1
|
Verma V, Sinha N, Raja A. Nanoscale warriors against viral invaders: a comprehensive review of Nanobodies as potential antiviral therapeutics. MAbs 2025; 17:2486390. [PMID: 40201976 PMCID: PMC11988260 DOI: 10.1080/19420862.2025.2486390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
Viral infections remain a significant global health threat, with emerging and reemerging viruses causing epidemics and pandemics. Despite advancements in antiviral therapies, the development of effective treatments is often hindered by challenges, such as viral resistance and the emergence of new strains. In this context, the development of novel therapeutic modalities is essential to combat notorious viruses. While traditional monoclonal antibodies are widely used for the treatment of several diseases, nanobodies derived from heavy chain-only antibodies have emerged as promising "nanoscale warriors" against viral infections. Nanobodies possess unique structural properties that enhance their ability to recognize diverse epitopes. Their small size also imparts properties, such as improved bioavailability, solubility, stability, and proteolytic resistance, making them an ideal class of therapeutics for viral infections. In this review, we discuss the role of nanobodies as antivirals against various viruses. Techniques used for developing nanobodies, delivery strategies are covered, and the challenges and opportunities associated with their use as antiviral therapies are discussed. We also offer insights into the future of nanobody-based antiviral research to support the development of new strategies for managing viral infections.
Collapse
Affiliation(s)
- Vaishali Verma
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, India
| | - Nimisha Sinha
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Abhavya Raja
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, India
- Department of Surgery and Cancer, Imperial College London, South, London, UK
| |
Collapse
|
2
|
Venit T, Blavier J, Maseko SB, Shu S, Espada L, Breunig C, Holthoff HP, Desbordes SC, Lohse M, Esposito G, Twizere JC, Percipalle P. Nanobody against SARS-CoV-2 non-structural protein Nsp9 inhibits viral replication in human airway epithelia. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102304. [PMID: 39281707 PMCID: PMC11401216 DOI: 10.1016/j.omtn.2024.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/12/2024] [Indexed: 09/18/2024]
Abstract
Nanobodies are emerging as critical tools for drug design. Several have been recently created to serve as inhibitors of severe acute respiratory syndrome coronavirus s (SARS-CoV-2) entry in the host cell by targeting surface-exposed spike protein. Here we have established a pipeline that instead targets highly conserved viral proteins made only after viral entry into the host cell when the SARS-CoV-2 RNA-based genome is translated. As proof of principle, we designed nanobodies against the SARS-CoV-2 non-structural protein (Nsp)9, which is required for viral genome replication. One of these anti-Nsp9 nanobodies, 2NSP23, previously characterized using immunoassays and nuclear magnetic resonance spectroscopy for epitope mapping, was expressed and found to block SARS-CoV-2 replication specifically. We next encapsulated 2NSP23 nanobody into lipid nanoparticles (LNPs) as mRNA. We show that this nanobody, hereby referred to as LNP-mRNA-2NSP23, is internalized and translated in cells and suppresses multiple SARS-CoV-2 variants, as seen by qPCR and RNA deep sequencing. These results are corroborated in three-dimensional reconstituted human epithelium kept at air-liquid interface to mimic the outer surface of lung tissue. These observations indicate that LNP-mRNA-2NSP23 is internalized and, after translation, it inhibits viral replication by targeting Nsp9 in living cells. We speculate that LNP-mRNA-2NSP23 may be translated into an innovative strategy to generate novel antiviral drugs highly efficient across coronaviruses.
Collapse
Affiliation(s)
- Tomas Venit
- Division of Science and Mathematics, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Jeremy Blavier
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium
| | - Sibusiso B Maseko
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium
| | - Sam Shu
- Division of Science and Mathematics, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Lilia Espada
- ISAR Bioscience GmbH, Semmelweisstrasse 5, 82152 Planegg, Germany
| | | | | | | | - Martin Lohse
- ISAR Bioscience GmbH, Semmelweisstrasse 5, 82152 Planegg, Germany
| | - Gennaro Esposito
- Division of Science and Mathematics, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Roma, Italy
| | - Jean-Claude Twizere
- Division of Science and Mathematics, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium
| | - Piergiorgio Percipalle
- Division of Science and Mathematics, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Esposito G, Hunashal Y, Percipalle M, Fogolari F, Venit T, Leonchiks A, Gunsalus KC, Piano F, Percipalle P. Assessing nanobody interaction with SARS-CoV-2 Nsp9. PLoS One 2024; 19:e0303839. [PMID: 38758765 PMCID: PMC11101046 DOI: 10.1371/journal.pone.0303839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
The interaction between SARS-CoV-2 non-structural protein Nsp9 and the nanobody 2NSP90 was investigated by NMR spectroscopy using the paramagnetic perturbation methodology PENELOP (Paramagnetic Equilibrium vs Nonequilibrium magnetization Enhancement or LOss Perturbation). The Nsp9 monomer is an essential component of the replication and transcription complex (RTC) that reproduces the viral gRNA for subsequent propagation. Therefore preventing Nsp9 recruitment in RTC would represent an efficient antiviral strategy that could be applied to different coronaviruses, given the Nsp9 relative invariance. The NMR results were consistent with a previous characterization suggesting a 4:4 Nsp9-to-nanobody stoichiometry with the occurrence of two epitope pairs on each of the Nsp9 units that establish the inter-dimer contacts of Nsp9 tetramer. The oligomerization state of Nsp9 was also analyzed by molecular dynamics simulations and both dimers and tetramers resulted plausible. A different distribution of the mapped epitopes on the tetramer surface with respect to the former 4:4 complex could also be possible, as well as different stoichiometries of the Nsp9-nanobody assemblies such as the 2:2 stoichiometry suggested by the recent crystal structure of the Nsp9 complex with 2NSP23 (PDB ID: 8dqu), a nanobody exhibiting essentially the same affinity as 2NSP90. The experimental NMR evidence, however, ruled out the occurrence in liquid state of the relevant Nsp9 conformational change observed in the same crystal structure.
Collapse
Affiliation(s)
- Gennaro Esposito
- Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | | | | | - Federico Fogolari
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
- Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine, Udine, Italy
| | - Tomas Venit
- Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
| | | | - Kristin C. Gunsalus
- Department of Biology and Center Genomics System Biology, NYU, New York, New York, United States of America
- Center Genomics System Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Fabio Piano
- Department of Biology and Center Genomics System Biology, NYU, New York, New York, United States of America
- Center Genomics System Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Piergiorgio Percipalle
- Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
- Center Genomics System Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
4
|
Naidoo DB, Chuturgoon AA. The Potential of Nanobodies for COVID-19 Diagnostics and Therapeutics. Mol Diagn Ther 2023; 27:193-226. [PMID: 36656511 PMCID: PMC9850341 DOI: 10.1007/s40291-022-00634-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
The infectious severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent for coronavirus disease 2019 (COVID-19). Globally, there have been millions of infections and fatalities. Unfortunately, the virus has been persistent and a contributing factor is the emergence of several variants. The urgency to combat COVID-19 led to the identification/development of various diagnosis (polymerase chain reaction and antigen tests) and treatment (repurposed drugs, convalescent plasma, antibodies and vaccines) options. These treatments may treat mild symptoms and decrease the risk of life-threatening disease. Although these options have been fairly beneficial, there are some challenges and limitations, such as cost of tests/drugs, specificity, large treatment dosages, intravenous administration, need for trained personal, lengthy production time, high manufacturing costs, and limited availability. Therefore, the development of more efficient COVID-19 diagnostic and therapeutic options are vital. Nanobodies (Nbs) are novel monomeric antigen-binding fragments derived from camelid antibodies. Advantages of Nbs include low immunogenicity, high specificity, stability and affinity. These characteristics allow for rapid Nb generation, inexpensive large-scale production, effective storage, and transportation, which is essential during pandemics. Additionally, the potential aerosolization and inhalation delivery of Nbs allows for targeted treatment delivery as well as patient self-administration. Therefore, Nbs are a viable option to target SARS-CoV-2 and overcome COVID-19. In this review we discuss (1) COVID-19; (2) SARS-CoV-2; (3) the present conventional COVID-19 diagnostics and therapeutics, including their challenges and limitations; (4) advantages of Nbs; and (5) the numerous Nbs generated against SARS-CoV-2 as well as their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Dhaneshree Bestinee Naidoo
- Discipline of Medical Biochemistry and Chemical Pathology, Faculty of Health Sciences, Howard College, University of Kwa-Zulu Natal, Durban, 4013, South Africa
| | - Anil Amichund Chuturgoon
- Discipline of Medical Biochemistry and Chemical Pathology, Faculty of Health Sciences, Howard College, University of Kwa-Zulu Natal, Durban, 4013, South Africa.
| |
Collapse
|
5
|
Wang W, Hu Y, Li B, Wang H, Shen J. Applications of nanobodies in the prevention, detection, and treatment of the evolving SARS-CoV-2. Biochem Pharmacol 2023; 208:115401. [PMID: 36592707 PMCID: PMC9801699 DOI: 10.1016/j.bcp.2022.115401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Global health and economy are deeply influenced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its newly emerging variants. Nanobodies with nanometer-scale size are promising for the detection and treatment of SARS-CoV-2 and its variants because they are superior to conventional antibodies in terms of cryptic epitope accessibility, tissue penetration, cost, formatting adaptability, and especially protein stability, which enables their aerosolized specific delivery to lung tissues. This review summarizes the progress in the prevention, detection, and treatment of SARS-CoV-2 using nanobodies, as well as strategies to combat the evolving SARS-CoV-2 variants. Generally, highly efficient generation of potent broad-spectrum nanobodies targeting conserved epitopes or further construction of multivalent formats targeting non-overlapping epitopes can promote neutralizing activity against SARS-CoV-2 variants and suppress immune escape.
Collapse
Affiliation(s)
- Wenyi Wang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China,Corresponding author
| | - Yue Hu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| | - Bohan Li
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| | - Huanan Wang
- Department of Respiratory Medicine, The 990th Hospital of Joint Logistics Support Force, Zhumadian, Henan 463000, PR China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| |
Collapse
|
6
|
Hunashal Y, Percipalle M, Molnár T, Kardos J, Percipalle P, Esposito G. Approaching Protein Aggregation and Structural Dynamics by Equilibrium and Nonequilibrium Paramagnetic Perturbation. Anal Chem 2022; 94:10949-10958. [PMID: 35877130 DOI: 10.1021/acs.analchem.2c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PENELOP (Paramagnetic Equilibrium vs Nonequilibrium magnetization Enhancement or LOss Perturbation) is the presented nuclear magnetic resonance (NMR) approach to identify at once the location of proteins' exposed surface, hindered accessibility, and exchange processes occurring on a μs-ms time scale. In addition to mapping the protein surface accessibility, the application of this method under specific conditions makes it possible to distinguish conformational mobility and chemical exchange processes, thereby providing an alternative to characterization by more demanding techniques (transverse relaxation dispersion, saturation transfer, and high-pressure NMR). Moreover, its high sensitivity enables studying samples at low, physiologically more relevant concentrations. Association, dynamics, and oligomerization are addressed by PENELOP for a component of SARS-CoV-2 replication transcription complex and an amyloidogenic protein.
Collapse
Affiliation(s)
- Yamanappa Hunashal
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.,Dipartimento di Area Medica, Universita' di Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Mathias Percipalle
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.,Department of Chemistry and Magnetic Resonance Center, University of Florence, 50019 Florence, Italy
| | - Tamás Molnár
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest 1117, Hungary
| | - Jòzsef Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest 1117, Hungary
| | - Piergiorgio Percipalle
- Biology Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.,Department of Molecular Bioscience, The Wenner Gren Institute Stockholm University, Stockholm SE-106 91, Sweden
| | - Gennaro Esposito
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.,INBB, Viale Medaglie d'Oro 305, Roma 00136, Italy
| |
Collapse
|