1
|
Kim E, Zhao Z, Wu S, Li J, Bentley WE, Payne GF. Biomimetic Redox Capacitor To Control the Flow of Electrons. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61495-61502. [PMID: 39480436 DOI: 10.1021/acsami.4c13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
In biological systems, electrons, energy, and information "flow" through the redox modality, and we ask, does biology have redox capacitor capabilities for storing electrons? We describe emerging evidence indicating that biological phenolic/catecholic materials possess such redox capacitor properties. We further describe results that show biomimetic catecholic materials are reversibly redox-active with redox potentials in the midphysiological range and can repeatedly accept electrons (from various reductants), store electrons, and donate electrons (to various oxidants). Importantly, catechol-containing films that are assembled onto electrode surfaces can enhance the flow of electrons, energy, and information. Further, catechol-containing films can serve as redox-based interactive materials capable of actuating biological responses by turning on gene expression from redox-responsive genetic circuits. Looking forward, we envision that the emerging capabilities for measuring dynamic redox processes and reversible redox states will provide new insights into redox biology and will also catalyze new technological opportunities for information processing and energy harvesting.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Zhiling Zhao
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Si Wu
- College of Resources and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jinyang Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
2
|
Chen J, Huang J, Hu Y. An optoionic hydrogel with UV-regulated ion conductivity for reprogrammable iontronics: Logic processing and image sensing. SCIENCE ADVANCES 2024; 10:eadn0439. [PMID: 38865467 PMCID: PMC11168472 DOI: 10.1126/sciadv.adn0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
The development of smart hydrogels capable of actively controlling ion conductivity is of paramount importance for iontronics. Most current work in this field focuses on enhancing the hydrogels' ion conductivity. Few successes have been seen in achieving spatial regulation of ion flow through external control. Among various controls, light gives the best spatial and temporal resolution for practical iontronic applications. However, developing hydrogels that can generate drastic ion concentration change upon photoirradiation for tunable conductivity is challenging. Very few molecules can enable photoion generation, and most of them are hydrophobic and low quantum yield. Here, we present an optoionic hydrogel that uses triphenylmethane leuconitrile (TPMLN) for ultraviolet-regulated ion conductivity. Through postpolymerization TPMLN synthesizing, we can incorporate high concentration of the hydrophobic TPMLN in hydrogels without compromising the hydrogel's mechanical integrity. Upon light irradiation, the hydrogel's local conductivity can change an unprecedented 10-fold. We also demonstrated soft optoionic devices that are capable of logic processing and photo imaging.
Collapse
Affiliation(s)
- Jiehao Chen
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jiahe Huang
- The School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yuhang Hu
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- The School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
3
|
Bakhshi T, Zafar S. Hybrid Deep Learning Techniques for Securing Bioluminescent Interfaces in Internet of Bio Nano Things. SENSORS (BASEL, SWITZERLAND) 2023; 23:8972. [PMID: 37960671 PMCID: PMC10648166 DOI: 10.3390/s23218972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
The Internet of bio-nano things (IoBNT) is an emerging paradigm employing nanoscale (~1-100 nm) biological transceivers to collect in vivo signaling information from the human body and communicate it to healthcare providers over the Internet. Bio-nano-things (BNT) offer external actuation of in-body molecular communication (MC) for targeted drug delivery to otherwise inaccessible parts of the human tissue. BNTs are inter-connected using chemical diffusion channels, forming an in vivo bio-nano network, connected to an external ex vivo environment such as the Internet using bio-cyber interfaces. Bio-luminescent bio-cyber interfacing (BBI) has proven to be promising in realizing IoBNT systems due to their non-obtrusive and low-cost implementation. BBI security, however, is a key concern during practical implementation since Internet connectivity exposes the interfaces to external threat vectors, and accurate classification of anomalous BBI traffic patterns is required to offer mitigation. However, parameter complexity and underlying intricate correlations among BBI traffic characteristics limit the use of existing machine-learning (ML) based anomaly detection methods typically requiring hand-crafted feature designing. To this end, the present work investigates the employment of deep learning (DL) algorithms allowing dynamic and scalable feature engineering to discriminate between normal and anomalous BBI traffic. During extensive validation using singular and multi-dimensional models on the generated dataset, our hybrid convolutional and recurrent ensemble (CNN + LSTM) reported an accuracy of approximately ~93.51% over other deep and shallow structures. Furthermore, employing a hybrid DL network allowed automated extraction of normal as well as temporal features in BBI data, eliminating manual selection and crafting of input features for accurate prediction. Finally, we recommend deployment primitives of the extracted optimal classifier in conventional intrusion detection systems as well as evolving non-Von Neumann architectures for real-time anomaly detection.
Collapse
Affiliation(s)
- Taimur Bakhshi
- School of Built Environment, Engineering & Computing, Leeds Beckett University, Leeds LS1 3HE, UK
| | - Sidra Zafar
- Department of Computer Science, Kinnaird College for Women, Lahore 54000, Pakistan;
| |
Collapse
|
4
|
Liu Y, Kim E, Lei M, Wu S, Yan K, Shen J, Bentley WE, Shi X, Qu X, Payne GF. Electro-Biofabrication. Coupling Electrochemical and Biomolecular Methods to Create Functional Bio-Based Hydrogels. Biomacromolecules 2023. [PMID: 37155361 DOI: 10.1021/acs.biomac.3c00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Twenty years ago, this journal published a review entitled "Biofabrication with Chitosan" based on the observations that (i) chitosan could be electrodeposited using low voltage electrical inputs (typically less than 5 V) and (ii) the enzyme tyrosinase could be used to graft proteins (via accessible tyrosine residues) to chitosan. Here, we provide a progress report on the coupling of electronic inputs with advanced biological methods for the fabrication of biopolymer-based hydrogel films. In many cases, the initial observations of chitosan's electrodeposition have been extended and generalized: mechanisms have been established for the electrodeposition of various other biological polymers (proteins and polysaccharides), and electrodeposition has been shown to allow the precise control of the hydrogel's emergent microstructure. In addition, the use of biotechnological methods to confer function has been extended from tyrosinase conjugation to the use of protein engineering to create genetically fused assembly tags (short sequences of accessible amino acid residues) that facilitate the attachment of function-conferring proteins to electrodeposited films using alternative enzymes (e.g., transglutaminase), metal chelation, and electrochemically induced oxidative mechanisms. Over these 20 years, the contributions from numerous groups have also identified exciting opportunities. First, electrochemistry provides unique capabilities to impose chemical and electrical cues that can induce assembly while controlling the emergent microstructure. Second, it is clear that the detailed mechanisms of biopolymer self-assembly (i.e., chitosan gel formation) are far more complex than anticipated, and this provides a rich opportunity both for fundamental inquiry and for the creation of high performance and sustainable material systems. Third, the mild conditions used for electrodeposition allow cells to be co-deposited for the fabrication of living materials. Finally, the applications have been expanded from biosensing and lab-on-a-chip systems to bioelectronic and medical materials. We suggest that electro-biofabrication is poised to emerge as an enabling additive manufacturing method especially suited for life science applications and to bridge communication between our biological and technological worlds.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Si Wu
- College of Resources and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
5
|
Multiplexed assessment of engineered bacterial constructs for intracellular β-galactosidase expression by redox amplification on catechol-chitosan modified nanoporous gold. Mikrochim Acta 2021; 189:4. [PMID: 34855041 DOI: 10.1007/s00604-021-05109-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
Synthetic biology approaches for rewiring of bacterial constructs to express particular intracellular factors upon induction with the target analyte are emerging as sensing paradigms for applications in environmental and in vivo monitoring. To aid in the design and optimization of bacterial constructs for sensing analytes, there is a need for lysis-free intracellular detection modalities that monitor the signal level and kinetics of expressed factors within different modified bacteria in a multiplexed manner, without requiring cumbersome surface immobilization. Herein, an electrochemical detection system on nanoporous gold that is electrofabricated with a biomaterial redox capacitor is presented for quantifying β-galactosidase expressed inside modified Escherichia coli constructs upon induction with dopamine. This nanostructure-mediated redox amplification approach on a microfluidic platform allows for multiplexed assessment of the expressed intracellular factors from different bacterial constructs suspended in distinct microchannels, with no need for cell lysis or immobilization. Since redox mediators present over the entire depth of the microchannel can interact with the electrode and with the E. coli construct in each channel, the platform exhibits high sensitivity and enables multiplexing. We envision its application in assessing synthetic biology-based approaches for comparing specificity, sensitivity, and signal response time upon induction with target analytes of interest.
Collapse
|
6
|
Bird LJ, Kundu BB, Tschirhart T, Corts AD, Su L, Gralnick JA, Ajo-Franklin CM, Glaven SM. Engineering Wired Life: Synthetic Biology for Electroactive Bacteria. ACS Synth Biol 2021; 10:2808-2823. [PMID: 34637280 DOI: 10.1021/acssynbio.1c00335] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electroactive bacteria produce or consume electrical current by moving electrons to and from extracellular acceptors and donors. This specialized process, known as extracellular electron transfer, relies on pathways composed of redox active proteins and biomolecules and has enabled technologies ranging from harvesting energy on the sea floor, to chemical sensing, to carbon capture. Harnessing and controlling extracellular electron transfer pathways using bioengineering and synthetic biology promises to heighten the limits of established technologies and open doors to new possibilities. In this review, we provide an overview of recent advancements in genetic tools for manipulating native electroactive bacteria to control extracellular electron transfer. After reviewing electron transfer pathways in natively electroactive organisms, we examine lessons learned from the introduction of extracellular electron transfer pathways into Escherichia coli. We conclude by presenting challenges to future efforts and give examples of opportunities to bioengineer microbes for electrochemical applications.
Collapse
Affiliation(s)
- Lina J. Bird
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Biki B. Kundu
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas 77005, United States
| | - Tanya Tschirhart
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Anna D. Corts
- Joyn Bio, Boston, Massachusetts 02210, United States
| | - Lin Su
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210018, People’s Republic of China
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Jeffrey A. Gralnick
- Department of Plant and Microbial Biology, BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | | | - Sarah M. Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
7
|
Barros MT, Veletić M, Kanada M, Pierobon M, Vainio S, Balasingham I, Balasubramaniam S. Molecular Communications in Viral Infections Research: Modeling, Experimental Data, and Future Directions. IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL, AND MULTI-SCALE COMMUNICATIONS 2021; 7:121-141. [PMID: 35782714 PMCID: PMC8544950 DOI: 10.1109/tmbmc.2021.3071780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022]
Abstract
Hundreds of millions of people worldwide are affected by viral infections each year, and yet, several of them neither have vaccines nor effective treatment during and post-infection. This challenge has been highlighted by the COVID-19 pandemic, showing how viruses can quickly spread and impact society as a whole. Novel interdisciplinary techniques must emerge to provide forward-looking strategies to combat viral infections, as well as possible future pandemics. In the past decade, an interdisciplinary area involving bioengineering, nanotechnology and information and communication technology (ICT) has been developed, known as Molecular Communications. This new emerging area uses elements of classical communication systems to molecular signalling and communication found inside and outside biological systems, characterizing the signalling processes between cells and viruses. In this paper, we provide an extensive and detailed discussion on how molecular communications can be integrated into the viral infectious diseases research, and how possible treatment and vaccines can be developed considering molecules as information carriers. We provide a literature review on molecular communications models for viral infection (intra-body and extra-body), a deep analysis on their effects on immune response, how experimental can be used by the molecular communications community, as well as open issues and future directions.
Collapse
Affiliation(s)
- Michael Taynnan Barros
- CBIG/BioMediTechTampere University33014TampereFinland
- School of Computer Science and Electronic EngineeringUniversity of EssexColchesterCO4 3SQU.K.
| | - Mladen Veletić
- Intervention CentreOslo University Hospital0424OsloNorway
- Department of Electronic SystemsNorwegian University of Science and Technology7491TrondheimNorway
| | - Masamitsu Kanada
- Department of Pharmacology and ToxicologyInstitute for Quantitative Health Science and Engineering, Michigan State UniversityEast LansingMI48824USA
| | - Massimiliano Pierobon
- Department of Computer Science and EngineeringUniversity of Nebraska–LincolnLincolnNE68588USA
| | - Seppo Vainio
- InfoTech OuluKvantum Institute, Faculty of Biochemistry and Molecular Medicine, Laboratory of Developmental Biology, Oulu University90570OuluFinland
| | - Ilangko Balasingham
- Intervention CentreOslo University Hospital0424OsloNorway
- Department of Electronic SystemsNorwegian University of Science and Technology7491TrondheimNorway
| | | |
Collapse
|
8
|
Terrell JL, Tschirhart T, Jahnke JP, Stephens K, Liu Y, Dong H, Hurley MM, Pozo M, McKay R, Tsao CY, Wu HC, Vora G, Payne GF, Stratis-Cullum DN, Bentley WE. Bioelectronic control of a microbial community using surface-assembled electrogenetic cells to route signals. NATURE NANOTECHNOLOGY 2021; 16:688-697. [PMID: 33782589 DOI: 10.1038/s41565-021-00878-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 02/15/2021] [Indexed: 05/15/2023]
Abstract
We developed a bioelectronic communication system that is enabled by a redox signal transduction modality to exchange information between a living cell-embedded bioelectronics interface and an engineered microbial network. A naturally communicating three-member microbial network is 'plugged into' an external electronic system that interrogates and controls biological function in real time. First, electrode-generated redox molecules are programmed to activate gene expression in an engineered population of electrode-attached bacterial cells, effectively creating a living transducer electrode. These cells interpret and translate electronic signals and then transmit this information biologically by producing quorum sensing molecules that are, in turn, interpreted by a planktonic coculture. The propagated molecular communication drives expression and secretion of a therapeutic peptide from one strain and simultaneously enables direct electronic feedback from the second strain, thus enabling real-time electronic verification of biological signal propagation. Overall, we show how this multifunctional bioelectronic platform, termed a BioLAN, reliably facilitates on-demand bioelectronic communication and concurrently performs programmed tasks.
Collapse
Affiliation(s)
- Jessica L Terrell
- U.S. Army Combat Capabilities Development Command (DEVCOM)-Army Research Laboratory, Adelphi, MD, USA
| | - Tanya Tschirhart
- Center for Biomolecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Justin P Jahnke
- U.S. Army Combat Capabilities Development Command (DEVCOM)-Army Research Laboratory, Adelphi, MD, USA
| | - Kristina Stephens
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Yi Liu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Hong Dong
- U.S. Army Combat Capabilities Development Command (DEVCOM)-Army Research Laboratory, Adelphi, MD, USA
| | - Margaret M Hurley
- U.S. Army Combat Capabilities Development Command (DEVCOM)-Army Research Laboratory, Aberdeen, MD, USA
| | - Maria Pozo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Ryan McKay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Chen Yu Tsao
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Hsuan-Chen Wu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Gary Vora
- Center for Biomolecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Gregory F Payne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Dimitra N Stratis-Cullum
- U.S. Army Combat Capabilities Development Command (DEVCOM)-Army Research Laboratory, Adelphi, MD, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA.
| |
Collapse
|
9
|
Elayan H, Eckford AW, Adve RS. Information Rates of Controlled Protein Interactions Using Terahertz Communication. IEEE Trans Nanobioscience 2020; 20:9-19. [PMID: 32886612 DOI: 10.1109/tnb.2020.3021825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this work, we present a paradigm bridging electromagnetic (EM) and molecular communication through a stimuli-responsive intra-body model. It has been established that protein molecules, which play a key role in governing cell behavior, can be selectively stimulated using Terahertz (THz) band frequencies. By triggering protein vibrational modes using THz waves, we induce changes in protein conformation, resulting in the activation of a controlled cascade of biochemical and biomechanical events. To analyze such an interaction, we formulate a communication system composed of a nanoantenna transmitter and a protein receiver. We adopt a Markov chain model to account for protein stochasticity with transition rates governed by the nanoantenna force. Both two-state and multi-state protein models are presented to depict different biological configurations. Closed form expressions for the mutual information of each scenario is derived and maximized to find the capacity between the input nanoantenna force and the protein state. The results we obtain indicate that controlled protein signaling provides a communication platform for information transmission between the nanoantenna and the protein with a clear physical significance. The analysis reported in this work should further research into the EM-based control of protein networks.
Collapse
|
10
|
VanArsdale E, Pitzer J, Payne GF, Bentley WE. Redox Electrochemistry to Interrogate and Control Biomolecular Communication. iScience 2020; 23:101545. [PMID: 33083771 PMCID: PMC7516135 DOI: 10.1016/j.isci.2020.101545] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cells often communicate by the secretion, transport, and perception of molecules. Information conveyed by molecules is encoded, transmitted, and decoded by cells within the context of the prevailing microenvironments. Conversely, in electronics, transmission reliability and message validation are predictable, robust, and less context dependent. In turn, many transformative advances have resulted by the formal consideration of information transfer. One way to explore this potential for biological systems is to create bio-device interfaces that facilitate bidirectional information transfer between biology and electronics. Redox reactions enable this linkage because reduction and oxidation mediate communication within biology and can be coupled with electronics. By manipulating redox reactions, one is able to combine the programmable features of electronics with the ability to interrogate and modulate biological function. In this review, we examine methods to electrochemically interrogate the various components of molecular communication using redox chemistry and to electronically control cell communication using redox electrogenetics.
Collapse
Affiliation(s)
- Eric VanArsdale
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall 8278 Paint Branch Drive, College Park, MD 20742, USA.,Institute of Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, Room 5102, A. James Clark Hall, College Park, MD 20742, USA
| | - Juliana Pitzer
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Gregory F Payne
- Institute of Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, Room 5102, A. James Clark Hall, College Park, MD 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall 8278 Paint Branch Drive, College Park, MD 20742, USA.,Institute of Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, Room 5102, A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
11
|
Bhokisham N, Liu Y, Brown AD, Payne GF, Culver JN, Bentley WE. Transglutaminase-mediated assembly of multi-enzyme pathway onto TMV brush surfaces for synthesis of bacterial autoinducer-2. Biofabrication 2020; 12:045017. [DOI: 10.1088/1758-5090/ab9e7a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Whitehead TA, Banta S, Bentley WE, Betenbaugh MJ, Chan C, Clark DS, Hoesli CA, Jewett MC, Junker B, Koffas M, Kshirsagar R, Lewis A, Li CT, Maranas C, Terry Papoutsakis E, Prather KLJ, Schaffer S, Segatori L, Wheeldon I. The importance and future of biochemical engineering. Biotechnol Bioeng 2020; 117:2305-2318. [PMID: 32343367 DOI: 10.1002/bit.27364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
Today's Biochemical Engineer may contribute to advances in a wide range of technical areas. The recent Biochemical and Molecular Engineering XXI conference focused on "The Next Generation of Biochemical and Molecular Engineering: The role of emerging technologies in tomorrow's products and processes". On the basis of topical discussions at this conference, this perspective synthesizes one vision on where investment in research areas is needed for biotechnology to continue contributing to some of the world's grand challenges.
Collapse
Affiliation(s)
- Timothy A Whitehead
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California
| | - Corinne A Hoesli
- Department of Chemical Engineering & Department of Biological and Biomedical Engineering, McGill University, Montreal, Québec, Canada
| | - Michael C Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, Illinois
| | - Beth Junker
- BioProcess Advantage LLC, Middesex, New Jersey
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | | | - Chien-Ting Li
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Costas Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania
| | - E Terry Papoutsakis
- Department of Chemical & Biomolecular Engineering & the Delaware Biotechnology Institute, University of Delaware, Newark, Delaware
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Laura Segatori
- Department of Bioengineering, Rice University, Houston, Texas
| | - Ian Wheeldon
- Department of Chemical and Environmental Engineering, University of California, Riverside, California
| |
Collapse
|
13
|
Melanin Produced by the Fast-Growing Marine Bacterium Vibrio natriegens through Heterologous Biosynthesis: Characterization and Application. Appl Environ Microbiol 2020; 86:AEM.02749-19. [PMID: 31836580 DOI: 10.1128/aem.02749-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/10/2019] [Indexed: 11/20/2022] Open
Abstract
Melanin is a pigment produced by organisms throughout all domains of life. Due to its unique physicochemical properties, biocompatibility, and biostability, there has been an increasing interest in the use of melanin for broad applications. In the vast majority of studies, melanin has been either chemically synthesized or isolated from animals, which has restricted its use to small-scale applications. Using bacteria as biocatalysts is a promising and economical alternative for the large-scale production of biomaterials. In this study, we engineered the marine bacterium Vibrio natriegens, one of the fastest-growing organisms, to synthesize melanin by expressing a heterologous tyrosinase gene and demonstrated that melanin production was much faster than in previously reported heterologous systems. The melanin of V. natriegens was characterized as a polymer derived from dihydroxyindole-2-carboxylic acid (DHICA) and, similarly to synthetic melanin, exhibited several characteristic and useful features. Electron microscopy analysis demonstrated that melanin produced from V. natriegens formed nanoparticles that were assembled as "melanin ghost" structures, and the photoprotective properties of these particles were validated by their protection of cells from UV irradiation. Using a novel electrochemical reverse engineering method, we observed that melanization conferred redox activity to V. natriegens Moreover, melanized bacteria were able to quickly adsorb the organic compound trinitrotoluene (TNT). Overall, the genetic tractability, rapid division time, and ease of culture provide a set of attractive properties that compare favorably to current E. coli production strains and warrant the further development of this chassis as a microbial factory for natural product biosynthesis.IMPORTANCE Melanins are macromolecules that are ubiquitous in nature and impart a large variety of biological functions, including structure, coloration, radiation resistance, free radical scavenging, and thermoregulation. Currently, in the majority of investigations, melanins are either chemically synthesized or extracted from animals, which presents significant challenges for large-scale production. Bacteria have been used as biocatalysts to synthesize a variety of biomaterials due to their fast growth and amenability to genetic engineering using synthetic biology tools. In this study, we engineered the extremely fast-growing bacterium V. natriegens to synthesize melanin nanoparticles by expressing a heterologous tyrosinase gene with inducible promoters. Characterization of the melanin produced from V. natriegens-produced tyrosinase revealed that it exhibited physical and chemical properties similar to those of natural and chemically synthesized melanins, including nanoparticle structure, protection against UV damage, and adsorption of toxic compounds. We anticipate that producing and controlling melanin structures at the nanoscale in this bacterial system with synthetic biology tools will enable the design and rapid production of novel biomaterials for multiple applications.
Collapse
|
14
|
Liu Y, McGrath JS, Moore JH, Kolling GL, Papin JA, Swami NS. Electrofabricated biomaterial-based capacitor on nanoporous gold for enhanced redox amplification. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Wu S, Kim E, Li J, Bentley WE, Shi XW, Payne GF. Catechol-Based Capacitor for Redox-Linked Bioelectronics. ACS APPLIED ELECTRONIC MATERIALS 2019; 1:1337-1347. [PMID: 32090203 PMCID: PMC7034937 DOI: 10.1021/acsaelm.9b00272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A common bioelectronics goal is to enable communication between biology and electronics, and success is critically dependent on the communication modality. When a biorelevant modality aligns with instrumentation capabilities, remarkable successes have been observed (e.g., electrodes provide a powerful tool to observe and actuate biology through its ion-based electrical modality). Emerging biological research demonstrates that redox is another biologically relevant modality, and recent research has shown that advanced electrochemical methods enable biodevice communication through this redox modality. Here, we briefly summarize the biological relevance of this redox modality and the use of redox mediators to enable access to this modality through electrochemical measurements. Next, we describe the fabrication of a catechol-chitosan redox capacitor that is redox-active but nonconducting and thus offers a unique set of molecular electronic properties that enhance access to redox-based information. Finally, we cite several recent studies that demonstrate the broad potential for this capacitor to access redox-based biological information. In summary, we envision the redox capacitor will become a vital component in the integrated circuitry of redox-linked bioelectronics.
Collapse
Affiliation(s)
- Si Wu
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| | - Jinyang Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering and Research, University of Maryland, College Park, Maryland 20742, United States
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering and Research, University of Maryland, College Park, Maryland 20742, United States
| | - Xiao-Wen Shi
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
16
|
Kim E, Li J, Kang M, Kelly DL, Chen S, Napolitano A, Panzella L, Shi X, Yan K, Wu S, Shen J, Bentley WE, Payne GF. Redox Is a Global Biodevice Information Processing Modality. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2019; 107:1402-1424. [PMID: 32095023 PMCID: PMC7036710 DOI: 10.1109/jproc.2019.2908582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Biology is well-known for its ability to communicate through (i) molecularly-specific signaling modalities and (ii) a globally-acting electrical modality associated with ion flow across biological membranes. Emerging research suggests that biology uses a third type of communication modality associated with a flow of electrons through reduction/oxidation (redox) reactions. This redox signaling modality appears to act globally and has features of both molecular and electrical modalities: since free electrons do not exist in aqueous solution, the electrons must flow through molecular intermediates that can be switched between two states - with electrons (reduced) or without electrons (oxidized). Importantly, this global redox modality is easily accessible through its electrical features using convenient electrochemical instrumentation. In this review, we explain this redox modality, describe our electrochemical measurements, and provide four examples demonstrating that redox enables communication between biology and electronics. The first two examples illustrate how redox probing can acquire biologically relevant information. The last two examples illustrate how redox inputs can transduce biologically-relevant transitions for patterning and the induction of a synbio transceiver for two-hop molecular communication. In summary, we believe redox provides a unique ability to bridge bio-device communication because simple electrochemical methods enable global access to biologically meaningful information. Further, we envision that redox may facilitate the application of information theory to the biological sciences.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Jinyang Li
- Institute for Bioscience & Biotechnology Research, Fischell Department of Bioengineering University of Maryland, College Park, MD 20742, USA
| | - Mijeong Kang
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry, Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Kun Yan
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry, Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Si Wu
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry, Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - William E Bentley
- Institute for Bioscience & Biotechnology Research, Fischell Department of Bioengineering University of Maryland, College Park, MD 20742, USA
| | - Gregory F Payne
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
17
|
VanArsdale E, Tsao CY, Liu Y, Chen CY, Payne GF, Bentley WE. Redox-Based Synthetic Biology Enables Electrochemical Detection of the Herbicides Dicamba and Roundup via Rewired Escherichia coli. ACS Sens 2019; 4:1180-1184. [PMID: 30990313 DOI: 10.1021/acssensors.9b00085] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetic biology is typically exploited to endow bacterial cells with new biosynthetic capabilities. It can also serve to create "smart" bacteria such as probiotics that detect and treat disease. Here, we show how minimally rewiring the genetic regulation of bacterial cells can enable their ability to recognize and report on chemical herbicides, including those routinely used to clear weeds from gardens and crops. In so doing, we demonstrate how constructs of synthetic biology, in this case redox-based synthetic biology, can serve as a vector for information flow mediating molecular communication between biochemical systems and microelectronics. We coupled the common genetic reporter, β-galactosidase, with the E. coli superoxide response regulon promoter pSoxS, for detection of the herbicides dicamba and Roundup. Both herbicides activated our genetic construct in a concentration dependent manner. Results indicate robust detection using spectrophotometry, via the Miller assay, and electrochemistry using the enzymatic cleavage of 4-aminophenyl β-d-galactopyranoside into the redox active molecule p-aminophenol. We found that environmental components, in particular, the availability of glucose, are important factors for the cellular detection of dicamba. Importantly, both herbicides were detected at concentrations relevant for aquatic toxicity.
Collapse
|
18
|
Li J, Wu S, Kim E, Yan K, Liu H, Liu C, Dong H, Qu X, Shi X, Shen J, Bentley WE, Payne GF. Electrobiofabrication: electrically based fabrication with biologically derived materials. Biofabrication 2019; 11:032002. [PMID: 30759423 PMCID: PMC7025432 DOI: 10.1088/1758-5090/ab06ea] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While conventional material fabrication methods focus on form and strength to achieve function, the fabrication of material systems for emerging life science applications will need to satisfy a more subtle set of requirements. A common goal for biofabrication is to recapitulate complex biological contexts (e.g. tissue) for applications that range from animal-on-a-chip to regenerative medicine. In these cases, the material systems will need to: (i) present appropriate surface functionalities over a hierarchy of length scales (e.g. molecular features that enable cell adhesion and topographical features that guide differentiation); (ii) provide a suite of mechanobiological cues that promote the emergence of native-like tissue form and function; and (iii) organize structure to control cellular ingress and molecular transport, to enable the development of an interconnected cellular community that is engaged in cell signaling. And these requirements are not likely to be static but will vary over time and space, which will require capabilities of the material systems to dynamically respond, adapt, heal and reconfigure. Here, we review recent advances in the use of electrically based fabrication methods to build material systems from biological macromolecules (e.g. chitosan, alginate, collagen and silk). Electrical signals are especially convenient for fabrication because they can be controllably imposed to promote the electrophoresis, alignment, self-assembly and functionalization of macromolecules to generate hierarchically organized material systems. Importantly, this electrically based fabrication with biologically derived materials (i.e. electrobiofabrication) is complementary to existing methods (photolithographic and printing), and enables access to the biotechnology toolbox (e.g. enzymatic-assembly and protein engineering, and gene expression) to offer exquisite control of structure and function. We envision that electrobiofabrication will emerge as an important platform technology for organizing soft matter into dynamic material systems that mimic biology's complexity of structure and versatility of function.
Collapse
Affiliation(s)
- Jinyang Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Stano P. Is Research on "Synthetic Cells" Moving to the Next Level? Life (Basel) 2018; 9:E3. [PMID: 30587790 PMCID: PMC6463193 DOI: 10.3390/life9010003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
"Synthetic cells" research focuses on the construction of cell-like models by using solute-filled artificial microcompartments with a biomimetic structure. In recent years this bottom-up synthetic biology area has considerably progressed, and the field is currently experiencing a rapid expansion. Here we summarize some technical and theoretical aspects of synthetic cells based on gene expression and other enzymatic reactions inside liposomes, and comment on the most recent trends. Such a tour will be an occasion for asking whether times are ripe for a sort of qualitative jump toward novel SC prototypes: is research on "synthetic cells" moving to a next level?
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento; Ecotekne-S.P. Lecce-Monteroni, I-73100 Lecce, Italy.
| |
Collapse
|
20
|
He H, Li J, Cao X, Ruan C, Feng Q, Dong H, Payne GF. Reversibly Reconfigurable Cross-Linking Induces Fusion of Separate Chitosan Hydrogel Films. ACS APPLIED BIO MATERIALS 2018; 1:1695-1704. [DOI: 10.1021/acsabm.8b00504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Huimin He
- Department of Biomedical Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangdong Province Key Laboratory of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinyang Li
- Institute for Bioscience and Biotechnology Research, and Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaodong Cao
- Department of Biomedical Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangdong Province Key Laboratory of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qi Feng
- Department of Biomedical Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangdong Province Key Laboratory of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hua Dong
- Department of Biomedical Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangdong Province Key Laboratory of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research, and Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
21
|
Cao C, Kim E, Liu Y, Kang M, Li J, Yin JJ, Liu H, Qu X, Liu C, Bentley WE, Payne GF. Radical Scavenging Activities of Biomimetic Catechol-Chitosan Films. Biomacromolecules 2018; 19:3502-3514. [DOI: 10.1021/acs.biomac.8b00809] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chunhua Cao
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056, P R China
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, 4291 Fieldhouse Drive, Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
| | - Yi Liu
- Institute for Bioscience and Biotechnology Research, University of Maryland, 4291 Fieldhouse Drive, Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
| | - Mijeong Kang
- Institute for Bioscience and Biotechnology Research, University of Maryland, 4291 Fieldhouse Drive, Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
| | - Jinyang Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, 4291 Fieldhouse Drive, Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
| | - Jun-Jie Yin
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740, United States
| | - Huan Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P R China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P R China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P R China
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research, University of Maryland, 4291 Fieldhouse Drive, Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, 4291 Fieldhouse Drive, Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
| |
Collapse
|
22
|
Echeverria C, Fernandes SN, Godinho MH, Borges JP, Soares PIP. Functional Stimuli-Responsive Gels: Hydrogels and Microgels. Gels 2018; 4:E54. [PMID: 30674830 PMCID: PMC6209286 DOI: 10.3390/gels4020054] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/30/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022] Open
Abstract
One strategy that has gained much attention in the last decades is the understanding and further mimicking of structures and behaviours found in nature, as inspiration to develop materials with additional functionalities. This review presents recent advances in stimuli-responsive gels with emphasis on functional hydrogels and microgels. The first part of the review highlights the high impact of stimuli-responsive hydrogels in materials science. From macro to micro scale, the review also collects the most recent studies on the preparation of hybrid polymeric microgels composed of a nanoparticle (able to respond to external stimuli), encapsulated or grown into a stimuli-responsive matrix (microgel). This combination gave rise to interesting multi-responsive functional microgels and paved a new path for the preparation of multi-stimuli "smart" systems. Finally, special attention is focused on a new generation of functional stimuli-responsive polymer hydrogels able to self-shape (shape-memory) and/or self-repair. This last functionality could be considered as the closing loop for smart polymeric gels.
Collapse
Affiliation(s)
- Coro Echeverria
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, Madrid 28006, Spain.
| | - Susete N Fernandes
- I3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal.
| | - Maria H Godinho
- I3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal.
| | - João Paulo Borges
- I3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal.
| | - Paula I P Soares
- I3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal.
| |
Collapse
|
23
|
Yan K, Liu Y, Guan Y, Bhokisham N, Tsao CY, Kim E, Shi XW, Wang Q, Bentley WE, Payne GF. Catechol-chitosan redox capacitor for added amplification in electrochemical immunoanalysis. Colloids Surf B Biointerfaces 2018; 169:470-477. [PMID: 29852436 DOI: 10.1016/j.colsurfb.2018.05.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 02/08/2023]
Abstract
Antibodies are common recognition elements for molecular detection but often the signals generated by their stoichiometric binding must be amplified to enhance sensitivity. Here, we report that an electrode coated with a catechol-chitosan redox capacitor can amplify the electrochemical signal generated from an alkaline phosphatase (AP) linked immunoassay. Specifically, the AP product p-aminophenol (PAP) undergoes redox-cycling in the redox capacitor to generate amplified oxidation currents. We estimate an 8-fold amplification associated with this redox-cycling in the capacitor (compared to detection by a bare electrode). Importantly, this capacitor-based amplification is generic and can be coupled to existing amplification approaches based on enzyme-linked catalysis or magnetic nanoparticle-based collection/concentration. Thus, the capacitor should enhance sensitivities in conventional immunoassays and also provide chemical to electrical signal transduction for emerging applications in molecular communication.
Collapse
Affiliation(s)
- Kun Yan
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Yi Liu
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Yongguang Guan
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Narendranath Bhokisham
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Chen-Yu Tsao
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Xiao-Wen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China.
| | - Qin Wang
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
24
|
Liu Y, Li J, Tschirhart T, Terrell JL, Kim E, Tsao C, Kelly DL, Bentley WE, Payne GF. Connecting Biology to Electronics: Molecular Communication via Redox Modality. Adv Healthc Mater 2017; 6. [PMID: 29045017 DOI: 10.1002/adhm.201700789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/18/2017] [Indexed: 12/13/2022]
Abstract
Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jinyang Li
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Tanya Tschirhart
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jessica L. Terrell
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Chen‐Yu Tsao
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Deanna L. Kelly
- Maryland Psychiatric Research Center University of Maryland School of Medicine Baltimore MD 21228 USA
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| |
Collapse
|
25
|
Catechol-Based Hydrogel for Chemical Information Processing. Biomimetics (Basel) 2017; 2:biomimetics2030011. [PMID: 31105174 PMCID: PMC6352696 DOI: 10.3390/biomimetics2030011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 01/23/2023] Open
Abstract
Catechols offer diverse properties and are used in biology to perform various functions that range from adhesion (e.g., mussel proteins) to neurotransmission (e.g., dopamine), and mimicking the capabilities of biological catechols have yielded important new materials (e.g., polydopamine). It is well known that catechols are also redox-active and we have observed that biomimetic catechol-modified chitosan films are redox-active and possess interesting molecular electronic properties. In particular, these films can accept, store and donate electrons, and thus offer redox-capacitor capabilities. We are enlisting these capabilities to bridge communication between biology and electronics. Specifically, we are investigating an interactive redox-probing approach to access redox-based chemical information and convert this information into an electrical modality that facilitates analysis by methods from signal processing. In this review, we describe the broad vision and then cite recent examples in which the catechol–chitosan redox-capacitor can assist in accessing and understanding chemical information. Further, this redox-capacitor can be coupled with synthetic biology to enhance the power of chemical information processing. Potentially, the progress with this biomimetic catechol–chitosan film may even help in understanding how biology uses the redox properties of catechols for redox signaling.
Collapse
|