal structure and function of the spleen including patterns of innervation and the role played by the nervous system in regulating spleen function. We then describe how after SCI, loss of proper neural control over splenic function leads to systems-wide neuropathology, immune suppression and autoimmunity. We conclude by discussing opportunities for targeting the spleen to restore immune homeostasis, reduce morbidity and mortality, and improve functional recovery after SCI.
Collapse
Affiliation(s)
- Benjamin T Noble
- Neuroscience Graduate Studies Program, Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University, Columbus 43210, OH, USA
| | - Faith H Brennan
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus 43210, OH, USA
| | - Phillip G Popovich
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus 43210, OH, USA.
| |
Collapse
|
17
|
Hao M, Ji XR, Chen H, Zhang W, Zhang LC, Zhang LH, Tang PF, Lu N. Cell cycle and complement inhibitors may be specific for treatment of spinal cord injury in aged and young mice: Transcriptomic analyses. Neural Regen Res 2018; 13:518-527. [PMID: 29623939 PMCID: PMC5900517 DOI: 10.4103/1673-5374.226405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous studies have reported age-specific pathological and functional outcomes in young and aged patients suffering spinal cord injury, but the mechanisms remain poorly understood. In this study, we examined mice with spinal cord injury. Gene expression profiles from the Gene Expression Omnibus database (accession number GSE93561) were used, including spinal cord samples from 3 young injured mice (2-3-months old, induced by Impactor at Th9 level) and 3 control mice (2-3-months old, no treatment), as well as 2 aged injured mice (15-18-months old, induced by Impactor at Th9 level) and 2 control mice (15-18-months old, no treatment). Differentially expressed genes (DEGs) in spinal cord tissue from injured and control mice were identified using the Linear Models for Microarray data method, with a threshold of adjusted P < 0.05 and |logFC(fold change)| > 1.5. Protein-protein interaction networks were constructed using data from the STRING database, followed by module analysis by Cytoscape software to screen crucial genes. Kyoto encyclopedia of genes and genomes pathway and Gene Ontology enrichment analyses were performed to investigate the underlying functions of DEGs using Database for Annotation, Visualization and Integrated Discovery. Consequently, 1,604 and 1,153 DEGs were identified between injured and normal control mice in spinal cord tissue of aged and young mice, respectively. Furthermore, a Venn diagram showed that 960 DEGs were shared among aged and young mice, while 644 and 193 DEGs were specific to aged and young mice, respectively. Functional enrichment indicates that shared DEGs are involved in osteoclast differentiation, extracellular matrix-receptor interaction, nuclear factor-kappa B signaling pathway, and focal adhesion. Unique genes for aged and young injured groups were involved in the cell cycle (upregulation of PLK1) and complement (upregulation of C3) activation, respectively. These findings were confirmed by functional analysis of genes in modules (common, 4; aged, 2; young, 1) screened from protein-protein interaction networks. Accordingly, cell cycle and complement inhibitors may be specific treatments for spinal cord injury in aged and young mice, respectively.
Collapse
Affiliation(s)
- Ming Hao
- Department of Orthopedic Surgery, General Hospital of People's Liberation Army (301 Hospital), Beijing, China
| | - Xin-Ran Ji
- Department of Orthopedic Surgery, General Hospital of People's Liberation Army (301 Hospital), Beijing, China
| | - Hua Chen
- Department of Orthopedic Surgery, General Hospital of People's Liberation Army (301 Hospital), Beijing, China
| | - Wei Zhang
- Department of Orthopedic Surgery, General Hospital of People's Liberation Army (301 Hospital), Beijing, China
| | - Li-Cheng Zhang
- Department of Orthopedic Surgery, General Hospital of People's Liberation Army (301 Hospital), Beijing, China
| | - Li-Hai Zhang
- Department of Orthopedic Surgery, General Hospital of People's Liberation Army (301 Hospital), Beijing, China
| | - Pei-Fu Tang
- Department of Orthopedic Surgery, General Hospital of People's Liberation Army (301 Hospital), Beijing, China
| | - Ning Lu
- Department of Orthopedic Surgery, General Hospital of People's Liberation Army (301 Hospital), Beijing, China
| |
Collapse
|
18
|
Abstract
Magnetic Resonance Imaging (MRI) is an important tool to study various animal models of degenerative diseases. This chapter describes routine protocols of T 1-, T 2-, and T 2*-weighted and diffusion-weighted MRI for rodent brain and spinal cord. These protocols can be used to measure atrophy, axonal and myelin injury and changes in white matter connectivity.
Collapse
Affiliation(s)
- Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
19
|
Ulndreaj A, Badner A, Fehlings MG. Promising neuroprotective strategies for traumatic spinal cord injury with a focus on the differential effects among anatomical levels of injury. F1000Res 2017; 6:1907. [PMID: 29152227 PMCID: PMC5664995 DOI: 10.12688/f1000research.11633.1] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2017] [Indexed: 01/10/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition of motor, sensory, and autonomic dysfunction. The significant cost associated with the management and lifetime care of patients with SCI also presents a major economic burden. For these reasons, there is a need to develop and translate strategies that can improve outcomes following SCI. Given the challenges in achieving regeneration of the injured spinal cord, neuroprotection has been at the forefront of clinical translation. Yet, despite many preclinical advances, there has been limited translation into the clinic apart from methylprednisolone (which remains controversial), hypertensive therapy to maintain spinal cord perfusion, and early decompressive surgery. While there are several factors related to the limited translational success, including the clinical and mechanistic heterogeneity of human SCI, the misalignment between animal models of SCI and clinical reality continues to be an important factor. Whereas most clinical cases are at the cervical level, only a small fraction of preclinical research is conducted in cervical models of SCI. Therefore, this review highlights the most promising neuroprotective and neural reparative therapeutic strategies undergoing clinical assessment, including riluzole, hypothermia, granulocyte colony-stimulating factor, glibenclamide, minocycline, Cethrin (VX-210), and anti-Nogo-A antibody, and emphasizes their efficacy in relation to the anatomical level of injury. Our hope is that more basic research will be conducted in clinically relevant cervical SCI models in order to expedite the transition of important laboratory discoveries into meaningful treatment options for patients with SCI.
Collapse
Affiliation(s)
- Antigona Ulndreaj
- Institute of Medical Science, University of Toronto, Toronto, Canada.,University of Toronto Spine Program, Toronto, Canada.,Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Anna Badner
- Institute of Medical Science, University of Toronto, Toronto, Canada.,University of Toronto Spine Program, Toronto, Canada.,Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Michael G Fehlings
- Institute of Medical Science, University of Toronto, Toronto, Canada.,University of Toronto Spine Program, Toronto, Canada.,Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| |
Collapse
|
20
|
Disease-modifying effect of intravenous immunoglobulin in an experimental model of epilepsy. Sci Rep 2017; 7:40528. [PMID: 28074934 PMCID: PMC5225452 DOI: 10.1038/srep40528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/07/2016] [Indexed: 12/24/2022] Open
Abstract
Novel therapies that prevent or modify the development of epilepsy following an initiating brain insult could significantly reduce the burden of this disease. In light of evidence that immune mechanisms play an important role in generating and maintaining the epileptic condition, we evaluated the effect of a well-established immunomodulatory treatment, intravenous immunoglobulin (IVIg), on the development of epilepsy in an experimental model of epileptogenesis. In separate experiments, IVIg was administered either before (pre-treatment) or after (post-treatment) the onset of pilocarpine status epilepticus (SE). Our results show that both pre- and post-treatment with IVIg attenuated acute inflammation in the SE model. Specifically, IVIg reduced local activation of glial cells, complement system activation, and blood-brain barrier damage (BBB), which are all thought to play important roles in the development of epilepsy. Importantly, post-treatment with IVIg was also found to reduce the frequency and duration of subsequent spontaneous recurrent seizures as detected by chronic video-electroencephalographic (video-EEG) recordings. This finding supports a novel application for IVIg, specifically its repurposing as a disease-modifying therapy in epilepsy.
Collapse
|