1
|
Wu S, Wang H, Ren Y, Liu Y, Wen X. Generation of induced pluripotent stem cell-derived anterior foregut endoderms on integrin-binding short peptide-based synthetic substrates. Biomed Mater 2025; 20:035017. [PMID: 40132264 DOI: 10.1088/1748-605x/adc52b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 03/25/2025] [Indexed: 03/27/2025]
Abstract
Anterior foregut endoderms (AFEs) derived from induced pluripotent stem cells (iPSCs) are an important cell source in stem cell technology as they give rise to some important lineages like lung progenitors and thyroid cells. Coating substrates plays a critical role in AFE generation. Currently, conventional large molecule proteins like Matrigel are used in most differentiation protocols. However, the complex components and mechanisms of these coatings have limited both the exploration of cell-extracellular matrix (ECM) interaction and potential clinical applications. In this study, we identified eight pure synthetic integrin-binding short peptides as effective coatings for iPSC growth and AFE generation with an integrin-binding peptide array. Our results showed that integrinα5β1-,αVβ8-, andαIIbβ3-binding peptides supported the adhesion and expansion of iPSCs and AFE generation by guided differentiation via a definitive endoderm (DE) in a full-anchorage-dependent manner. AFE generation was also found on coatings based on integrinα3β1-,α6β1-,αVβ1-,αVβ6-, andαMβ2-binding peptides following a process with temporal suspension growth in the DE-inducing stage, with lower AFE generation efficiency compared to the full-anchorage-dependent peptide groups and Matrigel. According to the results, the integrinα5β1-binding peptide is the most promising defined substrate for inducing AFEs because of its equivalent efficiency with traditional Matrigel coating in supporting iPSC expansion and differentiation toward AFEs. Additionally, the other seven peptide-based coatings also exhibit potential and could be further investigated for developing synthetic-coating strategies in future studies involving AFEs. Our findings provide valuable insights into the role of integrin and ECM function and hold great potential for disease modeling as well as therapeutic exploration of AFE origin organs.
Collapse
Affiliation(s)
- Shujun Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Huan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Yanbei Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Ying Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Xuejun Wen
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23220, United States of America
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, People's Republic of China
| |
Collapse
|
2
|
Conde-González A, Glinka M, Dutta D, Wallace R, Callanan A, Oreffo ROC, Bradley M. Rapid fabrication and screening of tailored functional 3D biomaterials: Validation in bone tissue repair - Part II. BIOMATERIALS ADVANCES 2023; 145:213250. [PMID: 36563509 DOI: 10.1016/j.bioadv.2022.213250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/24/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Regenerative medicine strategies place increasingly sophisticated demands on 3D biomaterials to promote tissue formation at sites where tissue would otherwise not form. Ideally, the discovery/fabrication of the 3D scaffolds needs to be high-throughput and uniform to ensure quick and in-depth analysis in order to pinpoint appropriate chemical and mechanical properties of a biomaterial. Herein we present a versatile technique to screen new potential biocompatible acrylate-based 3D scaffolds with the ultimate aim of application in tissue repair. As part of this process, we identified an acrylate-based 3D porous scaffold that promoted cell proliferation followed by accelerated tissue formation, pre-requisites for tissue repair. Scaffolds were fabricated by a facile freeze-casting and an in-situ photo-polymerization route, embracing a high-throughput synthesis, screening and characterization protocol. The current studies demonstrate the dependence of cellular growth and vascularization on the porosity and intrinsic chemical nature of the scaffolds, with tuneable 3D scaffolds generated with large, interconnected pores suitable for cellular growth applied to skeletal reparation. Our studies showed increased cell proliferation, collagen and ALP expression, while chorioallantoic membrane assays indicated biocompatibility and demonstrated the angiogenic nature of the scaffolds. VEGRF2 expression in vivo observed throughout the 3D scaffolds in the absence of growth factor supplementation demonstrates a potential for angiogenesis. This novel platform provides an innovative approach to 3D scanning of synthetic biomaterials for tissue regeneration.
Collapse
Affiliation(s)
| | - Michael Glinka
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Deepanjalee Dutta
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Robert Wallace
- Orthopaedics and Trauma, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Anthony Callanan
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Edinburgh EH9 3DW, UK
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK.
| |
Collapse
|
3
|
Esfahani SN, Resto Irizarry AM, Xue X, Lee SBD, Shao Y, Fu J. Micro/nanoengineered technologies for human pluripotent stem cells maintenance and differentiation. NANO TODAY 2021; 41:101310. [PMID: 34745321 PMCID: PMC8570530 DOI: 10.1016/j.nantod.2021.101310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Human pluripotent stem cells (hPSCs) are a promising source of cells for cell replacement-based therapies as well as modeling human development and diseases in vitro. However, achieving fate control of hPSC with a high yield and specificity remains challenging. The fate specification of hPSCs is regulated by biochemical and biomechanical cues in their environment. Driven by this knowledge, recent exciting advances in micro/nanoengineering have been leveraged to develop a broad range of tools for the generation of extracellular biomechanical and biochemical signals that determine the behavior of hPSCs. In this review, we summarize such micro/nanoengineered technologies for controlling hPSC fate and highlight the role of biochemical and biomechanical cues such as substrate rigidity, surface topography, and cellular confinement in the hPSC-based technologies that are on the horizon.
Collapse
Affiliation(s)
- Sajedeh Nasr Esfahani
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samuel Byung-Deuk Lee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yue Shao
- Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Jiangping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
4
|
Yang L, Pijuan-Galito S, Rho HS, Vasilevich AS, Eren AD, Ge L, Habibović P, Alexander MR, de Boer J, Carlier A, van Rijn P, Zhou Q. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chem Rev 2021; 121:4561-4677. [PMID: 33705116 PMCID: PMC8154331 DOI: 10.1021/acs.chemrev.0c00752] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 02/07/2023]
Abstract
The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.
Collapse
Affiliation(s)
- Liangliang Yang
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sara Pijuan-Galito
- School
of Pharmacy, Biodiscovery Institute, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Hoon Suk Rho
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aliaksei S. Vasilevich
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lu Ge
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pamela Habibović
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Morgan R. Alexander
- School
of Pharmacy, Boots Science Building, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jan de Boer
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aurélie Carlier
- Department
of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Patrick van Rijn
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Qihui Zhou
- Institute
for Translational Medicine, Department of Stomatology, The Affiliated
Hospital of Qingdao University, Qingdao
University, Qingdao 266003, China
| |
Collapse
|
5
|
Nasir A, Thorpe J, Burroughs L, Meurs J, Pijuan‐Galito S, Irvine DJ, Alexander MR, Denning C. Discovery of a Novel Polymer for Xeno-Free, Long-Term Culture of Human Pluripotent Stem Cell Expansion. Adv Healthc Mater 2021; 10:e2001448. [PMID: 33369242 PMCID: PMC11469126 DOI: 10.1002/adhm.202001448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/08/2020] [Indexed: 12/28/2022]
Abstract
Human pluripotent stem cells (hPSCs) can be expanded and differentiated in vitro into almost any adult tissue cell type, and thus have great potential as a source for cell therapies with biomedical application. In this study, a fully-defined polymer synthetic substrate is identified for hPSC culture in completely defined, xenogenic (xeno)-free conditions. This system can overcome the cost, scalability, and reproducibility limitations of current hPSC culture strategies, and facilitate large-scale production. A high-throughput, multi-generational polymer microarray platform approach is used to test over 600 unique polymers and rapidly assess hPSC-polymer interactions in combination with the fully defined xeno-free medium, Essential 8 (E8). This study identifies a novel nanoscale phase separated blend of poly(tricyclodecane-dimethanol diacrylate) and poly(butyl acrylate) (2:1 v/v), which supports long-term expansion of hPSCs and can be readily coated onto standard cultureware. Analysis of cell-polymer interface interactions through mass spectrometry and integrin blocking studies provides novel mechanistic insight into the role of the E8 proteins in promoting integrin-mediated hPSC attachment and maintaining hPSC signaling, including ability to undergo multi-lineage differentiation. This study therefore identifies a novel substrate for long-term serial passaging of hPSCs in serum-free, commercial chemically-defined E8, which provides a promising and economic hPSC expansion platform for clinical-scale application.
Collapse
Affiliation(s)
- Aishah Nasir
- Division of Cancer & Stem CellsBiodiscovery InstituteUniversity of NottinghamNottinghamNG7 2RDUK
| | - Jordan Thorpe
- Division of Cancer & Stem CellsBiodiscovery InstituteUniversity of NottinghamNottinghamNG7 2RDUK
| | | | - Joris Meurs
- School of PharmacyUniversity of NottinghamNottinghamNG7 2RDUK
| | - Sara Pijuan‐Galito
- Division of Cancer & Stem CellsBiodiscovery InstituteUniversity of NottinghamNottinghamNG7 2RDUK
| | - Derek J. Irvine
- Department of Chemical and Environmental EngineeringUniversity of NottinghamNottinghamNG7 2RDUK
| | | | - Chris Denning
- Division of Cancer & Stem CellsBiodiscovery InstituteUniversity of NottinghamNottinghamNG7 2RDUK
| |
Collapse
|
6
|
Gong J, Tanner MG, Venkateswaran S, Stone JM, Zhang Y, Bradley M. A hydrogel-based optical fibre fluorescent pH sensor for observing lung tumor tissue acidity. Anal Chim Acta 2020; 1134:136-143. [PMID: 33059859 DOI: 10.1016/j.aca.2020.07.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 02/08/2023]
Abstract
Technologies for measuring physiological parameters in vivo offer the possibility of the detection of disease and its progression due to the resulting changes in tissue pH, or temperature, etc.. Here, a compact hydrogel-based optical fibre pH sensor was fabricated, in which polymer microarrays were utilized for the high-throughput discovery of an optimal matrix for pH indicator immobilization. The fabricated hydrogel-based probe responded rapidly to pH changes and demonstrated a good linear correlation within the physiological pH range (from 5.5 to 8.0) with a precision of 0.10 pH units. This miniature probe was validated by measuring pH across a whole ovine lung and allowed discrimination of tumorous and normal tissue, thus offering the potential for the rapid and accurate observation of tissue pH changes.
Collapse
Affiliation(s)
- Jingjing Gong
- School of Chemistry, EaStCHEM, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3FJ, UK; EPSRC Proteus Hub, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Michael G Tanner
- EPSRC Proteus Hub, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK; Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Seshasailam Venkateswaran
- School of Chemistry, EaStCHEM, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - James M Stone
- Centre for Photonics and Photonic Materials, Department of Physics, University of Bath, Bath, BA2 7AY, UK
| | - Yichuan Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mark Bradley
- School of Chemistry, EaStCHEM, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3FJ, UK; EPSRC Proteus Hub, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
7
|
Rosenfeld A, Oelschlaeger C, Thelen R, Heissler S, Levkin PA. Miniaturized high-throughput synthesis and screening of responsive hydrogels using nanoliter compartments. Mater Today Bio 2020; 6:100053. [PMID: 32462138 PMCID: PMC7240218 DOI: 10.1016/j.mtbio.2020.100053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023] Open
Abstract
The traditional pipeline of hydrogel development includes individual one-by-one synthesis and characterization of hydrogels. This approach is associated with the disadvantages of low-throughput and high cost. As an alternative approach to classical one-by-one synthesis, high-throughput development of hydrogels is still tremendously under-represented in the field of responsive material development, despite the urgent requirement for such techniques. Here, we report a platform that combines highly miniaturized hydrogel synthesis with screening for responsive properties in a high-throughput manner. The platform comprises a standard glass slide patterned with 1 × 1 mm hydrophilic regions separated by superhydrophobic liquid-impermeable barriers, thus allowing deposition of various precursor solutions onto the hydrophilic spots without cross-contamination. The confinement of these solutions provided by the hydrophilic/superhydrophobic pattern allows encapsulation of cells within the hydrogel, and enables variation in hydrogel height and width. We have also proved the proper mixing of chemicals within the nanoliter-sized droplets. We have successfully implemented this platform for the synthesis of hydrogels, constructing 53 unique hydrogels, to demonstrate the versatility and utility of the platform. Photodegradation studies were performed on 20 hydrogels, revealing structure/function relationships between the hydrogel composition and photodegradability, and covering the range of degradability from non-degradable to rapidly degradable materials.
Collapse
Affiliation(s)
- Alisa Rosenfeld
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS), Hermann-von Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Claude Oelschlaeger
- Karlsruhe Institute of Technology (KIT), Institute of Mechanical Process Engineering and Mechanics (MVM), Gotthard-Franz-Straße 3, 76131, Karlsruhe, Germany
| | - Richard Thelen
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT), Hermann-von Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Heissler
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Pavel A. Levkin
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS), Hermann-von Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, 76131, Karlsruhe, Germany
| |
Collapse
|
8
|
Zhang Y, Venkateswaran S, Higuera GA, Nath S, Shpak G, Matray J, Fratila-Apachitei LE, Zadpoor AA, Kushner SA, Bradley M, De Zeeuw CI. Synthetic Polymers Provide a Robust Substrate for Functional Neuron Culture. Adv Healthc Mater 2020; 9:e1901347. [PMID: 31943855 DOI: 10.1002/adhm.201901347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/28/2019] [Indexed: 12/11/2022]
Abstract
Substrates for neuron culture and implantation are required to be both biocompatible and display surface compositions that support cell attachment, growth, differentiation, and neural activity. Laminin, a naturally occurring extracellular matrix protein is the most widely used substrate for neuron culture and fulfills some of these requirements, however, it is expensive, unstable (compared to synthetic materials), and prone to batch-to-batch variation. This study uses a high-throughput polymer screening approach to identify synthetic polymers that supports the in vitro culture of primary mouse cerebellar neurons. This allows the identification of materials that enable primary cell attachment with high viability even under "serum-free" conditions, with materials that support both primary cells and neural progenitor cell attachment with high levels of neuronal biomarker expression, while promoting progenitor cell maturation to neurons.
Collapse
Affiliation(s)
- Yichuan Zhang
- School of Chemistry, Kings Buildings, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | | | - Gustavo A Higuera
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, NL-3015 GE, The Netherlands
| | - Suvra Nath
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628CD, Delft, The Netherlands
| | - Guy Shpak
- Department of Psychiatry, Erasmus MC Rotterdam, Rotterdam, NL-3015 GE, The Netherlands
- Department of Life Sciences, Erasmus University College, Rotterdam, 3011 HP, The Netherlands
| | - Jeffrey Matray
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628CD, Delft, The Netherlands
| | - Lidy E Fratila-Apachitei
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628CD, Delft, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628CD, Delft, The Netherlands
| | - Steven A Kushner
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628CD, Delft, The Netherlands
| | - Mark Bradley
- School of Chemistry, Kings Buildings, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, NL-3015 GE, The Netherlands
- Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105 BA, The Netherlands
| |
Collapse
|
9
|
Conde-González A, Dutta D, Wallace R, Callanan A, Bradley M. Rapid fabrication and screening of tailored functional 3D biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110489. [PMID: 31923957 DOI: 10.1016/j.msec.2019.110489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/09/2019] [Accepted: 11/23/2019] [Indexed: 11/16/2022]
Abstract
Three dimensional synthetic polymer scaffolds have remarkable chemical and mechanical tunability in addition to biocompatibility. However, the chemical and physical space is vast in view of the number of variables that can be altered e.g. chemical composition, porosity, pore size and mechanical properties to name but a few. Here, we report the development of an array of 3D polymer scaffolds, whereby the physical and chemical properties of the polymer substrates were controlled, characterized in parallel (e.g. micro-CT scanning of 24 samples) and biological properties screened. This approach allowed the screening of 48 different polymer scaffolds constructed in situ by means of freeze-casting and photo-polymerisation with the tunable composition and 3D architecture of the polymer scaffolds facilitating the identification of optimal 3D biomaterials. As a proof of concept, the array approach was used to identify 3D polymers that were capable of supporting cell growth while controlling their behaviour. Sitting alongside classical polymer microarray technology, this novel platform reduces the gap between the identification of a biomaterial in 2D and its subsequent 3D application.
Collapse
Affiliation(s)
| | - Deepanjalee Dutta
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Robert Wallace
- Orthopaedics and Trauma, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Anthony Callanan
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Edinburgh EH9 3DW, UK
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK.
| |
Collapse
|
10
|
Rasi Ghaemi S, Delalat B, Gronthos S, Alexander MR, Winkler DA, Hook AL, Voelcker NH. High-Throughput Assessment and Modeling of a Polymer Library Regulating Human Dental Pulp-Derived Stem Cell Behavior. ACS APPLIED MATERIALS & INTERFACES 2018; 10:38739-38748. [PMID: 30351898 DOI: 10.1021/acsami.8b12473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The identification of biomaterials that modulate cell responses is a crucial task for tissue engineering and cell therapy. The identification of novel materials is complicated by the immense number of synthesizable polymers and the time required for testing each material experimentally. In the current study, polymeric biomaterial-cell interactions were assessed rapidly using a microarray format. The attachment, proliferation, and differentiation of human dental pulp stem cells (hDPSCs) were investigated on 141 homopolymers and 400 diverse copolymers. The copolymer of isooctyl acrylate and 2-(methacryloyloxy)ethyl acetoacetate achieved the highest attachment and proliferation of hDPSC, whereas high cell attachment and differentiation of hDPSC were observed on the copolymer of isooctyl acrylate and trimethylolpropane ethoxylate triacrylate. Computational models were generated, relating polymer properties to cellular responses. These models could accurately predict cell behavior for up to 95% of materials within a test set. The models identified several functional groups as being important for supporting specific cell responses. In particular, oxygen-containing chemical moieties, including fragments from the acrylate/acrylamide backbone of the polymers, promoted cell attachment. Small hydrocarbon fragments originating from polymer pendant groups promoted cell proliferation and differentiation. These computational models constitute a key tool to direct the discovery of novel materials within the enormous chemical space available to researchers.
Collapse
Affiliation(s)
- Soraya Rasi Ghaemi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute , University of South Australia , Mawson Lakes , South Australia 5095 , Australia
| | - Bahman Delalat
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute , University of South Australia , Mawson Lakes , South Australia 5095 , Australia
- Manufacturing , Commonwealth Scientific and Industrial Research Organization (CSIRO) , Clayton , Victoria 3168 , Australia
| | - Stan Gronthos
- Adelaide Medical School, Faculty of Health and Medical Sciences , University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Morgan R Alexander
- Advanced Materials and Healthcare Technologies , University of Nottingham , Nottingham NG7 2RD , U.K
| | - David A Winkler
- Manufacturing , Commonwealth Scientific and Industrial Research Organization (CSIRO) , Clayton , Victoria 3168 , Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences , University of Adelaide , Adelaide , South Australia 5005 , Australia
- Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Bundoora , Victoria 3086 , Australia
| | - Andrew L Hook
- Advanced Materials and Healthcare Technologies , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute , University of South Australia , Mawson Lakes , South Australia 5095 , Australia
- Manufacturing , Commonwealth Scientific and Industrial Research Organization (CSIRO) , Clayton , Victoria 3168 , Australia
- Victorian Node of the Australian National Fabrication Facility , Melbourne Centre for Nanofabrication , Clayton , Victoria 3168 , Australia
| |
Collapse
|
11
|
Wang L, Xiao L, Zhang RZ, Qiu LZ, Zhang R, Shi HX. Effects of acrylate/acrylamide polymers on the adhesion, growth and differentiation of Muse cells. ACTA ACUST UNITED AC 2018; 14:015003. [PMID: 30277887 DOI: 10.1088/1748-605x/aae5cb] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Acrylate/acrylamide copolymers have excellent optical properties and biocompatibility and are ideal biomaterials that have been widely used in tissue engineering. Multilineage-differentiating stress-enduring cells (Muse cells) are a specific subset of mesenchymal stem cells that have an excellent potential for the regenerative medicine. OBJECTIVE This study was designed to investigate the effects of acrylate/acrylamide copolymers on the adhesion, proliferation and pluripotent-like properties of Muse cells, which were derived from normal human dermal fibroblasts by long-term trypsin incubation. METHODS In an initial experiment, Muse cells were seeded on primary microarrays containing micro-spots of 275 different mixtures of acrylate/acrylamide. Each mixture was composed of two of 11 different monomers in various proportions, and was replicated in four micro-spots each. According to the adhesion and growth characteristics of Muse cells on those substrates, specific polymer candidates for Muse cells were selected and secondary microarrays were prepared. We then observed the effects of those specific polymer candidates on the adherence, proliferation and differentiation of Muse cells and suitable candidates for their optimal culture were identified. RESULTS According to the adhesion and growth patterns of Muse cells on the primary microarrays, ten suitable mixtures of acrylate/acrylamide copolymers were identified. Muse cells grew well on six of those combinations and around the four other combinations of those polymer mixtures. Muse cells cultured on three of those combinations proliferated and differentiated into long spindle-shaped cells that looked like fibroblasts, while Muse cells cultured on one combination formed clusters that were ring-shaped. Muse cells cultured on some of those combinations of acrylate/acrylamide proliferated and formed clusters that appeared to be very healthy, whereas Muse cells cultured on other combinations formed clusters that expanded outwards. CONCLUSIONS These results identified a polymer combination that was optimum for the adhesion, proliferation and maintenance of Muse cells in an undifferentiated state.
Collapse
Affiliation(s)
- Li Wang
- Department of Dermatology and Venereology, the Third Affiliated Hospital of Soochow University, Changzhou 213000, People's Republic of China. Department of Dermatology and Venereology, First Affiliated Hospital of Bengbu Medical College, Anhui 233000, People's Republic of China
| | | | | | | | | | | |
Collapse
|
12
|
Mashimo Y, Yoshioka M, Tokunaga Y, Fockenberg C, Terada S, Koyama Y, Shibata-Seki T, Yoshimoto K, Sakai R, Hakariya H, Liu L, Akaike T, Kobatake E, How SE, Uesugi M, Chen Y, Kamei KI. Fabrication of a Multiplexed Artificial Cellular MicroEnvironment Array. J Vis Exp 2018. [PMID: 30247461 DOI: 10.3791/57377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cellular microenvironments consist of a variety of cues, such as growth factors, extracellular matrices, and intercellular interactions. These cues are well orchestrated and are crucial in regulating cell functions in a living system. Although a number of researchers have attempted to investigate the correlation between environmental factors and desired cellular functions, much remains unknown. This is largely due to the lack of a proper methodology to mimic such environmental cues in vitro, and simultaneously test different environmental cues on cells. Here, we report an integrated platform of microfluidic channels and a nanofiber array, followed by high-content single-cell analysis, to examine stem cell phenotypes altered by distinct environmental factors. To demonstrate the application of this platform, this study focuses on the phenotypes of self-renewing human pluripotent stem cells (hPSCs). Here, we present the preparation procedures for a nanofiber array and the microfluidic structure in the fabrication of a Multiplexed Artificial Cellular MicroEnvironment (MACME) array. Moreover, overall steps of the single-cell profiling, cell staining with multiple fluorescent markers, multiple fluorescence imaging, and statistical analyses, are described.
Collapse
Affiliation(s)
- Yasumasa Mashimo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology
| | - Momoko Yoshioka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Yumie Tokunaga
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | | | - Shiho Terada
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Yoshie Koyama
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Teiko Shibata-Seki
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology
| | - Koki Yoshimoto
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Risako Sakai
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Hayase Hakariya
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Li Liu
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Toshihiro Akaike
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science
| | - Eiry Kobatake
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology
| | - Siew-Eng How
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah
| | - Motonari Uesugi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University; Institute for Chemical Research, Kyoto University
| | - Yong Chen
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University; Ecole Normale Supérieure
| | - Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University;
| |
Collapse
|
13
|
Schmidt S, Lilienkampf A, Bradley M. New substrates for stem cell control. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170223. [PMID: 29786558 PMCID: PMC5974446 DOI: 10.1098/rstb.2017.0223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
The capacity to culture stem cells in a controllable, robust and scalable manner is necessary in order to develop successful strategies for the generation of cellular and tissue platforms for drug screening, toxicity testing, tissue engineering and regenerative medicine. Creating substrates that support the expansion, maintenance or directional differentiation of stem cells would greatly aid these efforts. Optimally, the substrates used should be chemically defined and synthetically scalable, allowing growth under defined, serum-free culture conditions. To achieve this, the chemical and physical attributes of the substrates should mimic the natural tissue environment and allow control of their biological properties. Herein, recent advances in the development of materials to study/manipulate stem cells, both in vitro and in vivo, are described with a focus on the novelty of the substrates' properties, and on application of substrates to direct stem cells.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- Sara Schmidt
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Annamaria Lilienkampf
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Mark Bradley
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| |
Collapse
|
14
|
Kamei KI, Mashimo Y, Yoshioka M, Tokunaga Y, Fockenberg C, Terada S, Koyama Y, Nakajima M, Shibata-Seki T, Liu L, Akaike T, Kobatake E, How SE, Uesugi M, Chen Y. Microfluidic-Nanofiber Hybrid Array for Screening of Cellular Microenvironments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603104. [PMID: 28272774 DOI: 10.1002/smll.201603104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Cellular microenvironments are generally sophisticated, but crucial for regulating the functions of human pluripotent stem cells (hPSCs). Despite tremendous effort in this field, the correlation between the environmental factors-especially the extracellular matrix and soluble cell factors-and the desired cellular functions remains largely unknown because of the lack of appropriate tools to recapitulate in vivo conditions and/or simultaneously evaluate the interplay of different environment factors. Here, a combinatorial platform is developed with integrated microfluidic channels and nanofibers, associated with a method of high-content single-cell analysis, to study the effects of environmental factors on stem cell phenotype. Particular attention is paid to the dependence of hPSC short-term self-renewal on the density and composition of extracellular matrices and initial cell seeding densities. Thus, this combinatorial approach provides insights into the underlying chemical and physical mechanisms that govern stem cell fate decisions.
Collapse
Affiliation(s)
- Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yasumasa Mashimo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Environmental Chemistry and Engineering, Graduate School of Interdisciplinary Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Momoko Yoshioka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yumie Tokunaga
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Christopher Fockenberg
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shiho Terada
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshie Koyama
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Minako Nakajima
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Teiko Shibata-Seki
- Department of Environmental Chemistry and Engineering, Graduate School of Interdisciplinary Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Li Liu
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Toshihiro Akaike
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, Kasuga, Tsukuba-shi, Ibaraki, 305-0821, Japan
| | - Eiry Kobatake
- Department of Environmental Chemistry and Engineering, Graduate School of Interdisciplinary Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Siew-Eng How
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, 88400, Malaysia
| | - Motonari Uesugi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Yong Chen
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Ecole Normale Supérieure, CNRS-ENS-UPMC UMR 8640, 24 Rue Lhomond, Paris, 75005, France
| |
Collapse
|
15
|
Venkateswaran S, Gwynne PJ, Wu M, Hardman A, Lilienkampf A, Pernagallo S, Blakely G, Swann DG, Bradley M, Gallagher MP. High-throughput Identification of Bacteria Repellent Polymers for Medical Devices. J Vis Exp 2016. [PMID: 27842360 PMCID: PMC5226084 DOI: 10.3791/54382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Medical devices are often associated with hospital-acquired infections, which place enormous strain on patients and the healthcare system as well as contributing to antimicrobial resistance. One possible avenue for the reduction of device-associated infections is the identification of bacteria-repellent polymer coatings for these devices, which would prevent bacterial binding at the initial attachment step. A method for the identification of such repellent polymers, based on the parallel screening of hundreds of polymers using a microarray, is described here. This high-throughput method resulted in the identification of a range of promising polymers that resisted binding of various clinically relevant bacterial species individually and also as multi-species communities. One polymer, PA13 (poly(methylmethacrylate-co-dimethylacrylamide)), demonstrated significant reduction in attachment of a number of hospital isolates when coated onto two commercially available central venous catheters. The method described could be applied to identify polymers for a wide range of applications in which modification of bacterial attachment is important.
Collapse
Affiliation(s)
| | | | - Mei Wu
- School of Chemistry, EaStCHEM, University of Edinburgh
| | - Ailsa Hardman
- School of Biological Sciences, University of Edinburgh
| | | | | | - Garry Blakely
- School of Biological Sciences, University of Edinburgh
| | - David G Swann
- Critical Care, NHS Lothian, Royal Infirmary of Edinburgh
| | - Mark Bradley
- School of Chemistry, EaStCHEM, University of Edinburgh;
| | | |
Collapse
|
16
|
Venturato A, MacFarlane G, Geng J, Bradley M. Understanding Polymer-Cell Attachment. Macromol Biosci 2016; 16:1864-1872. [PMID: 27779357 DOI: 10.1002/mabi.201600253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/25/2016] [Indexed: 01/26/2023]
Abstract
The development of polymeric materials with cell adhesion abilities requires an understanding of cell-surface interactions which vary with cell type. To investigate the correlation between cell attachment and the nature of the polymer, a series of random and block copolymers composed of 2-(dimethylamino)ethyl acrylate and ethyl acrylate are synthesized through single electron transfer living radical polymerization. The polymers are synthesized with highly defined and controlled monomer compositions and exhibited narrow polydispersity indices. These polymers are examined for their performance in the attachment and growth of HeLa and HEK cells, with attachment successfully modeled on monomer composition and polymer chain length, with both cell lines found to preferentially attach to moderately hydrophobic functional materials. The understanding of the biological-material interactions assessed in this study will underpin further investigations of engineered polymer scaffolds with predictable cell binding performance.
Collapse
Affiliation(s)
- Andrea Venturato
- School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh, EH9 3KJ, UK
| | - Gillian MacFarlane
- School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh, EH9 3KJ, UK
| | - Jin Geng
- School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh, EH9 3KJ, UK
| | - Mark Bradley
- School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh, EH9 3KJ, UK
| |
Collapse
|
17
|
Arrays of 3D double-network hydrogels for the high-throughput discovery of materials with enhanced physical and biological properties. Acta Biomater 2016; 34:104-112. [PMID: 26712601 DOI: 10.1016/j.actbio.2015.12.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/06/2015] [Accepted: 12/16/2015] [Indexed: 01/10/2023]
Abstract
Synthetic hydrogels are attractive biomaterials due to their similarity to natural tissues and their chemical tunability, which can impart abilities to respond to environmental cues, e.g. temperature, pH and light. The mechanical properties of hydrogels can be enhanced by the generation of a double-network. Here, we report the development of an array platform that allows the macroscopic synthesis of up to 80 single- and double-network hydrogels on a single microscope slide. This new platform allows for the screening of hydrogels as 3D features in a high-throughput format with the added dimension of significant control over the compressive and tensile properties of the materials, thus widening their potential application. The platform is adaptable to allow different hydrogels to be generated, with the potential ability to tune and alter the first and second network, and represents an exciting tool in material and biomaterial discovery.
Collapse
|
18
|
Hook AL, Scurr DJ. ToF-SIMS analysis of a polymer microarray composed of poly(meth)acrylates with C 6 derivative pendant groups. SURF INTERFACE ANAL 2016; 48:226-236. [PMID: 27134321 PMCID: PMC4832844 DOI: 10.1002/sia.5959] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 12/12/2022]
Abstract
Surface analysis plays a key role in understanding the function of materials, particularly in biological environments. Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) provides highly surface sensitive chemical information that can readily be acquired over large areas and has, thus, become an important surface analysis tool. However, the information‐rich nature of ToF‐SIMS complicates the interpretation and comparison of spectra, particularly in cases where multicomponent samples are being assessed. In this study, a method is presented to assess the chemical variance across 16 poly(meth)acrylates. Materials are selected to contain C6 pendant groups, and ten replicates of each are printed as a polymer microarray. SIMS spectra are acquired for each material with the most intense and unique ions assessed for each material to identify the predominant and distinctive fragmentation pathways within the materials studied. Differentiating acrylate/methacrylate pairs is readily achieved using secondary ions derived from both the polymer backbone and pendant groups. Principal component analysis (PCA) is performed on the SIMS spectra of the 16 polymers, whereby the resulting principal components are able to distinguish phenyl from benzyl groups, mono‐functional from multi‐functional monomers and acrylates from methacrylates. The principal components are applied to copolymer series to assess the predictive capabilities of the PCA. Beyond being able to predict the copolymer ratio, in some cases, the SIMS analysis is able to provide insight into the molecular sequence of a copolymer. The insight gained in this study will be beneficial for developing structure–function relationships based upon ToF‐SIMS data of polymer libraries. © 2016 The Authors Surface and Interface Analysis Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Andrew L Hook
- Laboratory of Biophysics and Surface Analysis University of Nottingham Nottingham NG7 2RD UK
| | - David J Scurr
- Laboratory of Biophysics and Surface Analysis University of Nottingham Nottingham NG7 2RD UK
| |
Collapse
|
19
|
Jeon S, Park S, Nam J, Kang Y, Kim JM. Creating Patterned Conjugated Polymer Images Using Water-Compatible Reactive Inkjet Printing. ACS APPLIED MATERIALS & INTERFACES 2016; 8:1813-1818. [PMID: 26731170 DOI: 10.1021/acsami.5b09705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The fabrication of patterned conjugated polymer images on solid substrates has gained significant attention recently. Office inkjet printers can be used to generate flexible designs of functional materials on substrates on a large scale and in an inexpensive manner. Although creating patterns of conjugated polymers on paper using common office inkjet printers has been reported, only a few examples exist, such as polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT), because only water-compatible inks can be utilized. Herein, we describe the production of poly(phenylenevinylene) (PPV) patterns on paper by employing a reactive inkjet printing (RIJ) method. In this process, printing of a hydrophilic terephthaldehyde, bis(triphenylphosphonium salt) and potassium t-butoxide using a common office inkjet printer leads to formation PPV patterns as a consequence of an in situ Wittig reaction. In addition, microarrayed PPV patterns are also readily generated on solid substrates, such as glass and PDMS, when a piezoelectric dispenser system is employed. The in situ prepared PPV was found to be insoluble in water and chloroform. As a result, unreacted excess reagents and byproducts can be efficiently removed by washing with these solvents.
Collapse
Affiliation(s)
- Seongho Jeon
- Department of Chemical Engineering, Hanyang University , Seoul 133-791, Korea
| | - Sumin Park
- Department of Chemical Engineering, Hanyang University , Seoul 133-791, Korea
| | - Jihye Nam
- Department of Chemistry, Hanyang University , Seoul 133-791, Korea
| | - Youngjong Kang
- Department of Chemistry, Hanyang University , Seoul 133-791, Korea
- Institute of Nano Science and Technology, Hanyang University , Seoul 133-791, Korea
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University , Seoul 133-791, Korea
- Institute of Nano Science and Technology, Hanyang University , Seoul 133-791, Korea
| |
Collapse
|
20
|
Wang G, Duan Z, Sheng Y, Neumann K, Deng L, Li J, Bradley M, Zhang R. Tuning the emission properties of a fluorescent polymer using a polymer microarray approach – identification of an optothermo responsive polymer. Chem Commun (Camb) 2016; 52:10521-4. [PMID: 27491507 DOI: 10.1039/c6cc04657f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent polymer microarrays were prepared using inkjet printing and screened. The fluorescence intensity was found to be tunable by temperature change when the dye was immobilized in identified thermo-responsive polymer beads.
Collapse
Affiliation(s)
- Guirong Wang
- School of Materials Science & Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Zongquan Duan
- School of Materials Science & Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Yang Sheng
- School of Materials Science & Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Kevin Neumann
- School of Chemistry
- EaStCHEM
- University of Edinburgh
- Joseph Black Building
- West Mains Road
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences
- Changzhou University
- Changzhou 213164
- China
| | - Jian Li
- School of Materials Science & Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Mark Bradley
- School of Chemistry
- EaStCHEM
- University of Edinburgh
- Joseph Black Building
- West Mains Road
| | - Rong Zhang
- School of Materials Science & Engineering
- Changzhou University
- Changzhou 213164
- China
- Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering
| |
Collapse
|
21
|
Tsai Y, Cutts J, Kimura A, Varun D, Brafman DA. A chemically defined substrate for the expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells. Stem Cell Res 2015; 15:75-87. [DOI: 10.1016/j.scr.2015.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 05/04/2015] [Accepted: 05/04/2015] [Indexed: 01/27/2023] Open
|
22
|
Patel AK, Celiz AD, Rajamohan D, Anderson DG, Langer R, Davies MC, Alexander MR, Denning C. A defined synthetic substrate for serum-free culture of human stem cell derived cardiomyocytes with improved functional maturity identified using combinatorial materials microarrays. Biomaterials 2015; 61:257-65. [PMID: 26005764 PMCID: PMC4780257 DOI: 10.1016/j.biomaterials.2015.05.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/06/2015] [Accepted: 05/14/2015] [Indexed: 01/15/2023]
Abstract
Cardiomyocytes from human stem cells have applications in regenerative medicine and can provide models for heart disease and toxicity screening. Soluble components of the culture system such as growth factors within serum and insoluble components such as the substrate on which cells adhere to are important variables controlling the biological activity of cells. Using a combinatorial materials approach we develop a synthetic, chemically defined cellular niche for the support of functional cardiomyocytes derived from human embryonic stem cells (hESC-CMs) in a serum-free fully defined culture system. Almost 700 polymers were synthesized and evaluated for their utility as growth substrates. From this group, 20 polymers were identified that supported cardiomyocyte adhesion and spreading. The most promising 3 polymers were scaled up for extended culture of hESC-CMs for 15 days and were characterized using patch clamp electrophysiology and myofibril analysis to find that functional and structural phenotype was maintained on these synthetic substrates without the need for coating with extracellular matrix protein. In addition, we found that hESC-CMs cultured on a co-polymer of isobornyl methacrylate and tert-butylamino-ethyl methacrylate exhibited significantly longer sarcomeres relative to gelatin control. The potential utility of increased structural integrity was demonstrated in an in vitro toxicity assay that found an increase in detection sensitivity of myofibril disruption by the anti-cancer drug doxorubicin at a concentration of 0.05 µM in cardiomyocytes cultured on the co-polymer compared to 0.5 µM on gelatin. The chemical moieties identified in this large-scale screen provide chemically defined conditions for the culture and manipulation of hESC-CMs, as well as a framework for the rational design of superior biomaterials.
Collapse
Affiliation(s)
- Asha K Patel
- Wolfson Centre for Stem Cells, Tissue Engineering and Modeling, University of Nottingham, Nottingham, NG7 2RD, UK; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Adam D Celiz
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Divya Rajamohan
- Wolfson Centre for Stem Cells, Tissue Engineering and Modeling, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Martyn C Davies
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Morgan R Alexander
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Chris Denning
- Wolfson Centre for Stem Cells, Tissue Engineering and Modeling, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
23
|
Enam S, Jin S. Substrates for clinical applicability of stem cells. World J Stem Cells 2015; 7:243-252. [PMID: 25815112 PMCID: PMC4369484 DOI: 10.4252/wjsc.v7.i2.243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/23/2014] [Accepted: 12/19/2014] [Indexed: 02/06/2023] Open
Abstract
The capability of human pluripotent stem cells (hPSCs) to differentiate into a variety of cells in the human body holds great promise for regenerative medicine. Many substrates exist on which hPSCs can be self-renewed, maintained and expanded to further the goal of clinical application of stem cells. In this review, we highlight numerous extracellular matrix proteins, peptide and polymer based substrates, scaffolds and hydrogels that have been pioneered. We discuss their benefits and shortcomings and offer future directions as well as emphasize commercially available synthetic peptides as a type of substrate that can bring the benefits of regenerative medicine to clinical settings.
Collapse
|
24
|
Duffy CRE, Zhang R, How SE, Lilienkampf A, Tourniaire G, Hu W, West CC, de Sousa P, Bradley M. A high-throughput polymer microarray approach for identifying defined substrates for mesenchymal stem cells. Biomater Sci 2014; 2:1683-1692. [PMID: 32481948 DOI: 10.1039/c4bm00112e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mesenchymal stem cells (MSCs) hold great promise in regenerative medicine due to their wide multilineage potential as well as their ability to suppress/modulate the immune response. Maintaining these cells in vitro and expanding them on a clinically relevant scale remains a challenge that needs to be addressed to realise their full potential. Current culture methods for MSCs typically rely on animal sourced substrates and often result in a heterogeneous population of cells with varying degrees of differentiation capacity. Here, a high-throughput platform was used to identify synthetic substrates for MSC culture that not only facilitated growth but also maintained the MSC phenotype. Two polymers, PU157 (synthesised from poly(butyleneglycol) and 4,4'-methylenediphenyldiisocyanate with 3-(dimethylamino)-1,2-propanediol as a chain extender) and PA338 (N-methylaniline modified poly(methylmethacrylate-co-glycidylmethacrylate)) were able to maintain the growth and phenotype of human embryonic derived mesenchymal progenitors (hES-MPs) and adipose derived MSCs (ADMSCs) for five and ten passages, respectively. Cell phenotype and multipotency were confirmed by flow cytometry analysis of ten MSC markers and differentiation analysis. These new polymer substrates provide a chemically defined synthetic surface for efficient, long-term MSC culture.
Collapse
Affiliation(s)
- Cairnan R E Duffy
- Centre for Regenerative Medicine, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|