1
|
Storti F, Bonfadini S, Mangini M, De Luca AC, Criante L. High throughput clogging free microfluidic particle filter by femtosecond laser micromachining. Electrophoresis 2024; 45:1505-1514. [PMID: 38687174 DOI: 10.1002/elps.202300253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
In recent decades, driven by the needs of industry and medicine, researchers have been investigating how to remove carefully from the main flow microscopic particles or clusters of them. Among all the approaches proposed, crossflow filtration is one of the most attractive as it provides a non-destructive, label-free and in-flow sorting method. In general, the separation performance shows capture and separation efficiencies ranging from 70% up to 100%. However, the maximum flow rate achievable (µL/min) is still orders of magnitude away from those suitable for clinical or industrial applications mainly due to the low stiffness of the materials typically used. In this work, we propose an innovative hydrodynamic-crossflow hybrid filter geometry, buried in a fused silica substrate by means of the femtosecond laser irradiation followed by chemical etching technique. The material high stiffness combined with the accuracy of our manufacturing technique allows the 3D fabrication of non-deformable channels with higher aspect ratio posts, while keeping the overall device dimensions compact. The filter performance has been validated through experiments with both Newtonian (water-based solution of microbeads) and non-Newtonian fluids (blood), achieving separation efficiencies of up to 94% and large particles recovery rates of 100%, even at very high flow rates (mL/h).
Collapse
Affiliation(s)
- Filippo Storti
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Silvio Bonfadini
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milano, Italy
| | - Maria Mangini
- Institute of Experimental Endocrinology and Oncology "G. Salvatore", IEOS-Second Unit, National Research Council, CNR, Napoli, Italy
| | - Anna Chiara De Luca
- Institute of Experimental Endocrinology and Oncology "G. Salvatore", IEOS-Second Unit, National Research Council, CNR, Napoli, Italy
| | - Luigino Criante
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milano, Italy
| |
Collapse
|
2
|
Kim H, Kim S, Lim H, Chung AJ. Expanding CAR-T cell immunotherapy horizons through microfluidics. LAB ON A CHIP 2024; 24:1088-1120. [PMID: 38174732 DOI: 10.1039/d3lc00622k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapies have revolutionized cancer treatment, particularly in hematological malignancies. However, their application to solid tumors is limited, and they face challenges in safety, scalability, and cost. To enhance current CAR-T cell therapies, the integration of microfluidic technologies, harnessing their inherent advantages, such as reduced sample consumption, simplicity in operation, cost-effectiveness, automation, and high scalability, has emerged as a powerful solution. This review provides a comprehensive overview of the step-by-step manufacturing process of CAR-T cells, identifies existing difficulties at each production stage, and discusses the successful implementation of microfluidics and related technologies in addressing these challenges. Furthermore, this review investigates the potential of microfluidics-based methodologies in advancing cell-based therapy across various applications, including solid tumors, next-generation CAR constructs, T-cell receptors, and the development of allogeneic "off-the-shelf" CAR products.
Collapse
Affiliation(s)
- Hyelee Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Suyeon Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Hyunjung Lim
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Aram J Chung
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea.
- MxT Biotech, 04785 Seoul, Republic of Korea
| |
Collapse
|
3
|
Cui X, Liu L, Li J, Liu Y, Liu Y, Hu D, Zhang R, Huang S, Jiang Z, Wang Y, Qu Y, Pang SW, Lam RHW. A Microfluidic Platform Revealing Interactions between Leukocytes and Cancer Cells on Topographic Micropatterns. BIOSENSORS 2022; 12:963. [PMID: 36354472 PMCID: PMC9687854 DOI: 10.3390/bios12110963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Immunoassay for detailed analysis of immune-cancer intercellular interactions can achieve more promising diagnosis and treatment strategies for cancers including nasopharyngeal cancer (NPC). In this study, we report a microfluidic live-cell immunoassay integrated with a microtopographic environment to meet the rising demand for monitoring intercellular interactions in different tumor microenvironments. The developed assay allows: (1) coculture of immune cells and cancer cells on tunable (flat or micrograting) substrates, (2) simultaneous detection of different cytokines in a wide working range of 5-5000 pg/mL, and (3) investigation of migration behaviors of mono- and co-cultured cells on flat/grating platforms for revealing the topography-induced intercellular and cytokine responses. Cytokine monitoring was achieved on-chip by implementing a sensitive and selective microbead-based sandwich assay with an antibody on microbeads, target cytokines, and the matching fluorescent-conjugated detection antibody in an array of active peristaltic mixer-assisted cytokine detection microchambers. Moreover, this immunoassay requires a low sample volume down to 0.5 μL and short assay time (30 min) for on-chip cytokine quantifications. We validated the biocompatibility of the co-culture strategy between immune cells and NPC cells and compared the different immunological states of undifferentiated THP-1 monocytic cells or PMA-differentiated THP-1 macrophages co-culturing with NP460 and NPC43 on topographical and planar substrates, respectively. Hence, the integrated microfluidic platform provides an efficient, broad-range and precise on-chip cytokine detection approach, eliminates the manual sampling procedures and allows on-chip continuous cytokine monitoring without perturbing intercellular microenvironments on different topographical ECM substrates, which has the potential of providing clinical significance in early immune diagnosis, personalized immunotherapy, and precision medicine.
Collapse
Affiliation(s)
- Xin Cui
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 519070, China
| | - Lelin Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Research Center of Biological Computation, Zhejiang Laboratory, Hangzhou 311100, China
| | - Jiyu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Yi Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Ya Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Ruolin Zhang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Siping Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Zhongning Jiang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Yuchao Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Yun Qu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Stella W. Pang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong 999077, China
| | - Raymond H. W. Lam
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong 999077, China
- Centre for Robotics and Automation, City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
4
|
Su SH, Song Y, Newstead MW, Cai T, Wu M, Stephens A, Singer BH, Kurabayashi K. Ultrasensitive Multiparameter Phenotyping of Rare Cells Using an Integrated Digital-Molecular-Counting Microfluidic Well Plate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101743. [PMID: 34170616 PMCID: PMC8349899 DOI: 10.1002/smll.202101743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/08/2021] [Indexed: 06/13/2023]
Abstract
Integrated microfluidic cellular phenotyping platforms provide a promising means of studying a variety of inflammatory diseases mediated by cell-secreted cytokines. However, immunosensors integrated in previous microfluidic platforms lack the sensitivity to detect small signals in the cellular secretion of proinflammatory cytokines with high precision. This limitation prohibits researchers from studying cells secreting cytokines at low abundance or existing at a small population. Herein, the authors present an integrated platform named the "digital Phenoplate (dPP)," which integrates digital immunosensors into a microfluidic chip with on-chip cell assay chambers, and demonstrates ultrasensitive cellular cytokine secretory profile measurement. The integrated sensors yield a limit of detection as small as 0.25 pg mL-1 for mouse tumor necrosis factor alpha (TNF-α). Each on-chip cell assay chamber confines cells whose population ranges from ≈20 to 600 in arrayed single-cell trapping microwells. Together, these microfluidic features of the dPP simultaneously permit precise counting and image-based cytometry of individual cells while performing parallel measurements of TNF-α released from rare cells under multiple stimulant conditions for multiple samples. The dPP platform is broadly applicable to the characterization of cellular phenotypes demanding high precision and high throughput.
Collapse
Affiliation(s)
- Shiuan-Haur Su
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yujing Song
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael W Newstead
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tao Cai
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - MengXi Wu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew Stephens
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Benjamin H Singer
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Katsuo Kurabayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
5
|
Suzuki M, Minakuchi Y, Mizutani F, Yasukawa T. Discrimination of cell-differentiation using a cell-binding assay based on the conversion of cell-patterns with dielectrophoresis. Biosens Bioelectron 2021; 175:112892. [PMID: 33360628 DOI: 10.1016/j.bios.2020.112892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022]
Abstract
We developed a simple, rapid, and label-free method to obtain the ratio of cells with a specific surface protein from heterogeneous cell populations, and applied it to estimate the cell differentiation states. The repulsive force of negative dielectrophoresis was used to form the first pattern of HL60 cells on a substrate immobilized with anti-CD13 or anti-CD11b antibody. Next, the patterned cells were converted to form the second pattern by switching the pattern of the electric field. The cells exhibiting a specific protein remained in the original position due to the immunorecognition event, while the unwanted cells that were not bound to the antibody on the substrates could be simply removed. The cell-binding efficiencies of substrates modified with anti-CD13 and anti-CD11b decreased and increased, respectively, with increasing duration of cell culture in medium containing differentiation-inducing agents, including all-trans retinoic acid. This is explained by the downregulation of CD13 and upregulation of CD11b throughout the differentiation process of HL60 cells. Furthermore, the assay was applied to investigate the effects of various differentiation-inducing agents. The total assay time required for discriminating the proteins expressed on the cell surface in each differentiation state was as short as 120 s. No fluorescence label is required for the proposed assay. The method could be useful to estimate the cell differentiation and factors that influence the differentiation trajectory for numerous cell types.
Collapse
Affiliation(s)
- Masato Suzuki
- Graduate School of Material Sciences, University of Hyogo, Japan
| | - Yuki Minakuchi
- Graduate School of Material Sciences, University of Hyogo, Japan
| | - Fumio Mizutani
- Graduate School of Material Sciences, University of Hyogo, Japan
| | | |
Collapse
|
6
|
Huang D, Man J, Jiang D, Zhao J, Xiang N. Inertial microfluidics: Recent advances. Electrophoresis 2020; 41:2166-2187. [PMID: 33027533 DOI: 10.1002/elps.202000134] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 02/24/2024]
Abstract
Inertial microfluidics has attracted significant attentions in last decade due to its superior advantages of high throughput, label- and external field-free operation, simplicity, and low cost. A wide variety of channel geometry designs were demonstrated for focusing, concentrating, isolating, or separating of various bioparticles such as blood components, circulating tumor cells, bacteria, and microalgae. In this review, we first briefly introduce the physics of inertial migration and Dean flow for allowing the readers with diverse backgrounds to have a better understanding of the fundamental mechanisms of inertial microfluidics. Then, we present a comprehensive review of the recent advances and applications of inertial microfluidic devices according to different channel geometries ranging from straight channels, curved channels to contraction-expansion-array channels. Finally, the challenges and future perspective of inertial microfluidics are discussed. Owing to its superior benefit for particle manipulation, the inertial microfluidics will play a more important role in biology and medicine applications.
Collapse
Affiliation(s)
- Di Huang
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Jiaxiang Man
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Di Jiang
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Jiyun Zhao
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Nan Xiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| |
Collapse
|
7
|
Abadpour S, Aizenshtadt A, Olsen PA, Shoji K, Wilson SR, Krauss S, Scholz H. Pancreas-on-a-Chip Technology for Transplantation Applications. Curr Diab Rep 2020; 20:72. [PMID: 33206261 PMCID: PMC7674381 DOI: 10.1007/s11892-020-01357-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Human pancreas-on-a-chip (PoC) technology is quickly advancing as a platform for complex in vitro modeling of islet physiology. This review summarizes the current progress and evaluates the possibility of using this technology for clinical islet transplantation. RECENT FINDINGS PoC microfluidic platforms have mainly shown proof of principle for long-term culturing of islets to study islet function in a standardized format. Advancement in microfluidic design by using imaging-compatible biomaterials and biosensor technology might provide a novel future tool for predicting islet transplantation outcome. Progress in combining islets with other tissue types gives a possibility to study diabetic interventions in a minimal equivalent in vitro environment. Although the field of PoC is still in its infancy, considerable progress in the development of functional systems has brought the technology on the verge of a general applicable tool that may be used to study islet quality and to replace animal testing in the development of diabetes interventions.
Collapse
Affiliation(s)
- Shadab Abadpour
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Post Box 4950, Nydalen, N-0424 Oslo, Norway
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Aleksandra Aizenshtadt
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Petter Angell Olsen
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kayoko Shoji
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Steven Ray Wilson
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Stefan Krauss
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Institute of Immunology, Oslo University Hospital, Oslo, Norway
| | - Hanne Scholz
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Post Box 4950, Nydalen, N-0424 Oslo, Norway
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Guo Q, Wang Y, Chen C, Wei D, Fu J, Xu H, Gu H. Multiplexed Luminescence Oxygen Channeling Immunoassay Based on Dual-Functional Barcodes with a Host-Guest Structure: A Facile and Robust Suspension Array Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907521. [PMID: 32174029 DOI: 10.1002/smll.201907521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/08/2020] [Accepted: 02/19/2020] [Indexed: 05/24/2023]
Abstract
The development of a powerful immunoassay platform with capacities of both simplicity and high multiplexing is promising for disease diagnosis. To meet this urgent need, for the first time, a multiplexed luminescent oxygen channeling immunoassay (multi-LOCI) platform by implementation of LOCI with suspension array technology is reported. As the microcarrier of the platform, a unique dual-functional barcode with a host-guest structure composed of a quantum dot host bead (QDH) and LOCI acceptor beads (ABs) is designed, in which QDH provides function of high coding capacity while ABs facilitate the LOCI function. The analytes bridge QDH@ABs and LOCI donor beads (DBs) into a close proximity, forming a QDH@ABs-DBs "host-guest-satellite" superstructure that generates both barcode signal from QDH and LOCI signal induced by singlet oxygen channeling between ABs and DBs. Through imaging-based decoding, different barcodes are automatically distinguished and colocalized with LOCI signals. Importantly, the assay achieves simultaneous detection of multiple analytes within one reaction, simply by following a "mix-and-measure" protocol without the need for tedious washing steps. Furthermore, the multi-LOCI platform is validated for real sample measurements. With the advantages of robustness, simplicity, and high multiplexing, the platform holds great potential for the development of point-of-care diagnostics.
Collapse
Affiliation(s)
- Qingsheng Guo
- Shanghai Jiao Tong University Affiliated Sixth Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yao Wang
- Shanghai Jiao Tong University Affiliated Sixth Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Cang Chen
- Shanghai Jiao Tong University Affiliated Sixth Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Dan Wei
- Shanghai Jiao Tong University Affiliated Sixth Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jianping Fu
- Department of Mechanical Engineering, Department of Biomedical Engineering, Department of Cell and Developmental Biology, University of Michiga Ann Arbor, Ann Arbor, MI, 48109, USA
| | - Hong Xu
- Shanghai Jiao Tong University Affiliated Sixth Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Hongchen Gu
- Shanghai Jiao Tong University Affiliated Sixth Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
9
|
Li J, Liu Y, Ren J, Tay BZ, Luo T, Fan L, Sun D, Luo G, Lau D, Lam RHW. Antibody-coated microstructures for selective isolation of immune cells in blood. LAB ON A CHIP 2020; 20:1072-1082. [PMID: 32100806 DOI: 10.1039/d0lc00078g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cell isolation from blood is an important process for diagnosing immune diseases. There are still demands for a user-friendly approach to achieve high cell extraction efficiency and purity of a target immune cell subtype for more promising diagnosis and monitoring. For selective immune cell isolation, we developed a microstructured device, which consists of antibody-coated micropillars and micro-sieve arrays, for isolating a target immune cell subtype from bovine blood samples. The focusing micropillars can guide immune cells flowing to the subsequent micro-sieves based on deterministic lateral shifts of the cells. The arrangement of these microstructures is characterized and configured for the maximal cell capture rate. Surface modification with a selected antibody offers selective cell capture in the micro-sieves based on the antigen-antibody reaction. We prepare a cell mixture of human CD14-expressing leukemia cells (THP-1) and epithelial cells (MDA-MB-231) in diluted blood to characterize the cell isolation operation, with a selective cell isolation yield of >80%, cell purity of ∼100% and cell viability of >93%. Together, this microstructured device strategy can achieve high-yield selective isolation of immune cells from blood samples and support downstream genetic and biochemical cell analyses, contributing to the medical diagnosis of a broad range of immune diseases.
Collapse
Affiliation(s)
- Jiyu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong.
| | - Ya Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong.
| | - Jifeng Ren
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong.
| | - Benjamin Zikai Tay
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Tao Luo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong.
| | - Lei Fan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong.
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong.
- Centre for Robotics and Automation, City University of Hong Kong, Hong Kong
| | - Guannan Luo
- Department of Economics and Finance, City University of Hong Kong, Hong Kong
| | - Denvid Lau
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong
| | - Raymond H W Lam
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong.
- Centre for Robotics and Automation, City University of Hong Kong, Hong Kong
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
10
|
Rodriguez-Moncayo R, Jimenez-Valdes RJ, Gonzalez-Suarez AM, Garcia-Cordero JL. Integrated Microfluidic Device for Functional Secretory Immunophenotyping of Immune Cells. ACS Sens 2020; 5:353-361. [PMID: 31927915 DOI: 10.1021/acssensors.9b01786] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Integrated platforms for automatic assessment of cellular functional secretory immunophenotyping could have a widespread use in the diagnosis, real-time monitoring, and therapy evaluation of several pathologies. We present a microfluidic platform with integrated biosensors and culture chambers to measure cytokine secretion from a consistent and uniform number of immune cells. The biosensor relies on a fluorescence sandwich immunoassay enabled by the mechanically induced trapping of molecular interactions method. The platform contains 32 cell culture chambers, each patterned with an array of 492 microwells, to capture and analyze both adherent and nonadherent immune cells. Multiple stimuli can be delivered to a set of culture chambers. Per chamber, we were able to capture consistently 1113 ± 191 of blood-derived monocytes and neutrophils and 348 ± 37 THP-1 monocytes. Good occupancy efficiencies of ∼70% with a uniformity of ∼90% across all of the culture chambers of the device were achieved. Furthermore, we demonstrate that up to 96% of cells remain viable for the first 48 h. The employment of epoxy-modified glass substrates and active mixing enhanced the biosensing performance compared to the use of bare glass and simple diffusion. Finally, we performed functional secretory analysis of interleukin-8 and tumor necrosis factor alpha from human neutrophils and monocytes, stimulated with various doses of lipopolysaccharide and phorbol 12-myristate 13-acetate-ionomycin, respectively. We foresee the employment of our microfluidic platform in the diagnosis of different pathologies where alterations in cytokine secretion patterns can be used as biomarkers.
Collapse
Affiliation(s)
- Roberto Rodriguez-Moncayo
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Parque PIIT, Apodaca, Nuevo León 66628, Mexico
| | - Rocio Jimena Jimenez-Valdes
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Parque PIIT, Apodaca, Nuevo León 66628, Mexico
| | - Alan Mauricio Gonzalez-Suarez
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Parque PIIT, Apodaca, Nuevo León 66628, Mexico
| | - Jose Luis Garcia-Cordero
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Parque PIIT, Apodaca, Nuevo León 66628, Mexico
| |
Collapse
|
11
|
Stephens A, Nidetz R, Mesyngier N, Chung MT, Song Y, Fu J, Kurabayashi K. Mass-producible microporous silicon membranes for specific leukocyte subset isolation, immunophenotyping, and personalized immunomodulatory drug screening in vitro. LAB ON A CHIP 2019; 19:3065-3076. [PMID: 31389447 PMCID: PMC6736731 DOI: 10.1039/c9lc00315k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Widespread commercial and clinical adaptation of biomedical microfluidic technology has been limited in large part due to the lack of mass producibility of polydimethylsiloxane (PDMS) and glass-based devices commonly as reported in the literature. Here, we present a batch-fabricated, robust, and mass-producible immunophenotyping microfluidic device using silicon micromachining processes. Our Si and glass-based microfluidic device, named the silicon microfluidic immunophenotyping assay (SiMIPA), consists of a highly porous (∼40%) silicon membrane that can selectively separate microparticles below a certain size threshold. The device is capable of isolating and stimulating specific leukocyte populations, and allows for measuring their secretion of cell signaling proteins by means of a no-wash homogeneous chemiluminescence-based immunoassay. The high manufacturing throughput (∼170 devices per wafer) makes a large quantity of SiMIPA chips readily available for clinically relevant applications, which normally require large dataset acquisitions for statistical accuracy. With 30 SiMIPA chips, we performed in vitro immunomodulatory drug screening on isolated leukocyte subsets, yielding 5 data points at 6 drug concentrations. Furthermore, the excellent structural integrity of the device allowed for samples and reagents to be loaded using a micropipette, greatly simplifying the experimental protocol.
Collapse
Affiliation(s)
- Andrew Stephens
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Huang YC, Lei KF, Liaw JW, Tsai SW. The influence of laser intensity activated plasmonic gold nanoparticle-generated photothermal effects on cellular morphology and viability: a real-time, long-term tracking and monitoring system. Photochem Photobiol Sci 2019; 18:1419-1429. [PMID: 30946422 DOI: 10.1039/c9pp00054b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, a microfluidic apparatus embedded with microstructures was designed and aligned with a laser and dark-field microscope for real-time, long-term observation of photothermal effects on cells. Gold nanorods (AuNRs, 10 ppm) were incubated with MG-63 human osteosarcoma cells for 3 h. Then, the cells were exposed to a continuous-wave laser at a wavelength of 830 nm for 10, 20, and 30 min at 5, 9, 14, 24, and 32 W cm-2. Subsequent changes in morphology were observed. Under different conditions, cell membrane blebbing occurred at different times, indicating that actin filaments were destroyed in large quantities and apoptosis was induced. In suitable conditions, we first induced slight cell injury by causing cytoskeletal fractures with a high-energy laser; then, the cells were irradiated with a low-energy laser at 0.3 W cm-2. We found that among cells treated with the high-energy laser, cells treated additionally with a low-energy laser showed extended viability compared with cells that did not receive the additional treatment.
Collapse
Affiliation(s)
- Yu-Chieh Huang
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taiwan.
| | | | | | | |
Collapse
|
13
|
Zhu J, He J, Verano M, Brimmo AT, Glia A, Qasaimeh MA, Chen P, Aleman JO, Chen W. An integrated adipose-tissue-on-chip nanoplasmonic biosensing platform for investigating obesity-associated inflammation. LAB ON A CHIP 2018; 18:3550-3560. [PMID: 30302487 PMCID: PMC6246809 DOI: 10.1039/c8lc00605a] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Although many advanced biosensing techniques have been proposed for cytokine profiling, there are no clinically available methods that integrate high-resolution immune cell monitoring and in situ multiplexed cytokine detection together in a biomimetic tissue microenvironment. The primary challenge arises due to the lack of suitable label-free sensing techniques and difficulty for sensor integration. In this work, we demonstrated a novel integration of a localized-surface plasmon resonance (LSPR)-based biosensor with a biomimetic microfluidic 'adipose-tissue-on-chip' platform for an in situ label-free, high-throughput and multiplexed cytokine secretion analysis of obese adipose tissue. Using our established adipose-tissue-on-chip platform, we were able to monitor the adipose tissue initiation, differentiation, and maturation and simulate the hallmark formation of crown-like structures (CLSs) during pro-inflammatory stimulation. With integrated antibody-conjugated LSPR barcode sensor arrays, our platform enables simultaneous multiplexed measurements of pro-inflammatory (IL-6 and TNF-α) and anti-inflammatory (IL-10 and IL-4) cytokines secreted by the adipocytes and macrophages. As a result, our adipose-tissue-on-chip platform is capable of identifying stage-specific cytokine secretion profiles from a complex milieu during obesity progression, highlighting its potential as a high-throughput preclinical readout for personalized obesity treatment strategies.
Collapse
Affiliation(s)
- Jingyi Zhu
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY, USA.
| | - Jiacheng He
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL, USA
| | - Michael Verano
- Laboratory of Translational Obesity Research, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Ayoola T Brimmo
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY, USA. and Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ayoub Glia
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY, USA. and Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mohammad A Qasaimeh
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY, USA. and Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL, USA
| | - Jose O Aleman
- Laboratory of Translational Obesity Research, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY, USA. and Department of Biomedical Engineering, New York University, New York, NY, USA
| |
Collapse
|
14
|
Dey S, Kamil Reza K, Wuethrich A, Korbie D, Ibn Sina AA, Trau M. Tracking antigen specific T-cells: Technological advancement and limitations. Biotechnol Adv 2018; 37:145-153. [PMID: 30508573 DOI: 10.1016/j.biotechadv.2018.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/30/2018] [Accepted: 11/20/2018] [Indexed: 11/18/2022]
Abstract
Assessing T-cell mediated immune status can help to understand the body's response to disease and also provide essential diagnostic information. However, detection and characterization of immune response are challenging due to the rarity of signature biomolecules in biological fluid and require highly sensitive and specific assay technique for the analysis. Until now, several techniques spanning from flow cytometry to microsensors have been developed or under investigation for T-cell mediated immune response monitoring. Most of the current assays are designed to estimate average immune responses, i.e., total functional protein analysis and detection of total T-cells irrespective of their antigen specificity. Although potential, immune response analysis without detecting and characterizing the rare subset of T-cell population could lead to over or underestimation of patient's immune status. Addressing this limitation, recently a number of technological advancements in biosensing have been developed for this. The potential of simple and precise micro-technologies including microarray and microfluidic platforms for assessing antigen-specific T-cells will be highlighted in this review, together with a discussion on existing challenges and future aspects of immune-sensor development.
Collapse
Affiliation(s)
- Shuvashis Dey
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia
| | - K Kamil Reza
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia
| | - Darren Korbie
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia
| | - Abu Ali Ibn Sina
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia.
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Australia.
| |
Collapse
|
15
|
Tay HM, Yeap WH, Dalan R, Wong SC, Hou HW. Multiplexed Label-Free Fractionation of Peripheral Blood Mononuclear Cells for Identification of Monocyte–Platelet Aggregates. Anal Chem 2018; 90:14535-14542. [DOI: 10.1021/acs.analchem.8b04415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hui Min Tay
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Wei Hseun Yeap
- Singapore Immunology Network, Agency for Science, Technology and Research, 8a Biomedical Grove, 138648, Singapore
| | - Rinkoo Dalan
- Endocrine and Diabetes, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433, Singapore
| | - Siew Cheng Wong
- Singapore Immunology Network, Agency for Science, Technology and Research, 8a Biomedical Grove, 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| |
Collapse
|
16
|
Wu J, Chen Q, Lin JM. Microfluidic technologies in cell isolation and analysis for biomedical applications. Analyst 2018; 142:421-441. [PMID: 27900377 DOI: 10.1039/c6an01939k] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Efficient platforms for cell isolation and analysis play an important role in applied and fundamental biomedical studies. As cells commonly have a size of around 10 microns, conventional handling approaches at a large scale are still challenged in precise control and efficient recognition of cells for further performance of isolation and analysis. Microfluidic technologies have become more prominent in highly efficient cell isolation for circulating tumor cells (CTCs) detection, single-cell analysis and stem cell separation, since microfabricated devices allow for the spatial and temporal control of complex biochemistries and geometries by matching cell morphology and hydrodynamic traps in a fluidic network, as well as enabling specific recognition with functional biomolecules in the microchannels. In addition, the fabrication of nano-interfaces in the microchannels has been increasingly emerging as a very powerful strategy for enhancing the capability of cell capture by improving cell-interface interactions. In this review, we focus on highlighting recent advances in microfluidic technologies for cell isolation and analysis. We also describe the general biomedical applications of microfluidic cell isolation and analysis, and finally make a prospective for future studies.
Collapse
Affiliation(s)
- Jing Wu
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Qiushui Chen
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Cui X, Liu Y, Hu D, Qian W, Tin C, Sun D, Chen W, Lam RHW. A fluorescent microbead-based microfluidic immunoassay chip for immune cell cytokine secretion quantification. LAB ON A CHIP 2018; 18:522-531. [PMID: 29326990 PMCID: PMC11517320 DOI: 10.1039/c7lc01183k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Quantitative and dynamic analyses of immune cell secretory cytokines are essential for precise determination and characterization of the "immune phenotype" of patients for clinical diagnosis and treatment of immune-related diseases. Although multiple methods including the enzyme-linked immunosorbent assay (ELISA) have been applied for cytokine detection, such measurements remain very challenging in real-time, high-throughput, and high-sensitivity immune cell analysis. In this paper, we report a highly integrated microfluidic device that allows for on-chip isolation, culture, and stimulation, as well as sensitive and dynamic cytokine profiling of immune cells. Such a microfluidic sensing chip is integrated with cytometric fluorescent microbeads for real-time and multiplexed monitoring of immune cell cytokine secretion dynamics, consuming a relatively small extracted sample volume (160 nl) without interrupting the immune cell culture. Furthermore, it is integrated with a Taylor dispersion-based mixing unit in each detection chamber that shortens the immunoassay period down to less than 30 minutes. We demonstrate the profiling of multiple pro-inflammatory cytokine secretions (e.g. interleukin-6, interleukin-8, and tumor necrosis factors) of human peripheral blood mononuclear cells (PBMCs) with a sensitivity of 20 pg ml-1 and a sample volume of 160 nl per detection. Further applications of this automated, rapid, and high-throughput microfluidic immunophenotyping platform can help unleash the mechanisms of systemic immune responses, and enable efficient assessments of the pathologic immune status for clinical diagnosis and immune therapy.
Collapse
Affiliation(s)
- Xin Cui
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong
- Department of Mechanical and Aerospace Engineering, New York University, NY, USA
| | - Ya Liu
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong
| | - Dinglong Hu
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong
| | - Weiyi Qian
- Department of Mechanical and Aerospace Engineering, New York University, NY, USA
| | - Chung Tin
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong
- Centre for Robotics and Automation, City University of Hong Kong
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Dong Sun
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong
- Centre for Robotics and Automation, City University of Hong Kong
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, NY, USA
| | - Raymond H. W. Lam
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong
- Centre for Robotics and Automation, City University of Hong Kong
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
18
|
Microfluidic Cell Isolation and Recognition for Biomedical Applications. CELL ANALYSIS ON MICROFLUIDICS 2018. [DOI: 10.1007/978-981-10-5394-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Sun Y, Sethu P. Microfluidic Adaptation of Density-Gradient Centrifugation for Isolation of Particles and Cells. Bioengineering (Basel) 2017; 4:bioengineering4030067. [PMID: 28952546 PMCID: PMC5615313 DOI: 10.3390/bioengineering4030067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/11/2022] Open
Abstract
Density-gradient centrifugation is a label-free approach that has been extensively used for cell separations. Though elegant, this process is time-consuming (>30 min), subjects cells to high levels of stress (>350 g) and relies on user skill to enable fractionation of cells that layer as a narrow band between the density-gradient medium and platelet-rich plasma. We hypothesized that microfluidic adaptation of this technique could transform this process into a rapid fractionation approach where samples are separated in a continuous fashion while being exposed to lower levels of stress (<100 g) for shorter durations of time (<3 min). To demonstrate proof-of-concept, we designed a microfluidic density-gradient centrifugation device and constructed a setup to introduce samples and medium like Ficoll in a continuous, pump-less fashion where cells and particles can be exposed to centrifugal force and separated via different outlets. Proof-of-concept studies using binary mixtures of low-density polystyrene beads (1.02 g/cm3) and high-density silicon dioxide beads (2.2 g/cm3) with Ficoll–Paque (1.06 g/cm3) show that separation is indeed feasible with >99% separation efficiency suggesting that this approach can be further adapted for separation of cells.
Collapse
Affiliation(s)
- Yuxi Sun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Palaniappan Sethu
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
20
|
Yamada M, Seko W, Yanai T, Ninomiya K, Seki M. Slanted, asymmetric microfluidic lattices as size-selective sieves for continuous particle/cell sorting. LAB ON A CHIP 2017; 17:304-314. [PMID: 27975084 DOI: 10.1039/c6lc01237j] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Hydrodynamic microfluidic platforms have been proven to be useful and versatile for precisely sorting particles/cells based on their physicochemical properties. In this study, we demonstrate that a simple lattice-shaped microfluidic pattern can work as a virtual sieve for size-dependent continuous particle sorting. The lattice is composed of two types of microchannels ("main channels" and "separation channels"). These channels cross each other in a perpendicular fashion, and are slanted against the macroscopic flow direction. The difference in the densities of these channels generates an asymmetric flow distribution at each intersection. Smaller particles flow along the streamline, whereas larger particles are filtered and gradually separated from the stream, resulting in continuous particle sorting. We successfully sorted microparticles based on size with high accuracy, and clearly showed that geometric parameters, including the channel density and the slant angle, critically affect the sorting behaviors of particles. Leukocyte sorting and monocyte purification directly from diluted blood samples have been demonstrated as biomedical applications. The presented system for particle/cell sorting would become a simple but versatile unit operation in microfluidic apparatus for chemical/biological experiments and manipulations.
Collapse
Affiliation(s)
- Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Wataru Seko
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Takuma Yanai
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Kasumi Ninomiya
- Asahi Kasei Corp, 2-1 Samejima, Fuji-shi, Shizuoka 416-8501, Japan
| | - Minoru Seki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| |
Collapse
|
21
|
Yousuff CM, Ho ETW, Hussain K. I, Hamid NHB. Microfluidic Platform for Cell Isolation and Manipulation Based on Cell Properties. MICROMACHINES 2017. [PMCID: PMC6189901 DOI: 10.3390/mi8010015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Caffiyar Mohamed Yousuff
- Correspondence: (C.M.Y.); (E.T.W.H.); (N.H.B.H.); Tel.: +60-1678-50269 (C.M.Y.); +60-1238-17752 (E.T.W.H.); +60-1927-87127 (N.H.B.H.)
| | - Eric Tatt Wei Ho
- Correspondence: (C.M.Y.); (E.T.W.H.); (N.H.B.H.); Tel.: +60-1678-50269 (C.M.Y.); +60-1238-17752 (E.T.W.H.); +60-1927-87127 (N.H.B.H.)
| | | | - Nor Hisham B. Hamid
- Correspondence: (C.M.Y.); (E.T.W.H.); (N.H.B.H.); Tel.: +60-1678-50269 (C.M.Y.); +60-1238-17752 (E.T.W.H.); +60-1927-87127 (N.H.B.H.)
| |
Collapse
|
22
|
Hill S, Qian W, Chen W, Fu J. Surface micromachining of polydimethylsiloxane for microfluidics applications. BIOMICROFLUIDICS 2016; 10:054114. [PMID: 27795746 PMCID: PMC5065565 DOI: 10.1063/1.4964717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
Polydimethylsiloxane (PDMS) elastomer has emerged as one of the most frequently applied materials in microfluidics. However, precise and large-scale surface micromachining of PDMS remains challenging, limiting applications of PDMS for microfluidic structures with high-resolution features. Herein, surface patterning of PDMS was achieved using a simple yet effective method combining direct photolithography followed by reactive-ion etching (RIE). This method incorporated a unique step of using oxygen plasma to activate PDMS surfaces to a hydrophilic state, thereby enabling improved adhesion of photoresist on top of PDMS surfaces for subsequent photolithography. RIE was applied to transfer patterns from photoresist to underlying PDMS thin films. Systematic experiments were conducted in the present work to characterize PDMS etch rate and etch selectivity of PDMS to photoresist as a function of various RIE parameters, including pressure, RF power, and gas flow rate and composition. We further compared two common RIE systems with and without bias power and employed inductively coupled plasma and capacitively coupled plasma sources, respectively, in terms of their PDMS etching performances. The RIE-based PDMS surface micromachining technique is compatible with conventional Si-based surface and bulk micromachining techniques, thus opening promising opportunities for generating hybrid microfluidic devices with novel functionalities.
Collapse
Affiliation(s)
| | - Weiyi Qian
- Department of Mechanical and Aerospace Engineering, New York University , Brooklyn, New York 11201, USA
| | | | | |
Collapse
|
23
|
Tran QD, Kong TF, Hu D, Lam RHW. Deterministic sequential isolation of floating cancer cells under continuous flow. LAB ON A CHIP 2016; 16:2813-9. [PMID: 27387093 DOI: 10.1039/c6lc00615a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Isolation of rare cells, such as circulating tumor cells, has been challenging because of their low abundance and limited timeframes of expressions of relevant cell characteristics. In this work, we devise a novel hydrodynamic mechanism to sequentially trap and isolate floating cells in biosamples. We develop a microfluidic device for the sequential isolation of floating cancer cells through a series of microsieves to obtain up to 100% trapping yield and >95% sequential isolation efficiency. We optimize the trappers' dimensions and locations through both computational and experimental analyses using microbeads and cells. Furthermore, we investigated the functional range of flow rates for effective sequential cell isolation by taking the cell deformability into account. We verify the cell isolation ability using the human breast cancer cell line MDA-MB-231 with perfect agreement with the microbead results. The viability of the isolated cells can be maintained for direct identification of any cell characteristics within the device. We further demonstrate that this device can be applied to isolate the largest particles from a sample containing multiple sizes of particles, revealing its possible applicability in isolation of circulating tumor cells in cancer patients' blood. Our study provides a promising sequential cell isolation strategy with high potential for rapid detection and analysis of general floating cells, including circulating tumor cells and other rare cell types.
Collapse
Affiliation(s)
- Quang D Tran
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| | | | | | | |
Collapse
|
24
|
Boussommier-Calleja A, Li R, Chen MB, Wong SC, Kamm RD. Microfluidics: A new tool for modeling cancer-immune interactions. Trends Cancer 2016; 2:6-19. [PMID: 26858990 PMCID: PMC4743529 DOI: 10.1016/j.trecan.2015.12.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recognition of the enormous potential of immunotherapies against cancer, research into the interactions between tumor and immune cells has accelerated, leading to the recent FDA approval of several drugs that reduce cancer progression. Numerous cellular and molecular interactions have been identified by which immune cells can intervene in the metastatic cascade, leading to the development of several in vivo and in vitro model systems that can recapitulate these processes. Among these, microfluidic technologies hold many advantages in terms of their unique ability to capture the essential features of multiple cell type interactions in three-dimensions while allowing tight control of the microenvironment and real-time monitoring. Here, we review current assays and discuss the development of new microfluidic technologies for immunotherapy.
Collapse
Affiliation(s)
| | - Ran Li
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | | | - Siew Cheng Wong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A-STAR), Biopolis, Singapore
| | - Roger D. Kamm
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| |
Collapse
|
25
|
Warkiani ME, Wu L, Tay AKP, Han J. Large-Volume Microfluidic Cell Sorting for Biomedical Applications. Annu Rev Biomed Eng 2015; 17:1-34. [DOI: 10.1146/annurev-bioeng-071114-040818] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Majid Ebrahimi Warkiani
- BioSystems and Micromechanics IRG, Singapore–MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602;
- School of Mechanical and Manufacturing Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lidan Wu
- Department of Biological Engineering and
| | - Andy Kah Ping Tay
- BioSystems and Micromechanics IRG, Singapore–MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602;
| | - Jongyoon Han
- BioSystems and Micromechanics IRG, Singapore–MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602;
- Department of Biological Engineering and
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
26
|
Micro- and nanodevices integrated with biomolecular probes. Biotechnol Adv 2015; 33:1727-43. [PMID: 26363089 PMCID: PMC4948648 DOI: 10.1016/j.biotechadv.2015.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/06/2015] [Accepted: 09/05/2015] [Indexed: 12/28/2022]
Abstract
Understanding how biomolecules, proteins and cells interact with their surroundings and other biological entities has become the fundamental design criterion for most biomedical micro- and nanodevices. Advances in biology, medicine, and nanofabrication technologies complement each other and allow us to engineer new tools based on biomolecules utilized as probes. Engineered micro/nanosystems and biomolecules in nature have remarkably robust compatibility in terms of function, size, and physical properties. This article presents the state of the art in micro- and nanoscale devices designed and fabricated with biomolecular probes as their vital constituents. General design and fabrication concepts are presented and three major platform technologies are highlighted: microcantilevers, micro/nanopillars, and microfluidics. Overview of each technology, typical fabrication details, and application areas are presented by emphasizing significant achievements, current challenges, and future opportunities.
Collapse
|
27
|
Qian W, Zhang Y, Chen W. Capturing Cancer: Emerging Microfluidic Technologies for the Capture and Characterization of Circulating Tumor Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3850-72. [PMID: 25993898 DOI: 10.1002/smll.201403658] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/13/2015] [Indexed: 05/04/2023]
Abstract
Circulating tumor cells (CTCs) escape from primary or metastatic lesions and enter into circulation, carrying significant information of cancer progression and metastasis. Capture of CTCs from the bloodstream and the characterization of these cells hold great significance for the detection, characterization, and monitoring of cancer. Despite the urgent need from clinics, it remains a major challenge to capture and retain these rare cells from human blood with high specificity and yield. Recent exciting advances in micro/nanotechnology, microfluidics, and materials science have enable versatile, robust, and efficient cell isolation and processing through the development of new micro/nanoengineered devices and biomaterials. This review provides a summary of recent progress along this direction, with a focus on emerging methods for CTC capture and processing, and their application in cancer research. Furthermore, classical as well as emerging cellular characterization methods are reviewed to reveal the role of CTCs in cancer progression and metastasis, and hypotheses are proposed in regard to the potential emerging research directions most desired in CTC-related cancer research.
Collapse
Affiliation(s)
- Weiyi Qian
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Yan Zhang
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| |
Collapse
|
28
|
Yu ZTF, Guan H, Cheung MK, McHugh WM, Cornell TT, Shanley TP, Kurabayashi K, Fu J. Rapid, automated, parallel quantitative immunoassays using highly integrated microfluidics and AlphaLISA. Sci Rep 2015; 5:11339. [PMID: 26074253 PMCID: PMC4466892 DOI: 10.1038/srep11339] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/15/2015] [Indexed: 12/22/2022] Open
Abstract
Immunoassays represent one of the most popular analytical methods for detection and quantification of biomolecules. However, conventional immunoassays such as ELISA and flow cytometry, even though providing high sensitivity and specificity and multiplexing capability, can be labor-intensive and prone to human error, making them unsuitable for standardized clinical diagnoses. Using a commercialized no-wash, homogeneous immunoassay technology ('AlphaLISA') in conjunction with integrated microfluidics, herein we developed a microfluidic immunoassay chip capable of rapid, automated, parallel immunoassays of microliter quantities of samples. Operation of the microfluidic immunoassay chip entailed rapid mixing and conjugation of AlphaLISA components with target analytes before quantitative imaging for analyte detections in up to eight samples simultaneously. Aspects such as fluid handling and operation, surface passivation, imaging uniformity, and detection sensitivity of the microfluidic immunoassay chip using AlphaLISA were investigated. The microfluidic immunoassay chip could detect one target analyte simultaneously for up to eight samples in 45 min with a limit of detection down to 10 pg mL(-1). The microfluidic immunoassay chip was further utilized for functional immunophenotyping to examine cytokine secretion from human immune cells stimulated ex vivo. Together, the microfluidic immunoassay chip provides a promising high-throughput, high-content platform for rapid, automated, parallel quantitative immunosensing applications.
Collapse
Affiliation(s)
- Zeta Tak For Yu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Huijiao Guan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Mei Ki Cheung
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Walker M McHugh
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Timothy T Cornell
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Thomas P Shanley
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Katsuo Kurabayashi
- 1] Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jianping Fu
- 1] Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
29
|
Low WS, Wan Abas WAB. Benchtop technologies for circulating tumor cells separation based on biophysical properties. BIOMED RESEARCH INTERNATIONAL 2015; 2015:239362. [PMID: 25977918 PMCID: PMC4419234 DOI: 10.1155/2015/239362] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 12/11/2022]
Abstract
Circulating tumor cells (CTCs) are tumor cells that have detached from primary tumor site and are transported via the circulation system. The importance of CTCs as prognostic biomarker is leveraged when multiple studies found that patient with cutoff of 5 CTCs per 7.5 mL blood has poor survival rate. Despite its clinical relevance, the isolation and characterization of CTCs can be quite challenging due to their large morphological variability and the rare presence of CTCs within the blood. Numerous methods have been employed and discussed in the literature for CTCs separation. In this paper, we will focus on label free CTCs isolation methods, in which the biophysical and biomechanical properties of cells (e.g., size, deformability, and electricity) are exploited for CTCs detection. To assess the present state of various isolation methods, key performance metrics such as capture efficiency, cell viability, and throughput will be reported. Finally, we discuss the challenges and future perspectives of CTC isolation technologies.
Collapse
Affiliation(s)
- Wan Shi Low
- Department of Biomedical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wan Abu Bakar Wan Abas
- Department of Biomedical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
30
|
Li X, Chen W, Li Z, Li L, Gu H, Fu J. Emerging microengineered tools for functional analysis and phenotyping of blood cells. Trends Biotechnol 2014; 32:586-594. [PMID: 25283971 DOI: 10.1016/j.tibtech.2014.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/09/2014] [Accepted: 09/09/2014] [Indexed: 01/09/2023]
Abstract
The available techniques for assessing blood cell functions are limited considering the various types of blood cell and their diverse functions. In the past decade, rapid advances in microengineering have enabled an array of blood cell functional measurements that are difficult or impossible to achieve using conventional bulk platforms. Such miniaturized blood cell assay platforms also provide the attractive capabilities of reducing chemical consumption, cost, and assay time, as well as exciting opportunities for device integration, automation, and assay standardization. This review summarizes these contemporary microengineered tools and discusses their promising potential for constructing accurate in vitro models and rapid clinical diagnosis using minimal amounts of whole-blood samples.
Collapse
Affiliation(s)
- Xiang Li
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weiqiang Chen
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zida Li
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ling Li
- Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Hongchen Gu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jianping Fu
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
31
|
Li X, Chen W, Liu G, Lu W, Fu J. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes. LAB ON A CHIP 2014; 14:2565-75. [PMID: 24895109 PMCID: PMC4106416 DOI: 10.1039/c4lc00350k] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
White blood cells (WBCs) constitute about 0.1% of the blood cells, yet they play a critical role in innate and adaptive immune responses against pathogenic infections, allergic conditions, and malignancies and thus contain rich information about the immune status of the body. Rapid isolation of WBCs directly from whole blood is a prerequisite for any integrated immunoassay platform designed for examining WBC phenotypes and functions; however, such functionality is still challenging for blood-on-a-chip systems, as existing microfluidic cell sorting techniques are inadequate for efficiently processing unprocessed whole blood on chip with concurrent high throughput and cell purity. Herein we report a microfluidic chip for continuous-flow isolation and sorting of WBCs from whole blood with high throughput and separation efficiency. The microfluidic cell sorting chip leveraged the crossflow filtration scheme in conjunction with a surface-micromachined poly(dimethylsiloxane) (PDMS) microfiltration membrane (PMM) with high porosity. With a sample throughput of 1 mL h(-1), the microfluidic cell sorting chip could recover 27.4 ± 4.9% WBCs with a purity of 93.5 ± 0.5%. By virtue of its separation efficiency, ease of sample recovery, and high throughput enabled by its continuous-flow operation, the microfluidic cell sorting chip holds promise as an upstream component for blood sample preparation and analysis in integrated blood-on-a-chip systems.
Collapse
Affiliation(s)
- Xiang Li
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | |
Collapse
|
32
|
Yu ZTF, Yong KMA, Fu J. Microfluidic blood cell sorting: now and beyond. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1687-703. [PMID: 24515899 PMCID: PMC4013196 DOI: 10.1002/smll.201302907] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 12/16/2013] [Indexed: 05/15/2023]
Abstract
Blood plays an important role in homeostatic regulation with each of its cellular components having important therapeutic and diagnostic uses. Therefore, separation and sorting of blood cells hasa been of a great interest to clinicians and researchers. However, while conventional methods of processing blood have been successful in generating relatively pure fractions, they are time consuming, labor intensive, and are not optimal for processing small volume blood samples. In recent years, microfluidics has garnered great interest from clinicians and researchers as a powerful technology for separating blood into different cell fractions. As microfluidics involves fluid manipulation at the microscale level, it has the potential for achieving high-resolution separation and sorting of blood cells down to a single-cell level, with an added benefit of integrating physical and biological methods for blood cell separation and analysis on the same single chip platform. This paper will first review the conventional methods of processing and sorting blood cells, followed by a discussion on how microfluidics is emerging as an efficient tool to rapidly change the field of blood cell sorting for blood-based therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Zeta Tak For Yu
- Integrated Biosystems and Biomechanics Laboratory, University of
Michigan, Ann Arbor, Michigan, USA
- Department of Mechanical Engineering, University of Michigan, Ann
Arbor, Michigan, USA
| | - Koh Meng Aw Yong
- Integrated Biosystems and Biomechanics Laboratory, University of
Michigan, Ann Arbor, Michigan, USA
- Department of Mechanical Engineering, University of Michigan, Ann
Arbor, Michigan, USA
| | - Jianping Fu
- Integrated Biosystems and Biomechanics Laboratory, University of
Michigan, Ann Arbor, Michigan, USA
- Department of Mechanical Engineering, University of Michigan, Ann
Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann
Arbor, Michigan, USA
| |
Collapse
|
33
|
Oh BR, Huang NT, Chen W, Seo JH, Chen P, Cornell TT, Shanley TP, Fu J, Kurabayashi K. Integrated nanoplasmonic sensing for cellular functional immunoanalysis using human blood. ACS NANO 2014; 8:2667-76. [PMID: 24568576 PMCID: PMC4004291 DOI: 10.1021/nn406370u] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/19/2014] [Indexed: 05/18/2023]
Abstract
Localized surface plasmon resonance (LSPR) nanoplasmonic effects allow for label-free, real-time detection of biomolecule binding events on a nanostructured metallic surface with simple optics and sensing tunability. Despite numerous reports on LSPR bionanosensing in the past, no study thus far has applied the technique for a cytokine secretion assay using clinically relevant immune cells from human blood. Cytokine secretion assays, a technique to quantify intercellular-signaling proteins secreted by blood immune cells, allow determination of the functional response of the donor's immune cells, thus providing valuable information about the immune status of the donor. However, implementation of LSPR bionanosensing in cellular functional immunoanalysis based on a cytokine secretion assay poses major challenges primarily owing to its limited sensitivity and a lack of sufficient sample handling capability. In this paper, we have developed a label-free LSPR biosensing technique to detect cell-secreted tumor necrosis factor (TNF)-α cytokines in clinical blood samples. Our approach integrates LSPR bionanosensors in an optofluidic platform that permits trapping and stimulation of target immune cells in a microfluidic chamber with optical access for subsequent cytokine detection. The on-chip spatial confinement of the cells is the key to rapidly increasing a cytokine concentration high enough for detection by the LSPR setup, thereby allowing the assay time and sample volume to be significantly reduced. We have successfully applied this approach first to THP-1 cells and then later to CD45 cells isolated directly from human blood. Our LSPR optofluidics device allows for detection of TNF-α secreted from cells as few as 1000, which translates into a nearly 100 times decrease in sample volume than conventional cytokine secretion assay techniques require. We achieved cellular functional immunoanalysis with a minimal blood sample volume (3 μL) and a total assay time 3 times shorter than that of the conventional enzyme-linked immunosorbent assay (ELISA).
Collapse
Affiliation(s)
- Bo-Ram Oh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nien-Tsu Huang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Electrical Engineering, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Weiqiang Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jung Hwan Seo
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Mechanical and Design Engineering, Hongik University, Seoul, South Korea
| | - Pengyu Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Timothy T. Cornell
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas P. Shanley
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katsuo Kurabayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
- Address correspondence to
| |
Collapse
|
34
|
Baratchi S, Khoshmanesh K, Sacristán C, Depoil D, Wlodkowic D, McIntyre P, Mitchell A. Immunology on chip: Promises and opportunities. Biotechnol Adv 2014; 32:333-46. [DOI: 10.1016/j.biotechadv.2013.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 11/04/2013] [Accepted: 11/17/2013] [Indexed: 01/09/2023]
|
35
|
Siltanen C, Shin DS, Sutcliffe J, Revzin A. Micropatterned photodegradable hydrogels for the sorting of microbeads and cells. Angew Chem Int Ed Engl 2013; 52:9224-8. [PMID: 23868693 PMCID: PMC4370904 DOI: 10.1002/anie.201303965] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Indexed: 01/03/2023]
Affiliation(s)
- Christian Siltanen
- Department of Biomedical Engineering, University of California Davis, One Shields Ave, Davis, CA 95616 (USA)
| | - Dong-Sik Shin
- Department of Biomedical Engineering, University of California Davis, One Shields Ave, Davis, CA 95616 (USA)
| | - Julie Sutcliffe
- Department of Biomedical Engineering, University of California Davis, One Shields Ave, Davis, CA 95616 (USA)
- Division of Hematology/Oncology, Department of Internal Medicine, Center for Molecular and Genomic Imaging, University of California Davis, Davis, CA 95616 (USA)
| | - Alexander Revzin
- Department of Biomedical Engineering, University of California Davis, One Shields Ave, Davis, CA 95616 (USA)
| |
Collapse
|
36
|
Siltanen C, Shin D, Sutcliffe J, Revzin A. Micropatterned Photodegradable Hydrogels for the Sorting of Microbeads and Cells. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303965] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christian Siltanen
- Department of Biomedical Engineering, University of California Davis, One Shields Ave, Davis, CA 95616 (USA)
| | - Dong‐Sik Shin
- Department of Biomedical Engineering, University of California Davis, One Shields Ave, Davis, CA 95616 (USA)
| | - Julie Sutcliffe
- Department of Biomedical Engineering, University of California Davis, One Shields Ave, Davis, CA 95616 (USA)
- Division of Hematology/Oncology, Department of Internal Medicine, Center for Molecular and Genomic Imaging, University of California Davis, Davis, CA 95616 (USA)
| | - Alexander Revzin
- Department of Biomedical Engineering, University of California Davis, One Shields Ave, Davis, CA 95616 (USA)
| |
Collapse
|
37
|
Chen W, Huang NT, Li X, Yu ZTF, Kurabayashi K, Fu J. Emerging microfluidic tools for functional cellular immunophenotyping: a new potential paradigm for immune status characterization. Front Oncol 2013; 3:98. [PMID: 23626950 DOI: 10.3389/fonc.2013.00098] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/10/2013] [Indexed: 11/13/2022] Open
Abstract
Rapid, accurate, and quantitative characterization of immune status of patients is of utmost importance for disease diagnosis and prognosis, evaluating efficacy of immunotherapeutics and tailoring drug treatments. Immune status of patients is often dynamic and patient-specific, and such complex heterogeneity has made accurate, real-time measurements of patient immune status challenging in the clinical setting. Recent advances in microfluidics have demonstrated promising applications of the technology for immune monitoring with minimum sample requirements and rapid functional immunophenotyping capability. This review will highlight recent developments of microfluidic platforms that can perform rapid and accurate cellular functional assays on patient immune cells. We will also discuss the future potential of integrated microfluidics to perform rapid, accurate, and sensitive cellular functional assays at a single-cell resolution on different types or subpopulations of immune cells, to provide an unprecedented level of information depth on the distribution of immune cell functionalities. We envision that such microfluidic immunophenotyping tools will allow for comprehensive and systems-level immunomonitoring, unlocking the potential to transform experimental clinical immunology into an information-rich science.
Collapse
Affiliation(s)
- Weiqiang Chen
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan Ann Arbor, MI, USA ; Department of Mechanical Engineering, University of Michigan Ann Arbor, MI, USA
| | | | | | | | | | | |
Collapse
|