1
|
Zeng J, Heilig S, Ryma M, Groll J, Li C, Matsusaki M. Outermost Cationic Surface Charge of Layer-by-Layer Films Prevents Endothelial Cells Migration for Cell Compartmentalization in Three-Dimensional Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417538. [PMID: 39985273 DOI: 10.1002/advs.202417538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Indexed: 02/24/2025]
Abstract
Tissues and organs possess an organized cellular arrangement that enables their unique functions. However, conventional three-dimensional (3D) encapsulation techniques fail to recapitulate this complexity due to the cell migration during cell culture. In biological tissues, basement membranes (BMs) are essential to mechanically support cellular organization. This study finds that a positively charged outermost surface of multilayered nanofilms, fabricated through layer-by-layer assembly of poly-l-lysine (PLL) and dextran (Dex) via hydrogen bonds, stimulates the barrier functions of BMs. This type of artificial BM (A-BM) demonstrates enhanced barrier properties in comparison to other types of A-BMs composed of BM components such as collagen type IV and laminin. Such an enhancement is potentially associated with the outermost cationic layer, which inhibits the sprouting of endothelial cells (ECs) and effectively prevents EC migration over a 14-d period, aligning with the formation timeline of natural BMs in 3D tissues. Finally, 3D organized vascular channels are successfully engineered with the support of shape-adaptable PLL/Dex nanofilms. This approach offers a guideline for engineering organized 3D tissue models by regulating cell migration, which can provide reliable platforms for in vitro permeability assay of new drugs or drug delivery carriers.
Collapse
Affiliation(s)
- Jinfeng Zeng
- College of Textiles, Donghua University, Shanghai, 201620, China
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sven Heilig
- University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Matthias Ryma
- University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Jürgen Groll
- University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Congju Li
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Murkar RS, Wiese-Rischke C, Weigel T, Kopp S, Walles H. Developing human upper, lower, and deep lung airway models: Combining different scaffolds and developing complex co-cultures. J Tissue Eng 2025; 16:20417314241299076. [PMID: 39885949 PMCID: PMC11780661 DOI: 10.1177/20417314241299076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/27/2024] [Indexed: 02/01/2025] Open
Abstract
Advanced in vitro models are crucial for studying human airway biology. Our objective was the development and optimization of 3D in vitro models representing diverse airway regions, including deep lung alveolar region. This initiative was aimed at assessing the influence of selective scaffold materials on distinct airway co-culture models. While PET membranes (30 µm thickness) were unsuitable for alveolar models due to their stiffness and relatively high Young's modulus, a combination of collagenous scaffolds seeded with Calu-3 cells and fibroblasts, showed increased mucus production going from week 1 to week 4 of air lift culture. Meanwhile standard electrospun polymer membrane (50-60 µm thick), which possesses a considerably low modulus of elasticity, offered higher flexibility and supported co-cultures of primary alveolar epithelial (huAEC) and endothelial cells (hEC) in concert with lung biopsy-derived fibroblasts which enhanced maturation of the tissue model. As published, designing human alveolar in vitro models require thin scaffold to mimic the required ultra-thin ECM, in addition to assuring right balanced AT1/AT2 ratio for biomimetic representation. We concluded that co-cultivation of primary/stem cells or cell lines has a higher influence on the function of the airway tissue models than the applied scaffolds.
Collapse
Affiliation(s)
- Rasika S Murkar
- Core Facility Tissue Engineering, Institute of Chemistry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Cornelia Wiese-Rischke
- University Clinic for Cardiac and Thoracic Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Tobias Weigel
- Fraunhofer Translational Center for Regenerative Medicine, Fraunhofer ISC, Wuerzburg, Germany
| | - Sascha Kopp
- Core Facility Tissue Engineering, Institute of Chemistry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Heike Walles
- Core Facility Tissue Engineering, Institute of Chemistry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
3
|
Meegan JE, Rizzo AN, Schmidt EP, Bastarache JA. Cellular Mechanisms of Lung Injury: Current Perspectives. Clin Chest Med 2024; 45:821-833. [PMID: 39443000 PMCID: PMC11499619 DOI: 10.1016/j.ccm.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The alveolar-capillary barrier includes microvascular endothelial and alveolar epithelial cells and their matrices, and its disruption is a critical driver of lung injury during development of acute respiratory distress syndrome. In this review, we provide an overview of the structure and function of the alveolar-capillary barrier during health and highlight several important signaling mechanisms that underlie endothelial and epithelial injury during critical illness, emphasizing areas with potential for development of therapeutic strategies targeting alveolar-capillary leak. We also emphasize the importance of biomarker and preclinical studies in developing novel therapies and highlight important areas warranting future investigation.
Collapse
Affiliation(s)
- Jamie E Meegan
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alicia N Rizzo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Bulfinch 148, Boston, MA 02114, USA
| | - Eric P Schmidt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Bulfinch 148, Boston, MA 02114, USA
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
4
|
Avery K, Chen X. Integration of bioprinting advances and biomechanical strategies for in vitrolung modelling. Biofabrication 2024; 17:012006. [PMID: 39536463 DOI: 10.1088/1758-5090/ad91e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
The recent occurrence of the Covid-19 pandemic and frequent wildfires have worsened pulmonary diseases and raised the urgent need for investigating host-pathogen interactions and advancing drug and vaccine therapies. Historically, research and experimental studies have relied on two-dimensional cell culture dishes and/or animal models, which suffer from physiological differences from the human lung. More recently, there has been investigation into the use of lung-on-a-chip models and organoids, while the use of bioprinting technologies has also emerged to fabricate three-dimensional constructs or lung models with enhanced physiological relevance. Concurrently, achievements have also been made to develop biomimetic strategies for simulating thein vivobiomechanical conditions induced by lung breathing, though challenges remain with incorporating these strategies with bioprinted models. Bioprinted models combined with advanced biomimetic strategies would represent a promising approach to advance disease discovery and therapeutic development. As inspired, this article briefly reviews the recent progress of both bioprintedin vitrolung models and biomechanical strategies, with a focus on native lung tissue microstructure and biomechanical properties, bioprinted constructs, and biomimetic strategies to mimic the native environment. This article also urges that the integration of bioprinting advances and biomimetic strategies would be essential to achieve synergistic effects forin vitrolung modelling. Key issues and challenges are also identified and discussed along with recommendations for future research.
Collapse
Affiliation(s)
- Kathryn Avery
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Calzuola ST, Newman G, Feaugas T, Perrault CM, Blondé JB, Roy E, Porrini C, Stojanovic GM, Vidic J. Membrane-based microfluidic systems for medical and biological applications. LAB ON A CHIP 2024; 24:3579-3603. [PMID: 38954466 DOI: 10.1039/d4lc00251b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Microfluidic devices with integrated membranes that enable control of mass transport in constrained environments have shown considerable growth over the last decade. Membranes are a key component in several industrial processes such as chemical, pharmaceutical, biotechnological, food, and metallurgy separation processes as well as waste management applications, allowing for modular and compact systems. Moreover, the miniaturization of a process through microfluidic devices leads to process intensification together with reagents, waste and cost reduction, and energy and space savings. The combination of membrane technology and microfluidic devices allows therefore magnification of their respective advantages, providing more valuable solutions not only for industrial processes but also for reproducing biological processes. This review focuses on membrane-based microfluidic devices for biomedical science with an emphasis on microfluidic artificial organs and organs-on-chip. We provide the basic concepts of membrane technology and the laws governing mass transport. The role of the membrane in biomedical microfluidic devices, along with the required properties, available materials, and current challenges are summarized. We believe that the present review may be a starting point and a resource for researchers who aim to replicate a biological phenomenon on-chip by applying membrane technology, for moving forward the biomedical applications.
Collapse
Affiliation(s)
- Silvia Tea Calzuola
- UMR7646 Laboratoire d'hydrodynamique (LadHyX), Ecole Polytechnique, Palaiseau, France.
- Eden Tech, Paris, France
| | - Gwenyth Newman
- Eden Tech, Paris, France
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Thomas Feaugas
- Eden Tech, Paris, France
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
| | | | | | | | | | - Goran M Stojanovic
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovića 6, 21000 Novi Sad, Serbia
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
6
|
Choi SY, Kim HJ, Hwang S, Park J, Park J, Lee JW, Son KH. The Modulation of Respiratory Epithelial Cell Differentiation by the Thickness of an Electrospun Poly-ε-Carprolactone Mesh Mimicking the Basement Membrane. Int J Mol Sci 2024; 25:6650. [PMID: 38928356 PMCID: PMC11203971 DOI: 10.3390/ijms25126650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
The topology of the basement membrane (BM) affects cell physiology and pathology, and BM thickening is associated with various chronic lung diseases. In addition, the topology of commercially available poly (ethylene terephthalate) (PET) membranes, which are used in preclinical in vitro models, differs from that of the human BM, which has a fibrous and elastic structure. In this study, we verified the effect of BM thickness on the differentiation of normal human bronchial epithelial (NHBE) cells. To evaluate whether the thickness of poly-ε-carprolactone (PCL) mesh affects the differentiation of NHBE cells, cells were grown on thin- (6-layer) and thick-layer (80-layer) meshes consisting of electrospun PCL nanofibers using an air-liquid interface (ALI) cell culture system. It was found that the NHBE cells formed a normal pseudostratified epithelium composed of ciliated, goblet, and basal cells on the thin-layer PCL mesh; however, goblet cell hyperplasia was observed on the thick-layer PCL mesh. Differentiated NHBE cells cultured on the thick-layer PCL mesh also demonstrated increased epithelial-mesenchymal transition (EMT) compared to those cultured on the thin-layer PCL mesh. In addition, expression of Sox9, nuclear factor (NF)-κB, and oxidative stress-related markers, which are also associated with goblet cell hyperplasia, was increased in the differentiated NHBE cells cultured on the thick-layer PCL mesh. Thus, the use of thick electrospun PCL mesh led to NHBE cells differentiating into hyperplastic goblet cells via EMT and the oxidative stress-related signaling pathway. Therefore, the topology of the BM, for example, thickness, may affect the differentiation direction of human bronchial epithelial cells.
Collapse
Affiliation(s)
- Seon Young Choi
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea; (S.Y.C.); (H.J.K.); (S.H.)
| | - Hyun Joo Kim
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea; (S.Y.C.); (H.J.K.); (S.H.)
| | - Soyoung Hwang
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea; (S.Y.C.); (H.J.K.); (S.H.)
| | - Jangho Park
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea; (J.P.); (J.P.)
| | - Jungkyu Park
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea; (J.P.); (J.P.)
| | - Jin Woo Lee
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea; (J.P.); (J.P.)
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea; (S.Y.C.); (H.J.K.); (S.H.)
| |
Collapse
|
7
|
Fallert L, Urigoitia-Asua A, Cipitria A, Jimenez de Aberasturi D. Dynamic 3D in vitro lung models: applications of inorganic nanoparticles for model development and characterization. NANOSCALE 2024; 16:10880-10900. [PMID: 38787741 DOI: 10.1039/d3nr06672j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Being a vital organ exposed to the external environment, the lung is susceptible to a plethora of pathogens and pollutants. This is reflected in high incidences of chronic respiratory diseases, which remain a leading cause of mortality world-wide and pose a persistent global burden. It is thus of paramount importance to improve our understanding of these pathologies and provide better therapeutic options. This necessitates the development of representative and physiologically relevant in vitro models. Advances in bioengineering have enabled the development of sophisticated models that not only capture the three-dimensional architecture of the cellular environment but also incorporate the dynamics of local biophysical stimuli. However, such complex models also require novel approaches that provide reliable characterization. Within this review we explore how 3D bioprinting and nanoparticles can serve as multifaceted tools to develop such dynamic 4D printed in vitro lung models and facilitate their characterization in the context of pulmonary fibrosis and breast cancer lung metastasis.
Collapse
Affiliation(s)
- Laura Fallert
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
| | - Ane Urigoitia-Asua
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
- POLYMAT, Basque Centre for Macromolecular Design and Engineering, 20018 Donostia-San Sebastián, Spain
| | - Amaia Cipitria
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Dorleta Jimenez de Aberasturi
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), 20014 Donostia-San Sebastián, Spain
| |
Collapse
|
8
|
Hirano M, Iwata K, Yamada Y, Shinoda Y, Yamazaki M, Hino S, Ikeda A, Shimizu A, Otsuka S, Nakagawa H, Watanabe Y. AlveoMPU: Bridging the Gap in Lung Model Interactions Using a Novel Alveolar Bilayer Film. Polymers (Basel) 2024; 16:1486. [PMID: 38891433 PMCID: PMC11174738 DOI: 10.3390/polym16111486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The alveoli, critical sites for gas exchange in the lungs, comprise alveolar epithelial cells and pulmonary capillary endothelial cells. Traditional experimental models rely on porous polyethylene terephthalate or polycarbonate membranes, which restrict direct cell-to-cell contact. To address this limitation, we developed AlveoMPU, a new foam-based mortar-like polyurethane-formed alveolar model that facilitates direct cell-cell interactions. AlveoMPU features a unique anisotropic mortar-shaped configuration with larger pores at the top and smaller pores at the bottom, allowing the alveolar epithelial cells to gradually extend toward the bottom. The underside of the film is remarkably thin, enabling seeded pulmonary microvascular endothelial cells to interact with alveolar epithelial cells. Using AlveoMPU, it is possible to construct a bilayer structure mimicking the alveoli, potentially serving as a model that accurately simulates the actual alveoli. This innovative model can be utilized as a drug-screening tool for measuring transepithelial electrical resistance, assessing substance permeability, observing cytokine secretion during inflammation, and evaluating drug efficacy and pharmacokinetics.
Collapse
Affiliation(s)
- Minoru Hirano
- Frontier Research Management Office, Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute 480-1192, Aichi, Japan; (Y.Y.); (Y.W.)
| | - Kosuke Iwata
- Organic Device Development Department, Material Development Division, Toyoda Gosei Co., Ltd., 1-1 Higashitakasuka, Futatsudera, Ama 490-1207, Aichi, Japan; (K.I.); (M.Y.); (S.H.); (A.I.); (A.S.); (S.O.); (H.N.)
| | - Yuri Yamada
- Frontier Research Management Office, Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute 480-1192, Aichi, Japan; (Y.Y.); (Y.W.)
| | - Yasuhiko Shinoda
- Organic Device Development Department, Material Development Division, Toyoda Gosei Co., Ltd., 1-1 Higashitakasuka, Futatsudera, Ama 490-1207, Aichi, Japan; (K.I.); (M.Y.); (S.H.); (A.I.); (A.S.); (S.O.); (H.N.)
| | - Masateru Yamazaki
- Organic Device Development Department, Material Development Division, Toyoda Gosei Co., Ltd., 1-1 Higashitakasuka, Futatsudera, Ama 490-1207, Aichi, Japan; (K.I.); (M.Y.); (S.H.); (A.I.); (A.S.); (S.O.); (H.N.)
| | - Sayaka Hino
- Organic Device Development Department, Material Development Division, Toyoda Gosei Co., Ltd., 1-1 Higashitakasuka, Futatsudera, Ama 490-1207, Aichi, Japan; (K.I.); (M.Y.); (S.H.); (A.I.); (A.S.); (S.O.); (H.N.)
| | - Aya Ikeda
- Organic Device Development Department, Material Development Division, Toyoda Gosei Co., Ltd., 1-1 Higashitakasuka, Futatsudera, Ama 490-1207, Aichi, Japan; (K.I.); (M.Y.); (S.H.); (A.I.); (A.S.); (S.O.); (H.N.)
| | - Akiko Shimizu
- Organic Device Development Department, Material Development Division, Toyoda Gosei Co., Ltd., 1-1 Higashitakasuka, Futatsudera, Ama 490-1207, Aichi, Japan; (K.I.); (M.Y.); (S.H.); (A.I.); (A.S.); (S.O.); (H.N.)
| | - Shuhei Otsuka
- Organic Device Development Department, Material Development Division, Toyoda Gosei Co., Ltd., 1-1 Higashitakasuka, Futatsudera, Ama 490-1207, Aichi, Japan; (K.I.); (M.Y.); (S.H.); (A.I.); (A.S.); (S.O.); (H.N.)
| | - Hiroyuki Nakagawa
- Organic Device Development Department, Material Development Division, Toyoda Gosei Co., Ltd., 1-1 Higashitakasuka, Futatsudera, Ama 490-1207, Aichi, Japan; (K.I.); (M.Y.); (S.H.); (A.I.); (A.S.); (S.O.); (H.N.)
| | - Yoshihide Watanabe
- Frontier Research Management Office, Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute 480-1192, Aichi, Japan; (Y.Y.); (Y.W.)
| |
Collapse
|
9
|
Sevinc Ozdemir N, Belyaev D, Castro MN, Balakin S, Opitz J, Wihadmadyatami H, Anggraeni R, Yucel D, Kenar H, Beshchasna N, Ana ID, Hasirci V. Advances in In Vitro Blood-Air Barrier Models and the Use of Nanoparticles in COVID-19 Research. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:82-96. [PMID: 37597193 DOI: 10.1089/ten.teb.2023.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Respiratory infections caused by coronaviruses (CoVs) have become a major public health concern in the past two decades as revealed by the emergence of SARS-CoV in 2002, MERS-CoV in 2012, and SARS-CoV-2 in 2019. The most severe clinical phenotypes commonly arise from exacerbation of immune response following the infection of alveolar epithelial cells localized at the pulmonary blood-air barrier. Preclinical rodent models do not adequately represent the essential genetic properties of the barrier, thus necessitating the use of humanized transgenic models. However, existing monolayer cell culture models have so far been unable to mimic the complex lung microenvironment. In this respect, air-liquid interface models, tissue engineered models, and organ-on-a-chip systems, which aim to better imitate the infection site microenvironment and microphysiology, are being developed to replace the commonly used monolayer cell culture models, and their use is becoming more widespread every day. On the contrary, studies on the development of nanoparticles (NPs) that mimic respiratory viruses, and those NPs used in therapy are progressing rapidly. The first part of this review describes in vitro models that mimic the blood-air barrier, the tissue interface that plays a central role in COVID-19 progression. In the second part of the review, NPs mimicking the virus and/or designed to carry therapeutic agents are explained and exemplified.
Collapse
Affiliation(s)
- Neval Sevinc Ozdemir
- Acibadem University (ACU) Biomaterials A&R Center, Atasehir, Istanbul, Turkey
- Department of Medical Biotechnology, ACU Graduate School of Health Sciences, Istanbul, Turkey
- ACU Department of Pharmaceutical Basic Sciences, School of Pharmacy, Istanbul, Turkey
| | - Dmitry Belyaev
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche Straße 2, Dresden, Germany
| | - Manuel Nieto Castro
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche Straße 2, Dresden, Germany
| | - Sascha Balakin
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche Straße 2, Dresden, Germany
| | - Joerg Opitz
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche Straße 2, Dresden, Germany
| | - Hevi Wihadmadyatami
- Department of Tissue Engineering and Regenerative Medicine, Research Collaboration Center for Biomedical Scaffolds, National Research and Innovation Agency (BRIN) and Universitas Gadjah Mada (UGM), Bulaksumur, Yogyakarta, Indonesia
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada (UGM), Bulaksumur, Yogyakarta, Indonesia
| | - Rahmi Anggraeni
- Department of Tissue Engineering and Regenerative Medicine, Research Collaboration Center for Biomedical Scaffolds, National Research and Innovation Agency (BRIN) and Universitas Gadjah Mada (UGM), Bulaksumur, Yogyakarta, Indonesia
| | - Deniz Yucel
- Acibadem University (ACU) Biomaterials A&R Center, Atasehir, Istanbul, Turkey
- ACU Graduate Department of Biomaterials, Istanbul, Turkey
- Department of Histology and Embryology, ACU School of Medicine, Istanbul, Turkey
| | - Halime Kenar
- Acibadem University (ACU) Biomaterials A&R Center, Atasehir, Istanbul, Turkey
- ACU Graduate Department of Biomaterials, Istanbul, Turkey
- ACU Faculty of Engineering Sciences, Department of Biomedical Engineering, Istanbul, Turkey
| | - Natalia Beshchasna
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche Straße 2, Dresden, Germany
| | - Ika Dewi Ana
- Department of Tissue Engineering and Regenerative Medicine, Research Collaboration Center for Biomedical Scaffolds, National Research and Innovation Agency (BRIN) and Universitas Gadjah Mada (UGM), Bulaksumur, Yogyakarta, Indonesia
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada (UGM), Bulaksumur, Yogyakarta, Indonesia
| | - Vasif Hasirci
- Acibadem University (ACU) Biomaterials A&R Center, Atasehir, Istanbul, Turkey
- ACU Graduate Department of Biomaterials, Istanbul, Turkey
- ACU Faculty of Engineering Sciences, Department of Biomedical Engineering, Istanbul, Turkey
- BIOMATEN, METU Ctr. of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
| |
Collapse
|
10
|
Jain P, Rauer SB, Felder D, Linkhorst J, Möller M, Wessling M, Singh S. Peptide-Functionalized Electrospun Meshes for the Physiological Cultivation of Pulmonary Alveolar Capillary Barrier Models in a 3D-Printed Micro-Bioreactor. ACS Biomater Sci Eng 2023; 9:4878-4892. [PMID: 37402206 PMCID: PMC10428094 DOI: 10.1021/acsbiomaterials.3c00047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
In vitro environments that realize biomimetic scaffolds, cellular composition, physiological shear, and strain are integral to developing tissue models of organ-specific functions. In this study, an in vitro pulmonary alveolar capillary barrier model is developed that closely mimics physiological functions by combining a synthetic biofunctionalized nanofibrous membrane system with a novel three-dimensional (3D)-printed bioreactor. The fiber meshes are fabricated from a mixture of polycaprolactone (PCL), 6-armed star-shaped isocyanate-terminated poly(ethylene glycol) (sPEG-NCO), and Arg-Gly-Asp (RGD) peptides by a one-step electrospinning process that offers full control over the fiber surface chemistry. The tunable meshes are mounted within the bioreactor where they support the co-cultivation of pulmonary epithelial (NCI-H441) and endothelial (HPMEC) cell monolayers at air-liquid interface under controlled stimulation by fluid shear stress and cyclic distention. This stimulation, which closely mimics blood circulation and breathing motion, is observed to impact alveolar endothelial cytoskeleton arrangement and improve epithelial tight junction formation as well as surfactant protein B production compared to static models. The results highlight the potential of PCL-sPEG-NCO:RGD nanofibrous scaffolds in combination with a 3D-printed bioreactor system as a platform to reconstruct and enhance in vitro models to bear a close resemblance to in vivo tissues.
Collapse
Affiliation(s)
- Puja Jain
- DWI—Leibniz
Institute for Interactive Materials, RWTH
Aachen University, 52074 Aachen, Germany
| | - Sebastian B. Rauer
- Institute
for Chemical Process Engineering, RWTH Aachen
University, 52074 Aachen, Germany
| | - Daniel Felder
- DWI—Leibniz
Institute for Interactive Materials, RWTH
Aachen University, 52074 Aachen, Germany
| | - John Linkhorst
- Institute
for Chemical Process Engineering, RWTH Aachen
University, 52074 Aachen, Germany
| | - Martin Möller
- DWI—Leibniz
Institute for Interactive Materials, RWTH
Aachen University, 52074 Aachen, Germany
| | - Matthias Wessling
- DWI—Leibniz
Institute for Interactive Materials, RWTH
Aachen University, 52074 Aachen, Germany
- Institute
for Chemical Process Engineering, RWTH Aachen
University, 52074 Aachen, Germany
| | - Smriti Singh
- Max
Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
van Os L, Yeoh J, Witz G, Ferrari D, Krebs P, Chandorkar Y, Zeinali S, Sengupta A, Guenat O. Immune cell extravasation in an organ-on-chip to model lung imflammation. Eur J Pharm Sci 2023:106485. [PMID: 37270149 DOI: 10.1016/j.ejps.2023.106485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe lung condition with high mortality and various causes, including lung infection. No specific treatment is currently available and more research aimed at better understanding the pathophysiology of ARDS is needed. Most lung-on-chip models that aim at mimicking the air-blood barrier are designed with a horizontal barrier through which immune cells can migrate vertically, making it challenging to visualize and investigate their migration. In addition, these models often lack a barrier of natural protein-derived extracellular matrix (ECM) suitable for live cell imaging to investigate ECM-dependent migration of immune cells as seen in ARDS. This study reports a novel inflammation-on-chip model with live cell imaging of immune cell extravasation and migration during lung inflammation. The three-channel perfusable inflammation-on-chip system mimics the lung endothelial barrier, the ECM environment and the (inflamed) lung epithelial barrier. A chemotactic gradient was established across the ECM hydrogel, leading to the migration of immune cells through the endothelial barrier. We found that immune cell extravasation depends on the presence of an endothelial barrier, on the ECM density and stiffness, and on the flow profile. In particular, bidirectional flow, broadly used in association with rocking platforms, was found to importantly delay extravasation of immune cells in contrast to unidirectional flow. Extravasation was increased in the presence of lung epithelial tissue. This model is currently used to study inflammation-induced immune cell migration but can be used to study infection-induced immune cell migration under different conditions, such as ECM composition, density and stiffness, type of infectious agents used, and the presence of organ-specific cell types.
Collapse
Affiliation(s)
- Lisette van Os
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jeremy Yeoh
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland; Institute of Pathology, University of Bern, Bern, Switzerland
| | - Guillaume Witz
- Microscopy Imaging Center (MIC) & Data Science Lab (DSL), University of Bern, Bern, Switzerland
| | - Dario Ferrari
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Yashoda Chandorkar
- Laboratory for Biointerfaces, EMPA Empa Swiss Federal Laboratories for Material Science and Technology, St Gallen, Switzerland
| | - Soheila Zeinali
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Arunima Sengupta
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Olivier Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Department of Pulmonary Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland; Department of General Thoracic Surgery, Inselspital, University Hospital of Bern, Bern, Switzerland.
| |
Collapse
|
12
|
Jain P, Rimal R, Möller M, Singh S. Topographical influence of electrospun basement membrane mimics on formation of cellular monolayer. Sci Rep 2023; 13:8382. [PMID: 37225757 DOI: 10.1038/s41598-023-34934-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/10/2023] [Indexed: 05/26/2023] Open
Abstract
Functional unit of many organs like lung, kidney, intestine, and eye have their endothelial and epithelial monolayers physically separated by a specialized extracellular matrix called the basement membrane. The intricate and complex topography of this matrix influences cell function, behavior and overall homeostasis. In vitro barrier function replication of such organs requires mimicking of these native features on an artificial scaffold system. Apart from chemical and mechanical features, the choice of nano-scale topography of the artificial scaffold is integral, however its influence on monolayer barrier formation is unclear. Though studies have reported improved single cell adhesion and proliferation in presence of pores or pitted topology, corresponding influence on confluent monolayer formation is not well reported. In this work, basement membrane mimic with secondary topographical cues is developed and its influence on single cells and their monolayers is investigated. We show that single cells cultured on fibers with secondary cues form stronger focal adhesions and undergo increased proliferation. Counterintuitively, absence of secondary cues promoted stronger cell-cell interaction in endothelial monolayers and promoted formation of integral tight barriers in alveolar epithelial monolayers. Overall, this work highlights the importance of choice of scaffold topology to develop basement barrier function in in vitro models.
Collapse
Affiliation(s)
- Puja Jain
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Rahul Rimal
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Smriti Singh
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Jain P, Rauer SB, Möller M, Singh S. Mimicking the Natural Basement Membrane for Advanced Tissue Engineering. Biomacromolecules 2022; 23:3081-3103. [PMID: 35839343 PMCID: PMC9364315 DOI: 10.1021/acs.biomac.2c00402] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Advancements in the field of tissue engineering have
led to the
elucidation of physical and chemical characteristics of physiological
basement membranes (BM) as specialized forms of the extracellular
matrix. Efforts to recapitulate the intricate structure and biological
composition of the BM have encountered various advancements due to
its impact on cell fate, function, and regulation. More attention
has been paid to synthesizing biocompatible and biofunctional fibrillar
scaffolds that closely mimic the natural BM. Specific modifications
in biomimetic BM have paved the way for the development of in vitro models like alveolar-capillary barrier, airway
models, skin, blood-brain barrier, kidney barrier, and metastatic
models, which can be used for personalized drug screening, understanding
physiological and pathological pathways, and tissue implants. In this
Review, we focus on the structure, composition, and functions of in vivo BM and the ongoing efforts to mimic it synthetically.
Light has been shed on the advantages and limitations of various forms
of biomimetic BM scaffolds including porous polymeric membranes, hydrogels,
and electrospun membranes This Review further elaborates and justifies
the significance of BM mimics in tissue engineering, in particular
in the development of in vitro organ model systems.
Collapse
Affiliation(s)
- Puja Jain
- DWI-Leibniz-Institute for Interactive Materials e.V, Aachen 52074, Germany
| | | | - Martin Möller
- DWI-Leibniz-Institute for Interactive Materials e.V, Aachen 52074, Germany
| | - Smriti Singh
- Max-Planck-Institute for Medical Research, Heidelberg 69028, Germany
| |
Collapse
|