1
|
Jensen PJ, Graham JP, Busch TK, Fitz O, Jayanadh S, Pashuck TE, Gonzalez-Fernandez T. Biocompatible composite hydrogel with on-demand swelling-shrinking properties for 4D bioprinting. Biomater Sci 2025. [PMID: 40366314 DOI: 10.1039/d5bm00551e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Hydrogels with tunable swelling and shrinking properties are of great interest in biomedical applications, particularly in wound healing, tissue regeneration, and drug delivery. Traditional hydrogels often fail to achieve high swelling without mechanical failure. In contrast, high-swelling hydrogels can absorb large amounts of liquid, expanding their volume by 10-1000 times, due to low crosslink density and the presence of hydrophilic groups. Additionally, some high-swelling hydrogels can also shrink in response to external stimuli, making them promising candidates for applications like on-demand drug delivery and biosensing. An emerging application of high-swelling hydrogels is four-dimensional (4D) printing, where controlled swelling induces structural transformations in a 3D printed construct. However, current hydrogel systems show limited swelling capacity, restricting their ability to undergo significant shape changes. To address these limitations, we developed a high-swelling composite hydrogel, termed SwellMA, by combining gelatin methacryloyl (GelMA) and sodium polyacrylate (SPA). SwellMA exhibits a swelling capacity over 500% of its original area and can increase its original water weight by 100-fold, outperforming existing materials in 4D bioprinting. Furthermore, SwellMA constructs can cyclically swell and shrink on-demand upon changing the ionic strength of the aqueous solution. Additionally, SwellMA demonstrates superior cytocompatibility and cell culture properties than SPA, along with enhanced 3D printing fidelity. These findings demonstrate SwellMA's potential for advanced 4D printing and a broad range of biomedical applications requiring precise and dynamic control over hydrogel swelling and shrinking.
Collapse
Affiliation(s)
- Peter J Jensen
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.
| | - Josh P Graham
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.
| | - Trevor K Busch
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.
| | - Owen Fitz
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.
| | - Sivani Jayanadh
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Thomas E Pashuck
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.
- Polymer Science and Engineering Program, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Tomas Gonzalez-Fernandez
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.
- Polymer Science and Engineering Program, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
2
|
Zhao Y, Wang T, Liu J, Wang Z, Lu Y. Emerging brain organoids: 3D models to decipher, identify and revolutionize brain. Bioact Mater 2025; 47:378-402. [PMID: 40026825 PMCID: PMC11869974 DOI: 10.1016/j.bioactmat.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Brain organoids are an emerging in vitro 3D brain model that is integrated from pluripotent stem cells. This model mimics the human brain's developmental process and disease-related phenotypes to a certain extent while advancing the development of human brain-based biological intelligence. However, many limitations of brain organoid culture (e.g., lacking a functional vascular system, etc.) prevent in vitro-cultured organoids from truly replicating the human brain in terms of cell type and structure. To improve brain organoids' scalability, efficiency, and stability, this paper discusses important contributions of material biology and microprocessing technology in solving the related limitations of brain organoids and applying the latest imaging technology to make real-time imaging of brain organoids possible. In addition, the related applications of brain organoids, especially the development of organoid intelligence combined with artificial intelligence, are analyzed, which will help accelerate the rational design and guidance of brain organoids.
Collapse
Affiliation(s)
- Yuli Zhao
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, Liaoning, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Ting Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Jiajun Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ze Wang
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, Liaoning, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Aafreen M M, Cholan PK, Ilango P, Parthasarathy H, Tadepalli A, Ramachandran L. Exploring the 4D printing linked bio-smart materials in dentistry: a concise overview. FRONTIERS IN DENTAL MEDICINE 2025; 6:1558382. [PMID: 40309261 PMCID: PMC12040875 DOI: 10.3389/fdmed.2025.1558382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
4D printing advances traditional 3D printing by incorporating the dimension of time, enabling stimuli-responsive shape or behavior changes. Bio-smart materials, crucial to this technology, enable programmable transformations with significant potential in biomechanics and dentistry. This review explores the use of smart materials and stimuli in 4D printing, emphasizing dental applications.A comprehensive search across EMBASE, Web of Science, MEDLINE, Cochrane Library and clinical trial registries identified 154 articles on 4D printing technologies, biomaterials, and stimuli relevant to dental applications. Of these, 84 were pertinent to the review's objective, with 25 specifically focused on 4D printing and various smart materials. The review highlights biomaterials engineered for programmable responses, such as shape memory polymers, shape memory elastomers, responsive inks, and hydrogels. These materials enable the creation of structures that can adapt, self-assemble, or respond to stimuli like temperature, moisture, or pH levels. In dentistry, these capabilities show potential for applications in orthodontics, implants, and tissue engineering.The integration of 4D printing and bio-smart materials has the potential to transform dentistry by creating adaptive, time-responsive structures. This technology enables personalized, precise, and minimally invasive treatments, addressing complex biomechanical challenges in dental care.
Collapse
Affiliation(s)
- Maajida Aafreen M
- Department of Periodontology and Oral Implantology, SRM Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Priyanka K. Cholan
- Department of Periodontology and Oral Implantology, SRM Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Paavai Ilango
- Department of Periodontology and Oral Implantology, Priyadarshini Dental College, Chennai, Tamil Nadu, India
| | - Harinath Parthasarathy
- Department of Periodontology and Oral Implantology, SRM Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Anupama Tadepalli
- Department of Periodontology and Oral Implantology, SRM Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Lakshmi Ramachandran
- Department of Periodontology and Oral Implantology, SRM Dental College and Hospitals, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Ding A, Tang F, Alsberg E. 4D Printing: A Comprehensive Review of Technologies, Materials, Stimuli, Design, and Emerging Applications. Chem Rev 2025; 125:3663-3771. [PMID: 40106790 DOI: 10.1021/acs.chemrev.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
4D printing is a groundbreaking technology that seamlessly integrates additive manufacturing with smart materials, enabling the creation of multiscale objects capable of changing shapes and/or functions in a controlled and programmed manner in response to applied energy inputs. Printing technologies, mathematical modeling, responsive materials, stimuli, and structural design constitute the blueprint of 4D printing, all of which have seen rapid advancement in the past decade. These advancements have opened up numerous possibilities for dynamic and adaptive structures, finding potential use in healthcare, textiles, construction, aerospace, robotics, photonics, and electronics. However, current 4D printing primarily focuses on proof-of-concept demonstrations. Further development is necessary to expand the range of accessible materials and address fabrication complexities for widespread adoption. In this paper, we aim to deliver a comprehensive review of the state-of-the-art in 4D printing, probing into shape programming, exploring key aspects of resulting constructs including printing technologies, materials, structural design, morphing mechanisms, and stimuli-responsiveness, and elaborating on prominent applications across various fields. Finally, we discuss perspectives on limitations, challenges, and future developments in the realm of 4D printing. While the potential of this technology is undoubtedly vast, continued research and innovation are essential to unlocking its full capabilities and maximizing its real-world impact.
Collapse
Affiliation(s)
- Aixiang Ding
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Fang Tang
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Eben Alsberg
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Departments of Mechanical & Industrial Engineering, Orthopaedic Surgery, and Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, Illinois 60612, United States
| |
Collapse
|
5
|
Wu G, Wang L, Cao Y, Wang M, Yang C, Zhang J. 4D bioprinting of transformable living constructs with sustained local growth factor presentation for advanced tissue engineering applications. Colloids Surf B Biointerfaces 2025; 248:114484. [PMID: 39740487 DOI: 10.1016/j.colsurfb.2024.114484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/13/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
Traditional tissue engineering strategies focus on geometrically static tissue scaffolds, lacking the dynamic capability found in native tissues. The emerging field of 4D bioprinting offers a promising method to address this challenge. However, the requirement for consistent exogenous supplementation of growth factors (GFs) during tissue maturation poses a significant obstacle for in vivo application of 4D bioprinted constructs. We herein developed composite bioinks composed of photocrosslinkable, jammed alginate methacrylate (AlgMA) and gelatin methacrylate (GelMA), incorporating GelMA microspheres loaded with GFs to provide sustained local GF presentation over 50 days for 4D tissue bioprinting. The composite bioink exhibited excellent printability, enabling 3D printing with good accuracy (∼120 %) and fidelity (105 % - 114 %). By incorporating a photoabsorbent to enhance light attenuation, a gradient network along the light propagation pathway was generated, facilitating programmable and controllable 4D shape transformation. This process allowed the fabrication of complex living constructs with defined architectures through morphing. A proof-of-concept study on cartilage regeneration demonstrated the effectiveness of sustained GF presentation in driving tissue development, showing significant glycosaminoglycan production (GAG/DNA 10.3), and substantial upregulation of type II collagen (125.8-fold) and aggrecan (16.4-fold) mRNA expression, thereby eliminating the need for exogenous GF supplementation. This study underscores the transformative potential of integrating dynamic tissue scaffolding with sustained GF delivery, thereby addressing key limitations of traditional tissue engineering approaches and offering new avenues for tissue repair applications.
Collapse
Affiliation(s)
- Guodong Wu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lin Wang
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yuhang Cao
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Manli Wang
- Department of Geriatrics, Changchun Central Hospital, Changchun, Jilin 130051, China
| | - Chun Yang
- College of Basic Medicine, Beihua University, Changchun, Jilin 132013, China
| | - Jian Zhang
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
6
|
Sadraei A, Naghib SM, Rabiee N. 4D printing chemical stimuli-responsive hydrogels for tissue engineering and localized drug delivery applications - part 2. Expert Opin Drug Deliv 2025; 22:491-510. [PMID: 39953663 DOI: 10.1080/17425247.2025.2466768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION The incorporation of 4D printing alongside chemical stimuli-responsive hydrogels represents a significant advancement in the field of biomedical engineering, effectively overcoming the constraints associated with conventional static 3D-printed structures. Through the integration of time as the fourth dimension, 4D printing facilitates the development of dynamic and adaptable structures that can react to chemical alterations in their surroundings. This innovation presents considerable promise for sophisticated tissue engineering and targeted drug delivery applications. AREAS COVERED This review examines the function of chemical stimuli-responsive hydrogels within the context of 4D printing, highlighting their distinctive ability to undergo regulated transformations when exposed to particular chemical stimuli. An in-depth examination of contemporary research underscores the collaborative dynamics between these hydrogels and their surroundings, focusing specifically on their utilization in biomimetic scaffolds for tissue regeneration and the advancement of intelligent drug delivery systems. EXPERT OPINION The integration of 4D printing technology with chemically responsive hydrogels presents exceptional prospects for advancements in tissue engineering and targeted drug delivery, facilitating the development of personalized and adaptive medical solutions. Although the potential is promising, it is essential to address challenges such as material optimization, biocompatibility, and precise control over stimuli-responsive behavior to facilitate clinical translation and scalability.
Collapse
Affiliation(s)
- Alireza Sadraei
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Navid Rabiee
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, India
| |
Collapse
|
7
|
Pai V, Singh BN, Singh AK. Insights into Advances and Applications of Biomaterials for Nerve Tissue Injuries and Neurodegenerative Disorders. Macromol Biosci 2024; 24:e2400150. [PMID: 39348168 DOI: 10.1002/mabi.202400150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/12/2024] [Indexed: 10/01/2024]
Abstract
The incidence of nerve tissue injuries, such as peripheral nerve injury, spinal cord injury, traumatic brain injury, and various neurodegenerative diseases (NDs), is continuously increasing because of stress, physical and chemical trauma, and the aging population worldwide. Restoration of the damaged nervous system is challenging because of its structural and functional complexity and limited regenerative ability. Additionally, there is no cure available for NDs except for medications that provide symptomatic relief. Stem cells offer an alternative approach for promoting damage repair, but their efficacy is limited by a compromised survival rate and neurogenesis process. To address these challenges, neural tissue engineering has emerged as a promising strategy in which stem cells are seeded or encapsulated within a suitable biomaterial construct, increasing cell survival and neurogenesis. Numerous biomaterials are utilized to create different types of constructs for this purpose. Researchers are trying to develop ideal scaffolds that combine biomaterials, cells, and molecules that exactly mimic the biological and mechanical properties of the tissue to achieve functional recovery associated with neurological dysfunction. This review focuses on exploring the development and applications of different biomaterials for their potential use in the diagnosis, therapy, nerve tissue regeneration, and treatment of neurological disorders.
Collapse
Affiliation(s)
- Varsha Pai
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| | - Bhisham Narayan Singh
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| |
Collapse
|
8
|
Bonetti L, Scalet G. 4D fabrication of shape-changing systems for tissue engineering: state of the art and perspectives. PROGRESS IN ADDITIVE MANUFACTURING 2024; 10:1913-1943. [PMID: 40125451 PMCID: PMC11926060 DOI: 10.1007/s40964-024-00743-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/30/2024] [Indexed: 03/25/2025]
Abstract
In recent years, four-dimensional (4D) fabrication has emerged as a powerful technology capable of revolutionizing the field of tissue engineering. This technology represents a shift in perspective from traditional tissue engineering approaches, which generally rely on static-or passive-structures (e.g., scaffolds, constructs) unable of adapting to changes in biological environments. In contrast, 4D fabrication offers the unprecedented possibility of fabricating complex designs with spatiotemporal control over structure and function in response to environment stimuli, thus mimicking biological processes. In this review, an overview of the state of the art of 4D fabrication technology for the obtainment of cellularized constructs is presented, with a focus on shape-changing soft materials. First, the approaches to obtain cellularized constructs are introduced, also describing conventional and non-conventional fabrication techniques with their relative advantages and limitations. Next, the main families of shape-changing soft materials, namely shape-memory polymers and shape-memory hydrogels are discussed and their use in 4D fabrication in the field of tissue engineering is described. Ultimately, current challenges and proposed solutions are outlined, and valuable insights into future research directions of 4D fabrication for tissue engineering are provided to disclose its full potential.
Collapse
Affiliation(s)
- Lorenzo Bonetti
- Department of Civil Engineering and Architecture (DICAr), University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Giulia Scalet
- Department of Civil Engineering and Architecture (DICAr), University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| |
Collapse
|
9
|
Kim J, D A G, Debnath P, Saha P. Smart Multi-Responsive Biomaterials and Their Applications for 4D Bioprinting. Biomimetics (Basel) 2024; 9:484. [PMID: 39194463 DOI: 10.3390/biomimetics9080484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
The emergence of 4D printing has become a pivotal tool to produce complex structures in biomedical applications such as tissue engineering and regenerative medicine. This chapter provides a concise overview of the current state of the field and its immense potential to better understand the involved technologies to build sophisticated 4D-printed structures. These structures have the capability to sense and respond to a diverse range of stimuli, which include changes in temperature, humidity, or electricity/magnetics. First, we describe 4D printing technologies, which include extrusion-based inkjet printing, and light-based and droplet-based methods including selective laser sintering (SLS). Several types of biomaterials for 4D printing, which can undergo structural changes in various external stimuli over time were also presented. These structures hold the promise of revolutionizing fields that require adaptable and intelligent materials. Moreover, biomedical applications of 4D-printed smart structures were highlighted, spanning a wide spectrum of intended applications from drug delivery to regenerative medicine. Finally, we address a number of challenges associated with current technologies, touching upon ethical and regulatory aspects of the technologies, along with the need for standardized protocols in both in vitro as well as in vivo testing of 4D-printed structures, which are crucial steps toward eventual clinical realization.
Collapse
Affiliation(s)
- Jinku Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Gouripriya D A
- Center for Interdisciplinary Science (CIS), JIS Institute of Advanced Studies and Research (JISIASR), JIS University, Kolkata 700091, India
| | - Poonam Debnath
- Center for Interdisciplinary Science (CIS), JIS Institute of Advanced Studies and Research (JISIASR), JIS University, Kolkata 700091, India
| | - Prosenjit Saha
- Center for Interdisciplinary Science (CIS), JIS Institute of Advanced Studies and Research (JISIASR), JIS University, Kolkata 700091, India
| |
Collapse
|
10
|
Yarali E, Mirzaali MJ, Ghalayaniesfahani A, Accardo A, Diaz-Payno PJ, Zadpoor AA. 4D Printing for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402301. [PMID: 38580291 DOI: 10.1002/adma.202402301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 04/07/2024]
Abstract
4D (bio-)printing endows 3D printed (bio-)materials with multiple functionalities and dynamic properties. 4D printed materials have been recently used in biomedical engineering for the design and fabrication of biomedical devices, such as stents, occluders, microneedles, smart 3D-cell engineered microenvironments, drug delivery systems, wound closures, and implantable medical devices. However, the success of 4D printing relies on the rational design of 4D printed objects, the selection of smart materials, and the availability of appropriate types of external (multi-)stimuli. Here, this work first highlights the different types of smart materials, external stimuli, and design strategies used in 4D (bio-)printing. Then, it presents a critical review of the biomedical applications of 4D printing and discusses the future directions of biomedical research in this exciting area, including in vivo tissue regeneration studies, the implementation of multiple materials with reversible shape memory behaviors, the creation of fast shape-transformation responses, the ability to operate at the microscale, untethered activation and control, and the application of (machine learning-based) modeling approaches to predict the structure-property and design-shape transformation relationships of 4D (bio)printed constructs.
Collapse
Affiliation(s)
- Ebrahim Yarali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Ava Ghalayaniesfahani
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Chemistry, Materials and Chemical Engineering, Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Pedro J Diaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| |
Collapse
|
11
|
Guo S, Cui H, Agarwal T, Zhang LG. Nanomaterials in 4D Printing: Expanding the Frontiers of Advanced Manufacturing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307750. [PMID: 38431939 DOI: 10.1002/smll.202307750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/15/2024] [Indexed: 03/05/2024]
Abstract
As an innovative technology, four-dimentional (4D) printing is built upon the principles of three-dimentional (3D) printing with an additional dimension: time. While traditional 3D printing creates static objects, 4D printing generates "responsive 3D printed structures", enabling them to transform or self-assemble in response to external stimuli. Due to the dynamic nature, 4D printing has demonstrated tremendous potential in a range of industries, encompassing aerospace, healthcare, and intelligent devices. Nanotechnology has gained considerable attention owing to the exceptional properties and functions of nanomaterials. Incorporating nanomaterials into an intelligent matrix enhances the physiochemical properties of 4D printed constructs, introducing novel functions. This review provides a comprehensive overview of current applications of nanomaterials in 4D printing, exploring their synergistic potential to create dynamic and responsive structures. Nanomaterials play diverse roles as rheology modifiers, mechanical enhancers, function introducers, and more. The overarching goal of this review is to inspire researchers to delve into the vast potential of nanomaterial-enabled 4D printing, propelling advancements in this rapidly evolving field.
Collapse
Affiliation(s)
- Shengbo Guo
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Tarun Agarwal
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Electrical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Medicine, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
12
|
Gan Q, Ge Z, Wang X, Dai S, Li N, Wang J, Liu L, Yu H. Stiffness-Tunable Substrate Fabrication by DMD-Based Optical Projection Lithography for Cancer Cell Invasion Studies. IEEE Trans Biomed Eng 2024; 71:2201-2210. [PMID: 38345950 DOI: 10.1109/tbme.2024.3364971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
OBJECTIVE Cancer cell invasion is a critical cause of fatality in cancer patients. Physiologically relevant tumor models play a key role in revealing the mechanisms underlying the invasive behavior of cancer cells. However, most existing models only consider interactions between cells and extracellular matrix (ECM) components while neglecting the role of matrix stiffness in tumor invasion. Here, we propose an effective approach that can construct stiffness-tunable substrates using digital mirror device (DMD)-based optical projection lithography to explore the invasion behavior of cancer cells. The printability, mechanical properties, and cell viability of three-dimensional (3D) models can be tuned by the concentration of prepolymer and the exposure time. The invasion trajectories of gastric cancer cells in tumor models of different stiffness were automatically detected and tracked in real-time using a deep learning algorithm. The results show that tumor models of different mechanical stiffness can yield distinct regulatory effects. Moreover, owing to the biophysical characteristics of the 3D in vitro model, different cellular substructures of cancer cells were induced. The proposed tunable substrate construction method can be used to build various microstructures to achieve simulation of cancer invasion and antitumor screening, which has great potential in promoting personalized therapy.
Collapse
|
13
|
Lai J, Liu Y, Lu G, Yung P, Wang X, Tuan RS, Li ZA. 4D bioprinting of programmed dynamic tissues. Bioact Mater 2024; 37:348-377. [PMID: 38694766 PMCID: PMC11061618 DOI: 10.1016/j.bioactmat.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Setting time as the fourth dimension, 4D printing allows us to construct dynamic structures that can change their shape, property, or functionality over time under stimuli, leading to a wave of innovations in various fields. Recently, 4D printing of smart biomaterials, biological components, and living cells into dynamic living 3D constructs with 4D effects has led to an exciting field of 4D bioprinting. 4D bioprinting has gained increasing attention and is being applied to create programmed and dynamic cell-laden constructs such as bone, cartilage, and vasculature. This review presents an overview on 4D bioprinting for engineering dynamic tissues and organs, followed by a discussion on the approaches, bioprinting technologies, smart biomaterials and smart design, bioink requirements, and applications. While much progress has been achieved, 4D bioprinting as a complex process is facing challenges that need to be addressed by transdisciplinary strategies to unleash the full potential of this advanced biofabrication technology. Finally, we present future perspectives on the rapidly evolving field of 4D bioprinting, in view of its potential, increasingly important roles in the development of advanced dynamic tissues for basic research, pharmaceutics, and regenerative medicine.
Collapse
Affiliation(s)
- Jiahui Lai
- Department of Biomedical Engineering, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
| | - Yuwei Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Gang Lu
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
| | - Patrick Yung
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Rocky S. Tuan
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
14
|
Nain A, Chakraborty S, Jain N, Choudhury S, Chattopadhyay S, Chatterjee K, Debnath S. 4D hydrogels: fabrication strategies, stimulation mechanisms, and biomedical applications. Biomater Sci 2024; 12:3249-3272. [PMID: 38742277 DOI: 10.1039/d3bm02044d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Shape-morphing hydrogels have emerged as a promising biomaterial due to their ability to mimic the anisotropic tissue composition by creating a gradient in local swelling behavior. In this case, shape deformations occur due to the non-uniform distribution of internal stresses, asymmetrical swelling, and shrinking of different parts of the same hydrogel. Herein, we discuss the four-dimensional (4D) fabrication techniques (extrusion-based printing, dynamic light processing, and solvent casting) employed to prepare shape-shifting hydrogels. The important distinction between mono- and dual-component hydrogel systems, the capabilities of 3D constructs to undergo uni- and bi-directional shape changes, and the advantages of composite hydrogels compared to their pristine counterparts are presented. Subsequently, various types of actuators such as moisture, light, temperature, pH, and magnetic field and their role in achieving the desired and pre-determined shapes are discussed. These 4D gels have shown remarkable potential as programmable scaffolds for tissue regeneration and drug-delivery systems. Finally, we present futuristic insights into integrating piezoelectric biopolymers and sensors to harvest mechanical energy from motions during shape transformations to develop self-powered biodevices.
Collapse
Affiliation(s)
- Amit Nain
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Srishti Chakraborty
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Nipun Jain
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Saswat Choudhury
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Suravi Chattopadhyay
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Souvik Debnath
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
15
|
Cui H, Zhu W, Miao S, Sarkar K, Zhang LG. 4D Printed Nerve Conduit with In Situ Neurogenic Guidance for Nerve Regeneration. Tissue Eng Part A 2024; 30:293-303. [PMID: 37847181 DOI: 10.1089/ten.tea.2023.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Nerve repair poses a significant challenge in the field of tissue regeneration. As a bioengineered therapeutic method, nerve conduits have been developed to address damaged nerve repair. However, despite their remarkable potential, it is still challenging to encompass complex physiologically microenvironmental cues (both biophysical and biochemical factors) to synergistically regulate stem cell differentiation within the implanted nerve conduits, especially in a facile manner. In this study, a neurogenic nerve conduit with self-actuated ability has been developed by in situ immobilization of neurogenic factors onto printed architectures with aligned microgrooves. One objective was to facilitate self-entubulation, ultimately enhancing nerve repairs. Our results demonstrated that the integration of topographical and in situ biological cues could accurately mimic native microenvironments, leading to a significant improvement in neural alignment and enhanced neural differentiation within the conduit. This innovative approach offers a revolutionary method for fabricating multifunctional nerve conduits, capable of modulating neural regeneration efficiently. It has the potential to accelerate the functional recovery of injured neural tissues, providing a promising avenue for advancing nerve repair therapies.
Collapse
Affiliation(s)
- Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, District of Columbia, USA
| | - Wei Zhu
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, District of Columbia, USA
| | - Shida Miao
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, District of Columbia, USA
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, District of Columbia, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, District of Columbia, USA
- Department of Electrical and Computer Engineering, The George Washington University, Washington, District of Columbia, USA
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia, USA
- Department of Medicine, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
16
|
Palanisamy S. Exploring the Horizons of Four-Dimensional Printing Technology in Dentistry. Cureus 2024; 16:e58572. [PMID: 38770499 PMCID: PMC11102886 DOI: 10.7759/cureus.58572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
In dentistry, the integration of additive manufacturing, particularly 3D printing, has marked significant progress. However, the emergence of 4D printing, which allows materials to change shape dynamically in response to stimuli, opens up new avenues for innovation. This review sheds light on recent advancements and potential applications of 4D printing in dentistry, delving into the fundamental principles and materials involved. It emphasizes the versatility of shape-changing polymers and composites, highlighting their ability to adapt dynamically. Furthermore, the review explores the challenges and opportunities in integrating 4D printing into dental practice, including the customization of dental prosthetics, orthodontic devices, and drug delivery systems and also probing into the potential benefits of utilizing stimuli-responsive materials to improve patient comfort, treatment outcomes, and overall efficiency and the review discusses current limitations and future directions, emphasizing the importance of standardized fabrication techniques, biocompatible materials, and regulatory considerations. Owing to its diverse applications and advantages, 4D printing technology is poised to transform multiple facets of dental practice, thereby fostering the development of healthcare solutions that are more tailored, effective, and centered around patient needs.
Collapse
Affiliation(s)
- Sucharitha Palanisamy
- Periodontics and Oral Implantology, Sri Ramaswamy Memorial (SRM) Dental College and Hospital, Chennai, IND
| |
Collapse
|
17
|
Mandal A, Chatterjee K. 4D printing for biomedical applications. J Mater Chem B 2024; 12:2985-3005. [PMID: 38436200 DOI: 10.1039/d4tb00006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
While three-dimensional (3D) printing excels at fabricating static constructs, it fails to emulate the dynamic behavior of native tissues or the temporal programmability desired for medical devices. Four-dimensional (4D) printing is an advanced additive manufacturing technology capable of fabricating constructs that can undergo pre-programmed changes in shape, property, or functionality when exposed to specific stimuli. In this Perspective, we summarize the advances in materials chemistry, 3D printing strategies, and post-printing methodologies that collectively facilitate the realization of temporal dynamics within 4D-printed soft materials (hydrogels, shape-memory polymers, liquid crystalline elastomers), ceramics, and metals. We also discuss and present insights about the diverse biomedical applications of 4D printing, including tissue engineering and regenerative medicine, drug delivery, in vitro models, and medical devices. Finally, we discuss the current challenges and emphasize the importance of an application-driven design approach to enable the clinical translation and widespread adoption of 4D printing.
Collapse
Affiliation(s)
- Arkodip Mandal
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| |
Collapse
|
18
|
Redolfi Riva E, Özkan M, Contreras E, Pawar S, Zinno C, Escarda-Castro E, Kim J, Wieringa P, Stellacci F, Micera S, Navarro X. Beyond the limiting gap length: peripheral nerve regeneration through implantable nerve guidance conduits. Biomater Sci 2024; 12:1371-1404. [PMID: 38363090 DOI: 10.1039/d3bm01163a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Peripheral nerve damage results in the loss of sensorimotor and autonomic functions, which is a significant burden to patients. Furthermore, nerve injuries greater than the limiting gap length require surgical repair. Although autografts are the preferred clinical choice, their usage is impeded by their limited availability, dimensional mismatch, and the sacrifice of another functional donor nerve. Accordingly, nerve guidance conduits, which are tubular scaffolds engineered to provide a biomimetic environment for nerve regeneration, have emerged as alternatives to autografts. Consequently, a few nerve guidance conduits have received clinical approval for the repair of short-mid nerve gaps but failed to regenerate limiting gap damage, which represents the bottleneck of this technology. Thus, it is still necessary to optimize the morphology and constituent materials of conduits. This review summarizes the recent advances in nerve conduit technology. Several manufacturing techniques and conduit designs are discussed, with emphasis on the structural improvement of simple hollow tubes, additive manufacturing techniques, and decellularized grafts. The main objective of this review is to provide a critical overview of nerve guidance conduit technology to support regeneration in long nerve defects, promote future developments, and speed up its clinical translation as a reliable alternative to autografts.
Collapse
Affiliation(s)
- Eugenio Redolfi Riva
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Melis Özkan
- Institute of Materials, école Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, école Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Estefania Contreras
- Integral Service for Laboratory Animals (SIAL), Faculty of Veterinary, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.
| | - Sujeet Pawar
- Institute of Materials, école Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ciro Zinno
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Enrique Escarda-Castro
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jaehyeon Kim
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Paul Wieringa
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Francesco Stellacci
- Institute of Materials, école Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute of Materials, Department of Bioengineering and Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Silvestro Micera
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, école Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Institute Guttmann Foundation, Hospital of Neurorehabilitation, Badalona, Spain
| |
Collapse
|
19
|
Kalogeropoulou M, Díaz-Payno PJ, Mirzaali MJ, van Osch GJVM, Fratila-Apachitei LE, Zadpoor AA. 4D printed shape-shifting biomaterials for tissue engineering and regenerative medicine applications. Biofabrication 2024; 16:022002. [PMID: 38224616 DOI: 10.1088/1758-5090/ad1e6f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
The existing 3D printing methods exhibit certain fabrication-dependent limitations for printing curved constructs that are relevant for many tissues. Four-dimensional (4D) printing is an emerging technology that is expected to revolutionize the field of tissue engineering and regenerative medicine (TERM). 4D printing is based on 3D printing, featuring the introduction of time as the fourth dimension, in which there is a transition from a 3D printed scaffold to a new, distinct, and stable state, upon the application of one or more stimuli. Here, we present an overview of the current developments of the 4D printing technology for TERM, with a focus on approaches to achieve temporal changes of the shape of the printed constructs that would enable biofabrication of highly complex structures. To this aim, the printing methods, types of stimuli, shape-shifting mechanisms, and cell-incorporation strategies are critically reviewed. Furthermore, the challenges of this very recent biofabrication technology as well as the future research directions are discussed. Our findings show that the most common printing methods so far are stereolithography (SLA) and extrusion bioprinting, followed by fused deposition modelling, while the shape-shifting mechanisms used for TERM applications are shape-memory and differential swelling for 4D printing and 4D bioprinting, respectively. For shape-memory mechanism, there is a high prevalence of synthetic materials, such as polylactic acid (PLA), poly(glycerol dodecanoate) acrylate (PGDA), or polyurethanes. On the other hand, different acrylate combinations of alginate, hyaluronan, or gelatin have been used for differential swelling-based 4D transformations. TERM applications include bone, vascular, and cardiac tissues as the main target of the 4D (bio)printing technology. The field has great potential for further development by considering the combination of multiple stimuli, the use of a wider range of 4D techniques, and the implementation of computational-assisted strategies.
Collapse
Affiliation(s)
- Maria Kalogeropoulou
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, CD 2628, The Netherlands
| | - Pedro J Díaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, CD 2628, The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, CD 2628, The Netherlands
| | - Gerjo J V M van Osch
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, CD 2628, The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Lidy E Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, CD 2628, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, CD 2628, The Netherlands
- Department of Orthopedics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Xie R, Cao Y, Sun R, Wang R, Morgan A, Kim J, Callens SJP, Xie K, Zou J, Lin J, Zhou K, Lu X, Stevens MM. Magnetically driven formation of 3D freestanding soft bioscaffolds. SCIENCE ADVANCES 2024; 10:eadl1549. [PMID: 38306430 PMCID: PMC10836728 DOI: 10.1126/sciadv.adl1549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
3D soft bioscaffolds have great promise in tissue engineering, biohybrid robotics, and organ-on-a-chip engineering applications. Though emerging three-dimensional (3D) printing techniques offer versatility for assembling soft biomaterials, challenges persist in overcoming the deformation or collapse of delicate 3D structures during fabrication, especially for overhanging or thin features. This study introduces a magnet-assisted fabrication strategy that uses a magnetic field to trigger shape morphing and provide remote temporary support, enabling the straightforward creation of soft bioscaffolds with overhangs and thin-walled structures in 3D. We demonstrate the versatility and effectiveness of our strategy through the fabrication of bioscaffolds that replicate the complex 3D topology of branching vascular systems. Furthermore, we engineered hydrogel-based bioscaffolds to support biohybrid soft actuators capable of walking motion triggered by cardiomyocytes. This approach opens new possibilities for shaping hydrogel materials into complex 3D morphologies, which will further empower a broad range of biomedical applications.
Collapse
Affiliation(s)
- Ruoxiao Xie
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Yuanxiong Cao
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Rujie Sun
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Richard Wang
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Alexis Morgan
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Junyoung Kim
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Sebastien J P Callens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Kai Xie
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Jiawen Zou
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Junliang Lin
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Kun Zhou
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Xiangrong Lu
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
21
|
Goodarzi Hosseinabadi H, Biswas A, Bhusal A, Yousefinejad A, Lall A, Zimmermann WH, Miri AK, Ionov L. 4D-Printable Photocrosslinkable Polyurethane-Based Inks for Tissue Scaffold and Actuator Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306387. [PMID: 37771189 PMCID: PMC10922657 DOI: 10.1002/smll.202306387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Indexed: 09/30/2023]
Abstract
4D printing recently emerges as an exciting evolution of conventional 3D printing, where a printed construct can quickly transform in response to a specific stimulus to switch between a temporary variable state and an original state. In this work, a photocrosslinkable polyethylene-glycol polyurethane ink is synthesized for light-assisted 4D printing of smart materials. The molecular weight distribution of the ink monomers is tunable by adjusting the copolymerization reaction time. Digital light processing (DLP) technique is used to program a differential swelling response in the printed constructs after humidity variation. Bioactive microparticles are embedded into the ink and the improvement of biocompatibility of the printed constructs is demonstrated for tissue engineering applications. Cell studies reveal above 90% viability in 1 week and ≈50% biodegradability after 4 weeks. Self-folding capillary scaffolds, dynamic grippers, and film actuators are made and activated in a humid environment. The approach offers a versatile platform for the fabrication of complex constructs. The ink can be used in tissue engineering and actuator applications, making the ink a promising avenue for future research.
Collapse
Affiliation(s)
- Hossein Goodarzi Hosseinabadi
- Faculty of Engineering Sciences, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447, Bayreuth, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, 37077, Göttingen, Germany
| | - Arpan Biswas
- Faculty of Engineering Sciences, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447, Bayreuth, Germany
| | - Anant Bhusal
- Department of Mechanical Engineering, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, 08028, USA
| | - Ali Yousefinejad
- Faculty of Engineering Sciences, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447, Bayreuth, Germany
| | - Aastha Lall
- Faculty of Engineering Sciences, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447, Bayreuth, Germany
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37099, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 37099, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany
| | - Amir K Miri
- Department of Mechanical Engineering, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, 08028, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr. Martin Luther King Jr. Blvd., Newark, NJ, 07102, USA
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, 323 Dr. Martin Luther King Jr. Blvd, Newark, NJ, 07102, USA
| | - Leonid Ionov
- Faculty of Engineering Sciences, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447, Bayreuth, Germany
| |
Collapse
|
22
|
Joshi A, Choudhury S, Asthana S, Homer-Vanniasinkam S, Nambiar U, Chatterjee K. Emerging 4D fabrication of next-generation nerve guiding conduits: a critical perspective. Biomater Sci 2023; 11:7703-7708. [PMID: 37981830 DOI: 10.1039/d3bm01299a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The latest advancements in the field of manufacturing for biomedicine, digital health, targeted therapy, and personalized medicine have fuelled the fabrication of smart medical devices. Four-dimensional (4D) fabrication strategies, which combine the manufacturing of three-dimensional (3D) parts with smart materials and/or design, have proved beneficial in creating customized and self-fitting structures that change their properties on demand with time. These frontier techniques that yield dynamic implants can indeed alleviate various drawbacks of current clinical practices, such as the use of sutures and complex microsurgeries and associated inflammation, among others. Among various clinical applications, 4D fabrication has lately made remarkable progress in the development of next-generation nerve-guiding conduits for treating peripheral nerve injuries (PNIs) by improving the end-to-end co-aptation of transected nerve endings. The current perspective highlights the relevance of 4D fabrication in developing state-of-the-art technologies for the treatment of PNIs. Various 4D fabrication/bio-fabrication techniques for PNI treatment are summarized while identifying the challenges and opportunities for the future. Such advancements hold immense promise for improving the quality of life of patients suffering from nerve damage and the potential for extending the treatment of many other disorders. Although the techniques are being described for PNIs, they will lend themselves suitably to certain cases of cranial nerve injuries as well.
Collapse
Affiliation(s)
- Akshat Joshi
- Department of Bioengineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India.
| | - Saswat Choudhury
- Department of Bioengineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India.
| | - Sonal Asthana
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
- Department of Hepatobiliary and Multi-Organ Transplantation Surgery, Aster CMI Hospital, Bangalore 560024, India
| | - Shervanthi Homer-Vanniasinkam
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
- Department of Mechanical Engineering and Division of Surgery, University College London, WC1E 7JE, UK
| | - Uma Nambiar
- Bagchi-Parthasarathy Hospital, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department of Bioengineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India.
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| |
Collapse
|
23
|
Faber L, Yau A, Chen Y. Translational biomaterials of four-dimensional bioprinting for tissue regeneration. Biofabrication 2023; 16:012001. [PMID: 37757814 PMCID: PMC10561158 DOI: 10.1088/1758-5090/acfdd0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
Bioprinting is an additive manufacturing technique that combines living cells, biomaterials, and biological molecules to develop biologically functional constructs. Three-dimensional (3D) bioprinting is commonly used as anin vitromodeling system and is a more accurate representation ofin vivoconditions in comparison to two-dimensional cell culture. Although 3D bioprinting has been utilized in various tissue engineering and clinical applications, it only takes into consideration the initial state of the printed scaffold or object. Four-dimensional (4D) bioprinting has emerged in recent years to incorporate the additional dimension of time within the printed 3D scaffolds. During the 4D bioprinting process, an external stimulus is exposed to the printed construct, which ultimately changes its shape or functionality. By studying how the structures and the embedded cells respond to various stimuli, researchers can gain a deeper understanding of the functionality of native tissues. This review paper will focus on the biomaterial breakthroughs in the newly advancing field of 4D bioprinting and their applications in tissue engineering and regeneration. In addition, the use of smart biomaterials and 4D printing mechanisms for tissue engineering applications is discussed to demonstrate potential insights for novel 4D bioprinting applications. To address the current challenges with this technology, we will conclude with future perspectives involving the incorporation of biological scaffolds and self-assembling nanomaterials in bioprinted tissue constructs.
Collapse
Affiliation(s)
- Leah Faber
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, United States of America
| | - Anne Yau
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, United States of America
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, United States of America
| |
Collapse
|
24
|
Cui H, Yu ZX, Huang Y, Hann SY, Esworthy T, Shen YL, Zhang LG. 3D printing of thick myocardial tissue constructs with anisotropic myofibers and perfusable vascular channels. BIOMATERIALS ADVANCES 2023; 153:213579. [PMID: 37566935 DOI: 10.1016/j.bioadv.2023.213579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Engineering of myocardial tissues has become a promising therapeutic strategy for treating myocardial infarction (MI). However, a significant challenge remains in generating clinically relevant myocardial tissues that possess native microstructural characteristics and fulfill the requirements for implantation within the human body. In this study, a thick 3D myocardial construct with anisotropic myofibers and perfusable branched vascular channels is created with clinically relevant dimensions using a customized beam-scanning stereolithography printing technique. To obtain tissue-specific matrix niches, a decellularized extracellular matrix microfiber-reinforced gelatin-based bioink is developed. The bioink plays a crucial role in facilitating the precise manufacturing of a hierarchical microstructure, enabling us to better replicate the physiological characteristics of the native myocardial tissue matrix in terms of structure, biomechanics, and bioactivity. Through the integration of the tailored bioink with our printing method, we demonstrate a biomimetic architecture, appropriate biomechanical properties, vascularization, and improved functionality of induced pluripotent stem cell-derived cardiomyocytes in the thick tissue construct in vitro. This work not only offers a novel and effective means to generate biomimetic heart tissue in vitro for the treatment of MI, but also introduces a potential methodology for creating clinically relevant tissue products to aid in other complex tissue/organ regeneration and disease model applications.
Collapse
Affiliation(s)
- Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, United States of America
| | - Zu-Xi Yu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Yimin Huang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, United States of America
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, United States of America
| | - Yin-Lin Shen
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, United States of America
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, United States of America; Departments of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, United States of America; Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, United States of America; Department of Medicine, The George Washington University, Washington, DC 20052, United States of America.
| |
Collapse
|
25
|
Amiri E, Sanjarnia P, Sadri B, Jafarkhani S, Khakbiz M. Recent advances and future directions of 3D to 6D printing in brain cancer treatment and neural tissue engineering. Biomed Mater 2023; 18:052005. [PMID: 37478841 DOI: 10.1088/1748-605x/ace9a4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/21/2023] [Indexed: 07/23/2023]
Abstract
The field of neural tissue engineering has undergone a revolution due to advancements in three-dimensional (3D) printing technology. This technology now enables the creation of intricate neural tissue constructs with precise geometries, topologies, and mechanical properties. Currently, there are various 3D printing techniques available, such as stereolithography and digital light processing, and a wide range of materials can be utilized, including hydrogels, biopolymers, and synthetic materials. Furthermore, the development of four-dimensional (4D) printing has gained traction, allowing for the fabrication of structures that can change shape over time using techniques such as shape-memory polymers. These innovations have the potential to facilitate neural regeneration, drug screening, disease modeling, and hold tremendous promise for personalized diagnostics, precise therapeutic strategies against brain cancers. This review paper provides a comprehensive overview of the current state-of-the-art techniques and materials for 3D printing in neural tissue engineering and brain cancer. It focuses on the exciting possibilities that lie ahead, including the emerging field of 4D printing. Additionally, the paper discusses the potential applications of five-dimensional and six-dimensional printing, which integrate time and biological functions into the printing process, in the fields of neuroscience.
Collapse
Affiliation(s)
- Elahe Amiri
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Pegah Sanjarnia
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahareh Sadri
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Saeed Jafarkhani
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mehrdad Khakbiz
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
26
|
Mahmoud DB, Schulz‐Siegmund M. Utilizing 4D Printing to Design Smart Gastroretentive, Esophageal, and Intravesical Drug Delivery Systems. Adv Healthc Mater 2023; 12:e2202631. [PMID: 36571721 PMCID: PMC11468531 DOI: 10.1002/adhm.202202631] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Indexed: 12/27/2022]
Abstract
The breakthrough of 3D printing in biomedical research has paved the way for the next evolutionary step referred to as four dimensional (4D) printing. This new concept utilizes the time as the fourth dimension in addition to the x, y, and z axes with the idea to change the configuration of a printed construct with time usually in response to an external stimulus. This can be attained through the incorporation of smart materials or through a preset smart design. The 4D printed constructs may be designed to exhibit expandability, flexibility, self-folding, self-repair or deformability. This review focuses on 4D printed devices for gastroretentive, esophageal, and intravesical delivery. The currently unmet needs and challenges for these application sites are tried to be defined and reported on published solution concepts involving 4D printing. In addition, other promising application sites that may similarly benefit from 4D printing approaches such as tracheal and intrauterine drug delivery are proposed.
Collapse
Affiliation(s)
- Dina B. Mahmoud
- Pharmaceutical TechnologyInstitute of PharmacyFaculty of MedicineLeipzig University04317LeipzigGermany
- Department of PharmaceuticsEgyptian Drug Authority12311GizaEgypt
| | - Michaela Schulz‐Siegmund
- Pharmaceutical TechnologyInstitute of PharmacyFaculty of MedicineLeipzig University04317LeipzigGermany
| |
Collapse
|
27
|
Stepanova OV, Fursa GA, Andretsova SS, Shishkina VS, Voronova AD, Chadin AV, Karsuntseva EK, Reshetov IV, Chekhonin VP. Prospects for the use of olfactory mucosa cells in bioprinting for the treatment of spinal cord injuries. World J Clin Cases 2023; 11:322-331. [PMID: 36686356 PMCID: PMC9850961 DOI: 10.12998/wjcc.v11.i2.322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/28/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
The review focuses on the most important areas of cell therapy for spinal cord injuries. Olfactory mucosa cells are promising for transplantation. Obtaining these cells is safe for patients. The use of olfactory mucosa cells is effective in restoring motor function due to the remyelination and regeneration of axons after spinal cord injuries. These cells express neurotrophic factors that play an important role in the functional recovery of nerve tissue after spinal cord injuries. In addition, it is possible to increase the content of neurotrophic factors, at the site of injury, exogenously by the direct injection of neurotrophic factors or their delivery using gene therapy. The advantages of olfactory mucosa cells, in combination with neurotrophic factors, open up wide possibilities for their application in three-dimensional and four-dimensional bioprinting technology treating spinal cord injuries.
Collapse
Affiliation(s)
- Olga Vladislavovna Stepanova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, Moscow 121552, Russia
| | - Grigorii Andreevich Fursa
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Svetlana Sergeevna Andretsova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Biology, Moscow State University, Moscow 119991, Russia
| | - Valentina Sergeevna Shishkina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Anastasia Denisovna Voronova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Andrey Viktorovich Chadin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | | | | | - Vladimir Pavlovich Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnologу, N.I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
28
|
Jeong E, Choi S, Cho SW. Recent Advances in Brain Organoid Technology for Human Brain Research. ACS APPLIED MATERIALS & INTERFACES 2023; 15:200-219. [PMID: 36468535 DOI: 10.1021/acsami.2c17467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Brain organoids are self-assembled three-dimensional aggregates with brain-like cell types and structures and have emerged as new model systems that can be used to investigate human neurodevelopment and neurological disorders. However, brain organoids are not as mature and functional as real human brains due to limitations of the culture system with insufficient developmental patterning signals and a lack of components that are important for brain development and function, such as the non-neural population and vasculature. In addition, establishing the desired brain-like environment and monitoring the complex neural networks and physiological functions of the brain organoids remain challenging. The current protocols to generate brain organoids also have problems with heterogeneity and batch variation due to spontaneous self-organization of brain organoids into complex architectures of the brain. To address these limitations of current brain organoid technologies, various engineering platforms, such as extracellular matrices, fluidic devices, three-dimensional bioprinting, bioreactors, polymeric scaffolds, microelectrodes, and biochemical sensors, have been employed to improve neuronal development and maturation, reduce structural heterogeneity, and facilitate functional analysis and monitoring. In this review, we provide an overview of the latest engineering techniques that overcome these limitations in the production and application of brain organoids.
Collapse
Affiliation(s)
- Eunseon Jeong
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Suah Choi
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
29
|
Pourmasoumi P, Moghaddam A, Nemati Mahand S, Heidari F, Salehi Moghaddam Z, Arjmand M, Kühnert I, Kruppke B, Wiesmann HP, Khonakdar HA. A review on the recent progress, opportunities, and challenges of 4D printing and bioprinting in regenerative medicine. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:108-146. [PMID: 35924585 DOI: 10.1080/09205063.2022.2110480] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Four-dimensional (4 D) printing is a novel emerging technology, which can be defined as the ability of 3 D printed materials to change their form and functions. The term 'time' is added to 3 D printing as the fourth dimension, in which materials can respond to a stimulus after finishing the manufacturing process. 4 D printing provides more versatility in terms of size, shape, and structure after printing the construct. Complex material programmability, multi-material printing, and precise structure design are the essential requirements of 4 D printing systems. The utilization of stimuli-responsive polymers has increasingly taken the place of cell traction force-dependent methods and manual folding, offering a more advanced technique to affect a construct's adjusted shape transformation. The present review highlights the concept of 4 D printing and the responsive bioinks used in 4 D printing, such as water-responsive, pH-responsive, thermo-responsive, and light-responsive materials used in tissue regeneration. Cell traction force methods are described as well. Finally, this paper aims to introduce the limitations and future trends of 4 D printing in biomedical applications based on selected key references from the last decade.
Collapse
Affiliation(s)
| | | | | | - Fatemeh Heidari
- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
| | - Zahra Salehi Moghaddam
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Ines Kühnert
- Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Hans-Peter Wiesmann
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran.,Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| |
Collapse
|
30
|
Abstract
The advancement of four-dimensional (4D) printing has been fueled by the rise in demand for additive manufacturing and the expansion in shape-memory materials. The printing of smart substances that respond to external stimuli is known as 4D printing. 4D printing allows highly controlled shapes to simulate the physiological milieu by adding time dimensions. The 4D printing is suitable with current progress in smart compounds, printers, and its mechanism of action. The 4D printing paradigm, a revolutionary enhancement of 3D printing, was anticipated by various engineering disciplines. Tissue engineering, medicinal, consumer items, aerospace, and organ engineering use 4D printing technology. The current review mainly focuses on the basics of 4D printing and the methods used therein. It also discusses the time-dependent behavior of stimulus-sensitive compounds, which are widely used in 4D printing. In addition, this review highlights material aspects, specifically related to shape-memory polymers, stimuli-responsive materials (classified as physical, chemical, and biological), and modified materials, the backbone of 4D printing technology. Finally, potential applications of 4D printing in the biomedical sector are also discussed with challenges and future perspectives.
Collapse
|
31
|
Sekar MP, Budharaju H, Zennifer A, Sethuraman S, Sundaramurthi D. Four-dimension printing in healthcare. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
32
|
Ghosh S, Chaudhuri S, Roy P, Lahiri D. 4D Printing in Biomedical Engineering: a State-of-the-Art Review of Technologies, Biomaterials, and Application. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Arif ZU, Khalid MY, Zolfagharian A, Bodaghi M. 4D bioprinting of smart polymers for biomedical applications: recent progress, challenges, and future perspectives. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Amukarimi S, Rezvani Z, Eghtesadi N, Mozafari M. Smart biomaterials: From 3D printing to 4D bioprinting. Methods 2022; 205:191-199. [PMID: 35810960 DOI: 10.1016/j.ymeth.2022.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/10/2023] Open
Abstract
This century is blessed with enhanced medical facilities on the grounds of the development of smart biomaterials. The rise of the four-dimensional (4D) bioprinting technology is a shining example. Using inert biomaterials as the bioinks for the three-dimensional (3D) printing process, static objects that might not be able to mimic the dynamic nature of tissues would be fabricated; by contrast, 4D bioprinting can be used for the fabrication of stimuli-responsive cell-laden structures that can evolve with time and enable engineered tissues to undergo morphological changes in a pre-planned way. For all the aptitude of 4D bioprinting technology in tissue engineering, it is imperative to select suitable stimuli-responsive biomaterials with cell-supporting functionalities and responsiveness; as a result, in this article, recent advances and challenges in smart biomaterials for 4D bioprinting are briefly discussed. An overview perspective concerning the latest developments in 4D-bioprinting is also provided.
Collapse
Affiliation(s)
- Shukufe Amukarimi
- Faculty of Advanced Technologies in Medicine, Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezvani
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico Di Milano, Milano, Italy
| | - Neda Eghtesadi
- Inorganic Chemistry Group, University of Turku, Turku, Finland
| | - Masoud Mozafari
- Faculty of Advanced Technologies in Medicine, Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Chen X, Han S, Wu W, Wu Z, Yuan Y, Wu J, Liu C. Harnessing 4D Printing Bioscaffolds for Advanced Orthopedics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106824. [PMID: 35060321 DOI: 10.1002/smll.202106824] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/15/2021] [Indexed: 05/13/2023]
Abstract
The development of programmable functional biomaterials makes 4D printing add a new dimension, time (t), based on 3D structures (x, y, z), therefore, 4D printed constructs could transform their morphology or function over time in response to environmental stimuli. Nowadays, highly efficient bone defect repair remains challenging in clinics. Combining programmable biomaterials, living cells, and bioactive factors, 4D bioprinting provides greater potential for constructing dynamic, personalized, and precise bone tissue engineering scaffolds by complex structure formation and functional maturation. Therefore, 4D bioprinting has been regarded as the next generation of bone repair technology. This review focuses on 4D printing and its advantages in orthopedics. The applications of different smart biomaterials and 4D printing strategies are briefly introduced. Furthermore, one summarizes the recent advancements of 4D printing in bone tissue engineering, uncovering the addressed and unaddressed medical requirements. In addition, current challenges and future perspectives are further discussed, which will offer more inspiration about the clinical transformation of this emerging 4D bioprinting technology in bone regeneration.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuyan Han
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Weihui Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Zihan Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
36
|
Afzali Naniz M, Askari M, Zolfagharian A, Afzali Naniz M, Bodaghi M. 4D Printing: A Cutting-edge Platform for Biomedical Applications. Biomed Mater 2022; 17. [PMID: 36044881 DOI: 10.1088/1748-605x/ac8e42] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/31/2022] [Indexed: 01/10/2023]
Abstract
Nature's materials have evolved over time to be able to respond to environmental stimuli by generating complex structures that can change their functions in response to distance, time, and direction of stimuli. A number of technical efforts are currently being made to improve printing resolution, shape fidelity, and printing speed to mimic the structural design of natural materials with three-dimensional (3D) printing. Unfortunately, this technology is limited by the fact that printed objects are static and cannot be reshaped dynamically in response to stimuli. In recent years, several smart materials have been developed that can undergo dynamic morphing in response to a stimulus, thus resolving this issue. Four-dimensional (4D) printing refers to a manufacturing process involving additive manufacturing, smart materials, and specific geometries. It has become an essential technology for biomedical engineering and has the potential to create a wide range of useful biomedical products. This paper will discuss the concept of 4D bioprinting and the recent developments in smart matrials, which can be actuated by different stimuli and be exploited to develop biomimetic materials and structures, with significant implications for pharmaceutics and biomedical research, as well as prospects for the future.
Collapse
Affiliation(s)
- Moqaddaseh Afzali Naniz
- University of New South Wales, Graduate School of Biomedical Engineering, Sydney, New South Wales, 2052, AUSTRALIA
| | - Mohsen Askari
- Nottingham Trent University, Clifton Manpus, Nottingham, Nottinghamshire, NG11 8NS, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Ali Zolfagharian
- Engineering, Deakin University Faculty of Science Engineering and Built Environment, Waurn Ponds, Geelong, Victoria, 3217, AUSTRALIA
| | - Mehrdad Afzali Naniz
- Shahid Beheshti University of Medical Sciences, School of Medicine, Tehran, Tehran, 19839-63113, Iran (the Islamic Republic of)
| | - Mahdi Bodaghi
- Department of Engineering , Nottingham Trent University - Clifton Campus, Clifton Campus, Nottingham, NG11 8NS, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
37
|
Osouli-Bostanabad K, Masalehdan T, Kapsa RMI, Quigley A, Lalatsa A, Bruggeman KF, Franks SJ, Williams RJ, Nisbet DR. Traction of 3D and 4D Printing in the Healthcare Industry: From Drug Delivery and Analysis to Regenerative Medicine. ACS Biomater Sci Eng 2022; 8:2764-2797. [PMID: 35696306 DOI: 10.1021/acsbiomaterials.2c00094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Three-dimensional (3D) printing and 3D bioprinting are promising technologies for a broad range of healthcare applications from frontier regenerative medicine and tissue engineering therapies to pharmaceutical advancements yet must overcome the challenges of biocompatibility and resolution. Through comparison of traditional biofabrication methods with 3D (bio)printing, this review highlights the promise of 3D printing for the production of on-demand, personalized, and complex products that enhance the accessibility, effectiveness, and safety of drug therapies and delivery systems. In addition, this review describes the capacity of 3D bioprinting to fabricate patient-specific tissues and living cell systems (e.g., vascular networks, organs, muscles, and skeletal systems) as well as its applications in the delivery of cells and genes, microfluidics, and organ-on-chip constructs. This review summarizes how tailoring selected parameters (i.e., accurately selecting the appropriate printing method, materials, and printing parameters based on the desired application and behavior) can better facilitate the development of optimized 3D-printed products and how dynamic 4D-printed strategies (printing materials designed to change with time or stimulus) may be deployed to overcome many of the inherent limitations of conventional 3D-printed technologies. Comprehensive insights into a critical perspective of the future of 4D bioprinting, crucial requirements for 4D printing including the programmability of a material, multimaterial printing methods, and precise designs for meticulous transformations or even clinical applications are also given.
Collapse
Affiliation(s)
- Karim Osouli-Bostanabad
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular, Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Tahereh Masalehdan
- Department of Materials Engineering, Institute of Mechanical Engineering, University of Tabriz, Tabriz 51666-16444, Iran
| | - Robert M I Kapsa
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Anita Quigley
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Aikaterini Lalatsa
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular, Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Kiara F Bruggeman
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Stephanie J Franks
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Richard J Williams
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,The Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
38
|
Ashammakhi N, GhavamiNejad A, Tutar R, Fricker A, Roy I, Chatzistavrou X, Hoque Apu E, Nguyen KL, Ahsan T, Pountos I, Caterson EJ. Highlights on Advancing Frontiers in Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:633-664. [PMID: 34210148 PMCID: PMC9242713 DOI: 10.1089/ten.teb.2021.0012] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/15/2021] [Indexed: 01/05/2023]
Abstract
The field of tissue engineering continues to advance, sometimes in exponential leaps forward, but also sometimes at a rate that does not fulfill the promise that the field imagined a few decades ago. This review is in part a catalog of success in an effort to inform the process of innovation. Tissue engineering has recruited new technologies and developed new methods for engineering tissue constructs that can be used to mitigate or model disease states for study. Key to this antecedent statement is that the scientific effort must be anchored in the needs of a disease state and be working toward a functional product in regenerative medicine. It is this focus on the wildly important ideas coupled with partnered research efforts within both academia and industry that have shown most translational potential. The field continues to thrive and among the most important recent developments are the use of three-dimensional bioprinting, organ-on-a-chip, and induced pluripotent stem cell technologies that warrant special attention. Developments in the aforementioned areas as well as future directions are highlighted in this article. Although several early efforts have not come to fruition, there are good examples of commercial profitability that merit continued investment in tissue engineering. Impact statement Tissue engineering led to the development of new methods for regenerative medicine and disease models. Among the most important recent developments in tissue engineering are the use of three-dimensional bioprinting, organ-on-a-chip, and induced pluripotent stem cell technologies. These technologies and an understanding of them will have impact on the success of tissue engineering and its translation to regenerative medicine. Continued investment in tissue engineering will yield products and therapeutics, with both commercial importance and simultaneous disease mitigation.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, Michigan, USA
| | - Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Rumeysa Tutar
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Annabelle Fricker
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Ehsanul Hoque Apu
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
| | - Kim-Lien Nguyen
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Taby Ahsan
- RoosterBio, Inc., Frederick, Maryland, USA
| | - Ippokratis Pountos
- Academic Department of Trauma and Orthopaedics, University of Leeds, Leeds, United Kingdom
| | - Edward J. Caterson
- Division of Plastic Surgery, Department of Surgery, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, Delaware, USA
| |
Collapse
|
39
|
Tafti MF, Aghamollaei H, Moghaddam MM, Jadidi K, Alio JL, Faghihi S. Emerging tissue engineering strategies for the corneal regeneration. J Tissue Eng Regen Med 2022; 16:683-706. [PMID: 35585479 DOI: 10.1002/term.3309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022]
Abstract
Cornea as the outermost layer of the eye is at risk of various genetic and environmental diseases that can damage the cornea and impair vision. Corneal transplantation is among the most applicable surgical procedures for repairing the defected tissue. However, the scarcity of healthy tissue donations as well as transplantation failure has remained as the biggest challenges in confront of corneal grafting. Therefore, alternative approaches based on stem-cell transplantation and classic regenerative medicine have been developed for corneal regeneration. In this review, the application and limitation of the recently-used advanced approaches for regeneration of cornea are discussed. Additionally, other emerging powerful techniques such as 5D printing as a new branch of scaffold-based technologies for construction of tissues other than the cornea are highlighted and suggested as alternatives for corneal reconstruction. The introduced novel techniques may have great potential for clinical applications in corneal repair including disease modeling, 3D pattern scheming, and personalized medicine.
Collapse
Affiliation(s)
- Mahsa Fallah Tafti
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Jorge L Alio
- Department of Research and Development, VISSUM, Alicante, Spain.,Cornea, Cataract and Refractive Surgery Department, VISSUM, Alicante, Spain.,Department of Pathology and Surgery, Division of Ophthalmology, Faculty of Medicine, Miguel Hernández University, Alicante, Spain
| | - Shahab Faghihi
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
40
|
Wang Y, Cui H, Esworthy T, Mei D, Wang Y, Zhang LG. Emerging 4D Printing Strategies for Next-Generation Tissue Regeneration and Medical Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109198. [PMID: 34951494 DOI: 10.1002/adma.202109198] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The rapid development of 3D printing has led to considerable progress in the field of biomedical engineering. Notably, 4D printing provides a potential strategy to achieve a time-dependent physical change within tissue scaffolds or replicate the dynamic biological behaviors of native tissues for smart tissue regeneration and the fabrication of medical devices. The fabricated stimulus-responsive structures can offer dynamic, reprogrammable deformation or actuation to mimic complex physical, biochemical, and mechanical processes of native tissues. Although there is notable progress made in the development of the 4D printing approach for various biomedical applications, its more broad-scale adoption for clinical use and tissue engineering purposes is complicated by a notable limitation of printable smart materials and the simplistic nature of achievable responses possible with current sources of stimulation. In this review, the recent progress made in the field of 4D printing by discussing the various printing mechanisms that are achieved with great emphasis on smart ink mechanisms of 4D actuation, construct structural design, and printing technologies, is highlighted. Recent 4D printing studies which focus on the applications of tissue/organ regeneration and medical devices are then summarized. Finally, the current challenges and future perspectives of 4D printing are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Medicine, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
41
|
Fang H, Zhu D, Yang Q, Chen Y, Zhang C, Gao J, Gao Y. Emerging zero-dimensional to four-dimensional biomaterials for bone regeneration. J Nanobiotechnology 2022; 20:26. [PMID: 34991600 PMCID: PMC8740479 DOI: 10.1186/s12951-021-01228-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/26/2021] [Indexed: 12/17/2022] Open
Abstract
Bone is one of the most sophisticated and dynamic tissues in the human body, and is characterized by its remarkable potential for regeneration. In most cases, bone has the capacity to be restored to its original form with homeostatic functionality after injury without any remaining scarring. Throughout the fascinating processes of bone regeneration, a plethora of cell lineages and signaling molecules, together with the extracellular matrix, are precisely regulated at multiple length and time scales. However, conditions, such as delayed unions (or nonunion) and critical-sized bone defects, represent thorny challenges for orthopedic surgeons. During recent decades, a variety of novel biomaterials have been designed to mimic the organic and inorganic structure of the bone microenvironment, which have tremendously promoted and accelerated bone healing throughout different stages of bone regeneration. Advances in tissue engineering endowed bone scaffolds with phenomenal osteoconductivity, osteoinductivity, vascularization and neurotization effects as well as alluring properties, such as antibacterial effects. According to the dimensional structure and functional mechanism, these biomaterials are categorized as zero-dimensional, one-dimensional, two-dimensional, three-dimensional, and four-dimensional biomaterials. In this review, we comprehensively summarized the astounding advances in emerging biomaterials for bone regeneration by categorizing them as zero-dimensional to four-dimensional biomaterials, which were further elucidated by typical examples. Hopefully, this review will provide some inspiration for the future design of biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Haoyu Fang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Science, Ningbo, Zhejiang, China.
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
42
|
Abstract
In contrast to conventional hard actuators, soft actuators offer many vivid advantages, such as improved flexibility, adaptability, and reconfigurability, which are intrinsic to living systems. These properties make them particularly promising for different applications, including soft electronics, surgery, drug delivery, artificial organs, or prosthesis. The additional degree of freedom for soft actuatoric devices can be provided through the use of intelligent materials, which are able to change their structure, macroscopic properties, and shape under the influence of external signals. The use of such intelligent materials allows a substantial reduction of a device's size, which enables a number of applications that cannot be realized by externally powered systems. This review aims to provide an overview of the properties of intelligent synthetic and living/natural materials used for the fabrication of soft robotic devices. We discuss basic physical/chemical properties of the main kinds of materials (elastomers, gels, shape memory polymers and gels, liquid crystalline elastomers, semicrystalline ferroelectric polymers, gels and hydrogels, other swelling polymers, materials with volume change during melting/crystallization, materials with tunable mechanical properties, and living and naturally derived materials), how they are related to actuation and soft robotic application, and effects of micro/macro structures on shape transformation, fabrication methods, and we highlight selected applications.
Collapse
Affiliation(s)
- Indra Apsite
- Faculty of Engineering Science, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Sahar Salehi
- Department of Biomaterials, Center of Energy Technology und Materials Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany
| | - Leonid Ionov
- Faculty of Engineering Science, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany.,Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
43
|
Abstract
AbstractThe multidisciplinary research field of bioprinting combines additive manufacturing, biology and material sciences to create bioconstructs with three-dimensional architectures mimicking natural living tissues. The high interest in the possibility of reproducing biological tissues and organs is further boosted by the ever-increasing need for personalized medicine, thus allowing bioprinting to establish itself in the field of biomedical research, and attracting extensive research efforts from companies, universities, and research institutes alike. In this context, this paper proposes a scientometric analysis and critical review of the current literature and the industrial landscape of bioprinting to provide a clear overview of its fast-changing and complex position. The scientific literature and patenting results for 2000–2020 are reviewed and critically analyzed by retrieving 9314 scientific papers and 309 international patents in order to draw a picture of the scientific and industrial landscape in terms of top research countries, institutions, journals, authors and topics, and identifying the technology hubs worldwide. This review paper thus offers a guide to researchers interested in this field or to those who simply want to understand the emerging trends in additive manufacturing and 3D bioprinting.
Graphic abstract
Collapse
|
44
|
Mahmud MAP, Tat T, Xiao X, Adhikary P, Chen J. Advances in 4D-printed physiological monitoring sensors. EXPLORATION (BEIJING, CHINA) 2021; 1:20210033. [PMID: 37323690 PMCID: PMC10191037 DOI: 10.1002/exp.20210033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/16/2021] [Indexed: 06/15/2023]
Abstract
Physiological monitoring sensors have been critical in diagnosing and improving the healthcare industry over the past 30 years, despite various limitations regarding providing differences in signal outputs in response to the changes in the user's body. Four-dimensional (4D) printing has been established in less than a decade; therefore, it currently offers limited resources and knowledge. Still, the technique paves the way for novel platforms in today's ever-growing technologies. This innovative paradigm of 4D printing physiological monitoring sensors aspires to provide real-time and continuous diagnoses. In this perspective, we cover the advancements currently available in the 4D printing industry that has arisen in the last septennium, focusing on the overview of 4D printing, its history, and both wearable and implantable physiological sensing solutions. Finally, we explore the current challenges faced in this field, translational research, and its future prospects. All of these aims highlight key areas of attention that can be applied by future researchers to fully transform 4D printed physiological monitoring sensors into more viable medical products.
Collapse
Affiliation(s)
| | - Trinny Tat
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Xiao Xiao
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Partho Adhikary
- Department of Biomedical Engineering, Khulna University of Engineering & TechnologyKhulnaBangladesh
| | - Jun Chen
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
45
|
Mono-Material 4D Printing of Digital Shape-Memory Components. Polymers (Basel) 2021; 13:polym13213767. [PMID: 34771322 PMCID: PMC8587668 DOI: 10.3390/polym13213767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Dynamic shading systems in buildings help reduce solar gain. Actuated systems, which depend on renewable energy with reduced mechanical parts, further reduce building energy consumption compared to traditional interactive systems. This paper investigates stimuli-responsive polymer application in architectural products for sustainable energy consumption, complying with sustainable development goals (SDGs). The proposed research method posits that, by varying the infill percentage in a pre-determined manner inside a 3D-printed mono-material component, directionally controlled shape change can be detected due to thermal stimuli application. Thus, motion behavior can be engineered into a material. In this study, PLA+, PETG, TPU and PA 6 printed components are investigated under a thermal cycle test to identify a thermally responsive shape-memory polymer candidate that actuates within the built environment temperature range. A differential scanning calorimetry (DSC) test is carried out on TPU 95A and PA 6 to interpret the material shape response in terms of transitional temperatures. All materials tested show an anisotropic shape-change reaction in a pre-programmed manner, complying with the behavior engineered into the matter. Four-dimensional (4D)-printed PA6 shows shape-shifting behavior and total recovery to initial position within the built environment temperature range.
Collapse
|
46
|
Patadiya J, Gawande A, Joshi G, Kandasubramanian B. Additive Manufacturing of Shape Memory Polymer Composites for Futuristic Technology. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jigar Patadiya
- Rapid Prototyping Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of
Defence, Girinagar, Pune, 411025 India
| | - Adwait Gawande
- Department of Aerospace Engineering, Defence Institute of Advanced Technology (DU), Ministry
of Defence, Girinagar, Pune 411025 India
| | - Ganapati Joshi
- Department of Aerospace Engineering, Defence Institute of Advanced Technology (DU), Ministry
of Defence, Girinagar, Pune 411025 India
| | - Balasubramanian Kandasubramanian
- Rapid Prototyping Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of
Defence, Girinagar, Pune, 411025 India
| |
Collapse
|
47
|
Agarwal T, Hann SY, Chiesa I, Cui H, Celikkin N, Micalizzi S, Barbetta A, Costantini M, Esworthy T, Zhang LG, De Maria C, Maiti TK. 4D printing in biomedical applications: emerging trends and technologies. J Mater Chem B 2021; 9:7608-7632. [PMID: 34586145 DOI: 10.1039/d1tb01335a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nature's material systems during evolution have developed the ability to respond and adapt to environmental stimuli through the generation of complex structures capable of varying their functions across direction, distances and time. 3D printing technologies can recapitulate structural motifs present in natural materials, and efforts are currently being made on the technological side to improve printing resolution, shape fidelity, and printing speed. However, an intrinsic limitation of this technology is that printed objects are static and thus inadequate to dynamically reshape when subjected to external stimuli. In recent years, this issue has been addressed with the design and precise deployment of smart materials that can undergo a programmed morphing in response to a stimulus. The term 4D printing was coined to indicate the combined use of additive manufacturing, smart materials, and careful design of appropriate geometries. In this review, we report the recent progress in the design and development of smart materials that are actuated by different stimuli and their exploitation within additive manufacturing to produce biomimetic structures with important repercussions in different but interrelated biomedical areas.
Collapse
Affiliation(s)
- Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal - 721302, India.
| | - Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Irene Chiesa
- Research Center "E. Piaggio" and Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Nehar Celikkin
- Institute of Physical Chemistry - Polish Academy of Sciences, Warsaw, Poland
| | - Simone Micalizzi
- Research Center "E. Piaggio" and Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.
| | - Andrea Barbetta
- Department of Chemistry, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Marco Costantini
- Institute of Physical Chemistry - Polish Academy of Sciences, Warsaw, Poland
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA. .,Department of Electrical Engineering, The George Washington University, Washington, DC 20052, USA.,Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA.,Department of Medicine, The George Washington University, Washington, DC 20052, USA
| | - Carmelo De Maria
- Research Center "E. Piaggio" and Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal - 721302, India.
| |
Collapse
|
48
|
Wu SD, Hsu SH. 4D bioprintable self-healing hydrogel with shape memory and cryopreserving properties. Biofabrication 2021; 13. [PMID: 34530408 DOI: 10.1088/1758-5090/ac2789] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Four-dimensional (4D) bioprinting is an emerging biofabrication technology that integrates time as a fourth dimension with three-dimensional (3D) bioprinting for fabricating customizable tissue-engineered implants. 4D bioprinted implants are expected to possess self-healing and shape memory properties for new application opportunities, for instance, fabrication of devices with good shape integrity for minimally invasive surgery. Herein, we developed a self-healing hydrogel composed of biodegradable polyurethane (PU) nanoparticles and photo-/thermo-responsive gelatin-based biomaterials. The self-healing property of hydrogel may be associated with the formation of reversible ionomeric interaction between the COO-group of PU nanoparticles and NH3+group on the gelatin chains. The self-healing hydrogel demonstrated excellent 3D printability and filament resolution. The UV-crosslinked printed hydrogel showed good stackability (>80 layers), structural stability, elasticity, and tunable modulus (1-60 kPa). The shape-memorizable 4D printed constructs revealed good shape fixity (∼95%) and shape recovery (∼98%) through the elasticity as well as forming and collapsing of water lattice in the hydrogel. The hydrogel and the printing process supported the continuous proliferation of neural stem cells (NSCs) (∼3.7-fold after 14 days). Moreover, the individually bioprinted NSCs and mesenchymal stem cells in the adjacent, self-healed filaments showed mutual migration and such interaction promoted the cell differentiation behavior. The cryopreserved (-20 °C or -80 °C) 4D bioprinted hydrogel after awakening and shape recovery at 37 °C demonstrated cell proliferation similar to that of the non-cryopreserved control. This 4D bioprintable, self-healable hydrogel with shape memory and cryopreserving properties may be employed for customized biofabrication.
Collapse
Affiliation(s)
- Shin-Da Wu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei 10617, Taiwan, Republic of China
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei 10617, Taiwan, Republic of China.,Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan, Republic of China
| |
Collapse
|
49
|
Celikkin N, Presutti D, Maiullari F, Fornetti E, Agarwal T, Paradiso A, Volpi M, Święszkowski W, Bearzi C, Barbetta A, Zhang YS, Gargioli C, Rizzi R, Costantini M. Tackling Current Biomedical Challenges With Frontier Biofabrication and Organ-On-A-Chip Technologies. Front Bioeng Biotechnol 2021; 9:732130. [PMID: 34604190 PMCID: PMC8481890 DOI: 10.3389/fbioe.2021.732130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
In the last decades, biomedical research has significantly boomed in the academia and industrial sectors, and it is expected to continue to grow at a rapid pace in the future. An in-depth analysis of such growth is not trivial, given the intrinsic multidisciplinary nature of biomedical research. Nevertheless, technological advances are among the main factors which have enabled such progress. In this review, we discuss the contribution of two state-of-the-art technologies-namely biofabrication and organ-on-a-chip-in a selection of biomedical research areas. We start by providing an overview of these technologies and their capacities in fabricating advanced in vitro tissue/organ models. We then analyze their impact on addressing a range of current biomedical challenges. Ultimately, we speculate about their future developments by integrating these technologies with other cutting-edge research fields such as artificial intelligence and big data analysis.
Collapse
Affiliation(s)
- Nehar Celikkin
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Dario Presutti
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Fabio Maiullari
- Istituto Nazionale Genetica Molecolare INGM “Romeo Ed Enrica Invernizzi”, Milan, Italy
| | | | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Alessia Paradiso
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Marina Volpi
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Claudia Bearzi
- Istituto Nazionale Genetica Molecolare INGM “Romeo Ed Enrica Invernizzi”, Milan, Italy
- Institute of Genetic and Biomedical Research, National Research Council of Italy (IRGB-CNR), Milan, Italy
| | - Andrea Barbetta
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, MA, United States
| | - Cesare Gargioli
- Department of Biology, Rome University Tor Vergata, Rome, Italy
| | - Roberto Rizzi
- Istituto Nazionale Genetica Molecolare INGM “Romeo Ed Enrica Invernizzi”, Milan, Italy
- Institute of Genetic and Biomedical Research, National Research Council of Italy (IRGB-CNR), Milan, Italy
- Institute of Biomedical Technologies, National Research Council of Italy (ITB-CNR), Milan, Italy
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
50
|
Wang L, Feng J, Luo Y, Zhou Z, Jiang Y, Luo X, Xu L, Li L, Feng J. Three-Dimensional-Printed Silica Aerogels for Thermal Insulation by Directly Writing Temperature-Induced Solidifiable Inks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40964-40975. [PMID: 34424660 DOI: 10.1021/acsami.1c12020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Silica aerogels are attractive materials for various applications due to their exceptional performances and open porous structure. Especially in thermal management, silica aerogels with low thermal conductivity need to be processed into customized structures and shapes for accurate installation on protected parts, which plays an important role in high-efficiency insulation. However, traditional subtractive manufacturing of silica aerogels with complex geometric architectures and high-precision shapes has remained challenging since the intrinsic ceramic brittleness of silica aerogels. Comparatively, additive manufacturing (3D printing) provides an alternative route to obtain custom-designed silica aerogels. Herein, we demonstrate a thermal-solidifying 3D printing strategy to fabricate silica aerogels with complex architectures via directly writing a temperature-induced solidifiable silica ink in an ambient environment. The solidification of silica inks is facilely realized, coupling with the continuous ammonia catalysis by the thermolysis of urea. Based on our proposed thermal-solidifying 3D printing strategy, printed objects show excellent shape retention and have a capacity to subsequently undergo the processes of in situ hydrophobic modification, solvent replacement, and supercritical drying. 3D-printed silica aerogels with hydrophobic modification show a super-high water contact angle of 157°. Benefiting from the low density (0.25 g·cm-3) and mesoporous silica network, optimized 3D-printed specimens with a high specific surface area of 272 m2·g-1 possess a low thermal conductivity of 32.43 mW·m-1·K-1. These outstanding performances of 3D-printed silica aerogels are comparable to those of traditional aerogels. More importantly, the thermal-solidifying 3D printing strategy brings hope to the custom design and industrial production of silica aerogel insulation materials.
Collapse
Affiliation(s)
- Lukai Wang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, 109 De Ya Rd, Changsha, Hunan 410073, P.R. China
| | - Junzong Feng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, 109 De Ya Rd, Changsha, Hunan 410073, P.R. China
| | - Yi Luo
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, 109 De Ya Rd, Changsha, Hunan 410073, P.R. China
| | - Zhenhao Zhou
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, 109 De Ya Rd, Changsha, Hunan 410073, P.R. China
| | - Yonggang Jiang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, 109 De Ya Rd, Changsha, Hunan 410073, P.R. China
| | - Xuanfeng Luo
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, 109 De Ya Rd, Changsha, Hunan 410073, P.R. China
| | - Lin Xu
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, 109 De Ya Rd, Changsha, Hunan 410073, P.R. China
| | - Liangjun Li
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, 109 De Ya Rd, Changsha, Hunan 410073, P.R. China
| | - Jian Feng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, 109 De Ya Rd, Changsha, Hunan 410073, P.R. China
| |
Collapse
|