1
|
Wang BX, Xu W, Yang Z, Wu Y, Pi F. An Overview on Recent Progress of the Hydrogels: From Material Resources, Properties to Functional Applications. Macromol Rapid Commun 2022; 43:e2100785. [PMID: 35075726 DOI: 10.1002/marc.202100785] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/04/2022] [Indexed: 11/06/2022]
Abstract
Hydrogels, as the most typical elastomer materials with three-dimensional network structures, have attracted wide attention owing to their outstanding features in fields of sensitive stimulus response, low surface friction coefficient, good flexibility and bio-compatibility. Because of numerous fresh polymer materials (or polymerization monomers), hydrogels with various structure diversities and excellent properties are emerging, and the development of hydrogels is very vigorous over the past decade. This review focuses on state-of-the-art advances, systematically reviews the recent progress on construction of novel hydrogels utilized several kinds of typical polymerization monomers, and explores the main chemical and physical cross-linking methods to develop the diversity of hydrogels. Following the aspects mentioned above, the classification and emerging applications of hydrogels, such as pH response, ionic response, electrical response, thermal response, biomolecular response, and gas response, are extensively summarized. Finally, we have done this review with the promises and challenges for the future evolution of hydrogels and their biological applications. cross-linking methods; functional applications; hydrogels; material resources This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Wei Xu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Zhuchuang Yang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Yangkuan Wu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Avilla-Royo E, Ochsenbein-Kölble N, Vonzun L, Ehrbar M. Biomaterial-based treatments for the prevention of preterm birth after iatrogenic rupture of the fetal membranes. Biomater Sci 2022; 10:3695-3715. [DOI: 10.1039/d2bm00401a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Minimally invasive interventions to ameliorate or correct fetal abnormalities are becoming a clinical reality. However, the iatrogenic premature preterm rupture of the fetal membranes (FMs) (iPPROM), which may result in...
Collapse
|
3
|
Hu B, Bao G, Xu X, Yang K. The Topical Hemostatic Materials for Coagulopathy. J Mater Chem B 2022; 10:1946-1959. [DOI: 10.1039/d1tb02523f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Medical sciences have witnessed significant progresses in hemostatic materials which have saved lives by supporting natural hemostatic ability. However, for the treatment of coagulopathy, where natural hemostatic ability is dysfunctional,...
Collapse
|
4
|
Chimisso V, Aleman Garcia MA, Yorulmaz Avsar S, Dinu IA, Palivan CG. Design of Bio-Conjugated Hydrogels for Regenerative Medicine Applications: From Polymer Scaffold to Biomolecule Choice. Molecules 2020; 25:E4090. [PMID: 32906772 PMCID: PMC7571016 DOI: 10.3390/molecules25184090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
Bio-conjugated hydrogels merge the functionality of a synthetic network with the activity of a biomolecule, becoming thus an interesting class of materials for a variety of biomedical applications. This combination allows the fine tuning of their functionality and activity, whilst retaining biocompatibility, responsivity and displaying tunable chemical and mechanical properties. A complex scenario of molecular factors and conditions have to be taken into account to ensure the correct functionality of the bio-hydrogel as a scaffold or a delivery system, including the polymer backbone and biomolecule choice, polymerization conditions, architecture and biocompatibility. In this review, we present these key factors and conditions that have to match together to ensure the correct functionality of the bio-conjugated hydrogel. We then present recent examples of bio-conjugated hydrogel systems paving the way for regenerative medicine applications.
Collapse
Affiliation(s)
| | | | | | | | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR-1096, 4058 Basel, Switzerland; (V.C.); (M.A.A.G.); (S.Y.A.); (I.A.D.)
| |
Collapse
|
5
|
Lienemann PS, Vallmajo‐Martin Q, Papageorgiou P, Blache U, Metzger S, Kiveliö A, Milleret V, Sala A, Hoehnel S, Roch A, Reuten R, Koch M, Naveiras O, Weber FE, Weber W, Lutolf MP, Ehrbar M. Smart Hydrogels for the Augmentation of Bone Regeneration by Endogenous Mesenchymal Progenitor Cell Recruitment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903395. [PMID: 32274319 PMCID: PMC7141038 DOI: 10.1002/advs.201903395] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/27/2019] [Indexed: 04/14/2023]
Abstract
The treatment of bone defects with recombinant bone morphogenetic protein-2 (BMP-2) requires high doses precluding broad clinical application. Here, a bioengineering approach is presented that strongly improves low-dose BMP-2-based bone regeneration by mobilizing healing-associated mesenchymal progenitor cells (MPCs). Smart synthetic hydrogels are used to trap and study endogenous MPCs trafficking to bone defects. Hydrogel-trapped and prospectively isolated MPCs differentiate into multiple lineages in vitro and form bone in vivo. In vitro screenings reveal that platelet-derived growth factor BB (PDGF-BB) strongly recruits prospective MPCs making it a promising candidate for the engineering of hydrogels that enrich endogenous MPCs in vivo. However, PDGF-BB inhibits BMP-2-mediated osteogenesis both in vitro and in vivo. In contrast, smart two-way dynamic release hydrogels with fast-release of PDGF-BB and sustained delivery of BMP-2 beneficially promote the healing of bone defects. Collectively, it is shown that modulating the dynamics of endogenous progenitor cells in vivo by smart synthetic hydrogels significantly improves bone healing and holds great potential for other advanced applications in regenerative medicine.
Collapse
Affiliation(s)
- Philipp S. Lienemann
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Queralt Vallmajo‐Martin
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Panagiota Papageorgiou
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
| | - Ulrich Blache
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
| | - Stéphanie Metzger
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Anna‐Sofia Kiveliö
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Vincent Milleret
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
| | - Ana Sala
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
| | - Sylke Hoehnel
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Aline Roch
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Raphael Reuten
- Institute for Dental Research and Oral Musculoskeletal BiologyCenter for BiochemistryUniversity of CologneCologne50931Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal BiologyCenter for BiochemistryUniversity of CologneCologne50931Germany
| | - Olaia Naveiras
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Franz E. Weber
- Department of Cranio‐Maxillofacial SurgeryOral Biotechnology and BioengineeringUniversity Hospital ZurichFrauenklinikstrasse 24Zurich8091Switzerland
| | - Wilfried Weber
- Faculty of Biology and BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgSchänzlestr. 18Freiburg79104Germany
| | - Matthias P. Lutolf
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Martin Ehrbar
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
| |
Collapse
|
6
|
Expanded skeletal stem and progenitor cells promote and participate in induced bone regeneration at subcritical BMP-2 dose. Biomaterials 2019; 217:119278. [DOI: 10.1016/j.biomaterials.2019.119278] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 01/05/2023]
|
7
|
Kolb L, Allazetta S, Karlsson M, Girgin M, Weber W, Lutolf MP. High-throughput stem cell-based phenotypic screening through microniches. Biomater Sci 2019; 7:3471-3479. [DOI: 10.1039/c8bm01180j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methods for screening combinations of signals for their effects on stem cell behavior are needed in the field of tissue engineering. We introduce a microgel-based screening platform for testing combinations of proteins on stem cell fate.
Collapse
Affiliation(s)
- Laura Kolb
- Institute of Bioengineering (IBI)
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Simone Allazetta
- Institute of Bioengineering (IBI)
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Maria Karlsson
- BIOSS Centre for Biological Signalling Studies
- University of Freiburg
- 79108 Freiburg
- Germany
| | - Mehmet Girgin
- Institute of Bioengineering (IBI)
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Wilfried Weber
- BIOSS Centre for Biological Signalling Studies
- University of Freiburg
- 79108 Freiburg
- Germany
| | - Matthias P. Lutolf
- Institute of Bioengineering (IBI)
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| |
Collapse
|
8
|
Broguiere N, Formica FA, Barreto G, Zenobi-Wong M. Sortase A as a cross-linking enzyme in tissue engineering. Acta Biomater 2018; 77:182-190. [PMID: 30006315 DOI: 10.1016/j.actbio.2018.07.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/24/2018] [Accepted: 07/09/2018] [Indexed: 11/19/2022]
Abstract
The bacterial ligase Sortase A (SA) and its mutated variants have become increasingly popular over the last years for post-translational protein modifications due to their unparalleled specificity and efficiency. The aim of this work was to study SA as a cross-linking enzyme for hydrogel-based tissue engineering. For this, we optimized SA pentamutant production and purification from E. coli to achieve high yields and purity. Then using hyaluronan (HA) as a model biopolymer and modifying it with SA-substrate peptides, we studied the cross-linking kinetics obtained with SA, the enzyme stability, cytocompatibility, and immunogenicity, and compared those to state-of-the-art standards. The transglutaminase activated factor XIII (FXIIIa) was used as the reference cross-linking enzyme, and the clinical collagen scaffold Chondro-Gide (CG) was used as a reference biocompatible material for in vivo studies. We found SA could be produced in large amounts in the lab without special equipment, whereas the only viable source of FXIIIa is currently a prescription medicine purified from donated blood. SA was also remarkably more stable in solution than FXIIIa, and it could provide even much faster gelation, making it possible to achieve nearly-instantaneous gel formation upon delivery with a double-barrel syringe. This is an interesting improvement for in vivo work, to allow in situ gel formation in a wet environment, and could also be useful for applications like bioprinting where very fast gelation is needed. The cytocompatibility and lack of immunogenicity were still uncompromised. These results support the use of SA as a versatile enzymatic cross-linking strategy for 3D culture and tissue engineering applications. STATEMENT OF SIGNIFICANCE Enzymatic crosslinking has immense appeal for tissue engineers as one of the most biocompatible methods of hydrogel crosslinking. Sortase A has a number of unique advantages over previous systems. We show an impressive and tunable range of crosslinking kinetics, from almost instantaneous gelation to several minutes. We also demonstrate that Sortase A crosslinked hydrogels have good cytocompatibility and cause no immune reaction when implanted in vivo. With its additional benefits of excellent stability in solution and easy large-scale synthesis available to any lab, we believe this novel crosslinking modality will find multiple applications in high throughput screening, tissue engineering, and biofabrication.
Collapse
Affiliation(s)
- Nicolas Broguiere
- Department of Health Science and Technology, ETH Zürich, Switzerland
| | - Florian A Formica
- Department of Health Science and Technology, ETH Zürich, Switzerland
| | - Gonçalo Barreto
- Department of Health Science and Technology, ETH Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Department of Health Science and Technology, ETH Zürich, Switzerland.
| |
Collapse
|
9
|
Blache U, Vallmajo-Martin Q, Horton ER, Guerrero J, Djonov V, Scherberich A, Erler JT, Martin I, Snedeker JG, Milleret V, Ehrbar M. Notch-inducing hydrogels reveal a perivascular switch of mesenchymal stem cell fate. EMBO Rep 2018; 19:embr.201845964. [PMID: 29967223 DOI: 10.15252/embr.201845964] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 12/26/2022] Open
Abstract
The fate of mesenchymal stem cells (MSCs) in the perivascular niche, as well as factors controlling their fate, is poorly understood. Here, we study MSCs in the perivascular microenvironment of endothelial capillaries by modifying a synthetic 3D biomimetic poly(ethylene glycol) (PEG)-hydrogel system in vitro We show that MSCs together with endothelial cells form micro-capillary networks specifically in soft PEG hydrogels. Transcriptome analysis of human MSCs isolated from engineered capillaries shows a prominent switch in extracellular matrix (ECM) production. We demonstrate that the ECM phenotypic switch of MSCs can be recapitulated in the absence of endothelial cells by functionalizing PEG hydrogels with the Notch-activator Jagged1. Moreover, transient culture of MSCs in Notch-inducing microenvironments reveals the reversibility of this ECM switch. These findings provide insight into the perivascular commitment of MSCs by use of engineered niche-mimicking synthetic hydrogels.
Collapse
Affiliation(s)
- Ulrich Blache
- Department of Obstetrics, University Hospital of Zurich, Zurich, Switzerland.,Institute for Biomechanics, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Queralt Vallmajo-Martin
- Department of Obstetrics, University Hospital of Zurich, Zurich, Switzerland.,Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Edward R Horton
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Julien Guerrero
- Department of Biomedicine and Department of Surgery, University Hospital Basel, Basel, Switzerland
| | | | - Arnaud Scherberich
- Department of Biomedicine and Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Janine T Erler
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Martin
- Department of Biomedicine and Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Jess G Snedeker
- Institute for Biomechanics, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland.,Biomechanics Laboratory, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Vincent Milleret
- Department of Obstetrics, University Hospital of Zurich, Zurich, Switzerland
| | - Martin Ehrbar
- Department of Obstetrics, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Stüdle C, Vallmajó-Martín Q, Haumer A, Guerrero J, Centola M, Mehrkens A, Schaefer DJ, Ehrbar M, Barbero A, Martin I. Spatially confined induction of endochondral ossification by functionalized hydrogels for ectopic engineering of osteochondral tissues. Biomaterials 2018; 171:219-229. [PMID: 29705655 DOI: 10.1016/j.biomaterials.2018.04.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/13/2018] [Accepted: 04/13/2018] [Indexed: 01/09/2023]
Abstract
Despite the various reported approaches to generate osteochondral composites by combination of different cell types and materials, engineering of templates with the capacity to autonomously and orderly develop into cartilage-bone bi-layered structures remains an open challenge. Here, we hypothesized that the embedding of cells inducible to endochondral ossification (i.e. bone marrow derived mesenchymal stromal cells, BMSCs) and of cells capable of robust and stable chondrogenesis (i.e. nasal chondrocytes, NCs) adjacent to each other in bi-layered hydrogels would develop directly in vivo into osteochondral tissues. Poly(ethylene glycol) (PEG) hydrogels were functionalized with TGFβ3 or BMP-2, enzymatically polymerized encapsulating human BMSCs, combined with a hydrogel layer containing human NCs and ectopically implanted in nude mice without pre-culture. The BMSC-loaded layers reproducibly underwent endochondral ossification and generated ossicles containing bone and marrow. The NC-loaded layers formed cartilage tissues, which (under the influence of BMP-2 but not of TGFβ3 from the neighbouring layer) remained phenotypically stable. The proposed strategy, resulting in orderly connected osteochondral composites, should be further assessed for the repair of osteoarticular defects and will be useful to model developmental processes leading to cartilage-bone interfaces.
Collapse
Affiliation(s)
- Chiara Stüdle
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Queralt Vallmajó-Martín
- Department of Obstetrics, University Hospital Zürich, University of Zürich, Zürich, Switzerland; Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexander Haumer
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Julien Guerrero
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Matteo Centola
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Anika Therapeutics Srl, Padua, Italy
| | - Arne Mehrkens
- Spine Surgery, University Hospital Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
11
|
Braun AC, Gutmann M, Lühmann T, Meinel L. Bioorthogonal strategies for site-directed decoration of biomaterials with therapeutic proteins. J Control Release 2018; 273:68-85. [PMID: 29360478 DOI: 10.1016/j.jconrel.2018.01.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 01/04/2023]
Abstract
Emerging strategies targeting site-specific protein modifications allow for unprecedented selectivity, fast kinetics and mild reaction conditions with high yield. These advances open exciting novel possibilities for the effective bioorthogonal decoration of biomaterials with therapeutic proteins. Site-specificity is particularly important to the therapeutics' end and translated by targeting specific functional groups or introducing new functional groups into the therapeutic at predefined positions. Biomimetic strategies are designed for modification of therapeutics emulating enzymatic strategies found in Nature. These strategies are suitable for a diverse range of applications - not only for protein-polymer conjugation, particle decoration and surface immobilization, but also for the decoration of complex biomaterials and the synthesis of bioresponsive drug delivery systems. This article reviews latest chemical and enzymatic strategies for the biorthogonal decoration of biomaterials with therapeutic proteins and inter-positioned linker structures. Finally, the numerous reports at the interface of biomaterials, linkers, and therapeutic protein decoration are integrated into practical advice for design considerations intended to support the selection of productive ligation strategies.
Collapse
Affiliation(s)
- Alexandra C Braun
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074 Würzburg, Germany
| | - Marcus Gutmann
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074 Würzburg, Germany
| | - Tessa Lühmann
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074 Würzburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074 Würzburg, Germany.
| |
Collapse
|
12
|
Tissue Scaffolds As a Local Drug Delivery System for Bone Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:475-493. [DOI: 10.1007/978-981-13-0950-2_25] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Multiscale microenvironmental perturbation of pluripotent stem cell fate and self-organization. Sci Rep 2017; 7:44711. [PMID: 28303935 PMCID: PMC5356187 DOI: 10.1038/srep44711] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/13/2017] [Indexed: 01/09/2023] Open
Abstract
The combination of microfluidics with engineered three-dimensional (3D) matrices can bring new insights into the fate regulation of stem cells and their self-organization into organoids. Although there has been progress in 3D stem cell culturing, most existing in vitro methodologies do not allow for mimicking of the spatiotemporal heterogeneity of stimuli that drive morphogenetic processes in vivo. To address this, we present a perfusion-free microchip concept for the in vitro 3D perturbation of stem cell fate. Stem cells are encapsulated in a hydrogel compartment that is flanked by open reservoirs for the diffusion-driven generation of biomolecule gradients. Juxtaposing additional compartments bearing supportive cells enables investigating the influence of long range cell-cell communication. We explore the utility of the microchips in manipulating early fate choices and self-organizing characteristics of 3D-cultured mouse embryonic stem cells (mESCs) under neural differentiation conditions and exposure to gradients of leukemia inhibitory factor (LIF). mESCs respond to LIF gradients in a spatially dependent manner. At higher LIF concentrations, multicellular colonies maintain pluripotency in contrast, at lower concentrations, mESCs develop into apicobasally polarized epithelial cysts. This versatile system can help to systematically explore the role of multifactorial microenvironments in promoting self-patterning of various stem cell types.
Collapse
|
14
|
Lühmann T, Schmidt M, Leiske MN, Spieler V, Majdanski TC, Grube M, Hartlieb M, Nischang I, Schubert S, Schubert US, Meinel L. Site-Specific POxylation of Interleukin-4. ACS Biomater Sci Eng 2017; 3:304-312. [DOI: 10.1021/acsbiomaterials.6b00578] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tessa Lühmann
- Institute
of Pharmacy and Food Chemistry, University of Würzburg, Am
Hubland, DE-97074 Würzburg, Germany
| | - Marcel Schmidt
- Institute
of Pharmacy and Food Chemistry, University of Würzburg, Am
Hubland, DE-97074 Würzburg, Germany
| | - Meike N. Leiske
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Valerie Spieler
- Institute
of Pharmacy and Food Chemistry, University of Würzburg, Am
Hubland, DE-97074 Würzburg, Germany
| | - Tobias C. Majdanski
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Mandy Grube
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Matthias Hartlieb
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Ivo Nischang
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Stephanie Schubert
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
- Department
of Pharmaceutical Technology, Friedrich Schiller University Jena, Otto-Schott-Strasse 41, DE-07747 Jena, Germany
| | - Ulrich S. Schubert
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Lorenz Meinel
- Institute
of Pharmacy and Food Chemistry, University of Würzburg, Am
Hubland, DE-97074 Würzburg, Germany
| |
Collapse
|
15
|
Lühmann T, Spieler V, Werner V, Ludwig MG, Fiebig J, Mueller TD, Meinel L. Interleukin-4-Clicked Surfaces Drive M2 Macrophage Polarization. Chembiochem 2016; 17:2123-2128. [DOI: 10.1002/cbic.201600480] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Indexed: 01/27/2023]
Affiliation(s)
- Tessa Lühmann
- Institute for Pharmacy and Food Chemistry; University of Würzburg; Am Hubland 97074 Würzburg Germany
| | - Valerie Spieler
- Institute for Pharmacy and Food Chemistry; University of Würzburg; Am Hubland 97074 Würzburg Germany
| | - Vera Werner
- Institute for Pharmacy and Food Chemistry; University of Würzburg; Am Hubland 97074 Würzburg Germany
| | | | - Juliane Fiebig
- Lehrstuhl für Botanik I Molekulare Pflanzenphysik und Biophysik; University of Würzburg; Julius-von-Sachs-Platz 2 97082 Würzburg Germany
| | - Thomas D. Mueller
- Lehrstuhl für Botanik I Molekulare Pflanzenphysik und Biophysik; University of Würzburg; Julius-von-Sachs-Platz 2 97082 Würzburg Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry; University of Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
16
|
Matrix Metalloproteinase Responsive Delivery of Myostatin Inhibitors. Pharm Res 2016; 34:58-72. [DOI: 10.1007/s11095-016-2038-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
|
17
|
Metzger S, Blache U, Lienemann PS, Karlsson M, Weber FE, Weber W, Ehrbar M. Cell-Mediated Proteolytic Release of Growth Factors from Poly(Ethylene Glycol) Matrices. Macromol Biosci 2016; 16:1703-1713. [PMID: 27548907 DOI: 10.1002/mabi.201600223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/22/2016] [Indexed: 11/10/2022]
Abstract
Engineering in vitro tissue mimetics that resemble the corresponding living tissues requires the 3D arrangement of tissue progenitor cells and their differentiation by localized growth factor (GF) signaling cues. Recent technological advances open a large field of possibilities for the creation of complex GF arrangements. Additionally, cell-instructive biomaterials, which bind GFs by various mechanisms and release them with different kinetics depending on binding affinity, have become available. This paper describes the development of a matrix metalloproteinase (MMP)-degradable streptavidin-based linker module, which allows the release of immobilized GFs from synthetic biomimetic poly(ethylene glycol) hydrogels independently of the hydrogel degradation. The MMP-sensitive streptavidin linker is shown to efficiently bind biotinylated molecules, and as proof of concept, bone morphogenetic protein-2 (BMP-2) delivery via the MMP-degradable linker is used to induce osteogenic differentiation in C2C12 cells and mesenchymal stem cells. The results show a significantly increased net effect of proteolytically releasable BMP-2 in comparison to stably immobilized and soluble BMP-2. This study indicates that a GF delivery system directly responsive to cellular activity can have important implications for the synthesis of tissue mimetics and regenerative medicine, as it can influence the availability, the localization of effects, as well as efficacy of employed GFs.
Collapse
Affiliation(s)
- Stéphanie Metzger
- Department of Obstetrics, University and University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Ulrich Blache
- Department of Obstetrics, University and University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Philipp S Lienemann
- Department of Obstetrics, University and University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland.,School of Engineering and Applied Sciences, Harvard University, 58 Oxford St., Cambridge, MA, 02138, USA
| | - Maria Karlsson
- Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Franz E Weber
- Department of Cranio Maxillofacial Surgery, Oral Biotechnology and Bioengineering, University and University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Wilfried Weber
- Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Martin Ehrbar
- Department of Obstetrics, University and University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| |
Collapse
|
18
|
Chan KY, Zhao C, Siren EM, Chan JC, Boschman J, Kastrup CJ. Adhesion of Blood Clots Can Be Enhanced When Copolymerized with a Macromer That Is Crosslinked by Coagulation Factor XIIIa. Biomacromolecules 2016; 17:2248-52. [PMID: 27140446 PMCID: PMC5496764 DOI: 10.1021/acs.biomac.6b00481] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The adhesion of blood clots to blood vessels, such as through the adhesion of fibrin, is essential in hemostasis. While numerous strategies for initiating clot formation and preventing clot lysis are being developed to create improved hemostatic agents, strategies for enhancing clot adhesion have not been widely explored. Here, we show that adhesion of blood clots can be increased by adding a previously characterized synthetic polymer that is crosslinked by coagulation factor XIIIa during clotting. Addition of the polymer to normal plasma increased the adhesive strength of clots by 2-fold. It also recovered the adhesive strength of nonadhesive fibrinogen-deficient whole blood clots from <0.06 kPa to 1.9 ± 0.14 kPa, which is similar to the adhesive strength of a fibrinogen-rich clot (1.8 ± 0.64 kPa). The polymer also enabled plasma clots to remain adhered under fibrinolytic conditions. By demonstrating that the adhesive strength of clots can be increased with a synthetic material, this provides a potential strategy for creating advanced hemostatic materials, such as treatments for fibrinogen deficiency in trauma-induced coagulopathy.
Collapse
Affiliation(s)
- Karen Y.T. Chan
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Chunyi Zhao
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Erika M.J. Siren
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, and the Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Jeanne C.Y. Chan
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey Boschman
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Christian J. Kastrup
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Ranga A, Lutolf MP, Hilborn J, Ossipov DA. Hyaluronic Acid Hydrogels Formed in Situ by Transglutaminase-Catalyzed Reaction. Biomacromolecules 2016; 17:1553-60. [DOI: 10.1021/acs.biomac.5b01587] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adrian Ranga
- Laboratory
of Stem Cell Bioengineering, Institute of Bioengineering, School of
Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland
- Biomechanics
Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan
300, Leuven 3001, Belgium
| | - Matthias P. Lutolf
- Laboratory
of Stem Cell Bioengineering, Institute of Bioengineering, School of
Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland
- Institute
of Chemical Sciences and Engineering, School of Basic Sciences, EFFL, Lausanne, CH 1015, Switzerland
| | - Jöns Hilborn
- Science
for Life Laboratory, Division of Polymer Chemistry, Department of
Chemistry-Ångström, Uppsala University, Uppsala SE 751 21, Sweden
| | - Dmitri A. Ossipov
- Science
for Life Laboratory, Division of Polymer Chemistry, Department of
Chemistry-Ångström, Uppsala University, Uppsala SE 751 21, Sweden
| |
Collapse
|
20
|
You J, Raghunathan VK, Son KJ, Patel D, Haque A, Murphy CJ, Revzin A. Impact of Nanotopography, Heparin Hydrogel Microstructures, and Encapsulated Fibroblasts on Phenotype of Primary Hepatocytes. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12299-12308. [PMID: 25247391 PMCID: PMC4372509 DOI: 10.1021/am504614e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/03/2014] [Indexed: 06/01/2023]
Abstract
Hepatocytes, the main epithelial cell type in the liver, perform most of the biochemical functions of the liver. Thus, maintenance of a primary hepatocyte phenotype is crucial for investigations of in vitro drug metabolism, toxicity, and development of bioartificial liver constructs. Here, we report the impact of topographic cues alone and in combination with soluble signals provided by encapsulated feeder cells on maintenance of the primary hepatocyte phenotype. Topographic features were 300 nm deep with pitches of either 400, 1400, or 4000 nm. Hepatocyte cell attachment, morphology and function were markedly better on 400 nm pitch patterns compared with larger scale topographies or planar substrates. Interestingly, topographic features having biomimetic size scale dramatically increased cell adhesion whether or not substrates had been precoated with collagen I. Albumin production in primary hepatocytes cultured on 400 nm pitch substrates without collagen I was maintained over 10 days and was considerably higher compared to albumin synthesis on collagen-coated flat substrates. In order to investigate the potential interaction of soluble cytoactive factors supplied by feeder cells with topographic cues in determining cell phenotype, bioactive heparin-containing hydrogel microstructures were molded (100 μm spacing, 100 μm width) over the surface of the topographically patterned substrates. These hydrogel microstructures either carried encapsulated fibroblasts or were free of cells. Hepatocytes cultured on nanopatterned substrates next to fibroblast carrying hydrogel microstructures were significantly more functional than hepatocytes cultured on nanopatterned surfaces without hydrogels or stromal cells significantly elevated albumin expression and cell junction formation compared to cells provided with topographic cues only. The simultaneous presentation of topographic biomechanical cues along with soluble signaling molecules provided by encapsulated fibroblasts cells resulted in optimal functionality of cultured hepatocytes. The provision of both topographic and soluble signaling cues could enhance our ability to create liver surrogates and inform the development of engineered liver constructs.
Collapse
Affiliation(s)
- Jungmok You
- Department of Biomedical
Engineering, Department of Surgical & Radiological Sciences, School of Veterinary
Medicine, Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California 95616, United States
| | - Vijay Krishna Raghunathan
- Department of Biomedical
Engineering, Department of Surgical & Radiological Sciences, School of Veterinary
Medicine, Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California 95616, United States
| | - Kyung Jin Son
- Department of Biomedical
Engineering, Department of Surgical & Radiological Sciences, School of Veterinary
Medicine, Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California 95616, United States
| | - Dipali Patel
- Department of Biomedical
Engineering, Department of Surgical & Radiological Sciences, School of Veterinary
Medicine, Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California 95616, United States
| | - Amranul Haque
- Department of Biomedical
Engineering, Department of Surgical & Radiological Sciences, School of Veterinary
Medicine, Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California 95616, United States
| | - Christopher J Murphy
- Department of Biomedical
Engineering, Department of Surgical & Radiological Sciences, School of Veterinary
Medicine, Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California 95616, United States
| | - Alexander Revzin
- Department of Biomedical
Engineering, Department of Surgical & Radiological Sciences, School of Veterinary
Medicine, Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California 95616, United States
| |
Collapse
|
21
|
Hun Yeon J, Chan KYT, Wong TC, Chan K, Sutherland MR, Ismagilov RF, Pryzdial ELG, Kastrup CJ. A biochemical network can control formation of a synthetic material by sensing numerous specific stimuli. Sci Rep 2015; 5:10274. [PMID: 25975772 PMCID: PMC4432564 DOI: 10.1038/srep10274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/10/2015] [Indexed: 11/29/2022] Open
Abstract
Developing bio-compatible smart materials that assemble in response to environmental cues requires strategies that can discriminate multiple specific stimuli in a complex milieu. Synthetic materials have yet to achieve this level of sensitivity, which would emulate the highly evolved and tailored reaction networks of complex biological systems. Here we show that the output of a naturally occurring network can be replaced with a synthetic material. Exploiting the blood coagulation system as an exquisite biological sensor, the fibrin clot end-product was replaced with a synthetic material under the biological control of a precisely regulated cross-linking enzyme. The functions of the coagulation network remained intact when the material was incorporated. Clot-like polymerization was induced in indirect response to distinct small molecules, phospholipids, enzymes, cells, viruses, an inorganic solid, a polyphenol, a polysaccharide, and a membrane protein. This strategy demonstrates for the first time that an existing stimulus-responsive biological network can be used to control the formation of a synthetic material by diverse classes of physiological triggers.
Collapse
Affiliation(s)
- Ju Hun Yeon
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Karen Y T Chan
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Ting-Chia Wong
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Kelvin Chan
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Michael R Sutherland
- 1] Centre for Innovation, Canadian Blood Services, Vancouver, BC, Canada [2] Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rustem F Ismagilov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Edward L G Pryzdial
- 1] Centre for Innovation, Canadian Blood Services, Vancouver, BC, Canada [2] Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christian J Kastrup
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Metzger S, Lienemann PS, Ghayor C, Weber W, Martin I, Weber FE, Ehrbar M. Modular poly(ethylene glycol) matrices for the controlled 3D-localized osteogenic differentiation of mesenchymal stem cells. Adv Healthc Mater 2015; 4:550-8. [PMID: 25358649 DOI: 10.1002/adhm.201400547] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/02/2014] [Indexed: 11/08/2022]
Abstract
The in vitro formation of physiologically relevant engineered tissues is still limited by the availability of adequate growth-factor-presenting cell-instructive biomaterials, allowing simultaneous and three-dimensionally localized differentiation of multiple tissue progenitor cells. Together with ever improving technologies such as microfluidics, printing, or lithography, these biomaterials could provide the basis for generating provisional cellular constructs, which can differentiate to form tissue mimetics. Although state-of-the-art biomaterials are endowed with sophisticated modules for time- and space-controlled positioning and release of bioactive molecules, reports on 3D arrangements of differentiation-inducing growth factors are scarce. This paper describes the stable and localized immobilization of biotinylated bioactive molecules to a modular, Factor XIII-cross-linked poly(ethylene glycol) hydrogel platform using a genetically engineered streptavidin linker. Linker incorporation is demonstrated by Western blot, and streptavidin functionality is confirmed by capturing biotinylated alkaline phosphatase (ALP). After optimizing bone morphogenetic protein 2 (BMP-2) biotinylation, streptavidin-modified hydrogels are able to bind and present bioactive BMP-2-biotin. Finally, with this immobilization scheme for BMP-2, the specific osteogenic differentiation of mesenchymal stem cells is demonstrated by inducing ALP expression in confined 3D areas. In future, this platform together with other affinity-based strategies will be useful for the local incorporation of various growth factors for engineering cell-responsive constructs.
Collapse
Affiliation(s)
- Stéphanie Metzger
- Laboratory for Cell and Tissue Engineering; Department of Obstetrics; University Hospital Zurich; Schmelzbergstrasse 12 8091 Zurich Switzerland
| | - Philipp S. Lienemann
- Laboratory for Cell and Tissue Engineering; Department of Obstetrics; University Hospital Zurich; Schmelzbergstrasse 12 8091 Zurich Switzerland
| | - Chafik Ghayor
- Department of Cranio-Maxillofacial Surgery; Oral Biotechnology and Bioengineering; University Hospital Zurich; Frauenklinikstrasse 24 8091 Zurich Switzerland
| | - Wilfried Weber
- Department of Biosystems Science and Engineering; ETH Zurich; Mattenstrasse 26 4058 Basel Switzerland
- Faculty of Biology and BIOSS Centre for Biological Signalling Studies; University of Freiburg; Schänzlestrasse 18 79104 Freiburg Germany
| | - Ivan Martin
- Department of Biomedicine and Department of Surgery; University Hospital Basel; Hebelstrasse 20 4031 Basel Switzerland
| | - Franz E. Weber
- Department of Cranio-Maxillofacial Surgery; Oral Biotechnology and Bioengineering; University Hospital Zurich; Frauenklinikstrasse 24 8091 Zurich Switzerland
| | - Martin Ehrbar
- Laboratory for Cell and Tissue Engineering; Department of Obstetrics; University Hospital Zurich; Schmelzbergstrasse 12 8091 Zurich Switzerland
| |
Collapse
|
23
|
Kivelio A, Ochsenbein-Koelble N, Zimmermann R, Ehrbar M. Engineered cell instructive matrices for fetal membrane healing. Acta Biomater 2015; 15:1-10. [PMID: 25536031 DOI: 10.1016/j.actbio.2014.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/28/2014] [Accepted: 12/15/2014] [Indexed: 02/02/2023]
Abstract
Iatrogenic preterm prelabour rupture of fetal membranes (iPPROM) occurs in 6-45% of the cases after fetoscopic procedures, posing a significant threat to fetal survival and well-being. The number of diagnostic and therapeutic prenatal interventions available is increasing, thus developing treatment options for iPPROM is becoming more important than ever before. Fetal membranes exhibit very restricted regeneration and little is known about factors which might modulate their healing potential, rendering various materials and strategies to seal or heal fetal membranes pursued over the past decades relatively fruitless. Additionally, biocompatible materials with tunable in vivo stability and mechanical and biological properties have not been available. Using poly(ethylene glycol)-based biomimetic matrices, we provide evidence that, upon presentation of appropriate biological cues in three dimensions, mesenchymal progenitor cells from the amnion can be mobilized, induced to proliferate and supported in maintaining their native extracellular matrix production, thus creating a suitable environment for healing to take place. These data suggest that engineering materials with defined mechanical and biochemical properties and the ability to present migration- and proliferation-inducing factors, such as platelet-derived growth factor, basic fibroblast growth factor or epidermal growth factor, could be key in resolving the clinical problem of iPPROM and allowing the field of fetal surgery to move forward.
Collapse
Affiliation(s)
- A Kivelio
- Department of Obstetrics, University Hospital Zurich, Zurich, Switzerland; Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - R Zimmermann
- Department of Obstetrics, University Hospital Zurich, Zurich, Switzerland
| | - M Ehrbar
- Department of Obstetrics, University Hospital Zurich, Zurich, Switzerland; Zurich Centre for Integrative Human Physiology, Zurich, Switzerland.
| |
Collapse
|
24
|
Precision assembly of complex cellular microenvironments using holographic optical tweezers. Sci Rep 2015; 5:8577. [PMID: 25716032 PMCID: PMC4341216 DOI: 10.1038/srep08577] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/22/2015] [Indexed: 11/08/2022] Open
Abstract
The accurate study of cellular microenvironments is limited by the lack of technologies that can manipulate cells in 3D at a sufficiently small length scale. The ability to build and manipulate multicellular microscopic structures will facilitate a more detailed understanding of cellular function in fields such as developmental and stem cell biology. We present a holographic optical tweezers based technology to accurately generate bespoke cellular micro-architectures. Using embryonic stem cells, 3D structures of varying geometries were created and stabilized using hydrogels and cell-cell adhesion methods. Control of chemical microenvironments was achieved by the temporal release of specific factors from polymer microparticles positioned within these constructs. Complex co-culture micro-environmental analogues were also generated to reproduce structures found within adult stem cell niches. The application of holographic optical tweezers-based micromanipulation will enable novel insights into biological microenvironments by allowing researchers to form complex architectures with sub-micron precision of cells, matrices and molecules.
Collapse
|
25
|
Lienemann PS, Devaud YR, Reuten R, Simona BR, Karlsson M, Weber W, Koch M, Lutolf MP, Milleret V, Ehrbar M. Locally controlling mesenchymal stem cell morphogenesis by 3D PDGF-BB gradients towards the establishment of an in vitro perivascular niche. Integr Biol (Camb) 2015; 7:101-11. [DOI: 10.1039/c4ib00152d] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report on the creation of a three dimensional biomimetic tissue model that recapitulates the stable PDGF-BB gradient controlling mesenchymal stem cell morphogenetic behavior in the perivascular niche.
Collapse
|
26
|
Headen DM, Aubry G, Lu H, García AJ. Microfluidic-based generation of size-controlled, biofunctionalized synthetic polymer microgels for cell encapsulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:3003-8. [PMID: 24615922 PMCID: PMC4058833 DOI: 10.1002/adma.201304880] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/17/2013] [Indexed: 05/18/2023]
Abstract
Cell and islet microencapsulation in synthetic hydrogels provides an immunoprotective and cell-supportive microenvironment. A microfluidic strategy for the genaration of biofunctionalized, synthetic microgel particles with precise control over particle size and molecular permeability for cell and protein delivery is presented. These engineered capsules support high cell viability and function of encapsulated human stem cells and islets.
Collapse
Affiliation(s)
- Devon M Headen
- Woodruff School of Mechanical Engineering, 315 Ferst Dr NW, Atlanta, GA, 30332, USA; Petit Institute for Bioengineering and Bioscience, 311 Ferst Dr NW, Atlanta, GA, 30332, USA
| | | | | | | |
Collapse
|
27
|
Milleret V, Simona BR, Lienemann PS, Vörös J, Ehrbar M. Electrochemical control of the enzymatic polymerization of PEG hydrogels: formation of spatially controlled biological microenvironments. Adv Healthc Mater 2014; 3:508-14. [PMID: 24574303 DOI: 10.1002/adhm.201300479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/29/2013] [Indexed: 01/15/2023]
Abstract
Control of pH gradient profile at the electrode-electrolyte interfaces allows the control of the enzymatic PEG-hydrogel polymerization. By tuning the solution pH, buffer capacity, and the applied current, the extent of the local inhibition and confinement of the Factor XIII-mediated polymerization of PEG are controlled. This technology opens new perspectives for the production of 3D-structured biological microenvironments.
Collapse
Affiliation(s)
- Vincent Milleret
- Laboratory for Cell and Tissue Engineering, Department of Obstetrics; University Hospital Zurich; Schmelzbergstrasse 12, PATH G 48b 8091 Zurich Switzerland
| | - Benjamin R. Simona
- Laboratory of Biosensors and Bioelectronics; ETH Zurich Zurich Switzerland
| | - Philipp S. Lienemann
- Laboratory for Cell and Tissue Engineering, Department of Obstetrics; University Hospital Zurich; Schmelzbergstrasse 12, PATH G 48b 8091 Zurich Switzerland
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL); Station 15, Bld AI 1109 1015 Lausanne Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics; ETH Zurich Zurich Switzerland
| | - Martin Ehrbar
- Laboratory for Cell and Tissue Engineering, Department of Obstetrics; University Hospital Zurich; Schmelzbergstrasse 12, PATH G 48b 8091 Zurich Switzerland
| |
Collapse
|
28
|
Gübeli RJ, Laird D, Ehrbar M, Ritter BS, Steinberg T, Tomakidi P, Weber W. Pharmacologically tunable polyethylene-glycol-based cell growth substrate. Acta Biomater 2013; 9:8272-8. [PMID: 23684763 DOI: 10.1016/j.actbio.2013.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 05/02/2013] [Accepted: 05/07/2013] [Indexed: 11/30/2022]
Abstract
Biohybrid materials combining synthetic polymers with biological components are highly suited for tissue engineering in order to emulate the behavior of natural materials such as the extracellular matrix (ECM). In order to allow for an optimal cell-material interplay, the physical and biological parameters of the artificial matrix need to be dynamically remodeled during cultivation. Current tissue engineering concepts are mainly based on passive remodeling mechanisms including the degradation of the hydrogel and the release of incorporated biomolecules and therefore do not enable external adjustment of cultivation conditions. We present a novel hydrogel material that is able to serve as a cell growth matrix, whose degradation and presentation of cell-interacting biomolecules can be externally controlled by the addition of a pharmacological substance. The hydrogel is based on branched polyethylene glycol that is covalently decorated with the aminocoumarin-antibiotic switchable gyrase B protein conferring stimulus-responsive degradation. ECM properties were conferred to the hydrogels with cell attachment motifs and a general approach for the incorporation and inducible release of therapeutic biomolecules. This smart biohybrid material has the potential to serve as a next-generation tissue engineering device which allows for dynamic external adjustment of the physical and biological parameters, resulting in optimally controlled tissue formation.
Collapse
Affiliation(s)
- Raphael J Gübeli
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Hotz N, Wilcke L, Weber W. Design, synthesis, and application of stimulus-sensing biohybrid hydrogels. Macromol Rapid Commun 2013; 34:1594-610. [PMID: 23982955 DOI: 10.1002/marc.201300468] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/22/2013] [Indexed: 12/18/2022]
Abstract
A key feature of any living system is the ability to sense and react to the environmental stimuli. The biochemical characterization of the underlying biological sensors combined with advances in polymer chemistry has enabled the development of stimulus-sensitive biohybrid materials that translate most diverse chemical and biological input into a precise change in material properties. In this review article, we first describe synthesis strategies of how biological and chemical polymers can functionally be interconnected. We then provide a comprehensive overview of how the different properties of biological sensor molecules such as competitive target binding and allosteric modulation can be harnessed to develop responsive materials with applications in tissue engineering and drug delivery.
Collapse
Affiliation(s)
- Natascha Hotz
- Faculty of Biology, BIOSS - Centre for Biological Signalling Studies, SGBM - Spemann Graduate School of Biology and Medicine, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | | | | |
Collapse
|