1
|
Singh OP, El-Badawy IM, Sundaram S, O'Mahony C. Microneedle electrodes: materials, fabrication methods, and electrophysiological signal monitoring-narrative review. Biomed Microdevices 2025; 27:9. [PMID: 40000499 DOI: 10.1007/s10544-024-00732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2024] [Indexed: 02/27/2025]
Abstract
Flexible, microneedle-based electrodes offer an innovative solution for high-quality physiological signal monitoring, reducing the need for complex algorithms and hardware, thus streamlining health assessments, and enabling earlier disease detection. These electrodes are particularly promising for improving patient outcomes by providing more accurate, reliable, and long-term electrophysiological data, but their clinical adoption is hindered by the limited availability of large-scale population testing. This review examines the key advantages of flexible microneedle electrodes, including their ability to conform to the skin, enhance skin-electrode contact, reduce discomfort, and deliver superior signal fidelity. The mechanical and electrical properties of these electrodes are thoroughly explored, focusing on critical aspects like fracture force, skin penetration efficiency, and impedance measurements. Their applications in capturing electrophysiological signals such as ECG, EMG, and EEG are also highlighted, demonstrating their potential in clinical scenarios. Finally, the review outlines future research directions, emphasizing the importance of further studies to enhance the clinical and consumer use of flexible microneedle electrodes in medical diagnostics.
Collapse
Affiliation(s)
- Om Prakash Singh
- Digital Devices for Health Conditions, Centre for Health Technology, School of Nursing and Midwifery, Faculty of Health, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Ismail M El-Badawy
- Electronics and Communications Engineering Department, College of Engineering and Technology, Arab Academy for Science and Technology and Maritime Transport, Cairo, Egypt
| | - Sornambikai Sundaram
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Conor O'Mahony
- Tyndall National Institute, University College Cork, Cork, T12 RC5P, Ireland
| |
Collapse
|
2
|
Li G, Jang D, Shin Y, Qiang Y, Qi Y, Wang S, Fang H. Cracking modes and force dynamics in the insertion of neural probes into hydrogel brain phantom. J Neural Eng 2024; 21:046009. [PMID: 38885673 PMCID: PMC11225066 DOI: 10.1088/1741-2552/ad5937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Objective. The insertion of penetrating neural probes into the brain is crucial for advancing neuroscience, yet it involves various inherent risks. Prototype probes are typically inserted into hydrogel-based brain phantoms and the mechanical responses are analyzed in order to inform the insertion mechanics duringin vivoimplantation. However, the underlying mechanism of the insertion dynamics of neural probes in hydrogel brain phantoms, particularly the phenomenon of cracking, remains insufficiently understood. This knowledge gap leads to misinterpretations and discrepancies when comparing results obtained from phantom studies to those observed under thein vivoconditions. This study aims to elucidate the impact of probe sharpness and dimensions on the cracking mechanisms and insertion dynamics characterized during the insertion of probes in hydrogel phantoms.Approach. The insertion of dummy probes with different shank shapes defined by the tip angle, width, and thickness is systematically studied. The insertion-induced cracks in the transparent hydrogel were accentuated by an immiscible dye, tracked byin situimaging, and the corresponding insertion force was recorded. Three-dimensional finite element analysis models were developed to obtain the contact stress between the probe tip and the phantom.Main results. The findings reveal a dual pattern: for sharp, slender probes, the insertion forces remain consistently low during the insertion process, owing to continuously propagating straight cracks that align with the insertion direction. In contrast, blunt, thick probes induce large forces that increase rapidly with escalating insertion depth, mainly due to the formation of branched crack with a conical cracking surface, and the subsequent internal compression. This interpretation challenges the traditional understanding that neglects the difference in the cracking modes and regards increased frictional force as the sole factor contributing to higher insertion forces. The critical probe sharpness factors separating straight and branched cracking is identified experimentally, and a preliminary explanation of the transition between the two cracking modes is derived from three-dimensional finite element analysis.Significance. This study presents, for the first time, the mechanism underlying two distinct cracking modes during the insertion of neural probes into hydrogel brain phantoms. The correlations between the cracking modes and the insertion force dynamics, as well as the effects of the probe sharpness were established, offering insights into the design of neural probes via phantom studies and informing future investigations into cracking phenomena in brain tissue during probe implantations.
Collapse
Affiliation(s)
- Gen Li
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Dongyeol Jang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Yieljae Shin
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Yi Qiang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Yongli Qi
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Shuodao Wang
- School of Mechanical & Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Hui Fang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| |
Collapse
|
3
|
Ertas YN, Ertas D, Erdem A, Segujja F, Dulchavsky S, Ashammakhi N. Diagnostic, Therapeutic, and Theranostic Multifunctional Microneedles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308479. [PMID: 38385813 DOI: 10.1002/smll.202308479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/04/2024] [Indexed: 02/23/2024]
Abstract
Microneedles (MNs) have maintained their popularity in therapeutic and diagnostic medical applications throughout the past decade. MNs are originally designed to gently puncture the stratum corneum layer of the skin and have lately evolved into intelligent devices with functions including bodily fluid extraction, biosensing, and drug administration. MNs offer limited invasiveness, ease of application, and minimal discomfort. Initially manufactured solely from metals, MNs are now available in polymer-based varieties. MNs can be used to create systems that deliver drugs and chemicals uniformly, collect bodily fluids, and are stimulus-sensitive. Although these advancements are favorable in terms of biocompatibility and production costs, they are insufficient for the therapeutic use of MNs. This is the first comprehensive review that discusses individual MN functions toward the evolution and development of smart and multifunctional MNs for a variety of novel and impactful future applications. The study examines fabrication techniques, application purposes, and experimental details of MN constructs that perform multiple functions concurrently, including sensing, drug-molecule release, sampling, and remote communication capabilities. It is highly likely that in the near future, MN-based smart devices will be a useful and important component of standard medical practice for different applications.
Collapse
Affiliation(s)
- Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Türkiye
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Türkiye
| | - Derya Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye
| | - Ahmet Erdem
- Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41380, Türkiye
- Department of Chemistry, Kocaeli University, Umuttepe Campus, Kocaeli, 41380, Türkiye
| | - Farouk Segujja
- Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41380, Türkiye
| | - Scott Dulchavsky
- Department of Surgery, Henry Ford Health, Detroit, MI, 48201, USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Colleges of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
4
|
Richie J, Letner JG, Mclane-Svoboda A, Huan Y, Ghaffari DH, Valle ED, Patel PR, Chiel HJ, Pelled G, Weiland JD, Chestek CA. Fabrication and Validation of Sub-Cellular Carbon Fiber Electrodes. IEEE Trans Neural Syst Rehabil Eng 2024; 32:739-749. [PMID: 38294928 PMCID: PMC10919889 DOI: 10.1109/tnsre.2024.3360866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Multielectrode arrays for interfacing with neurons are of great interest for a wide range of medical applications. However, current electrodes cause damage over time. Ultra small carbon fibers help to address issues but controlling the electrode site geometry is difficult. Here we propose a methodology to create small, pointed fiber electrodes (SPFe). We compare the SPFe to previously made blowtorched fibers in characterization. The SPFe result in small site sizes [Formula: see text] with consistently sharp points (20.8 ± 7.64°). Additionally, these electrodes were able to record and/or stimulate neurons multiple animal models including rat cortex, mouse retina, Aplysia ganglia and octopus axial cord. In rat cortex, these electrodes recorded significantly higher peak amplitudes than the traditional blowtorched fibers. These SPFe may be applicable to a wide range of applications requiring a highly specific interface with individual neurons.
Collapse
|
5
|
Saleh MS, Ritchie SM, Nicholas MA, Gordon HL, Hu C, Jahan S, Yuan B, Bezbaruah R, Reddy JW, Ahmed Z, Chamanzar M, Yttri EA, Panat RP. CMU Array: A 3D nanoprinted, fully customizable high-density microelectrode array platform. SCIENCE ADVANCES 2022; 8:eabj4853. [PMID: 36197979 PMCID: PMC9534502 DOI: 10.1126/sciadv.abj4853] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/17/2022] [Indexed: 05/27/2023]
Abstract
Microelectrode arrays provide the means to record electrophysiological activity critical to brain research. Despite its fundamental role, there are no means to customize electrode layouts to address specific experimental or clinical needs. Moreover, current electrodes demonstrate substantial limitations in coverage, fragility, and expense. Using a 3D nanoparticle printing approach that overcomes these limitations, we demonstrate the first in vivo recordings from electrodes that make use of the flexibility of the 3D printing process. The customizable and physically robust 3D multi-electrode devices feature high electrode densities (2600 channels/cm2 of footprint) with minimal gross tissue damage and excellent signal-to-noise ratio. This fabrication methodology also allows flexible reconfiguration consisting of different individual shank lengths and layouts, with low overall channel impedances. This is achieved, in part, via custom 3D printed multilayer circuit boards, a fabrication advancement itself that can support several biomedical device possibilities. This effective device design enables both targeted and large-scale recording of electrical signals throughout the brain.
Collapse
Affiliation(s)
- Mohammad Sadeq Saleh
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sandra M. Ritchie
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mark A. Nicholas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, PA 15213, USA
| | - Hailey L. Gordon
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Chunshan Hu
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sanjida Jahan
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Bin Yuan
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rriddhiman Bezbaruah
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jay W. Reddy
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Zabir Ahmed
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Maysamreza Chamanzar
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Eric A. Yttri
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rahul P. Panat
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
The clinical and translational prospects of microneedle devices, with a focus on insulin therapy for diabetes mellitus as a case study. Int J Pharm 2022; 628:122234. [PMID: 36191817 DOI: 10.1016/j.ijpharm.2022.122234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022]
Abstract
Microneedles have the clinical advantage of being able to deliver complex drugs across the skin in a convenient and comfortable manner yet haven't successfully transitioned to medical practice. Diabetes mellitus is a complicated disease, which is commonly treated with multiple daily insulin injections, contributing to poor treatment adherence. Firstly, this review determines the clinical prospect of microneedles, alongside considerations that ought to be addressed before microneedle technology can be translated from bench to bedside. Thereafter, we use diabetes as a case study to consider how microneedle-based-technology may be successfully harnessed. Here, publications referring to insulin microneedles were evaluated to understand whether insertion efficiency, angle of insertion, successful dose delivery, dose adjustability, material biocompatibility and therapeutic stability are being addressed in early stage research. Moreover, over 3,000 patents from 1970-2019 were reviewed with the search term '"microneedle" AND "insulin"' to understand the current status of the field. In conclusion, the reporting of early stage microneedle research demonstrated a lack of consistency relating to the translational factors addressed. Additionally, a more rational design, based on a patient-centred approach is required before microneedle-based delivery systems can be used to revolutionise the lives of people living with diabetes following regulatory approval.
Collapse
|
7
|
Xiong J, Zhang B, Balilonda A, Yang S, Li K, Zhang Q, Li Y, Wang H, Hou C. Graphene-based implantable neural electrodes for insect flight control. J Mater Chem B 2022; 10:4632-4639. [PMID: 35648073 DOI: 10.1039/d2tb00906d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Implantable neural electrodes have been widely used to investigate the function of the brain and treat neurological disorders. Due to their advantages of size and preparation, fibrous neural electrodes have been widely applied, but conventional metal wire electrodes have many shortcomings that are impossible to overcome. Here, we present a modified graphene-based fiber electrode, which retains the excellent electrical properties of the graphene fiber (GF) electrode and enhances the charge storage capacity (CSC) from the initial 7.97 mC cm-2 to 504.04 mC cm-2. The modified electrodes were further investigated via in vivo experiments, and the results show that the modified graphene fibers controlled insect flight with a minimum voltage close to that of silver wire electrodes, and no irreversible chemical reaction occurred during the electrical stimulation process, which could achieve the stimulation effect while ensuring the safety of the tissues around the electrodes.
Collapse
Affiliation(s)
- Jian Xiong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Bin Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Andrew Balilonda
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, P. R. China
| | - Shengyuan Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, College of Materials Science and Engineering, Donghua University, 201620, P. R. China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, College of Materials Science and Engineering, Donghua University, 201620, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| |
Collapse
|
8
|
Mirabedini A, Anderson L, Antiohos D, Ang A, Nikzad M, Fuss FK, Hameed N. Scalable Production and Thermoelectrical Modeling of Infusible Functional Graphene/Epoxy Nanomaterials for Engineering Applications. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Azadeh Mirabedini
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- DMTC Limited (Australia), Hawthorn, Melbourne, Victoria 3122, Australia
| | - Liam Anderson
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - Dennis Antiohos
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - Andrew Ang
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - Mostafa Nikzad
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - Franz Konstantin Fuss
- Chair of Biomechanics, Faculty of Engineering Science, University of Bayreuth, Bayreuth D-95447, Germany
| | - Nishar Hameed
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| |
Collapse
|
9
|
Microneedle-Mediated Vaccination: Innovation and Translation. Adv Drug Deliv Rev 2021; 179:113919. [PMID: 34375682 DOI: 10.1016/j.addr.2021.113919] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
Vaccine administration by subcutaneous or intramuscular injection is the most commonly prescribed route for inoculation, however, it is often associated with some deficiencies such as low compliance, high professionalism, and risk of infection. Therefore, the application of microneedles for vaccine delivery has gained widespread interests in the past few years due to its high compliance, minimal invasiveness, and convenience. This review focuses on recent advances in the development and application of microneedles for vaccination based on different delivery strategies, and introduces the current status of microneedle-mediated vaccination in clinical translation. The prospects for its application including opportunities and challenges are further discussed.
Collapse
|
10
|
Tang C, Xie S, Wang M, Feng J, Han Z, Wu X, Wang L, Chen C, Wang J, Jiang L, Chen P, Sun X, Peng H. A fiber-shaped neural probe with alterable elastic moduli for direct implantation and stable electronic-brain interfaces. J Mater Chem B 2021; 8:4387-4394. [PMID: 32373848 DOI: 10.1039/d0tb00508h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Researchers developing implantable neural probes face a dilemma. Rigid neural probes facilitate direct implantation, but the brain tissue suffers from a vulnerable interface and a strong neuroinflammatory response due to mechanical mismatch between the probe and the brain tissue. Flexible neural probes offer stable interfaces and eliminate neuroinflammatory responses but require auxiliary implantation. Here, we have created a new kind of micro fiber-shaped neural probe with alterable elastic moduli before and after implantation. Carbon nanotube fibers and calcium crosslinked sodium alginate functioned as the core electrode and sheath layer, respectively. The response of calcium crosslinked sodium alginate to water will alter the probe elastic moduli from ∼10 GPa to ∼10 kPa post implantation, which is close to the elastic modulus of brain tissue. The micro fiber probes were directly implanted into mouse brains without any additional materials. After implantation, they became soft and offered dynamically adaptable interfaces with a reduced inflammatory response, benefiting long-term monitoring of neuron signals. Continuous four week monitoring of neuron signals was achieved. The simplicity of the strategy makes it suitable for versatile neuron techniques in neuron recording and modulation.
Collapse
Affiliation(s)
- Chengqiang Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China.
| | - Songlin Xie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China.
| | - Mengying Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China.
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China.
| | - Zhengqi Han
- School of Life Sciences, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Xiaoying Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China.
| | - Liyuan Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China.
| | - Chuanrui Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China.
| | - Jiajia Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China.
| | - Liping Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China.
| | - Peining Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China.
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China.
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China.
| |
Collapse
|
11
|
Hejazi M, Tong W, Ibbotson MR, Prawer S, Garrett DJ. Advances in Carbon-Based Microfiber Electrodes for Neural Interfacing. Front Neurosci 2021; 15:658703. [PMID: 33912007 PMCID: PMC8072048 DOI: 10.3389/fnins.2021.658703] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Neural interfacing devices using penetrating microelectrode arrays have emerged as an important tool in both neuroscience research and medical applications. These implantable microelectrode arrays enable communication between man-made devices and the nervous system by detecting and/or evoking neuronal activities. Recent years have seen rapid development of electrodes fabricated using flexible, ultrathin carbon-based microfibers. Compared to electrodes fabricated using rigid materials and larger cross-sections, these microfiber electrodes have been shown to reduce foreign body responses after implantation, with improved signal-to-noise ratio for neural recording and enhanced resolution for neural stimulation. Here, we review recent progress of carbon-based microfiber electrodes in terms of material composition and fabrication technology. The remaining challenges and future directions for development of these arrays will also be discussed. Overall, these microfiber electrodes are expected to improve the longevity and reliability of neural interfacing devices.
Collapse
Affiliation(s)
- Maryam Hejazi
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
| | - Wei Tong
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
- National Vision Research Institute, The Australian College of Optometry, Carlton, VIC, Australia
| | - Michael R. Ibbotson
- National Vision Research Institute, The Australian College of Optometry, Carlton, VIC, Australia
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Steven Prawer
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
| | - David J. Garrett
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Mirabedini A, Lu Z, Mostafavian S, Foroughi J. Triaxial Carbon Nanotube/Conducting Polymer Wet-Spun Fibers Supercapacitors for Wearable Electronics. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E3. [PMID: 33375054 PMCID: PMC7822024 DOI: 10.3390/nano11010003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 01/31/2023]
Abstract
The ubiquity of wearables, coupled with the increasing demand for power, presents a unique opportunity for nanostructured fiber-based mobile energy storage systems. When designing wearable electronic textiles, there is a need for mechanically flexible, low-cost and light-weight components. To meet this demand, we have developed an all-in-one fiber supercapacitor with a total thickness of less than 100 μm using a novel facile coaxial wet-spinning approach followed by a fiber wrapping step. The formed triaxial fiber nanostructure consisted of an inner poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) core coated with an ionically conducting chitosan sheath, subsequently wrapped with a carbon nanotube (CNT) fiber. The resulting supercapacitor is highly flexible, delivers a maximum energy density 5.83 Wh kg-1 and an extremely high power of 1399 W kg-1 along with remarkable cyclic stability and specific capacitance. This asymmetric all-in-one fiber supercapacitor may pave the way to a future generation of wearable energy storage devices.
Collapse
Affiliation(s)
- Azadeh Mirabedini
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC 3122, Australia;
| | - Zan Lu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China;
| | - Saber Mostafavian
- Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, North Wollongong, NSW 2500, Australia;
| | - Javad Foroughi
- School of Electrical, Computer and Telecommunications Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Keiraville, NSW 2522, Australia
- Westgerman Heart and Vascular Center, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
13
|
Apollo NV, Murphy B, Prezelski K, Driscoll N, Richardson AG, Lucas TH, Vitale F. Gels, jets, mosquitoes, and magnets: a review of implantation strategies for soft neural probes. J Neural Eng 2020; 17:041002. [PMID: 32759476 PMCID: PMC8152109 DOI: 10.1088/1741-2552/abacd7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Implantable neuroelectronic interfaces have enabled breakthrough advances in the clinical diagnosis and treatment of neurological disorders, as well as in fundamental studies of brain function, behavior, and disease. Intracranial electroencephalography (EEG) mapping with stereo-EEG (sEEG) depth electrodes is routinely adopted for precise epilepsy diagnostics and surgical treatment, while deep brain stimulation has become the standard of care for managing movement disorders. Intracortical microelectrode arrays for high-fidelity recordings of neural spiking activity have led to impressive demonstrations of the power of brain-machine interfaces for motor and sensory functional recovery. Yet, despite the rapid pace of technology development, the issue of establishing a safe, long-term, stable, and functional interface between neuroelectronic devices and the host brain tissue still remains largely unresolved. A body of work spanning at least the last 15 years suggests that safe, chronic integration between invasive electrodes and the brain requires a close match between the mechanical properties of man-made components and the neural tissue. In other words, the next generation of invasive electrodes should be soft and compliant, without sacrificing biological and chemical stability. Soft neuroelectronic interfaces, however, pose a new and significant surgical challenge: bending and buckling during implantation that can preclude accurate and safe device placement. In this topical review, we describe the next generation of soft electrodes and the surgical implantation methods for safe and precise insertion into brain structures. We provide an overview of the most recent innovations in the field of insertion strategies for flexible neural electrodes such as dissolvable or biodegradable carriers, microactuators, biologically-inspired support structures, and electromagnetic drives. In our analysis, we also highlight approaches developed in different fields, such as robotic surgery, which could be potentially adapted and translated to the insertion of flexible neural probes.
Collapse
Affiliation(s)
- Nicholas V Apollo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
| | - Brendan Murphy
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
- These authors contributed equally
| | - Kayla Prezelski
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
- These authors contributed equally
| | - Nicolette Driscoll
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
| | - Andrew G Richardson
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
| | - Timothy H Lucas
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
| | - Flavia Vitale
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
- These authors contributed equally
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Department of Physical Medicine & Rehabilitation, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| |
Collapse
|
14
|
Cheng H, Liu M, Du X, Xu J, Zhai Y, Ji J, He S, Zhai G. Recent progress of micro-needle formulations: Fabrication strategies and delivery applications. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Gao Y, Hou M, Yang R, Zhang L, Xu Z, Kang Y, Xue P. Highly Porous Silk Fibroin Scaffold Packed in PEGDA/Sucrose Microneedles for Controllable Transdermal Drug Delivery. Biomacromolecules 2019; 20:1334-1345. [DOI: 10.1021/acs.biomac.8b01715] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ya Gao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China
| | - Mengmeng Hou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China
| | - Ruihao Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China
| | - Lei Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhigang Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China
| | - Yuejun Kang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China
| | - Peng Xue
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China
| |
Collapse
|
16
|
Gao Y, Hou M, Yang R, Zhang L, Xu Z, Kang Y, Xue P. Transdermal delivery of therapeutics through dissolvable gelatin/sucrose films coated on PEGDA microneedle arrays with improved skin permeability. J Mater Chem B 2019; 7:7515-7524. [DOI: 10.1039/c9tb01994d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Microneedles are primarily designed for enhancing transdermal drug delivery in a minimally invasive manner.
Collapse
Affiliation(s)
- Ya Gao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Mengmeng Hou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Ruihao Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Lei Zhang
- Institute of Sericulture and Systems Biology, Southwest University
- Chongqing
- China
| | - Zhigang Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Yuejun Kang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Peng Xue
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| |
Collapse
|