1
|
Li N, Yang X, Wang B, Chen P, Ma Y, Zhang Q, Huang Y, Zhang Y, Lü S. Color-Tunable Room-Temperature Phosphorescence from Non-Aromatic-Polymer-Involved Charge Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404698. [PMID: 38874342 PMCID: PMC11321690 DOI: 10.1002/advs.202404698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Polymeric room-temperature phosphorescence (RTP) materials especially multicolor RTP systems hold great promise in concrete applications. A key feature in these applications is a triplet charge transfer transition. Aromatic electron donors and electron acceptors are often essential to ensure persistent RTP. There is much interest in fabricating non-aromatic charge-transfer-mediated RTP materials and it still remains a formidable challenge to achieve color-tunable RTP via charge transfer. Herein, a charge-transfer-mediated RTP material by embedding quinoline derivatives within a non-aromatic polymer matrix such as polyacrylamide (PAM) or polyvinyl alcohol (PVA) is developed. Through-space charge transfer (TSCT) is achieved upon alkali- or heat treatment to realize a long phosphorescence lifetime of up to 629.90 ms, high phosphorescence quantum yield of up to 20.51%, and a green-to-blue afterglow for more than 20 s at room temperature. This color-tunable RTP emerges from a nonaromatic polymer to single phosphor charge transfer that has rarely been reported before. This finding suggests that an effective and simple approach can deliver new color-tunable RTP materials for applications including multicolor display, information encryption, and gas detection.
Collapse
Affiliation(s)
- Ningyan Li
- State Key Laboratory of Applied Organic ChemistryLanzhou Magnetic Resonance CenterDepartment of Chemistry and Chemical EngineeringLanzhou UniversityLanzhou730000China
| | - Xipeng Yang
- State Key Laboratory of Applied Organic ChemistryLanzhou Magnetic Resonance CenterDepartment of Chemistry and Chemical EngineeringLanzhou UniversityLanzhou730000China
| | - Binbin Wang
- State Key Laboratory of Applied Organic ChemistryLanzhou Magnetic Resonance CenterDepartment of Chemistry and Chemical EngineeringLanzhou UniversityLanzhou730000China
| | - Panyi Chen
- State Key Laboratory of Applied Organic ChemistryLanzhou Magnetic Resonance CenterDepartment of Chemistry and Chemical EngineeringLanzhou UniversityLanzhou730000China
| | - Yixian Ma
- State Key Laboratory of Applied Organic ChemistryLanzhou Magnetic Resonance CenterDepartment of Chemistry and Chemical EngineeringLanzhou UniversityLanzhou730000China
| | - Qianqian Zhang
- State Key Laboratory of Applied Organic ChemistryLanzhou Magnetic Resonance CenterDepartment of Chemistry and Chemical EngineeringLanzhou UniversityLanzhou730000China
| | - Yiyao Huang
- State Key Laboratory of Applied Organic ChemistryLanzhou Magnetic Resonance CenterDepartment of Chemistry and Chemical EngineeringLanzhou UniversityLanzhou730000China
| | - Yan Zhang
- State Key Laboratory of Applied Organic ChemistryLanzhou Magnetic Resonance CenterDepartment of Chemistry and Chemical EngineeringLanzhou UniversityLanzhou730000China
| | - Shaoyu Lü
- State Key Laboratory of Applied Organic ChemistryLanzhou Magnetic Resonance CenterDepartment of Chemistry and Chemical EngineeringLanzhou UniversityLanzhou730000China
| |
Collapse
|
2
|
Jansen-van Vuuren RD, Naficy S, Ramezani M, Cunningham M, Jessop P. CO 2-responsive gels. Chem Soc Rev 2023; 52:3470-3542. [PMID: 37128844 DOI: 10.1039/d2cs00053a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CO2-responsive materials undergo a change in chemical or physical properties in response to the introduction or removal of CO2. The use of CO2 as a stimulus is advantageous as it is abundant, benign, inexpensive, and it does not accumulate in a system. Many CO2-responsive materials have already been explored including polymers, latexes, surfactants, and catalysts. As a sub-set of CO2-responsive polymers, the study of CO2-responsive gels (insoluble, cross-linked polymers) is a unique discipline due to the unique set of changes in the gels brought about by CO2 such as swelling or a transformed morphology. In the past 15 years, CO2-responsive gels and self-assembled gels have been investigated for a variety of emerging potential applications, reported in 90 peer-reviewed publications. The two most widely exploited properties include the control of flow (fluids) via CO2-triggered aggregation and their capacity for reversible CO2 absorption-desorption, leading to applications in Enhanced Oil Recovery (EOR) and CO2 sequestration, respectively. In this paper, we review the preparation, properties, and applications of these CO2-responsive gels, broadly classified by particle size as nanogels, microgels, aerogels, and macrogels. We have included a section on CO2-induced self-assembled gels (including poly(ionic liquid) gels).
Collapse
Affiliation(s)
- Ross D Jansen-van Vuuren
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering, Centre for Excellence in Advanced Food Enginomics (CAFE), The University of Sydney, Sydney, NSW 2006, Australia
| | - Maedeh Ramezani
- Department of Chemistry, Chernoff Hall, Queen's University, Kingston, Ontario, K7K 2N1, Canada.
| | - Michael Cunningham
- Department of Engineering, Dupuis Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Philip Jessop
- Department of Chemistry, Chernoff Hall, Queen's University, Kingston, Ontario, K7K 2N1, Canada.
| |
Collapse
|
3
|
Bongaerts GPA, Williams RM, van der Wielen MWJ, Feiters MC. (Photo-)chemical roadmap to strategic antimicrobial photodynamic and photothermal therapies. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Marks HL, Cook K, Roussakis E, Cascales JP, Korunes‐Miller JT, Grinstaff MW, Evans CL. Quantitative Luminescence Photography of a Swellable Hydrogel Dressing with a Traffic-Light Response to Oxygen. Adv Healthc Mater 2022; 11:e2101605. [PMID: 35120400 DOI: 10.1002/adhm.202101605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/24/2021] [Indexed: 12/19/2022]
Abstract
Sensor-integrated wound dressings are emerging tools applicable to a wide variety of medical applications from emergency triage to at-home monitoring. Uncomfortable, unnecessary wound dressing changes may be avoided by providing quantitative insight into tissue characteristics related to wound healing such as tissue oxygenation, pH, and exudate/transudate volume. Here, a simple cost-effective methodology for quantifying oxygen and pH in a swellable hydrogel dressing using a single photograph is presented. The red and green luminescence of a novel dendritic polyamine Pt-porphyrin and fluorescein conjugate quantitatively responds to oxygen and pH, respectively, and enables robust sensing. The porphyrin conjugate, when combined with a four-arm star polyethylene glycol (PEG) amine polymer, rapidly crosslinks at room temperature with an N-hydroxysuccinimide (NHS)-PEG crosslinker to form a color-changing hydrogel dressing with tunable swelling capabilities applicable to a variety of wound environments. An inexpensive digital single-lens reflex (DSLR) camera modified with bandpass filters captures the hydrogel luminescence using simple macroscopic photography, and conversion to HSB colorspace allows for intensity-independent image analysis of the hydrogels' dual modality response. The hydrogel formulation exhibits a robust and validated visible red-orange-green "traffic light" spectrum in response to oxygen changes, regardless of swelling state, pH, or autofluorescence from skin, thereby enabling the clinician friendly naked-eye feedback.
Collapse
Affiliation(s)
- Haley L. Marks
- Wellman Center for Photomedicine Massachusetts General Hospital Harvard Medical School Boston MA 02129 USA
| | - Katherine Cook
- Department of Chemistry Boston University Boston MA 02215 USA
| | - Emmanuel Roussakis
- Wellman Center for Photomedicine Massachusetts General Hospital Harvard Medical School Boston MA 02129 USA
| | - Juan Pedro Cascales
- Wellman Center for Photomedicine Massachusetts General Hospital Harvard Medical School Boston MA 02129 USA
| | | | - Mark W. Grinstaff
- Department of Chemistry Boston University Boston MA 02215 USA
- Department of Biomedical Engineering Boston University Boston MA 02215 USA
| | - Conor L. Evans
- Wellman Center for Photomedicine Massachusetts General Hospital Harvard Medical School Boston MA 02129 USA
| |
Collapse
|
5
|
Dethe MR, A P, Ahmed H, Agrawal M, Roy U, Alexander A. PCL-PEG copolymer based injectable thermosensitive hydrogels. J Control Release 2022; 343:217-236. [PMID: 35090961 PMCID: PMC9134269 DOI: 10.1016/j.jconrel.2022.01.035] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/09/2023]
Abstract
A number of stimuli-responsive-based hydrogels has been widely explored in biomedical applications in the last few decades because of their excellent biodegradability and biocompatibility. The development of synthetic chemistry and materials science leads to the emergence of in situ stimuli-responsive hydrogels. In this regard, several synthetic and natural polymers have been synthesized and utilized to prepare temperature-sensitive in situ forming hydrogels. This could be best used via injections as temperature stimulus could trigger in situ hydrogels gelation and swelling behaviors. There are many smart polymers available for the formulation of the in situ based thermoresponsive injectable hydrogel. Among these, poly (ε-caprolactone) (PCL) polymer has been recognized and approved by the FDA for numerous biomedical applications. More specifically, the PCL is coupled with polyethylene glycol (PEG) to obtain amphiphilic thermosensitive "smart" copolymers (PCL-PEG), to form rapid and reversible physical gelation behavior. However, the chemical structure of the copolymer is a critical aspect in determining water solubility, thermo-gelation behavior, drug release rate, degradation rate, and the possibility to deliver a diverse range of drugs. In this review, we have highlighted the typical PCL-PEG-based thermosensitive injectable hydrogels progress in the last decade for tissue engineering and localized drug delivery applications to treat various diseases. Additionally, the impact of molecular weight of PCL-PEG upon gelling behavior has also been critically highlighted for optimum hydrogels properties for potential pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Mithun Rajendra Dethe
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
| | - Prabakaran A
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
| | - Hafiz Ahmed
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
| | - Mukta Agrawal
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Polepally SEZ, TSIIC Jadcherla, Hyderabad 509301, India
| | - Upal Roy
- Department of Health and Biomedical Sciences, College of Health Affairs, One West University Blvd., Brownsville, TX 78520, United States of America
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India.
| |
Collapse
|
6
|
Peters JT, Wechsler ME, Peppas NA. Advanced biomedical hydrogels: molecular architecture and its impact on medical applications. Regen Biomater 2021; 8:rbab060. [PMID: 34925879 PMCID: PMC8678442 DOI: 10.1093/rb/rbab060] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogels are cross-linked polymeric networks swollen in water, physiological aqueous solutions or biological fluids. They are synthesized by a wide range of polymerization methods that allow for the introduction of linear and branched units with specific molecular characteristics. In addition, they can be tuned to exhibit desirable chemical characteristics including hydrophilicity or hydrophobicity. The synthesized hydrogels can be anionic, cationic, or amphiphilic and can contain multifunctional cross-links, junctions or tie points. Beyond these characteristics, hydrogels exhibit compatibility with biological systems, and can be synthesized to render systems that swell or collapse in response to external stimuli. This versatility and compatibility have led to better understanding of how the hydrogel's molecular architecture will affect their physicochemical, mechanical and biological properties. We present a critical summary of the main methods to synthesize hydrogels, which define their architecture, and advanced structural characteristics for macromolecular/biological applications.
Collapse
Affiliation(s)
- Jonathan T Peters
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Marissa E Wechsler
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, 1601 Trinity St., Bldg. B, Austin, TX 78712, USA
| |
Collapse
|
7
|
Villari V, Micali N, Nicosia A, Mineo P. Water-Soluble Non-Ionic PEGylated Porphyrins: A Versatile Category of Dyes for Basic Science and Applications. Top Curr Chem (Cham) 2021; 379:35. [PMID: 34382110 DOI: 10.1007/s41061-021-00348-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022]
Abstract
This review arises from the need to rationalize the huge amount of information on the structural and spectroscopic properties of a peculiar class of porphyrin derivatives-the non-ionic PEGylated porphyrins-collected during almost two decades of research. The lack of charged groups in the molecular architecture of these porphyrin derivatives is the leitmotif of the work and plays an outstanding role in highlighting those interactions between porphyrins, or between porphyrins and target molecules (e.g., hydrophobic-, hydrogen bond related-, and coordination-interactions, to name just a few) that are often masked by stronger electrostatic contributions. In addition, it is exactly these weaker interactions between porphyrins that make the aggregated forms more prone to couple efficiently with external perturbative fields like weak hydrodynamic vortexes or temperature gradients. In the absence of charge, solubility in water is very often achieved by covalent functionalization of the porphyrin ring with polyethylene glycol chains. Various modifications, including of chain length or the number of chains, the presence of a metal atom in the porphyrin core, or having two or more porphyrin rings in the molecular architecture, result in a wide range of properties. These encompass self-assembly with different aggregate morphology, molecular recognition of biomolecules, and different photophysical responses, which can be translated into numerous promising applications in the sensing and biomedical field, based on turn-on/turn-off fluorescence and on photogeneration of radical species.
Collapse
Affiliation(s)
- Valentina Villari
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158, Messina, Italy.
| | - Norberto Micali
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158, Messina, Italy
| | - Angelo Nicosia
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Placido Mineo
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158, Messina, Italy
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
8
|
Teixeira R, Serra VV, Botequim D, Paulo PMR, Andrade SM, Costa SMB. Fluorescence Spectroscopy of Porphyrins and Phthalocyanines: Some Insights into Supramolecular Self-Assembly, Microencapsulation, and Imaging Microscopy. Molecules 2021; 26:4264. [PMID: 34299539 PMCID: PMC8306603 DOI: 10.3390/molecules26144264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022] Open
Abstract
The molecular interactions of anionic tetrasulfonate phenyl porphyrin (TPPS) with poly(amido amine) (PAMAM) dendrimers of generation 2.0 and 4.0 (G2 and G4, respectively) forming H- or J-aggregates, as well as with human and bovine serum albumin proteins (HSA and BSA), were reviewed in the context of self-assembly molecular complementarity. The spectroscopic studies were extended to the association of aluminum phthtalocyanine (AlPCS4) detected with a PAMAM G4 dendrimer with fluorescence studies in both steady state and dynamic state, as well as due to the fluorescence quenching associated to electron-transfer with a distribution of lifetimes. The functionalization of TPPS with peripheral substituents enables the assignment of spontaneous pH-induced aggregates with different and well-defined morphologies. Other work reported in the literature, in particular with soft self-assembly materials, fall in the same area with particular interest for the environment. The microencapsulation of TPPS studies into polyelectrolyte capsules was developed quite recently and aroused much interest, which is well supported and complemented by the extensive data reported on the Imaging Microscopy section of the Luminescence of Porphyrins and Phthalocyanines included in the present review.
Collapse
Affiliation(s)
- Raquel Teixeira
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Vanda Vaz Serra
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - David Botequim
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Pedro M R Paulo
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Suzana M Andrade
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Sílvia M B Costa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
9
|
Du X, Zhai J, Li X, Zhang Y, Li N, Xie X. Hydrogel-Based Optical Ion Sensors: Principles and Challenges for Point-of-Care Testing and Environmental Monitoring. ACS Sens 2021; 6:1990-2001. [PMID: 34044533 DOI: 10.1021/acssensors.1c00756] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogel is a unique family of biocompatible materials with growing applications in chemical and biological sensors. During the past few decades, various hydrogel-based optical ion sensors have been developed aiming at point-of-care testing and environmental monitoring. In this Perspective, we provide an overview of the research field including topics such as photonic crystals, DNAzyme cross-linked hydrogels, ionophore-based ion sensing hydrogels, and fluoroionophore-based optodes. As the different sensing principles are summarized, each strategy offers its advantages and limitations. In a nutshell, developing optical ion sensing hydrogels is still in the early stage with many opportunities lying ahead, especially with challenges in selectivity, assay time, detection limit, and usability.
Collapse
Affiliation(s)
- Xinfeng Du
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingying Zhai
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaoang Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yupu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Niping Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
10
|
Phosphorescence-based ratiometric probes: Design, preparation and applications in sensing, imaging and biomedicine therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213694] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Cheng Q, Hao A, Xing P. Stimulus-responsive luminescent hydrogels: Design and applications. Adv Colloid Interface Sci 2020; 286:102301. [PMID: 33160099 DOI: 10.1016/j.cis.2020.102301] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 11/15/2022]
Abstract
Luminescent hydrogels are emerging soft materials with applications in photoelectric, biomedicine, sensors and actuators, which are fabricated via covalently conjugation of luminophors to hydrogelators or physical loading of luminescent organic/inorganic materials into hydrogel matrices. Due to the intrinsic stimulus-responsiveness for hydrogels such as thermo-, pH, ionic strength, light and redox, luminescent hydrogels could respond to external physical or chemical stimuli through varying the luminescent properties such as colors, fluorescent intensity and so on, affording diverse application potential in addition to the pristine individual hydrogels or luminescent materials. Based on the rapid development of such area, here we systematically summarize and discuss the design protocols, properties as well as the applications of stimulus-responsive luminescent hydrogels. Because of the stimuli-responsiveness, biocompatibility, injectable and controllability of luminescent hydrogels, they are widely used as functional smart materials. We illustrate the applications of luminescent hydrogels. The future developments about luminescent hydrogels are also presented.
Collapse
Affiliation(s)
- Qiuhong Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|
12
|
Lovell JF. Thinking outside the macrocycle: Potential biomedical roles for nanostructured porphyrins and phthalocyanines — a SPP/JPP Young Investigator Award paper. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620300086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Porphyrins and phthalocyanines feature strong light absorption, capacity for metal chelation, and a track record of use in human therapeutic applications. Various conjugates and formulations of these macrocycles have shown potential to forge new applications in the biomedical sciences. Our lab has explored several such approaches including porphyrin polymer hydrogels, porphyrin-lipid nanovesicles, and surfactant-stripped micelles. These all feature in common a high density of tetrapyrroles, as well as unique functional properties. Porphyrin polymer hydrogels with high porphyrin density and bright fluorescence emission were demonstrated for use as a new class of implantable biosensors. Porphyrin-lipid nanovesicles hold potential for phototherapy, imaging, and also drug and vaccine delivery. Surfactant-stripped micelles have been developed for high-contrast photoacoustic imaging. In this ICPP Young Investigator Award brief perspective, we discuss our own efforts on these fronts. Taken together, the results show that tetrapyrroles enable new approaches for tackling biomedical problems and also confirm what was already well-known to members of the Society of Porphyrins and Phthalocyanines: that these molecules are remarkably versatile and enable research to flow in unexpected directions.
Collapse
Affiliation(s)
- Jonathan F. Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, 14260 USA
| |
Collapse
|
13
|
|
14
|
Erzunov D, Vashurin A, Pukhovskaya S, Ivanova Y, Semeykin A, Golubchikov O, Mamardashvili N. Interdependence between structure of nitro-substituted palladium and zinc porphyrinates and its spectral, coordination and acid-base properties. J Mol Struct 2019; 1192:7-14. [DOI: 10.1016/j.molstruc.2019.04.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Wilson RL, Connell JP, Grande-Allen KJ. Monitoring Oxygen Levels within Large, Tissue-Engineered Constructs Using Porphyin-Hydrogel Microparticles. ACS Biomater Sci Eng 2019; 5:4522-4530. [PMID: 33438417 DOI: 10.1021/acsbiomaterials.9b00257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A major barrier to the creation of engineered organs is the limited diffusion of oxygen through biological tissues. Advances in biofabrication bring us increasingly closer to complex vascular networks capable of supplying oxygen to large cellularized scaffolds. However, technologies for monitoring oxygen levels in engineered tissues do not accommodate imaging depths of more than a few dozen micrometers. Here, we report the creation of fluorescent porphyrin-hydrogel microparticles that can be used at depths of 2 mm into artificial tissues. By combining an oxygen-responsive porphyrin dye with a reference dye, the microparticles generate a ratiometric signal that is photostable, unaffected by attenuation from biological material, and responsive to physiological change in oxygen concentration. These microparticles can measure long-distance oxygen gradients within 3D, cellularized constructs and accurately report cellular oxygen consumption rates. Furthermore, they are compatible with a number of hydrogel polymerization chemistries and cell types, including primary human cells. We believe this technology will significantly advance efforts to visualize oxygen gradients in cellularized constructs and inform efforts to tissue engineer solid organs.
Collapse
Affiliation(s)
- Reid L Wilson
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Jennifer P Connell
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - K Jane Grande-Allen
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
16
|
Zhao H, Zang L, Xu K, Kou M, Zhang Z. Enhanced oxygen sensing sensitivity by eliminating the protection of triplet phosphorescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 217:310-314. [PMID: 30953923 DOI: 10.1016/j.saa.2019.03.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
High oxygen sensitivity (the slope of the Stern-Volmer plot reaches 0.73/μM) is achieved with a phosphorescence indicator, gadolinium-hematoporphyrin monomethyl ether (Gd-HMME), by decreasing the extent of its protection. In air-saturated solution, the phosphorescence quantum efficiency (QE) of Gd-HMME in a non-rigid microenvironment is lower than that in a rigid microenvironment. In contrast, when oxygen is removed, the QE of Gd-HMME in the non-rigid microenvironment was found to be same as that of Gd-HMME in the rigid microenvironment. This indicates that Gd-HMME is much more sensitive to oxygen in the non-rigid microenvironment. The oxygen sensitivity of Gd-HMME was found to increase as the rigidity of its microenvironment decreases. The oxygen response of Gd-HMME without any protection reaches 240 (0-374 μM oxygen), whereas that in the rigid microenvironment is only 3 in this range. The measurement precision of Gd-HMME without any protection is lower than that in the rigid microenvironment. These results indicate that the measurement of oxygen in different concentration ranges would require the rigidity of the microenvironment to be varied. Gd-HMME without any protection can be applied to detect oxygen as low as 0.1 μM. The detection limit of oxygen was evaluated to be as low as 20 nM based on Gd-HMME without any protection.
Collapse
Affiliation(s)
- Huimin Zhao
- Shandong Provincial Engineering and Technical Center of Light Manipulations, Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ji'nan 250014, China.
| | - Lixin Zang
- Shandong Provincial Engineering and Technical Center of Light Manipulations, Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ji'nan 250014, China.
| | - Kehua Xu
- Shandong Provincial Engineering and Technical Center of Light Manipulations, Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ji'nan 250014, China
| | - Meng Kou
- Shandong Provincial Engineering and Technical Center of Light Manipulations, Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ji'nan 250014, China
| | - Zhiguo Zhang
- Condensed Matter Science and Technology Institute and Department of Physics, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
17
|
Feng X, Liu C, Wang X, Jiang Y, Yang G, Wang R, Zheng K, Zhang W, Wang T, Jiang J. Functional Supramolecular Gels Based on the Hierarchical Assembly of Porphyrins and Phthalocyanines. Front Chem 2019; 7:336. [PMID: 31157209 PMCID: PMC6530257 DOI: 10.3389/fchem.2019.00336] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/25/2019] [Indexed: 11/13/2022] Open
Abstract
Supramolecular gels containing porphyrins and phthalocyanines motifs are attracting increased interests in a wide range of research areas. Based on the supramolecular gels systems, porphyrin or phthalocyanines can form assemblies with plentiful nanostructures, dynamic, and stimuli-responsive properties. And these π-conjugated molecular building blocks also afford supramolecular gels with many new features, depending on their photochemical and electrochemical characteristics. As one of the most characteristic models, the supramolecular chirality of these soft matters was investigated. Notably, the application of supramolecular gels containing porphyrins and phthalocyanines has been developed in the field of catalysis, molecular sensing, biological imaging, drug delivery and photodynamic therapy. And some photoelectric devices were also fabricated depending on the gelation of porphyrins or phthalocyanines. This paper presents an overview of the progress achieved in this issue along with some perspectives for further advances.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tianyu Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
18
|
Russell GM, Inamori D, Masai H, Tamaki T, Terao J. Luminescent and mechanical enhancement of phosphorescent hydrogel through cyclic insulation of platinum-acetylide crosslinker. Polym Chem 2019. [DOI: 10.1039/c9py00700h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An insulated Pt-acetylide complex was incorporated into a polymer network as a crosslinker to afford a phosphorescent gel.
Collapse
Affiliation(s)
- Go M. Russell
- Department of Basic Science
- Graduate School of Arts and Sciences
- The niversity of Tokyo
- Tokyo 153-8902
- Japan
| | - Daiki Inamori
- Department of Basic Science
- Graduate School of Arts and Sciences
- The niversity of Tokyo
- Tokyo 153-8902
- Japan
| | - Hiroshi Masai
- Department of Basic Science
- Graduate School of Arts and Sciences
- The niversity of Tokyo
- Tokyo 153-8902
- Japan
| | - Takashi Tamaki
- Department of Basic Science
- Graduate School of Arts and Sciences
- The niversity of Tokyo
- Tokyo 153-8902
- Japan
| | - Jun Terao
- Department of Basic Science
- Graduate School of Arts and Sciences
- The niversity of Tokyo
- Tokyo 153-8902
- Japan
| |
Collapse
|
19
|
Chitgupi U, Lovell JF, Rajendiran V. Assessing Photosensitizer Targeting Using Meso-Tetra(Carboxyphenyl) Porphyrin. Molecules 2018; 23:molecules23040892. [PMID: 29649139 PMCID: PMC6017280 DOI: 10.3390/molecules23040892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/28/2018] [Accepted: 04/10/2018] [Indexed: 11/16/2022] Open
Abstract
Mesotetra(4-carboxyphenyl)porphyrin (mTCPP) is a commercially available small molecule fluorophore and photosensitizer with four free carboxylic acid groups. mTCPP can readily be conjugated with amines for facile attachment of functional groups. In this work, we synthesized and assessed tetravalent, lysine-conjugated mTCPP, for its potential applications in targeted imaging and photodynamic therapy. Fmoc-protected d-lysine or l-lysine was conjugated to mTCPP via amide coupling with the epsilon amine group of lysine, followed by Fmoc deprotection. The resulting compounds did not dissolve well in aqueous solvent, but could be solubilized with the assistance of surfactants, including cholic acid. The l-amino acid transporter (LAT1) can uptake diverse neutral l-amino acids. In vitro studies with U87 cells revealed a non-specific uptake of the hydrophobic Fmoc-protected lysine-conjugated mTCPP precursors, but not d- or l-lysine mTCPP. Likewise, only the Fmoc-protected compounds induced substantial phototoxicty in cells following incubation and irradiation with blue light. These experimental results do not provide evidence to suggest that lysine-mTCPP is able to specifically target cancer cells. However, they do highlight mTCPP as a convenient and accessible framework for assessing molecular targeting of photosensitizers.
Collapse
Affiliation(s)
- Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, NY 14260, USA.
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, NY 14260, USA.
| | - Venugopal Rajendiran
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, NY 14260, USA.
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610005, India.
| |
Collapse
|
20
|
Bejan A, Ailincai D, Simionescu BC, Marin L. Chitosan hydrogelation with a phenothiazine based aldehyde: a synthetic approach toward highly luminescent biomaterials. Polym Chem 2018. [DOI: 10.1039/c7py01678f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hydrogelation of chitosan with a photoactive aldehyde via covalent dynamic chemistry proved an original approach towards efficient luminescent biomaterials.
Collapse
Affiliation(s)
- Andrei Bejan
- “Petru Poni” Institute of Macromolecular Chemistry
- Romanian Academy
- 700487 Iasi
- Romania
| | - Daniela Ailincai
- “Petru Poni” Institute of Macromolecular Chemistry
- Romanian Academy
- 700487 Iasi
- Romania
| | - Bogdan C. Simionescu
- “Petru Poni” Institute of Macromolecular Chemistry
- Romanian Academy
- 700487 Iasi
- Romania
- Department of Synthetic and Natural Polymers
| | - Luminita Marin
- “Petru Poni” Institute of Macromolecular Chemistry
- Romanian Academy
- 700487 Iasi
- Romania
| |
Collapse
|
21
|
Hizir MS, Robertson NM, Balcioglu M, Alp E, Rana M, Yigit MV. Universal sensor array for highly selective system identification using two-dimensional nanoparticles. Chem Sci 2017; 8:5735-5745. [PMID: 28989614 PMCID: PMC5621473 DOI: 10.1039/c7sc01522d] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022] Open
Abstract
A typical lock-and-key sensing strategy, relying only on the most dominant interactions between the probe and target, could be too limiting. In reality, the information received upon sensing is much richer. Non-specific events due to various intermolecular forces contribute to the overall received information with different degrees, and when analyzed, could provide a much more powerful detection opportunity. Here, we have assembled a highly selective universal sensor array using water-soluble two-dimensional nanoparticles (nGO, MoS2 and WS2) and fluorescent DNA molecules. The array is composed of 12 fluorescently silent non-specific nanoreceptors (2D-nps) and used for the identification of three radically different systems; five proteins, three types of live breast cancer cells and a structure-switching event of a macromolecule. The data matrices for each system were processed using Partial Least Squares (PLS) discriminant analysis. In all of the systems, the sensor array was able to identify each object or event as separate clusters with 95% confidence and without any overlap. Out of 15 unknown entities with unknown protein concentrations tested, 14 of them were predicted successfully with correct concentration. 8 breast cancer cell samples out of 9 unknown entities from three cell types were predicted correctly. During the assembly of each nanoprobe, the intrinsic non-covalent interactions between unmodified 2D nanoparticles and ssDNAs were exploited. The unmodified 2D materials offer remarkable simplicity in the layout and the use of ssDNAs as probes provides limitless possibilities because the natural interaction of a ssDNA and 2D surface can be fine-tuned with the nucleobase composition, oligonucleotide length and type of 2D nanomaterial. Therefore, the approach described here can be advanced and fine-tuned indefinitely for meeting a particular sensing criterion. Though we have only studied three distinct elements, this approach is universal enough to be applied to a wide-range of systems.
Collapse
Affiliation(s)
- Mustafa Salih Hizir
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA . ; Tel: +1-518-442-3002
| | - Neil M Robertson
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA . ; Tel: +1-518-442-3002
| | - Mustafa Balcioglu
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA . ; Tel: +1-518-442-3002
| | - Esma Alp
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA . ; Tel: +1-518-442-3002
| | - Muhit Rana
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA . ; Tel: +1-518-442-3002
| | - Mehmet V Yigit
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA . ; Tel: +1-518-442-3002
- The RNA Institute , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA
| |
Collapse
|
22
|
Ozawa F, Okitsu T, Takeuchi S. Improvement in the Mechanical Properties of Cell-Laden Hydrogel Microfibers Using Interpenetrating Polymer Networks. ACS Biomater Sci Eng 2017; 3:392-398. [DOI: 10.1021/acsbiomaterials.6b00619] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Fumisato Ozawa
- Institute
of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Takeuchi
Biohybrid Innovation Project, Exploratory Research for Advanced Technology
(ERATO), Japan Science and Technology (JST), Komaba Open Laboratory (KOL), Room
M202, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Teru Okitsu
- Institute
of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Takeuchi
Biohybrid Innovation Project, Exploratory Research for Advanced Technology
(ERATO), Japan Science and Technology (JST), Komaba Open Laboratory (KOL), Room
M202, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Shoji Takeuchi
- Institute
of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Takeuchi
Biohybrid Innovation Project, Exploratory Research for Advanced Technology
(ERATO), Japan Science and Technology (JST), Komaba Open Laboratory (KOL), Room
M202, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
23
|
Huang H, Chauhan S, Geng J, Qin Y, Watson DF, Lovell JF. Implantable Tin Porphyrin-PEG Hydrogels with pH-Responsive Fluorescence. Biomacromolecules 2017; 18:562-567. [PMID: 28146351 PMCID: PMC6232081 DOI: 10.1021/acs.biomac.6b01715] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetracarboxy porphyrins can be polymerized with polyethylene glycol (PEG) diamines to generate hydrogels with intense, near-infrared, and transdermal fluorescence following subcutaneous implantation. Here, we show that the high density porphyrins of the preformed polymer can be chelated with tin via simple incubation. Tin porphyrin hydrogels exhibited increasing emission intensities, ratios, and lifetimes from pH 1 to 10. Tin porphyrin hydrogel emission was strongly reversible and pH responsiveness was observed in the physiological range between pH 6 and pH 8. pH-sensitive emission was detected via noninvasive transdermal fluorescence imaging in vivo following subcutaneous implantation in mice.
Collapse
Affiliation(s)
- Haoyuan Huang
- Department of Biomedical Engineering and ‡Department of Chemistry, University at Buffalo, State University of New York , Buffalo, New York 14260, United States
| | - Saurabh Chauhan
- Department of Biomedical Engineering and ‡Department of Chemistry, University at Buffalo, State University of New York , Buffalo, New York 14260, United States
| | - Jumin Geng
- Department of Biomedical Engineering and ‡Department of Chemistry, University at Buffalo, State University of New York , Buffalo, New York 14260, United States
| | - Yiru Qin
- Department of Biomedical Engineering and ‡Department of Chemistry, University at Buffalo, State University of New York , Buffalo, New York 14260, United States
| | - David F Watson
- Department of Biomedical Engineering and ‡Department of Chemistry, University at Buffalo, State University of New York , Buffalo, New York 14260, United States
| | - Jonathan F Lovell
- Department of Biomedical Engineering and ‡Department of Chemistry, University at Buffalo, State University of New York , Buffalo, New York 14260, United States
| |
Collapse
|
24
|
Solomonov AV, Shipitsyna MK, Vashurin AS, Rumyantsev EV, Timin AS, Ivanov SP. Analysis of binding ability of two tetramethylpyridylporphyrins to albumin and its complex with bilirubin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 168:12-20. [PMID: 27267279 DOI: 10.1016/j.saa.2016.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/27/2016] [Accepted: 05/28/2016] [Indexed: 06/06/2023]
Abstract
An interaction between 5,10,15,20-tetrakis-(N-methyl-x-pyridyl)porphyrins, x=2; 4 (TMPyPs) with bovine serum albumin (BSA) and its bilirubin (BR) complex was investigated by UV-Viz and fluorescence spectroscopy under imitated physiological conditions involving molecular docking studies. The parameters of forming intermolecular complexes (binding constants, quenching rate constants, quenching sphere radius etc.) were determined. It was showed that the interaction between proteins and TMPyPs occurs via static quenching of protein fluorescence and has predominantly hydrophobic and electrostatic character. It was revealed that obtained complexes are relatively stable, but in the case of TMPyP4 binding with proteins occurs better than TMPyP2. Nevertheless, both TMPyPs have better binding ability with free protein compared to BRBSA at the same time. The influence of TMPyPs on the conformational changes in protein molecules was studied using synchronous fluorescence spectroscopy. It was found that there is no competition of BR with TMPyPs for binging sites on protein molecule and BR displacement does not occur. Molecular docking calculations have showed that TMPyPs can bind with albumin via tryptophan residue in the hydrophilic binding site of protein molecule but it is not one possible interaction way.
Collapse
Affiliation(s)
- Alexey V Solomonov
- Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology, 7 Sheremetevskij prosp., 153000 Ivanovo, Russian Federation; Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Maria K Shipitsyna
- Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology, 7 Sheremetevskij prosp., 153000 Ivanovo, Russian Federation.
| | - Arthur S Vashurin
- Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology, 7 Sheremetevskij prosp., 153000 Ivanovo, Russian Federation.
| | - Evgeniy V Rumyantsev
- Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology, 7 Sheremetevskij prosp., 153000 Ivanovo, Russian Federation.
| | - Alexander S Timin
- Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology, 7 Sheremetevskij prosp., 153000 Ivanovo, Russian Federation; Tomsk Polytechnic University, RASA Center in Tomsk, 30, Lenin Avenue, 634500 Tomsk, Russian Federation.
| | - Sergey P Ivanov
- Ufa Institute of Chemistry of the Russian Academy of Sciences, Prosp. Oktyabrya 71, Ufa 450045, Russian Federation.
| |
Collapse
|
25
|
Paolesse R, Nardis S, Monti D, Stefanelli M, Di Natale C. Porphyrinoids for Chemical Sensor Applications. Chem Rev 2016; 117:2517-2583. [PMID: 28222604 DOI: 10.1021/acs.chemrev.6b00361] [Citation(s) in RCA: 442] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porphyrins and related macrocycles have been intensively exploited as sensing materials in chemical sensors, since in these devices they mimic most of their biological functions, such as reversible binding, catalytic activation, and optical changes. Such a magnificent bouquet of properties allows applying porphyrin derivatives to different transducers, ranging from nanogravimetric to optical devices, also enabling the realization of multifunctional chemical sensors, in which multiple transduction mechanisms are applied to the same sensing layer. Potential applications are further expanded through sensor arrays, where cross-selective sensing layers can be applied for the analysis of complex chemical matrices. The possibility of finely tuning the macrocycle properties by synthetic modification of the different components of the porphyrin ring, such as peripheral substituents, molecular skeleton, coordinated metal, allows creating a vast library of porphyrinoid-based sensing layers. From among these, one can select optimal arrays for a particular application. This feature is particularly suitable for sensor array applications, where cross-selective receptors are required. This Review briefly describes chemical sensor principles. The main part of the Review is divided into two sections, describing the porphyrin-based devices devoted to the detection of gaseous or liquid samples, according to the corresponding transduction mechanism. Although most devices are based on porphyrin derivatives, seminal examples of the application of corroles or other porphyrin analogues are evidenced in dedicated sections.
Collapse
Affiliation(s)
- Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome Tor Vergata , via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Sara Nardis
- Department of Chemical Science and Technologies, University of Rome Tor Vergata , via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Donato Monti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata , via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Manuela Stefanelli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata , via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata , via del Politecnico, 00133 Rome, Italy
| |
Collapse
|
26
|
Zhang Y, Wang D, Goel S, Sun B, Chitgupi U, Geng J, Sun H, Barnhart TE, Cai W, Xia J, Lovell JF. Surfactant-Stripped Frozen Pheophytin Micelles for Multimodal Gut Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8524-8530. [PMID: 27396479 PMCID: PMC5142297 DOI: 10.1002/adma.201602373] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/10/2016] [Indexed: 05/03/2023]
Abstract
Edible, surfactant-stripped, frozen micelles are formed from pheophytin (demetallated chlorophyll), a pigment that is naturally consumed in human diets. Pheophytin nanoparticles pass completely and safely through the gastrointestinal tract and enable trimodal gut contrast imaging via photoacoustic, fluorescence, and positron emission tomography techniques.
Collapse
Affiliation(s)
- Yumiao Zhang
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Depeng Wang
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Shreya Goel
- Materials Science Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Boyang Sun
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Jumin Geng
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Haiyan Sun
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
27
|
Dong X, Wei C, Liu T, Lv F, Qian Z. Real-Time Fluorescence Tracking of Protoporphyrin Incorporated Thermosensitive Hydrogel and Its Drug Release in Vivo. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5104-13. [PMID: 26848506 DOI: 10.1021/acsami.5b11493] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xia Dong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People’s Republic of China
| | - Chang Wei
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People’s Republic of China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People’s Republic of China
| | - Feng Lv
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People’s Republic of China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy/Collaborative Innovation
Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| |
Collapse
|
28
|
Huang H, Hernandez R, Geng J, Sun H, Song W, Chen F, Graves SA, Nickles RJ, Cheng C, Cai W, Lovell JF. A porphyrin-PEG polymer with rapid renal clearance. Biomaterials 2016; 76:25-32. [PMID: 26517562 PMCID: PMC4662896 DOI: 10.1016/j.biomaterials.2015.10.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/16/2015] [Accepted: 10/18/2015] [Indexed: 01/06/2023]
Abstract
Tetracarboxylic porphyrins and polyethylene glycol (PEG) diamines were crosslinked in conditions that gave rise to a water-soluble porphyrin polyamide. Using PEG linkers 2 kDa or larger prevented fluorescence self-quenching. This networked porphyrin mesh was retained during dialysis with membranes with a 100 kDa pore size, yet passed through the membrane when centrifugal filtration was applied. Following intravenous administration, the porphyrin mesh, but not the free porphyrin, was rapidly cleared via renal excretion. The process could be monitored by fluorescence analysis of collected urine, with minimal background due to the large Stokes shift of the porphyrin (230 nm separating excitation and emission peaks). In a rhabdomyolysis mouse model of renal failure, porphyrin mesh urinary clearance was significantly impaired. This led to slower accumulation in the bladder, which could be visualized non-invasively via fluorescence imaging. Without further modification, the porphyrin mesh was chelated with (64)Cu for dynamic whole body positron emission tomography imaging of renal clearance. Together, these data show that small porphyrin-PEG polymers can serve as effective multimodal markers of renal function.
Collapse
Affiliation(s)
- Haoyuan Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA; Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Reinier Hernandez
- Department of Radiology and Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Jumin Geng
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Haotian Sun
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Wentao Song
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Feng Chen
- Department of Radiology and Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Stephen A Graves
- Department of Radiology and Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Robert J Nickles
- Department of Radiology and Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Chong Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Weibo Cai
- Department of Radiology and Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA; Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
29
|
Huang H, Song W, Rieffel J, Lovell JF. Emerging applications of porphyrins in photomedicine. FRONTIERS IN PHYSICS 2015; 3:23. [PMID: 28553633 PMCID: PMC5445930 DOI: 10.3389/fphy.2015.00023] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biomedical applications of porphyrins and related molecules have been extensively pursued in the context of photodynamic therapy. Recent advances in nanoscale engineering have opened the door for new ways that porphyrins stand to potentially benefit human health. Metalloporphyrins are inherently suitable for many types of medical imaging and therapy. Traditional nanocarriers such as liposomes, dendrimers and silica nanoparticles have been explored for photosensitizer delivery. Concurrently, entirely new classes of porphyrin nanostructures are being developed, such as smart materials that are activated by specific biochemicals encountered at disease sites. Techniques have been developed that improve treatments by combining biomaterials with photosensitizers and functional moieties such as peptides, DNA and antibodies. Compared to simpler structures, these more complex and functional designs can potentially decrease side effects and lead to safer and more efficient phototherapies. This review examines recent research on porphyrin-derived materials in multimodal imaging, drug delivery, bio-sensing, phototherapy and probe design, demonstrating their bright future for biomedical applications.
Collapse
Affiliation(s)
- Haoyuan Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Wentao Song
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - James Rieffel
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
30
|
Robertson NM, Hizir MS, Balcioglu M, Rana M, Yumak H, Ecevit O, Yigit MV. Monitoring the multitask mechanism of DNase I activity using graphene nanoassemblies. Bioconjug Chem 2015; 26:735-45. [PMID: 25734834 DOI: 10.1021/acs.bioconjchem.5b00067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here we have demonstrated that graphene serves as a remarkable platform for monitoring the multitask activity of an enzyme with fluorescence spectroscopy. Our studies showed that four different simultaneous enzymatic tasks of DNase I can be observed and measured in a high throughput fashion using graphene oxide and oligonucleotide nanoassemblies. We have used phosphorothioate modified oligonucleotides to pinpoint the individual and highly specific functions of DNase I with single stranded DNA, RNA, and DNA/DNA and DNA/RNA duplexes. DNase I resulted in fluorescence recovery in the nanoassemblies and enhanced the intensity tremendously in the presence of sequence specific DNA or RNA molecules with different degrees of amplification. Our study enabled us to discover the sources of this remarkable signal enhancement, which has been used for biomedical applications of graphene for sensitive detection of specific oncogenes. The significant difference in the signal amplification observed for the detection of DNA and RNA molecules is a result of the positive and/or reductive signal generating events with the enzyme. In the presence of DNA there are four possible ways that the fluorescence reading is influenced, with two of them resulting in a gain in signal while the other two result in a loss. Since the observed signal is a summation of all the events together, the absence of the two fluorescence reduction events with RNA gives a greater degree of fluorescence signal enhancement when compared to target DNA molecules. Overall, our study demonstrates that graphene has powerful features for determining the enzymatic functions of a protein and reveals some of the unknowns observed in the graphene and oligonucleotide assemblies with DNase I.
Collapse
Affiliation(s)
| | | | | | | | - Hasan Yumak
- §Department of Science, BMCC, City University of New York, 199 Chambers Street, New York, New York 10007, United States
| | - Ozgur Ecevit
- §Department of Science, BMCC, City University of New York, 199 Chambers Street, New York, New York 10007, United States
| | | |
Collapse
|
31
|
Balcioglu M, Buyukbekar BZ, Yavuz MS, Yigit MV. Smart-Polymer-Functionalized Graphene Nanodevices for Thermo-Switch-Controlled Biodetection. ACS Biomater Sci Eng 2014; 1:27-36. [DOI: 10.1021/ab500029h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mustafa Balcioglu
- Department
of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Burak Zafer Buyukbekar
- Department
of Metallurgy and Materials Engineering, Advanced Technology Research
and Application Center, Selcuk University, Konya, Turkey
| | - Mustafa Selman Yavuz
- Department
of Metallurgy and Materials Engineering, Advanced Technology Research
and Application Center, Selcuk University, Konya, Turkey
| | - Mehmet V. Yigit
- Department
of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
32
|
Low-bandgap biophotonic nanoblend: a platform for systemic disease targeting and functional imaging. Biomaterials 2014; 39:225-33. [PMID: 25465444 DOI: 10.1016/j.biomaterials.2014.10.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 01/16/2023]
Abstract
Photonic nanomaterials have found wide applications in theranostics. We introduce here a design of all-organic photonic nanoparticles, different from traditional ones, in which we utilize nanoblend of a low-bandgap π-conjugated polymer (LB-CP) and polystyrene as the photonic core, surrounded by an FDA-approved polymeric surfactant. This design provides capability for efficient deep tissue imaging using highly penetrating near-infrared (NIR) excitation and emission of LB-CP and also allows us to incorporate a NIR phosphorescent oxygen-sensitive dye in the core to serve as a dual-emissive probe for hypoxia imaging. These biophotonic nanoblend (BNB) particles (∼20 nm in diameter) show facile blood circulation, efficient disease targeting and minimal liver filtration as well as sustained renal excretion in the intravenously administered mouse models, as noninvasively visualized by the NIR emission signals. In diseased mouse models, pathological tissue deoxygenation at hypoxic sites was successfully detected with ratiometric spectral information. We also show that our nanoformulation exhibits no apparent toxicity, thus serving as a versatile biophotonics platform for diagnostic imaging.
Collapse
|
33
|
Hizir MS, Balcioglu M, Rana M, Robertson NM, Yigit MV. Simultaneous detection of circulating oncomiRs from body fluids for prostate cancer staging using nanographene oxide. ACS APPLIED MATERIALS & INTERFACES 2014; 6:14772-8. [PMID: 25158299 DOI: 10.1021/am504190a] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Circulating oncomiRs are highly stable diagnostic, prognostic, and therapeutic tumor biomarkers, which can reflect the status of the disease and response to cancer therapy. miR-141 is an oncomiR, which is overexpressed in advanced prostate cancer patients, whereas its expression is at the normal levels in the early stages of the disease. On the other hand, miR-21 is significantly elevated in the early stage, but not in the advanced prostate cancer. Here, we have demonstrated simultaneous detection of exogenous miR-21 and miR-141 from human body fluids including blood, urine and saliva using nanographene oxide. Our system enables us to specifically and reliably detect each oncomiR at different fluorescence emission channels from a large population of RNAs extracted from body fluids. We were also able to determine the content and the ratio of the miR-21 and miR-141 in 10 different miRNA cocktails composed of various, but unknown, concentrations of both oncomiRs. A strong agreement (around 90%) between the experimental results and the actual miRNA compositions was observed. Moreover, we have demonstrated that overexpressed miR-21 or miR-141 increases the fluorescence only at their signature wavelengths of 520 and 670 nm, respectively. The approach in this study combines two emerging fields of nanographene in biomedicine and the role of circulating miRNAs in cancer. Our strategy has the potential to address the current challenges in diagnosis, prognosis and staging of prostate cancer with a non- or minimally invasive approach.
Collapse
Affiliation(s)
- Mustafa Salih Hizir
- Department of Chemistry and ‡RNA Institute, University at Albany, SUNY , 1400 Washington Avenue, Albany, New York 12222, United States
| | | | | | | | | |
Collapse
|
34
|
Balcioglu M, Rana M, Robertson N, Yigit MV. DNA-length-dependent quenching of fluorescently labeled iron oxide nanoparticles with gold, graphene oxide and MoS2 nanostructures. ACS APPLIED MATERIALS & INTERFACES 2014; 6:12100-12110. [PMID: 25014711 DOI: 10.1021/am503553h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We controlled the fluorescence emission of a fluorescently labeled iron oxide nanoparticle using three different nanomaterials with ultraefficient quenching capabilities. The control over the fluorescence emission was investigated via spacing introduced by the surface-functionalized single-stranded DNA molecules. DNA molecules were conjugated on different templates, either on the surface of the fluorescently labeled iron oxide nanoparticles or gold and nanographene oxide. The efficiency of the quenching was determined and compared with various fluorescently labeled iron oxide nanoparticle and nanoquencher combinations using DNA molecules with three different lengths. We have found that the template for DNA conjugation plays significant role on quenching the fluorescence emission of the fluorescently labeled iron oxide nanoparticles. We have observed that the size of the DNA controls the quenching efficiency when conjugated only on the fluorescently labeled iron oxide nanoparticles by setting a spacer between the surfaces and resulting change in the hydrodynamic size. The quenching efficiency with 12mer, 23mer and 36mer oligonucleotides decreased to 56%, 54% and 53% with gold nanoparticles, 58%, 38% and 32% with nanographene oxide, 46%, 38% and 35% with MoS2, respectively. On the other hand, the presence, not the size, of the DNA molecules on the other surfaces quenched the fluorescence significantly with different degrees. To understand the effect of the mobility of the DNA molecules on the nanoparticle surface, DNA molecules were attached to the surface with two different approaches. Covalently immobilized oligonucleotides decreased the quenching efficiency of nanographene oxide and gold nanoparticles to ∼22% and ∼21%, respectively, whereas noncovalently adsorbed oligonucleotides decreased it to ∼25% and ∼55%, respectively. As a result, we have found that each nanoquencher has a powerful quenching capability against a fluorescent nanoparticle, which can be tuned with surface functionalized DNA molecules.
Collapse
Affiliation(s)
- Mustafa Balcioglu
- Department of Chemistry and RNA Institute, University at Albany , SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| | | | | | | |
Collapse
|