1
|
De Angelis G, Dupont G, Lucherini L, Amstad E. Recyclable 3D printable single network granular hydrogels. Biomater Sci 2025; 13:1426-1433. [PMID: 39925167 DOI: 10.1039/d4bm00871e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Spherical microgels can be conveniently direct ink written into granular hydrogels because of their rheological properties when jammed. Yet, due to weak interparticle interactions, the resulting granular hydrogels are soft and often disassemble if immersed in aqueous media. These shortcomings can be addressed if microgels are firmly connected, for example through inter-particle covalent bonds or by introducing a second hydrogel network that interpenetrates the microgels and covalently connects them. However, these techniques typically hamper the recycling of the granular system. Here, electrostatic attraction forces between microgels and a polyelectrolyte are explored to directly print charged microgels into free standing structures in aqueous media. The resulting granular system remains stable in aqueous media for at least one month and can be recycled with minimal energy input.
Collapse
Affiliation(s)
- Gaia De Angelis
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
- Bioinspired Materials National Center of Competence in Research (NCCR), Switzerland
| | - Gaia Dupont
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Lorenzo Lucherini
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
- Bioinspired Materials National Center of Competence in Research (NCCR), Switzerland
| |
Collapse
|
2
|
Wang J, Zhang Q, Chen L. Microporous annealed particle hydrogels in cell culture, tissue regeneration, and emerging application in cancer immunotherapy. Am J Cancer Res 2025; 15:665-683. [PMID: 40084361 PMCID: PMC11897623 DOI: 10.62347/wrgw4430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/05/2025] [Indexed: 03/16/2025] Open
Abstract
Microporous annealed particle (MAP) hydrogels consist of densely crosslinked and annealed hydrogel particles. Compared to common hydrogels, the inherent porosity within and among these hydrogel particles offers interconnected channels for substance exchange in addition to sufficient growth space for cells, thereby forming a three-dimensional culture system that highly mimics the in vivo microenvironment. Such characteristics enable MAP hydrogels to adapt to various requirements of biomedical applications, along with their excellent injectability and mechanical properties. This review initially provides a comprehensive summary of the fabrication methods and material types of MAP hydrogels, alongside an assessment of their mechanical properties and porosity. In vitro studies are evaluated based on the impact of MAP hydrogels on cellular behaviors, focusing on cell proliferation, differentiation, migration, activity, and phenotype. In vivo research highlights the promising applications of MAP hydrogels in tissue regeneration, as well as their innovative use in cancer immunotherapy. Current challenges and future research directions are outlined, underscoring the potential of MAP hydrogels to significantly improve clinical outcomes in cancer treatment and regenerative medicine.
Collapse
Affiliation(s)
- Junjie Wang
- Shanghai Institute for Minimally Invasive Therapy, University of Shanghai for Science and TechnologyShanghai 200093, China
| | - Qin Zhang
- Medical Engineering Department of Northern Jiangsu People’s HospitalYangzhou 225009, Jiangsu, China
| | - Liwen Chen
- Shanghai Institute for Minimally Invasive Therapy, University of Shanghai for Science and TechnologyShanghai 200093, China
| |
Collapse
|
3
|
Pradal P, Kim JB, Nam SK, Kim SH, Amstad E. Direct Ink Writing of Rigid Microparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405675. [PMID: 39568272 DOI: 10.1002/smll.202405675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/29/2024] [Indexed: 11/22/2024]
Abstract
Direct ink writing (DIW) enables 3D printing of macroscopic objects with well-defined structures and compositions that controllably change over length scales of order 100 µm. Unfortunately, only a limited number of materials can be processed through DIW because it imparts stringent rheological requirements on inks. This limitation can be overcome for soft materials, if they are formulated as microparticles that, if jammed, fulfill the rheological requirements to be printed. By contrast, densely packed rigid microparticles with stiffnesses exceeding 2 MPa do not exhibit appropriate rheological properties that enable DIW. Here, an ink composed of up to 60 vol% rigid microparticles with core stiffnesses up to 50 MPa is introduced. To achieve this goal, rigid microparticles possessing soft hydrogel shells are produced. The 3D printed fragile granular structure is transformed into a load-bearing granular material through the formation of a 2nd network within the soft shells and in the interstitial spaces. The potential of these particles is demonstrated to be printed into intricate 3D structures, such as a trophy cup, or cast into flexible macroscopic photonic films.
Collapse
Affiliation(s)
- Pauline Pradal
- Soft Materials Laboratory - Institute of Materials in École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Jong Bin Kim
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, 19104, USA
| | - Seong Kyeong Nam
- Department of Chemical and Biomolecular Engineering - Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering - Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Esther Amstad
- Soft Materials Laboratory - Institute of Materials in École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
4
|
İyisan N, Hausdörfer O, Wang C, Hiendlmeier L, Harder P, Wolfrum B, Özkale B. Mechanoactivation of Single Stem Cells in Microgels Using a 3D-Printed Stimulation Device. SMALL METHODS 2024; 8:e2400272. [PMID: 39011729 PMCID: PMC11672187 DOI: 10.1002/smtd.202400272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/03/2024] [Indexed: 07/17/2024]
Abstract
In this study, the novel 3D-printed pressure chamber for encapsulated single-cell stimulation (3D-PRESS) platform is introduced for the mechanical stimulation of single stem cells in 3D microgels. The custom-designed 3D-PRESS, allows precise pressure application up to 400 kPa at the single-cell level. Microfluidics is employed to encapsulate single mesenchymal stem cells within ionically cross-linked alginate microgels with cell adhesion RGD peptides. Rigorous testing affirms the leak-proof performance of the 3D-PRESS device up to 400 kPa, which is fully biocompatible. 3D-PRESS is implemented on mesenchymal stem cells for mechanotransduction studies, by specifically targeting intracellular calcium signaling and the nuclear translocation of a mechanically sensitive transcription factor. Applying 200 kPa pressure on individually encapsulated stem cells reveals heightened calcium signaling in 3D microgels compared to conventional 2D culture. Similarly, Yes-associated protein (YAP) translocation into the nucleus occurs at 200 kPa in 3D microgels with cell-binding RGD peptides unveiling the involvement of integrin-mediated mechanotransduction in singly encapsulated stem cells in 3D microgels. Combining live-cell imaging with precise mechanical control, the 3D-PRESS platform emerges as a versatile tool for exploring cellular responses to pressure stimuli, applicable to various cell types, providing novel insights into single-cell mechanobiology.
Collapse
Affiliation(s)
- Nergishan İyisan
- Microrobotic Bioengineering Lab (MRBL)School of Computation, Information, and TechnologyDepartment of Electrical EngineeringTechnical University of Munich (TUM)Hans‐Piloty‐Straße 185748GarchingGermany
- Munich Institute of Robotics and Machine IntelligenceTechnical University of MunichGeorg‐Brauchle‐Ring 6080992MünchenGermany
- Munich Institute of Biomedical EngineeringTechnical University of MunichBoltzmannstraße 1185748GarchingGermany
| | - Oliver Hausdörfer
- Microrobotic Bioengineering Lab (MRBL)School of Computation, Information, and TechnologyDepartment of Electrical EngineeringTechnical University of Munich (TUM)Hans‐Piloty‐Straße 185748GarchingGermany
| | - Chen Wang
- Microrobotic Bioengineering Lab (MRBL)School of Computation, Information, and TechnologyDepartment of Electrical EngineeringTechnical University of Munich (TUM)Hans‐Piloty‐Straße 185748GarchingGermany
- Munich Institute of Robotics and Machine IntelligenceTechnical University of MunichGeorg‐Brauchle‐Ring 6080992MünchenGermany
- Munich Institute of Biomedical EngineeringTechnical University of MunichBoltzmannstraße 1185748GarchingGermany
| | - Lukas Hiendlmeier
- Munich Institute of Biomedical EngineeringTechnical University of MunichBoltzmannstraße 1185748GarchingGermany
- Neuroelectronics, School of Computation, Information, and TechnologyDepartment of Electrical EngineeringDepartment of Electrical EngineeringTechnical University of Munich (TUM)85748GarchingGermany
| | - Philipp Harder
- Microrobotic Bioengineering Lab (MRBL)School of Computation, Information, and TechnologyDepartment of Electrical EngineeringTechnical University of Munich (TUM)Hans‐Piloty‐Straße 185748GarchingGermany
- Munich Institute of Robotics and Machine IntelligenceTechnical University of MunichGeorg‐Brauchle‐Ring 6080992MünchenGermany
- Munich Institute of Biomedical EngineeringTechnical University of MunichBoltzmannstraße 1185748GarchingGermany
| | - Bernhard Wolfrum
- Munich Institute of Biomedical EngineeringTechnical University of MunichBoltzmannstraße 1185748GarchingGermany
- Neuroelectronics, School of Computation, Information, and TechnologyDepartment of Electrical EngineeringDepartment of Electrical EngineeringTechnical University of Munich (TUM)85748GarchingGermany
| | - Berna Özkale
- Microrobotic Bioengineering Lab (MRBL)School of Computation, Information, and TechnologyDepartment of Electrical EngineeringTechnical University of Munich (TUM)Hans‐Piloty‐Straße 185748GarchingGermany
- Munich Institute of Robotics and Machine IntelligenceTechnical University of MunichGeorg‐Brauchle‐Ring 6080992MünchenGermany
- Munich Institute of Biomedical EngineeringTechnical University of MunichBoltzmannstraße 1185748GarchingGermany
| |
Collapse
|
5
|
Rovers MM, Rogkoti T, Bakker BK, Bakal KJ, van Genderen MH, Salmeron‐Sanchez M, Dankers PY. Using a Supramolecular Monomer Formulation Approach to Engineer Modular, Dynamic Microgels, and Composite Macrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405868. [PMID: 39463044 PMCID: PMC11636168 DOI: 10.1002/adma.202405868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/07/2024] [Indexed: 10/29/2024]
Abstract
Microgels show advantages over bulk hydrogels due to convenient control over microgel size and composition, and the ability to use microgels to modularly construct larger hierarchical scaffold hydrogel materials. Here, supramolecular chemistry is used to formulate supramolecular polymer, dynamic microgels solely held together by non-covalent interactions. Four-fold hydrogen bonding ureido-pyrimidinone (UPy) monomers with different functionalities are applied to precisely tune microgel properties in a modular way, via variations in monomer concentration, bifunctional crosslinker ratio, and the incorporation of supramolecular dyes and peptides. Functionalization with a bioactive supramolecular cell-adhesive peptide induced selectivity of cells toward the bioactive microgels over non-active, non-functionalized versions. Importantly, the supramolecular microgels can also be applied as microscale building blocks into supramolecular bulk macrogels with tunable dynamic behavior: a robust and weak macrogel, where the micro- and macrogels are composed of similar molecular building blocks. In a robust macrogel, microgels act as modular micro-building blocks, introducing multi-compartmentalization, while in a weak macrogel, microgels reinforce and enhance mechanical properties. This work demonstrates the potential to modularly engineer higher-length-scale structures using small molecule supramolecular monomers, wherein microgels serve as versatile and modular micro-building units.
Collapse
Affiliation(s)
- Maritza M. Rovers
- Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
- Department of Biomedical EngineeringLaboratory of Chemical BiologyEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Theodora Rogkoti
- Centre for the Cellular MicroenvironmentUniversity of Glasgow, Advanced Research Centre11 Chapel LaneGlasgowG11 6EWUK
| | - Bram K. Bakker
- Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
- Department of Biomedical EngineeringLaboratory of Chemical BiologyEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Kalpit J. Bakal
- Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
- Department of Mechanical EngineeringEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Marcel H.P. van Genderen
- Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
- Department of Biomedical EngineeringLaboratory of Chemical BiologyEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Manuel Salmeron‐Sanchez
- Centre for the Cellular MicroenvironmentUniversity of Glasgow, Advanced Research Centre11 Chapel LaneGlasgowG11 6EWUK
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and Technology (BIST)Barcelona08028Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona08010Spain
| | - Patricia Y.W. Dankers
- Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
- Department of Biomedical EngineeringLaboratory of Chemical BiologyEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
- Department of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| |
Collapse
|
6
|
Zhang IW, Choi LS, Friend NE, McCoy AJ, Midekssa FS, Alsberg E, Lesher-Pérez SC, Stegemann JP, Baker BM, Putnam AJ. Clickable PEG-norbornene microgels support suspension bioprinting and microvascular assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623424. [PMID: 39605682 PMCID: PMC11601470 DOI: 10.1101/2024.11.15.623424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The development of perfusable and multiscale vascular networks remains one of the largest challenges in tissue engineering. As such, there is a need for the creation of customizable and facile methods to produce robustly vascularized constructs. In this study, secondarily crosslinkable (clickable) poly(ethylene glycol)-norbornene (PEGNB) microbeads were produced and evaluated for their ability to sequentially support suspension bioprinting and microvascular self-assembly towards the aim of engineering hierarchical vasculature. The clickable PEGNB microbead slurry exhibited mechanical behavior suitable for suspension bioprinting of sacrificial bioinks, could be UV crosslinked into a granular construct post-print, and withstood evacuation of the bioink and subsequent perfusion of the patterned void space. Endothelial and stromal cells co-embedded within jammed RGD-modified PEGNB microbead slurries assembled into capillary-scale vasculature after secondary crosslinking of the beads into granular constructs, with endothelial tubules forming within the interstitial space between microbeads and supported by the perivascular association of the stromal cells. Microvascular self-assembly was not impacted by printing sacrificial bioinks into the cell-laden microbead support bath before UV crosslinking. Collectively, these results demonstrate that clickable PEGNB microbeads are a versatile substrate for both suspension printing and microvascular culture and may be the foundation for a promising methodology to engineer hierarchical vasculature.
Collapse
|
7
|
Xu Y, Shen Y. The Assembly of Miniaturized Droplets toward Functional Architectures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404366. [PMID: 39380419 DOI: 10.1002/smll.202404366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Indexed: 10/10/2024]
Abstract
Recent explorations of bioengineering have generated new concepts and strategies for the processing of soft and functional materials. Droplet assembly techniques can address problems in the construction of extremely soft architectures by expanding the manufacturing capabilities using droplets containing liquid or hydrogels including weak hydrogels. This Perspective sets out to provide a brief overview of this growing field, and discusses the challenges and opportunities ahead. The study highlights the recent key advances of materials and architectures from hitherto effective droplet-assembly technologies, as well as the applications in biomedical and bioengineering fields from artificial tissues to bioreactors. It is envisaged that these assembled architectures, as nature-inspired models, will stimulate the discovery of biomaterials and miniaturized platforms for interdisciplinary research in health, biotechnology, and sustainability.
Collapse
Affiliation(s)
- Yufan Xu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yi Shen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
8
|
Hen N, Josef E, Davidovich-Pinhas M, Levenberg S, Bianco-Peled H. On the Relation between the Viscoelastic Properties of Granular Hydrogels and Their Performance as Support Materials in Embedded Bioprinting. ACS Biomater Sci Eng 2024; 10:6734-6750. [PMID: 39344029 DOI: 10.1021/acsbiomaterials.4c01136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Granular hydrogels, formed by jamming microgels suspension, are promising materials for three-dimensional bioprinting applications. Despite their extensive use as support materials for embedded bioprinting, the influence of the particle's physical properties on the macroscale viscoelasticity on one hand and on the printing performance on the other hand remains unclear. Herein, we investigate the linear and nonlinear rheology of κ-carrageenan granular hydrogel through small- and large-amplitude oscillatory shear measurements. We tuned the granular hydrogel's properties by changing the stiffness (soft, medium, stiff) and the packing density of the individual microgels. Characterizations in the linear viscoelasticity regime revealed that the storage modulus of granular hydrogels is not a simple function of microgel stiffness and depends on the microgel packing density. At larger strains, increasing the microgel stiffness reduced the energy dissipation of the granular beds and increased the solid-fluid transition point. To understand how the different rheological properties of granular support materials influence embedded bioprinting, we examined the printing fidelity and cellular filament shrinkage within the granular beds. We found that microgels with low packing density diminished the printing quality, while stiff microgels promoted filament roughness. In addition, we found that highly packed stiff microgels significantly reduced the postprinting contraction of cellular filaments. Overall, this work provides a comprehensive knowledge of the rheology of granular hydrogels that can be used to rationally design support beds for bioprinting applications with specific characteristics.
Collapse
Affiliation(s)
- Noy Hen
- Department of Chemical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Elinor Josef
- Technion─Israel Institute of Technology, Atlit, 12th Nahal Galim, 3033980, Israel
| | - Maya Davidovich-Pinhas
- Department of Biotechnology and Food Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Havazelet Bianco-Peled
- Department of Chemical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
9
|
Widener AE, Roberts A, Phelps EA. Granular Hydrogels for Harnessing the Immune Response. Adv Healthc Mater 2024; 13:e2303005. [PMID: 38145369 PMCID: PMC11196388 DOI: 10.1002/adhm.202303005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Indexed: 12/26/2023]
Abstract
This review aims to understand the current progress in immune-instructive granular hydrogels and identify the key features used as immunomodulatory strategies. Published work is systematically reviewed and relevant information about granular hydrogels used throughout these studies is collected. The base polymer, microgel generation technique, polymer crosslinking chemistry, particle size and shape, annealing strategy, granular hydrogel stiffness, pore size and void space, degradability, biomolecule presentation, and drug release are cataloged for each work. Several granular hydrogel parameters used for immune modulation: porosity, architecture, bioactivity, drug release, cell delivery, and modularity, are identified. The authors found in this review that porosity is the most significant factor influencing the innate immune response to granular hydrogels, while incorporated bioactivity is more significant in influencing adaptive immune responses. Here, the authors' findings and summarized results from each section are presented and suggestions are made for future studies to better understand the benefits of using immune-instructive granular hydrogels.
Collapse
Affiliation(s)
- Adrienne E Widener
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| | - Abilene Roberts
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| |
Collapse
|
10
|
Tang RC, Shang L, Scumpia PO, Di Carlo D. Injectable Microporous Annealed Crescent-Shaped (MAC) Particle Hydrogel Scaffold for Enhanced Cell Infiltration. Adv Healthc Mater 2024; 13:e2302477. [PMID: 37985462 PMCID: PMC11102933 DOI: 10.1002/adhm.202302477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/10/2023] [Indexed: 11/22/2023]
Abstract
Hydrogels are widely used for tissue engineering applications to support cellular growth, yet the tightly woven structure often restricts cell infiltration and expansion. Consequently, granular hydrogels with microporous architectures have emerged as a new class of biomaterial. Particularly, the development of microporous annealed particle (MAP) hydrogel scaffolds has shown improved stability and integration with host tissue. However, the predominant use of spherically shaped particles limits scaffold porosity, potentially limiting the level of cell infiltration. Here, a novel microporous annealed crescent-shaped particle (MAC) scaffold that is predicted to have improved porosity and pore interconnectivity in silico is presented. With microfluidic fabrication, tunable cavity sizes that optimize interstitial void space features are achieved. In vitro, cells incorporated into MAC scaffolds form extensive 3D multicellular networks. In vivo, the injectable MAC scaffold significantly enhances cell infiltration compared to spherical MAP scaffolds, resulting in increased numbers of myofibroblasts and leukocytes present within the gel without relying on external biomolecular chemoattractants. The results shed light on the critical role of particle shape in cell recruitment, laying the foundation for MAC scaffolds as a next-generation granular hydrogel for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Rui-Chian Tang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Lily Shang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Philip O Scumpia
- Division of Dermatology, Department of Medicine David Geffen School of Medicine University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Dermatology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
- Jonsson Comprehensive Cancer Center University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California Nano Systems Institute (CNSI) University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
11
|
Jaberi A, Kedzierski A, Kheirabadi S, Tagay Y, Ataie Z, Zavari S, Naghashnejad M, Waldron O, Adhikari D, Lester G, Gallagher C, Borhan A, Ravnic D, Tabdanov E, Sheikhi A. Engineering Microgel Packing to Tailor the Physical and Biological Properties of Gelatin Methacryloyl Granular Hydrogel Scaffolds. Adv Healthc Mater 2024; 13:e2402489. [PMID: 39152936 PMCID: PMC11828485 DOI: 10.1002/adhm.202402489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Granular hydrogel scaffolds (GHS) are fabricated via placing hydrogel microparticles (HMP) in close contact (packing), followed by physical and/or chemical interparticle bond formation. Gelatin methacryloyl (GelMA) GHS have recently emerged as a promising platform for biomedical applications; however, little is known about how the packing of building blocks, physically crosslinked soft GelMA HMP, affects the physical (pore microarchitecture and mechanical/rheological properties) and biological (in vitro and in vivo) attributes of GHS. Here, the GHS pore microarchitecture is engineered via the external (centrifugal) force-induced packing and deformation of GelMA HMP to regulate GHS mechanical and rheological properties, as well as biological responses in vitro and in vivo. Increasing the magnitude and duration of centrifugal force increases the HMP deformation/packing, decreases GHS void fraction and median pore diameter, and increases GHS compressive and storage moduli. MDA-MB-231 human triple negative breast adenocarcinoma cells spread and flatten on the GelMA HMP surface in loosely packed GHS, whereas they adopt an elongated morphology in highly packed GHS as a result of spatial confinement. Via culturing untreated or blebbistatin-treated cells in GHS, the effect of non-muscle myosin II-driven contractility on cell morphology is shown. In vivo subcutaneous implantation in mice confirms a significantly higher endothelial, fibroblast, and macrophage cell infiltration within the GHS with a lower packing density, which is in accordance with the in vitro cell migration outcome. These results indicate that the packing state of GelMA GHS may enable the engineering of cell response in vitro and tissue response in vivo. This research is a fundamental step forward in standardizing and engineering GelMA GHS microarchitecture for tissue engineering and regeneration.
Collapse
Affiliation(s)
- Arian Jaberi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Alexander Kedzierski
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Sina Kheirabadi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Yerbol Tagay
- Department of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Zaman Ataie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Saman Zavari
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Mohammad Naghashnejad
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Olivia Waldron
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Daksh Adhikari
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Gerald Lester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Colin Gallagher
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Ali Borhan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Dino Ravnic
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA
| | - Erdem Tabdanov
- Department of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
- Penn State Cancer Institute, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
12
|
Li H, Iyer KS, Bao L, Zhai J, Li JJ. Advances in the Development of Granular Microporous Injectable Hydrogels with Non-spherical Microgels and Their Applications in Tissue Regeneration. Adv Healthc Mater 2024; 13:e2301597. [PMID: 37499268 DOI: 10.1002/adhm.202301597] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Granular microporous hydrogels are emerging as effective biomaterial scaffolds for tissue engineering due to their improved characteristics compared to traditional nanoporous hydrogels, which better promote cell viability, cell migration, cellular/tissue infiltration, and tissue regeneration. Recent advances have resulted in the development of granular hydrogels made of non-spherical microgels, which compared to those made of spherical microgels have higher macroporosity, more stable mechanical properties, and better ability to guide the alignment and differentiation of cells in anisotropic tissue. The development of these hydrogels as an emerging research area is attracting increasing interest in regenerative medicine. This review first summarizes the fabrication techniques available for non-spherical microgels with different aspect-ratios. Then, it introduces the development of granular microporous hydrogels made of non-spherical microgels, their physicochemical characteristics, and their applications in tissue regeneration. The limitations and future outlook of research on microporous granular hydrogels are also critically discussed.
Collapse
Affiliation(s)
- Haiyan Li
- Chemical and Environment Engineering Department, School of Engineering, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Keerthi Subramanian Iyer
- Chemical and Environment Engineering Department, School of Engineering, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Lei Bao
- Chemical and Environment Engineering Department, School of Engineering, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
13
|
Lou J, Meyer C, Vitner EB, Adu-Berchie K, Dacus MT, Bovone G, Chen A, To T, Weitz DA, Mooney DJ. Surface-Functionalized Microgels as Artificial Antigen-Presenting Cells to Regulate Expansion of T Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309860. [PMID: 38615189 PMCID: PMC11293993 DOI: 10.1002/adma.202309860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/27/2024] [Indexed: 04/15/2024]
Abstract
Artificial antigen-presenting cells (aAPCs) are currently used to manufacture T cells for adoptive therapy in cancer treatment, but a readily tunable and modular system can enable both rapid T cell expansion and control over T cell phenotype. Here, it is shown that microgels with tailored surface biochemical properties can serve as aAPCs to mediate T cell activation and expansion. Surface functionalization of microgels is achieved via layer-by-layer coating using oppositely charged polymers, forming a thin but dense polymer layer on the surface. This facile and versatile approach is compatible with a variety of coating polymers and allows efficient and flexible surface-specific conjugation of defined peptides or proteins. The authors demonstrate that tethering appropriate stimulatory ligands on the microgel surface efficiently activates T cells for polyclonal and antigen-specific expansion. The expansion, phenotype, and functional outcome of primary mouse and human T cells can be regulated by modulating the concentration, ratio, and distribution of stimulatory ligands presented on microgel surfaces as well as the stiffness and viscoelasticity of the microgels.
Collapse
Affiliation(s)
- Junzhe Lou
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Charlotte Meyer
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, 8092, Switzerland
| | - Einat B Vitner
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Kwasi Adu-Berchie
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Mason T Dacus
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Giovanni Bovone
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Anqi Chen
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Tania To
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - David A Weitz
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - David J Mooney
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| |
Collapse
|
14
|
Chang CY, Nguyen H, Frahm E, Kolaczyk K, Lin CC. Triple click chemistry for crosslinking, stiffening, and annealing of gelatin-based microgels. RSC APPLIED POLYMERS 2024; 2:656-669. [PMID: 39035826 PMCID: PMC11255916 DOI: 10.1039/d3lp00249g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/22/2024] [Indexed: 07/23/2024]
Abstract
Microgels are spherical hydrogels with physicochemical properties ideal for many biomedical applications. For example, microgels can be used as individual carriers for suspension cell culture or jammed/annealed into granular hydrogels with micron-scale pores highly permissive to molecular transport and cell proliferation/migration. Conventionally, laborious optimization processes are often needed to create microgels with different moduli, sizes, and compositions. This work presents a new microgel and granular hydrogel preparation workflow using gelatin-norbornene-carbohydrazide (GelNB-CH). As a gelatin-derived macromer, GelNB-CH presents cell adhesive and degradable motifs while being amenable to three orthogonal click chemistries, namely the thiol-norbornene photo-click reaction, hydrazone bonding, and the inverse electron demand Diels-Alder (iEDDA) click reaction. The thiol-norbornene photo-click reaction (with thiol-bearing crosslinkers) and hydrazone bonding (with aldehyde-bearing crosslinkers) were used to crosslink the microgels and to realize on-demand microgel stiffening, respectively. The tetrazine-norbornene iEDDA click reaction (with tetrazine-bearing crosslinkers) was used to anneal microgels into granular hydrogels. In addition to materials development, we demonstrated the value of the triple-click chemistry granular hydrogels via culturing human mesenchymal stem cells and pancreatic cancer cells.
Collapse
Affiliation(s)
- Chun-Yi Chang
- Weldon School of Biomedical Engineering, Purdue University West Lafayette IN 47907 USA
| | - Han Nguyen
- Weldon School of Biomedical Engineering, Purdue University West Lafayette IN 47907 USA
| | - Ellen Frahm
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis Indianapolis IN 46202 USA
| | - Keith Kolaczyk
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis Indianapolis IN 46202 USA
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University West Lafayette IN 47907 USA
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis Indianapolis IN 46202 USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center Indianapolis IN 46202 USA
- Integrated Nanosystems Development Institute Indianapolis IN 46202 USA
| |
Collapse
|
15
|
Liu Y, Suarez-Arnedo A, Caston EL, Riley L, Schneider M, Segura T. Exploring the Role of Spatial Confinement in Immune Cell Recruitment and Regeneration of Skin Wounds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304049. [PMID: 37721722 PMCID: PMC10874253 DOI: 10.1002/adma.202304049] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Microporous annealed particle (MAP) scaffolds are injectable granular materials comprised of micron sized hydrogel particles (microgels). The diameter of these microgels directly determines the size of the interconnected void space between particles where infiltrating or encapsulated cells reside. This tunable porosity allows the authors to use MAP scaffolds to study the impact of spatial confinement (SC) on both cellular behaviors and the host response to biomaterials. Despite previous studies showing that pore size and SC influence cellular phenotypes, including mitigating macrophage inflammatory response, there is still a gap in knowledge regarding how SC within a biomaterial modulates immune cell recruitment in vivo in wounds and implants. Thus, the immune cell profile within confined and unconfined biomaterials is studied using small (40 µm), medium (70 µm), and large (130 µm) diameter spherical microgels, respectively. This work uncovered that MAP scaffolds impart regenerative wound healing with an IgG1-biased Th2 response. MAP scaffolds made with large microgels promote a balanced pro-regenerative macrophage response, resulting in enhanced wound healing with mature collagen regeneration and reduced inflammation levels.
Collapse
Affiliation(s)
- Yining Liu
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
| | - Alejandra Suarez-Arnedo
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
| | - Eleanor L.P. Caston
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
| | - Lindsay Riley
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
| | - Michelle Schneider
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
- Clinical Science Departments of Neurology and Dermatology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
16
|
Seymour AJ, Kilian D, Navarro RS, Hull SM, Heilshorn SC. 3D printing microporous scaffolds from modular bioinks containing sacrificial, cell-encapsulating microgels. Biomater Sci 2023; 11:7598-7615. [PMID: 37824082 PMCID: PMC10842430 DOI: 10.1039/d3bm00721a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Microgel-based biomaterials have inherent porosity and are often extrudable, making them well-suited for 3D bioprinting applications. Cells are commonly introduced into these granular inks post-printing using cell infiltration. However, due to slow cell migration speeds, this strategy struggles to achieve depth-independent cell distributions within thick 3D printed geometries. To address this, we leverage granular ink modularity by combining two microgels with distinct functions: (1) structural, UV-crosslinkable microgels made from gelatin methacryloyl (GelMA) and (2) sacrificial, cell-laden microgels made from oxidized alginate (AlgOx). We hypothesize that encapsulating cells within sacrificial AlgOx microgels would enable the simultaneous introduction of void space and release of cells at depths unachievable through cell infiltration alone. Blending the microgels in different ratios produces a family of highly printable GelMA : AlgOx microgel inks with void fractions ranging from 0.03 to 0.35. As expected, void fraction influences the morphology of human umbilical vein endothelial cells (HUVEC) within GelMA : AlgOx inks. Crucially, void fraction does not alter the ideal HUVEC distribution seen throughout the depth of 3D printed samples. This work presents a strategy for fabricating constructs with tunable porosity and depth-independent cell distribution, highlighting the promise of microgel-based inks for 3D bioprinting.
Collapse
Affiliation(s)
- Alexis J Seymour
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - David Kilian
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Renato S Navarro
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Sarah M Hull
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
17
|
Tigner T, Scull G, Brown AC, Alge DL. Microparticle Hydrogel Material Properties Emerge from Mixing-Induced Homogenization in a Poly(ethylene glycol) and Dextran Aqueous Two-Phase System. Macromolecules 2023; 56:8518-8528. [PMID: 38357014 PMCID: PMC10863057 DOI: 10.1021/acs.macromol.3c00557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 02/16/2024]
Abstract
Polymer-polymer aqueous two-phase systems (ATPSs) are attractive for microgel synthesis, but given the complexity of phase separation, predicting microgel material properties from ATPS formulations is not trivial. The objective of this study was to determine how the phase diagram of a poly(ethylene glycol) (PEG) and dextran ATPS is related to the material properties of PEG microgel products. PEG-dextran ATPSs were prepared from four-arm 20 kDa PEG-norbornene and 40 kDa dextran in phosphate buffered saline (PBS), and the phase diagram was constructed. PEG microgels were synthesized from five ATPS formulations using an oligopeptide cross-linker and thiol-norbornene photochemistry. Thermogravimetric analysis (TGA) revealed that the polymer concentration of microgel pellets linearly correlates with the average concentration of PEG in the ATPS rather than the separated phase compositions, as determined from the phase diagram. Atomic force microscopy (AFM) and bulk rheology studies demonstrated that the mechanical properties of microgels rely on both the average concentration of PEG in the ATPS and the ATPS volume ratio as determined from the phase diagram. These findings suggest that PEG-dextran ATPSs undergo homogenization upon mixing, which principally determines the material properties of the microgels upon gelation.
Collapse
Affiliation(s)
- Thomas
J. Tigner
- Department
of Biomedical Engineering, Texas A&M
University, College of Engineering, College Station, Texas 77845, United States
| | - Grant Scull
- Joint
Department of Biomedical Engineering, North
Carolina State University and University of North Carolina at Chapel
Hill, College of Engineering, Raleigh, North Carolina 27695, United States
- Comparative
Medicine Institute, North Carolina State
University, Raleigh, North Carolina 27695, United States
| | - Ashley C. Brown
- Joint
Department of Biomedical Engineering, North
Carolina State University and University of North Carolina at Chapel
Hill, College of Engineering, Raleigh, North Carolina 27695, United States
- Comparative
Medicine Institute, North Carolina State
University, Raleigh, North Carolina 27695, United States
| | - Daniel L. Alge
- Department
of Biomedical Engineering, Texas A&M
University, College of Engineering, College Station, Texas 77845, United States
- Department of Material Science and Engineering, Texas A&M University, College of Engineering, College Station, Texas 77845, United States
| |
Collapse
|
18
|
Sharma C, Sarkar A, Walther A. Transient co-assemblies of micron-scale colloids regulated by ATP-fueled reaction networks. Chem Sci 2023; 14:12299-12307. [PMID: 37969603 PMCID: PMC10631234 DOI: 10.1039/d3sc04017h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/15/2023] [Indexed: 11/17/2023] Open
Abstract
Self-assembly of colloidal particles offers an attractive bottom-up approach to functional materials. Current design strategies for colloidal assemblies are mostly based on thermodynamically controlled principles and lack autonomous behavior. The next advance in the properties of colloidal assemblies will come from coupling these structures to out-of-equilibrium chemical reaction networks furnishing them with autonomous and dynamic behavior. This, however, constitutes a major challenge of carefully modulating the interparticle potentials on a temporal circuit program and avoiding kinetic trapping and irreversible aggregation. Herein, we report the coupling of a fuel-driven DNA-based enzymatic reaction network (ERN) to micron-sized colloidal particles to achieve their transient co-assembly. The ERN operating on the molecular level transiently releases an Output strand which links two DNA functionalized microgel particles together into co-assemblies with a programmable assembly lifetime. The system generates minimal waste and recovers all components of the ERN after the consumption of the ATP fuel. The system can be reactivated by addition of new fuel as shown for up to three cycles. The design can be applied to organize other building blocks into hierarchical structures and materials with advanced biomimetic properties.
Collapse
Affiliation(s)
- Charu Sharma
- Department of Chemistry, Life-Like Materials and Systems, University of Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Aritra Sarkar
- Department of Chemistry, Life-Like Materials and Systems, University of Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Andreas Walther
- Department of Chemistry, Life-Like Materials and Systems, University of Mainz Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
19
|
Riley L, Cheng P, Segura T. Identification and analysis of 3D pores in packed particulate materials. NATURE COMPUTATIONAL SCIENCE 2023; 3:975-992. [PMID: 38177603 DOI: 10.1038/s43588-023-00551-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/09/2023] [Indexed: 01/06/2024]
Abstract
We took the classic 'guess the number of beans in a jar game' and amplified the research question. Rather than estimate the quantity of particles in the jar, we sought to characterize the spaces between them. Here we present an approach for delineating the pockets of empty space (three-dimensional pores) between packed particles, which are hotspots for activity in applications and natural phenomena that deal with particulate materials. We utilize techniques from graph theory to exploit information about particle configuration that allows us to locate important spatial landmarks within the void space. These landmarks are the basis for our pore segmentation, where we consider both interior pores as well as entrance and exit pores into and out of the structure. Our method is robust for particles of varying size, form, stiffness and configuration, which allows us to study and compare three-dimensional pores across a range of packed particle types. We report striking relationships between particles and pores that are described mathematically, and we offer a visual library of pore types. With a meaningful discretization of void space, we demonstrate that packed particles can be understood not by their solid space, but by their empty space.
Collapse
Affiliation(s)
- Lindsay Riley
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Medicine, Neurology, Dermatology, Duke University, Durham, NC, USA.
| |
Collapse
|
20
|
Lee HP, Davis R, Wang TC, Deo KA, Cai KX, Alge DL, Lele TP, Gaharwar AK. Dynamically Cross-Linked Granular Hydrogels for 3D Printing and Therapeutic Delivery. ACS APPLIED BIO MATERIALS 2023; 6:3683-3695. [PMID: 37584641 PMCID: PMC10863386 DOI: 10.1021/acsabm.3c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/13/2023] [Indexed: 08/17/2023]
Abstract
Granular hydrogels have recently emerged as promising biomaterials for tissue engineering and 3D-printing applications, addressing the limitations of bulk hydrogels while exhibiting desirable properties such as injectability and high porosity. However, their structural stability can be improved with post-injection interparticle cross-linking. In this study, we developed granular hydrogels with interparticle cross-linking through reversible and dynamic covalent bonds. We fragmented photo-cross-linked bulk hydrogels to produce aldehyde or hydrazide-functionalized microgels using chondroitin sulfate. Mixing these microgels facilitated interparticle cross-linking through reversible hydrazone bonds, providing shear-thinning and self-healing properties for injectability and 3D printing. The resulting granular hydrogels displayed high mechanical stability without the need for secondary cross-linking. Furthermore, the porosity and sustained release of growth factors from these hydrogels synergistically enhanced cell recruitment. Our study highlights the potential of reversible interparticle cross-linking for designing injectable and 3D printable therapeutic delivery scaffolds using granular hydrogels. Overall, our study highlights the potential of reversible interparticle cross-linking to improve the structural stability of granular hydrogels, making them an effective biomaterial for use in tissue engineering and 3D-printing applications.
Collapse
Affiliation(s)
- Hung-Pang Lee
- Biomedical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Ryan Davis
- Biomedical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Ting-Ching Wang
- Chemical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Kaivalya A. Deo
- Biomedical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Kathy Xiao Cai
- Biomedical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Daniel L. Alge
- Biomedical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
- Material
Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Tanmay P. Lele
- Biomedical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
- Chemical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Akhilesh K. Gaharwar
- Biomedical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
- Material
Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Graduate Program in Genetics & Genomics, Texas A&M University, College Station, Texas 77843, United States
- Center
for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
21
|
Widener AE, Roberts A, Phelps EA. Single versus dual microgel species for forming guest-host microporous annealed particle PEG-MAL hydrogel. J Biomed Mater Res A 2023; 111:1379-1389. [PMID: 37010360 PMCID: PMC10909382 DOI: 10.1002/jbm.a.37540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
Inter-particle secondary crosslinks allow microporous annealed particle (MAP) hydrogels to be formed. Methods to introduce secondary crosslinking networks in MAP hydrogels include particle jamming, annealing with covalent bonds, and reversible noncovalent interactions. Here, we investigate the effect of two different approaches to secondary crosslinking of polyethylene glycol (PEG) microgels via reversible guest-host interactions. We generated a dual-particle MAP-PEG hydrogel using two species of PEG microgels, one functionalized with the guest molecule, adamantane, and the other with the host molecule, β-cyclodextrin (Inter-MAP-PEG). In a different approach, a mono-particle MAP-PEG hydrogel was generated using one species of microgel functionalized with both guest and host molecules (Intra-MAP-PEG). The Intra-MAP-PEG formed a homogenous distribution due to the single type of microgels used. We then compared the mechanical properties of these two types of MAP-PEG hydrogels and found that Intra-MAP-PEG resulted in significantly softer gels with lower yield stress. We investigated the effect of intra-particle guest-host interactions through titrated weight percentage and the concentration of functional groups added to the hydrogel. We found that there was an ideal concentration of guest-host molecules that enables intra- and inter-particle guest-host interactions with sufficient covalent crosslinking. Based on these studies, Intra-MAP-PEG provides a homogeneous guest-host hydrogel that is shear-thinning with reversible secondary crosslinking.
Collapse
Affiliation(s)
- Adrienne E. Widener
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Abilene Roberts
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
22
|
Lowen JM, Bond GC, Griffin KH, Shimamoto NK, Thai VL, Leach JK. Multisized Photoannealable Microgels Regulate Cell Spreading, Aggregation, and Macrophage Phenotype through Microporous Void Space. Adv Healthc Mater 2023; 12:e2202239. [PMID: 36719946 PMCID: PMC10198868 DOI: 10.1002/adhm.202202239] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/06/2023] [Indexed: 02/02/2023]
Abstract
Microgels are an emerging platform for in vitro models and guiding cell fate due to their inherent porosity and tunability. This work describes a light-based technique for rapidly annealing microgels across a range of diameters. Utilizing 8-arm poly(ethylene) glycol-vinyl sulfone, the number of arms available for crosslinking, functionalization, and annealing is stoichiometrically controlled. Small and large microgels are fabricated to explore how microgel diameter impacts void space and the role of porosity on cell spreading, cell aggregation, and macrophage polarization. Mesenchymal stromal cells spread rapidly in both formulations, yet the smaller microgels permit a higher cell density. When seeded with macrophages, the smaller microgels promote an M1 phenotype, while larger microgels promote an M2 phenotype. As another application, the inherent porosity of annealed microgels is leveraged to induce cell aggregation. Finally, the microgels are implanted to examine how different size microgels influence endogenous cell invasion and macrophage polarization. The use of ultraviolet light allows for microgels to be noninvasively injected into a desired mold or wound defect before annealing, and microgels of different properties combined to create a heterogeneous scaffold. This approach is clinically relevant given its tunability and fast annealing time.
Collapse
Affiliation(s)
- Jeremy M. Lowen
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - Gabriella C. Bond
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
| | - Katherine H. Griffin
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
- School of Veterinary Medicine, University of California, Davis, CA 95616
| | | | - Victoria L. Thai
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - J. Kent Leach
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| |
Collapse
|
23
|
Rütsche D, Nanni M, Rüdisser S, Biedermann T, Zenobi-Wong M. Enzymatically Crosslinked Collagen as a Versatile Matrix for In Vitro and In Vivo Co-Engineering of Blood and Lymphatic Vasculature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209476. [PMID: 36724374 DOI: 10.1002/adma.202209476] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/30/2022] [Indexed: 06/18/2023]
Abstract
Adequate vascularization is required for the successful translation of many in vitro engineered tissues. This study presents a novel collagen derivative that harbors multiple recognition peptides for orthogonal enzymatic crosslinking based on sortase A (SrtA) and Factor XIII (FXIII). SrtA-mediated crosslinking enables the rapid co-engineering of human blood and lymphatic microcapillaries and mesoscale capillaries in bulk hydrogels. Whereas tuning of gel stiffness determines the extent of neovascularization, the relative number of blood and lymphatic capillaries recapitulates the ratio of blood and lymphatic endothelial cells originally seeded into the hydrogel. Bioengineered capillaries readily form luminal structures and exhibit typical maturation markers both in vitro and in vivo. The secondary crosslinking enzyme Factor XIII is used for in situ tethering of the VEGF mimetic QK peptide to collagen. This approach supports the formation of blood and lymphatic capillaries in the absence of exogenous VEGF. Orthogonal enzymatic crosslinking is further used to bioengineer hydrogels with spatially defined polymer compositions with pro- and anti-angiogenic properties. Finally, macroporous scaffolds based on secondary crosslinking of microgels enable vascularization independent from supporting fibroblasts. Overall, this work demonstrates for the first time the co-engineering of mature micro- and meso-sized blood and lymphatic capillaries using a highly versatile collagen derivative.
Collapse
Affiliation(s)
- Dominic Rütsche
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zurich, Otto-Stern-Weg 7, Zurich, 8093, Switzerland
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, Schlieren, 8952, Switzerland
| | - Monica Nanni
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, Schlieren, 8952, Switzerland
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, Zurich, 8092, Switzerland
| | - Simon Rüdisser
- Biomolecular NMR Spectroscopy Platform, Department of Biology, ETH Zurich, Hönggerbergring 64, Zurich, 8093, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, Schlieren, 8952, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zurich, Otto-Stern-Weg 7, Zurich, 8093, Switzerland
| |
Collapse
|
24
|
Muir VG, Weintraub S, Dhand AP, Fallahi H, Han L, Burdick JA. Influence of Microgel and Interstitial Matrix Compositions on Granular Hydrogel Composite Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206117. [PMID: 36717272 PMCID: PMC10074081 DOI: 10.1002/advs.202206117] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Indexed: 06/18/2023]
Abstract
Granular hydrogels are an emerging class of biomaterials formed by jamming hydrogel microparticles (i.e., microgels). These materials have many advantageous properties that can be tailored through microgel design and extent of packing. To enhance the range of properties, granular composites can be formed with a hydrogel interstitial matrix between the packed microgels, allowing for material flow and then stabilization after crosslinking. This approach allows for distinct compartments (i.e., microgels and interstitial space) with varied properties to engineer complex material behaviors. However, a thorough investigation of how the compositions and ratios of microgels and interstitial matrices influence material properties has not been performed. Herein, granular hydrogel composites are fabricated by combining fragmented hyaluronic acid (HA) microgels with interstitial matrices consisting of photocrosslinkable HA. Microgels of varying compressive moduli (10-70 kPa) are combined with interstitial matrices (0-30 vol.%) with compressive moduli varying from 2-120 kPa. Granular composite structure (confocal imaging), mechanics (local and bulk), flow behavior (rheology), and printability are thoroughly assessed. Lastly, variations in the interstitial matrix chemistry (covalent vs guest-host) and microgel degradability are investigated. Overall, this study describes the influence of granular composite composition on structure and mechanical properties of granular hydrogels towards informed designs for future applications.
Collapse
Affiliation(s)
- Victoria G. Muir
- Department of BioengineeringSchool of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Shoshana Weintraub
- Department of BioengineeringSchool of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Abhishek P. Dhand
- Department of BioengineeringSchool of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Hooman Fallahi
- School of Biomedical EngineeringScience and Health SystemsDrexel UniversityPhiladelphiaPA19104USA
| | - Lin Han
- School of Biomedical EngineeringScience and Health SystemsDrexel UniversityPhiladelphiaPA19104USA
| | - Jason A. Burdick
- Department of BioengineeringSchool of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPA19104USA
- BioFrontiers InstituteUniversity of Colorado BoulderBoulderCO80303USA
- Department of Chemical and Biological EngineeringCollege of Engineering and Applied ScienceUniversity of Colorado BoulderBoulderCO80303USA
| |
Collapse
|
25
|
Emiroglu DB, Bekcic A, Dranseikiene D, Zhang X, Zambelli T, deMello AJ, Tibbitt MW. Building block properties govern granular hydrogel mechanics through contact deformations. SCIENCE ADVANCES 2022; 8:eadd8570. [PMID: 36525484 PMCID: PMC9757745 DOI: 10.1126/sciadv.add8570] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Granular hydrogels have been increasingly exploited in biomedical applications, including wound healing and cardiac repair. Despite their utility, design guidelines for engineering their macroscale properties remain limited, as we do not understand how the properties of granular hydrogels emerge from collective interactions of their microgel building blocks. In this work, we related building block features (stiffness and size) to the macroscale properties of granular hydrogels using contact mechanics. We investigated the mechanics of the microgel packings through dynamic oscillatory rheology. In addition, we modeled the system as a collection of two-body interactions and applied the Zwanzig and Mountain formula to calculate the plateau modulus and viscosity of the granular hydrogels. The calculations agreed with the dynamic mechanical measurements and described how microgel properties and contact deformations define the rheology of granular hydrogels. These results support a rational design framework for improved engineering of this fascinating class of materials.
Collapse
Affiliation(s)
- Dilara Börte Emiroglu
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Aleksandar Bekcic
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Dalia Dranseikiene
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Xinyu Zhang
- Laboratory of Biosensors and Bioelectronics, Department of Information Technology and Electrical Engineering, ETHZurich, 8093 Zurich, Switzerland
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Department of Information Technology and Electrical Engineering, ETHZurich, 8093 Zurich, Switzerland
| | - Andrew J. deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
26
|
Caracena T, Blomberg R, Hewawasam RS, Fry ZE, Riches DWH, Magin CM. Alveolar epithelial cells and microenvironmental stiffness synergistically drive fibroblast activation in three-dimensional hydrogel lung models. Biomater Sci 2022; 10:7133-7148. [PMID: 36366982 PMCID: PMC9729409 DOI: 10.1039/d2bm00827k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease that progressively and irreversibly alters the lung parenchyma, eventually leading to respiratory failure. The study of this disease has been historically challenging due to the myriad of complex processes that contribute to fibrogenesis and the inherent difficulty in accurately recreating the human pulmonary environment in vitro. Here, we describe a poly(ethylene glycol) PEG hydrogel-based three-dimensional model for the co-culture of primary murine pulmonary fibroblasts and alveolar epithelial cells that reproduces the micro-architecture, cell placement, and mechanical properties of healthy and fibrotic lung tissue. Co-cultured cells retained normal levels of viability up to at least three weeks and displayed differentiation patterns observed in vivo during IPF progression. Interrogation of protein and gene expression within this model showed that myofibroblast activation required both extracellular mechanical cues and the presence of alveolar epithelial cells. Differences in gene expression indicated that cellular co-culture induced TGF-β signaling and proliferative gene expression, while microenvironmental stiffness upregulated the expression of genes related to cell-ECM interactions. This biomaterial-based cell culture system serves as a significant step forward in the accurate recapitulation of human lung tissue in vitro and highlights the need to incorporate multiple factors that work together synergistically in vivo into models of lung biology of health and disease.
Collapse
Affiliation(s)
- Thomas Caracena
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, USA.
| | - Rachel Blomberg
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, USA.
| | - Rukshika S Hewawasam
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, USA.
| | - Zoe E Fry
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, USA.
| | - David W H Riches
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, USA
- Department of Research, Veterans Affairs Eastern Colorado Health Care System, USA
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, USA
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, USA.
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, USA
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, USA
| |
Collapse
|
27
|
Suturin AC, Krüger AJD, Neidig K, Klos N, Dolfen N, Bund M, Gronemann T, Sebers R, Manukanc A, Yazdani G, Kittel Y, Rommel D, Haraszti T, Köhler J, De Laporte L. Annealing High Aspect Ratio Microgels into Macroporous 3D Scaffolds Allows for Higher Porosities and Effective Cell Migration. Adv Healthc Mater 2022; 11:e2200989. [PMID: 36100464 PMCID: PMC11469137 DOI: 10.1002/adhm.202200989] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/25/2022] [Indexed: 01/28/2023]
Abstract
Growing millimeter-scaled functional tissue remains a major challenge in the field of tissue engineering. Therefore, microporous annealed particles (MAPs) are emerging as promising porous biomaterials that are formed by assembly of microgel building blocks. To further vary the pore size and increase overall MAP porosity of mechanically stable scaffolds, rod-shaped microgels with high aspect ratios up to 20 are chemically interlinked into highly porous scaffolds. Polyethylene glycol based microgels (width 10 µm, lengths up to 200 µm) are produced via in-mold polymerization and covalently interlinked into stable 3D scaffolds via epoxy-amine chemistry. For the first time, MAP porosities can be enhanced by increasing the microgel aspect ratio (mean pore sizes ranging from 39 to 82 µm, porosities from 65 to 90%). These porosities are significantly higher compared to constructs made from spherical or lower aspect ratio rod-shaped microgels. Rapid filling of the pores by either murine or primary human fibroblasts is ensured as cells migrate and grow extensively into these scaffolds. Overall, this study demonstrates that highly porous, stable macroporous hydrogels can be achieved with a very low partial volume of synthetic, high aspect ratio microgels, leading to large empty volumes available for cell ingrowth and cell-cell interactions.
Collapse
Affiliation(s)
- Alisa C. Suturin
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 252074AachenGermany
| | - Andreas J. D. Krüger
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 252074AachenGermany
| | - Kathrin Neidig
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Nina Klos
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Nina Dolfen
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Michelle Bund
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Till Gronemann
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Rebecca Sebers
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Anna Manukanc
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Ghazaleh Yazdani
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Yonca Kittel
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 252074AachenGermany
| | - Dirk Rommel
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 252074AachenGermany
| | - Tamás Haraszti
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 252074AachenGermany
| | - Jens Köhler
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 252074AachenGermany
| | - Laura De Laporte
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 252074AachenGermany
- Advanced Materials for Biomedicine (AMB)Institute of Applied Medical Engineering (AME)University Hospital RWTH AachenCenter for Biohybrid Medical Systems (CMBS)Forckenbeckstraße 5552074AachenGermany
| |
Collapse
|
28
|
Hoque J, Zeng Y, Newman H, Gonzales G, Lee C, Varghese S. Microgel-Assisted Delivery of Adenosine to Accelerate Fracture Healing. ACS Biomater Sci Eng 2022; 8:4863-4872. [PMID: 36266245 PMCID: PMC11188841 DOI: 10.1021/acsbiomaterials.2c00977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extracellular adenosine plays a key role in promoting bone tissue formation. Local delivery of adenosine could be an effective therapeutic strategy to harness the beneficial effect of extracellular adenosine on bone tissue formation following injury. Herein, we describe the development of an injectable in situ curing scaffold containing microgel-based adenosine delivery units. The two-component scaffold includes adenosine-loaded microgels and functionalized hyaluronic acid (HA) molecules. The microgels were generated upon copolymerization of 3-acrylamidophenylboronic acid (3-APBA)- and 2-aminoethylmethacrylamide (2-AEMA)-conjugated HA (HA-AEMA) in an emulsion suspension. The PBA functional groups were used to load the adenosine molecules. Mixing of the microgels with the HA polymers containing clickable groups, dibenzocyclooctyne (DBCO) and azide (HA-DBCO and HA-Azide), resulted in a 3D scaffold embedded with adenosine delivery units. Application of the in situ curing scaffolds containing adenosine-loaded microgels following tibial fracture injury showed improved bone tissue healing in a mouse model as demonstrated by the reduced callus size, higher bone volume, and increased tissue mineral density compared to those treated with the scaffold without adenosine. Overall, our results suggest that local delivery of adenosine could potentially be an effective strategy to promote bone tissue repair.
Collapse
Affiliation(s)
- Jiaul Hoque
- Department of Orthopaedic Surgery School of Medicine, Duke University, Durham, North Carolina 27710, United States
| | - Yuze Zeng
- Department of Orthopaedic Surgery School of Medicine, Duke University, Durham, North Carolina 27710, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27710, United States
| | - Hunter Newman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27710, United States
| | - Gavin Gonzales
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27710, United States
| | - Cheryl Lee
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27710, United States
| | - Shyni Varghese
- Department of Orthopaedic Surgery School of Medicine, Duke University, Durham, North Carolina 27710, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27710, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
29
|
Widener AE, Duraivel S, Angelini TE, Phelps EA. Injectable Microporous Annealed Particle Hydrogel Based on Guest-Host-Interlinked Polyethylene Glycol Maleimide Microgels. ADVANCED NANOBIOMED RESEARCH 2022; 2:2200030. [PMID: 36419640 PMCID: PMC9678130 DOI: 10.1002/anbr.202200030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Microporous annealed particle (MAP) hydrogels have emerged as a versatile biomaterial platform for regenerative medicine. MAP hydrogels have been used for the delivery of cells and organoids but often require annealing post injection by an external source. We engineered an injectable, self-annealing MAP hydrogel with reversible interparticle linkages based on guest-host functionalized polyethylene glycol maleimide (PEG-MAL) microgels. We evaluated the effect of guest-host linkages on different types of microgels fabricated by either batch emulsion or mechanical fragmentation methods. Batch emulsion generated small spherical microgels with controllable 10-100 μm diameters and mechanical fragmentation generated irregular microgels with larger diameters (100-200 μm). Spherical microgels (15 μm) showed self-healing behavior and completely recovered from high strain while fragmented microgels (133 μm) did not recover. Guest-host interactions significantly contributed to the mechanical properties of spherical microgels but had no effect on fragmented microgels. Spherical microgels were superior to the fragmented microgels for co-injection of immune cells and pancreatic islets due to their lower force of injection, demonstrating more homogeneously distributed cells and greater cell viability after injection. Based on these studies, the spherical guest-host MAP hydrogels provide a controllable, injectable scaffold for engineered microenvironments and cell delivery applications.
Collapse
Affiliation(s)
- Adrienne E Widener
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Senthilkumar Duraivel
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Thomas E Angelini
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
30
|
Alkhursani SA, Ghobashy MM, Al-Gahtany SA, Meganid AS, Abd El-Halim SM, Ahmad Z, Khan FS, Atia GAN, Cavalu S. Application of Nano-Inspired Scaffolds-Based Biopolymer Hydrogel for Bone and Periodontal Tissue Regeneration. Polymers (Basel) 2022; 14:3791. [PMID: 36145936 PMCID: PMC9504130 DOI: 10.3390/polym14183791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
This review's objectives are to provide an overview of the various kinds of biopolymer hydrogels that are currently used for bone tissue and periodontal tissue regeneration, to list the advantages and disadvantages of using them, to assess how well they might be used for nanoscale fabrication and biofunctionalization, and to describe their production processes and processes for functionalization with active biomolecules. They are applied in conjunction with other materials (such as microparticles (MPs) and nanoparticles (NPs)) and other novel techniques to replicate physiological bone generation more faithfully. Enhancing the biocompatibility of hydrogels created from blends of natural and synthetic biopolymers can result in the creation of the best scaffold match to the extracellular matrix (ECM) for bone and periodontal tissue regeneration. Additionally, adding various nanoparticles can increase the scaffold hydrogel stability and provide a number of biological effects. In this review, the research study of polysaccharide hydrogel as a scaffold will be critical in creating valuable materials for effective bone tissue regeneration, with a future impact predicted in repairing bone defects.
Collapse
Affiliation(s)
- Sheikha A. Alkhursani
- Faculty of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail 31441, Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo 11787, Egypt
| | | | - Abeer S. Meganid
- Faculty of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail 31441, Saudi Arabia
| | - Shady M. Abd El-Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza 12585, Egypt
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, Abha 61413, Saudi Arabia
| | - Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia 41522, Egypt
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
31
|
Muir VG, Qazi TH, Weintraub S, Torres Maldonado BO, Arratia PE, Burdick JA. Sticking Together: Injectable Granular Hydrogels with Increased Functionality via Dynamic Covalent Inter-Particle Crosslinking. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201115. [PMID: 35315233 PMCID: PMC9463088 DOI: 10.1002/smll.202201115] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/03/2022] [Indexed: 05/14/2023]
Abstract
Granular hydrogels are an exciting class of microporous and injectable biomaterials that are being explored for many biomedical applications, including regenerative medicine, 3D printing, and drug delivery. Granular hydrogels often possess low mechanical moduli and lack structural integrity due to weak physical interactions between microgels. This has been addressed through covalent inter-particle crosslinking; however, covalent crosslinking often occurs through temporal enzymatic methods or photoinitiated reactions, which may limit injectability and material processing. To address this, a hyaluronic acid (HA) granular hydrogel is developed with dynamic covalent (hydrazone) inter-particle crosslinks. Extrusion fragmentation is used to fabricate microgels from photocrosslinkable norbornene-modified HA, additionally modified with either aldehyde or hydrazide groups. Aldehyde and hydrazide-containing microgels are mixed and jammed to form adhesive granular hydrogels. These granular hydrogels possess enhanced mechanical integrity and shape stability over controls due to the covalent inter-particle bonds, while maintaining injectability due to the dynamic hydrazone bonds. The adhesive granular hydrogels are applied to 3D printing, which allows the printing of structures that are stable without any further post-processing. Additionally, the authors demonstrate that adhesive granular hydrogels allow for cell invasion in vitro. Overall, this work demonstrates the use of dynamic covalent inter-particle crosslinking to enhance injectable granular hydrogels.
Collapse
Affiliation(s)
- Victoria G Muir
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Taimoor H Qazi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shoshana Weintraub
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bryan O Torres Maldonado
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paulo E Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Chemical and Biological Engineering, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
32
|
Miksch CE, Skillin NP, Kirkpatrick BE, Hach GK, Rao VV, White TJ, Anseth KS. 4D Printing of Extrudable and Degradable Poly(Ethylene Glycol) Microgel Scaffolds for Multidimensional Cell Culture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200951. [PMID: 35732614 PMCID: PMC9463109 DOI: 10.1002/smll.202200951] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/18/2022] [Indexed: 05/02/2023]
Abstract
Granular synthetic hydrogels are useful bioinks for their compatibility with a variety of chemistries, affording printable, stimuli-responsive scaffolds with programmable structure and function. Additive manufacturing of microscale hydrogels, or microgels, allows for the fabrication of large cellularized constructs with percolating interstitial space, providing a platform for tissue engineering at length scales that are inaccessible by bulk encapsulation where transport of media and other biological factors are limited by scaffold density. Herein, synthetic microgels with varying degrees of degradability are prepared with diameters on the order of hundreds of microns by submerged electrospray and UV photopolymerization. Porous microgel scaffolds are assembled by particle jamming and extrusion printing, and semi-orthogonal chemical cues are utilized to tune the void fraction in printed scaffolds in a logic-gated manner. Scaffolds with different void fractions are easily cellularized post printing and microgels can be directly annealed into cell-laden structures. Finally, high-throughput direct encapsulation of cells within printable microgels is demonstrated, enabling large-scale 3D culture in a macroporous biomaterial. This approach provides unprecedented spatiotemporal control over the properties of printed microporous annealed particle scaffolds for 2.5D and 3D tissue culture.
Collapse
Affiliation(s)
- Connor E Miksch
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Nathaniel P Skillin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Grace K Hach
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Varsha V Rao
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
33
|
Sideris E, Kioulaphides S, Wilson K, Yu A, Chen J, Carmichael ST, Segura T. Particle hydrogels decrease cerebral atrophy and attenuate astrocyte and microglia/macrophage reactivity after stroke. ADVANCED THERAPEUTICS 2022; 5:2200048. [PMID: 36589207 PMCID: PMC9797126 DOI: 10.1002/adtp.202200048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 01/05/2023]
Abstract
Increasing numbers of individuals live with stroke related disabilities. Following stroke, highly reactive astrocytes and pro-inflammatory microglia can release cytokines and lead to a cytotoxic environment that causes further brain damage and prevents endogenous repair. Paradoxically, these same cells also activate pro-repair mechanisms that contribute to endogenous repair and brain plasticity. Here, we show that the direct injection of a hyaluronic acid based microporous annealed particle (MAP) hydrogel into the stroke core in mice reduces the percent of highly reactive astrocytes, increases the percent of alternatively activated microglia, decreases cerebral atrophy and preserves NF200 axonal bundles. Further, we show that MAP hydrogel promotes reparative astrocyte infiltration into the lesion, which directly coincides with axonal penetration into the lesion. This work shows that the injection of a porous scaffold into the stroke core can lead to clinically relevant decrease in cerebral atrophy and modulates astrocytes and microglia towards a pro-repair phenotype.
Collapse
Affiliation(s)
- Elias Sideris
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, United States
| | - Sophia Kioulaphides
- Departments of Biomedical Engineering, Neurology, and Dermatology, Duke University, Durham, NC, United States
| | - Katrina Wilson
- Departments of Biomedical Engineering, Neurology, and Dermatology, Duke University, Durham, NC, United States
| | - Aaron Yu
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, United States
| | - Jun Chen
- Departments of Biomedical Engineering, Neurology, and Dermatology, Duke University, Durham, NC, United States
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Tatiana Segura
- Departments of Biomedical Engineering, Neurology, and Dermatology, Duke University, Durham, NC, United States
| |
Collapse
|
34
|
Xu Y, Zhu H, Denduluri A, Ou Y, Erkamp NA, Qi R, Shen Y, Knowles TPJ. Recent Advances in Microgels: From Biomolecules to Functionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200180. [PMID: 35790106 DOI: 10.1002/smll.202200180] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The emerging applications of hydrogel materials at different length scales, in areas ranging from sustainability to health, have driven the progress in the design and manufacturing of microgels. Microgels can provide miniaturized, monodisperse, and regulatable compartments, which can be spatially separated or interconnected. These microscopic materials provide novel opportunities for generating biomimetic cell culture environments and are thus key to the advances of modern biomedical research. The evolution of the physical and chemical properties has, furthermore, highlighted the potentials of microgels in the context of materials science and bioengineering. This review describes the recent research progress in the fabrication, characterization, and applications of microgels generated from biomolecular building blocks. A key enabling technology allowing the tailoring of the properties of microgels is their synthesis through microfluidic technologies, and this paper highlights recent advances in these areas and their impact on expanding the physicochemical parameter space accessible using microgels. This review finally discusses the emerging roles that microgels play in liquid-liquid phase separation, micromechanics, biosensors, and regenerative medicine.
Collapse
Affiliation(s)
- Yufan Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Hongjia Zhu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Akhila Denduluri
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yangteng Ou
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nadia A Erkamp
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Runzhang Qi
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yi Shen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
35
|
Mohammadi S, Ravanbakhsh H, Taheri S, Bao G, Mongeau L. Immunomodulatory Microgels Support Proregenerative Macrophage Activation and Attenuate Fibroblast Collagen Synthesis. Adv Healthc Mater 2022; 11:e2102366. [PMID: 35122412 DOI: 10.1002/adhm.202102366] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/28/2022] [Indexed: 11/05/2022]
Abstract
Scars composed of fibrous connective tissues are natural consequences of injury upon incisional wound healing in soft tissues. Hydrogels that feature a sustained presentation of immunomodulatory cytokines are known to modulate wound healing. However, existing immunomodulatory hydrogels lack interconnected micropores to promote cell ingrowth. Other limitations include invasive delivery procedures and harsh synthesis conditions that are incompatible with drug molecules. Here, hybrid nanocomposite microgels containing interleukin-10 (IL-10) are reported to modulate tissue macrophage phenotype during wound healing. The intercalation of laponite nanoparticles in the polymer network yields microgels with tissue-mimetic elasticity (Young's modulus in the range of 2-6 kPa) and allows the sustained release of IL-10 to promote the differentiation of macrophages toward proregenerative phenotypes. The porous interstitial spaces between microgels promote fibroblast proliferation and fast trafficking (an average speed of ≈14.4 µm h-1 ). The incorporation of hyaluronic acid further enhances macrophage infiltration. The coculture of macrophages and fibroblasts treated with transforming growth factor-beta 1 resulted in a twofold reduction in collagen-I production for microgels releasing IL-10 compared to the IL-10 free group. The new microgels show potential toward regenerative healing by harnessing the antifibrotic behavior of host macrophages.
Collapse
Affiliation(s)
- Sepideh Mohammadi
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Hossein Ravanbakhsh
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Sareh Taheri
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Guangyu Bao
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Luc Mongeau
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| |
Collapse
|
36
|
Xu F, Dawson C, Lamb M, Mueller E, Stefanek E, Akbari M, Hoare T. Hydrogels for Tissue Engineering: Addressing Key Design Needs Toward Clinical Translation. Front Bioeng Biotechnol 2022; 10:849831. [PMID: 35600900 PMCID: PMC9119391 DOI: 10.3389/fbioe.2022.849831] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Graphical Abstract
Collapse
Affiliation(s)
- Fei Xu
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Chloe Dawson
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Makenzie Lamb
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Eva Mueller
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Evan Stefanek
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC, Canada
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC, Canada
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
- *Correspondence: Mohsen Akbari, ; Todd Hoare,
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
- *Correspondence: Mohsen Akbari, ; Todd Hoare,
| |
Collapse
|
37
|
Stengelin E, Thiele J, Seiffert S. Multiparametric Material Functionality of Microtissue-Based In Vitro Models as Alternatives to Animal Testing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105319. [PMID: 35043598 PMCID: PMC8981905 DOI: 10.1002/advs.202105319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 05/12/2023]
Abstract
With the definition of the 3R principle by Russel and Burch in 1959, the search for an adequate substitute for animal testing has become one of the most important tasks and challenges of this time, not only from an ethical, but also from a scientific, economic, and legal point of view. Microtissue-based in vitro model systems offer a valuable approach to address this issue by accounting for the complexity of natural tissues in a simplified manner. To increase the functionality of these model systems and thus make their use as a substitute for animal testing more likely in the future, the fundamentals need to be continuously improved. Corresponding requirements exist in the development of multifunctional, hydrogel-based materials, whose properties are considered in this review under the aspects of processability, adaptivity, biocompatibility, and stability/degradability.
Collapse
Affiliation(s)
- Elena Stengelin
- Department of ChemistryJohannes Gutenberg‐University MainzD‐55128MainzGermany
| | - Julian Thiele
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| | - Sebastian Seiffert
- Department of ChemistryJohannes Gutenberg‐University MainzD‐55128MainzGermany
| |
Collapse
|
38
|
Charlet A, Bono F, Amstad E. Mechanical reinforcement of granular hydrogels. Chem Sci 2022; 13:3082-3093. [PMID: 35414870 PMCID: PMC8926196 DOI: 10.1039/d1sc06231j] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
Granular hydrogels are composed of hydrogel-based microparticles, so-called microgels, that are densely packed to form an ink that can be 3D printed, injected or cast into macroscopic structures. They are frequently used as tissue engineering scaffolds because microgels can be made biocompatible and the porosity of the granular hydrogels enables a fast exchange of reagents, waste products, and if properly designed even the infiltration of cells. Most of these granular hydrogels can be shaped into appropriate macroscopic structures, yet, these structures are mechanically rather weak. The poor mechanical properties prevent the use of these structures as load-bearing materials and hence, limit their field of applications. The mechanical properties of granular hydrogels depend on the composition of microgels and the interparticle interactions. In this review, we discuss different strategies to assemble microparticles into granular hydrogels and highlight the influence of inter-particle connections on the stiffness and toughness of the resulting materials. Mechanically strong and tough granular hydrogels have the potential to open up new fields of their use and thereby to contribute to fast advances in these fields. In particular, we envisage them to be well-suited as soft actuators and robots, tissue replacements, and adaptive sensors.
Collapse
Affiliation(s)
- Alvaro Charlet
- Soft Materials Laboratory, Institute of Materials, EPFL Lausanne Lausanne 1015 Switzerland
| | - Francesca Bono
- Soft Materials Laboratory, Institute of Materials, EPFL Lausanne Lausanne 1015 Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, EPFL Lausanne Lausanne 1015 Switzerland
| |
Collapse
|
39
|
Feng Q, Li D, Li Q, Cao X, Dong H. Microgel assembly: Fabrication, characteristics and application in tissue engineering and regenerative medicine. Bioact Mater 2022; 9:105-119. [PMID: 34820559 PMCID: PMC8586262 DOI: 10.1016/j.bioactmat.2021.07.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/30/2021] [Accepted: 07/17/2021] [Indexed: 12/15/2022] Open
Abstract
Microgel assembly, a macroscopic aggregate formed by bottom-up assembly of microgels, is now emerging as prospective biomaterials for applications in tissue engineering and regenerative medicine (TERM). This mini-review first summarizes the fabrication strategies available for microgel assembly, including chemical reaction, physical reaction, cell-cell interaction and external driving force, then highlights its unique characteristics, such as microporosity, injectability and heterogeneity, and finally itemizes its applications in the fields of cell culture, tissue regeneration and biofabrication, especially 3D printing. The problems to be addressed for further applications of microgel assembly are also discussed.
Collapse
Affiliation(s)
- Qi Feng
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, China
| | - Dingguo Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, China
| | - Hua Dong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
40
|
Charlet A, Hirsch M, Schreiber S, Amstad E. Recycling of Load-Bearing 3D Printable Double Network Granular Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107128. [PMID: 35174951 DOI: 10.1002/smll.202107128] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Sustainable materials, such as recyclable polymers, become increasingly important as they are often environmentally friendlier than their one-time-use counterparts. In parallel, the trend toward more customized products demands for fast prototyping methods which allow processing materials into 3D objects that are often only used for a limited amount of time yet, that must be mechanically sufficiently robust to bear significant loads. Soft materials that satisfy the two rather contradictory needs remain to be shown. Here, the authors introduce a material that simultaneously fulfills both requirements, a 3D printable, recyclable double network granular hydrogel (rDNGH). This hydrogel is composed of poly(2-acrylamido-2-methylpropane sulfonic acid) microparticles that are covalently crosslinked through a disulfide-based percolating network. The possibility to independently degrade the percolating network, with no harm to the primary network contained within the microgels, renders the recovery of the microgels efficient. As a result, the recycled material pertains a stiffness and toughness that are similar to those of the pristine material. Importantly, this process can be extended to the fabrication of recyclable hard plastics made of, for example, dried rDNGHs. The authors envision this approach to serve as foundation for a paradigm shift in the design of new sustainable soft materials and plastics.
Collapse
Affiliation(s)
- Alvaro Charlet
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, STI-IMX-SMAL Station 12, Lausanne, 1015, Switzerland
| | - Matteo Hirsch
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, STI-IMX-SMAL Station 12, Lausanne, 1015, Switzerland
| | - Sanjay Schreiber
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, STI-IMX-SMAL Station 12, Lausanne, 1015, Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, STI-IMX-SMAL Station 12, Lausanne, 1015, Switzerland
| |
Collapse
|
41
|
Nguyen TPT, Li F, Shrestha S, Tuan RS, Thissen H, Forsythe JS, Frith JE. Cell-laden injectable microgels: Current status and future prospects for cartilage regeneration. Biomaterials 2021; 279:121214. [PMID: 34736147 DOI: 10.1016/j.biomaterials.2021.121214] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/19/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022]
Abstract
Injectable hydrogels have been employed extensively as versatile materials for cartilage regeneration due to their excellent biocompatibility, tunable structure, and ability to accommodate bioactive factors, as well as their ability to be locally delivered via minimally invasive injection to fill irregular defects. More recently, in vitro and in vivo studies have revealed that processing these materials to produce cell-laden microgels can enhance cell-cell and cell-matrix interactions and boost nutrient and metabolite exchange. Moreover, these studies have demonstrated gene expression profiles and matrix regeneration that are superior compared to conventional injectable bulk hydrogels. As cell-laden microgels and their application in cartilage repair are moving closer to clinical translation, this review aims to present an overview of the recent developments in this field. Here we focus on the currently used biomaterials and crosslinking strategies, the innovative fabrication techniques being used for the production of microgels, the cell sources used, the signals used for induction of chondrogenic differentiation and the resultant biological responses, and the ability to create three-dimensional, functional cartilage tissues. In addition, this review also covers the current clinical approaches for repairing cartilage as well as specific challenges faced when attempting the regeneration of damaged cartilage tissue. New findings related to the macroporous nature of the structures formed by the assembled microgel building blocks and the novel use of microgels in 3D printing for cartilage tissue engineering are also highlighted. Finally, we outline the challenges and future opportunities for employing cell-laden microgels in clinical applications.
Collapse
Affiliation(s)
- Thuy P T Nguyen
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Fanyi Li
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Surakshya Shrestha
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Helmut Thissen
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Clayton, VIC 3800, Australia.
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Clayton, VIC 3800, Australia.
| |
Collapse
|
42
|
Kulchar RJ, Denzer BR, Chavre BM, Takegami M, Patterson J. A Review of the Use of Microparticles for Cartilage Tissue Engineering. Int J Mol Sci 2021; 22:10292. [PMID: 34638629 PMCID: PMC8508725 DOI: 10.3390/ijms221910292] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue and organ failure has induced immense economic and healthcare concerns across the world. Tissue engineering is an interdisciplinary biomedical approach which aims to address the issues intrinsic to organ donation by providing an alternative strategy to tissue and organ transplantation. This review is specifically focused on cartilage tissue. Cartilage defects cannot readily regenerate, and thus research into tissue engineering approaches is relevant as a potential treatment option. Cells, scaffolds, and growth factors are three components that can be utilized to regenerate new tissue, and in particular recent advances in microparticle technology have excellent potential to revolutionize cartilage tissue regeneration. First, microspheres can be used for drug delivery by injecting them into the cartilage tissue or joint space to reduce pain and stimulate regeneration. They can also be used as controlled release systems within tissue engineering constructs. Additionally, microcarriers can act as a surface for stem cells or chondrocytes to adhere to and expand, generating large amounts of cells, which are necessary for clinically relevant cell therapies. Finally, a newer application of microparticles is to form them together into granular hydrogels to act as scaffolds for tissue engineering or to use in bioprinting. Tissue engineering has the potential to revolutionize the space of cartilage regeneration, but additional research is needed to allow for clinical translation. Microparticles are a key enabling technology in this regard.
Collapse
Affiliation(s)
- Rachel J. Kulchar
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA; (R.J.K.); (B.M.C.)
| | - Bridget R. Denzer
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA;
| | - Bharvi M. Chavre
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA; (R.J.K.); (B.M.C.)
| | - Mina Takegami
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA;
| | - Jennifer Patterson
- Independent Consultant, 3000 Leuven, Belgium
- Biomaterials and Regenerative Medicine Group, IMDEA Materials Institute, 28906 Madrid, Spain
| |
Collapse
|
43
|
Seymour AJ, Shin S, Heilshorn SC. 3D Printing of Microgel Scaffolds with Tunable Void Fraction to Promote Cell Infiltration. Adv Healthc Mater 2021; 10:e2100644. [PMID: 34342179 PMCID: PMC8612872 DOI: 10.1002/adhm.202100644] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/23/2021] [Indexed: 12/18/2022]
Abstract
Granular, microgel-based materials have garnered interest as promising tissue engineering scaffolds due to their inherent porosity, which can promote cell infiltration. Adapting these materials for 3D bioprinting, while maintaining sufficient void space to enable cell migration, can be challenging, since the rheological properties that determine printability are strongly influenced by microgel packing and void fraction. In this work, a strategy is proposed to decouple printability and void fraction by blending UV-crosslinkable gelatin methacryloyl (GelMA) microgels with sacrificial gelatin microgels to form composite inks. It is observed that inks with an apparent viscosity greater than ≈100 Pa s (corresponding to microgel concentrations ≥5 wt%) have rheological properties that enable extrusion-based printing of multilayered structures in air. By altering the ratio of GelMA to sacrificial gelatin microgels, while holding total concentration constant at 6 wt%, a family of GelMA:gelatin microgel inks is created that allows for tuning of void fraction from 0.20 to 0.57. Furthermore, human umbilical vein endothelial cells (HUVEC) seeded onto printed constructs are observed to migrate into granular inks in a void fraction-dependent manner. Thus, the family of microgel inks holds promise for use in 3D printing and tissue engineering applications that rely upon cell infiltration.
Collapse
Affiliation(s)
- Alexis J Seymour
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Sungchul Shin
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
44
|
Liu H, Li M, Huang G, Li J, Xu F. Bioinspired Microstructure Platform for Modular Cell-Laden Microgel Fabrication. Macromol Biosci 2021; 21:e2100110. [PMID: 34216432 DOI: 10.1002/mabi.202100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/22/2021] [Indexed: 11/08/2022]
Abstract
Cell-laden microgels have attracted increasing interest in various biomedical fields, as living building blocks to construct spatially organized multicellular structures or complex tissue features (e.g., cell spheroids and aligned cells/fibers). Although numerous approaches have been developed to tailor cell-laden microgels, there is still an unmet need for modular, versatile, convenient, and high-throughput methods. In this study, as inspired by the phenomena of water droplet manipulation from natural microstructures, a novel platform is developed to manipulate microscale hydrogel droplets and fabricate modular cell-laden microgels. First, taking antenna-like trichome as a template, catcher-like bioinspired microstructures are fabricated and hydrogel droplets are manipulated modularly in a versatile, convenient, and high-throughput manner, which is compatible with various types of hydrogels (e.g., photo-cross-linking, thermal-cross-linking, and ion-cross-linking). It is demonstrated that this platform can manipulate cell-laden microgels as modular units, such as two or more cell-laden microgels on one single catcher-like structure and different structures on one single chip. The authors also demonstrate the application of this platform on constructing complex tissue features like myocardial fibrosis tissue models to study cardiac fibrosis. The developed platform will be a powerful tool for engineering various in vitro tissue models for widespread biomedical applications.
Collapse
Affiliation(s)
- Han Liu
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450016, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Moxiao Li
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, 430072, P. R. China
| | - Jiansheng Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450016, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
45
|
Caldwell AS, Rao VV, Golden AC, Bell DJ, Grim JC, Anseth KS. Mesenchymal stem cell-inspired microgel scaffolds to control macrophage polarization. Bioeng Transl Med 2021; 6:e10217. [PMID: 34027099 PMCID: PMC8126823 DOI: 10.1002/btm2.10217] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
There is a desire in regenerative medicine to create biofunctional materials that can control and direct cell function in a precise manner. One particular stem cell of interest, human mesenchymal stem cells (hMSCs), can function as regulators of the immunogenic response and aid in tissue regeneration and wound repair. Here, a porous hydrogel scaffold assembled from microgel subunits was used to recapitulate part of this immunomodulatory behavior. The scaffolds were used to culture a macrophage cell line, while cytokines were delivered exogenously to polarize the macrophages to either a pro-inflammatory (M1) or alternatively activated (M2a) phenotypes. Using a cytokine array, interleukin 10 (IL-10) was identified as one key anti-inflammatory factor secreted by hMSCs in pro-inflammatory conditions; it was elevated (125 ± 25 pg/ml) in pro-inflammatory conditions compared to standard medium (6 ± 10 pg/ml). The ability of hMSC laden scaffolds to reverse the M1 phenotype was then examined, even in the presence of exogenous pro-inflammatory cytokines. Co-culture of M1 and M2 macrophages with hMSCs reduced the secretion of TNFα, a pro-inflammatory cytokine even in the presence of pro-inflammatory stimulatory factors. Next, IL-10 was supplemented in the medium or tethered directly to the microgel subunits; both methods limited the secretion of pro-inflammatory cytokines of encapsulated macrophages even in pro-inflammatory conditions. Cumulatively, these results reveal the potential of biofunctional microgel-based scaffolds as acellular therapies to present anti-inflammatory cytokines and control the immunogenic cascade.
Collapse
Affiliation(s)
- Alexander S. Caldwell
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderColoradoUSA
- BioFrontiers Institute, University of ColoradoBoulderColoradoUSA
| | - Varsha V. Rao
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderColoradoUSA
- BioFrontiers Institute, University of ColoradoBoulderColoradoUSA
| | - Alyxandra C. Golden
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderColoradoUSA
| | - Daniel J. Bell
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderColoradoUSA
- BioFrontiers Institute, University of ColoradoBoulderColoradoUSA
| | - Joseph C. Grim
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderColoradoUSA
- BioFrontiers Institute, University of ColoradoBoulderColoradoUSA
| | - Kristi S. Anseth
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderColoradoUSA
- BioFrontiers Institute, University of ColoradoBoulderColoradoUSA
| |
Collapse
|
46
|
Okumura S, Hapsianto BN, Lobato-Dauzier N, Ohno Y, Benner S, Torii Y, Tanabe Y, Takada K, Baccouche A, Shinohara M, Kim SH, Fujii T, Genot A. Morphological Manipulation of DNA Gel Microbeads with Biomolecular Stimuli. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:293. [PMID: 33499417 PMCID: PMC7912653 DOI: 10.3390/nano11020293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/20/2022]
Abstract
Hydrogels are essential in many fields ranging from tissue engineering and drug delivery to food sciences or cosmetics. Hydrogels that respond to specific biomolecular stimuli such as DNA, mRNA, miRNA and small molecules are highly desirable from the perspective of medical applications, however interfacing classical hydrogels with nucleic acids is still challenging. Here were demonstrate the generation of microbeads of DNA hydrogels with droplet microfluidic, and their morphological actuation with DNA strands. Using strand displacement and the specificity of DNA base pairing, we selectively dissolved gel beads, and reversibly changed their size on-the-fly with controlled swelling and shrinking. Lastly, we performed a complex computing primitive-A Winner-Takes-All competition between two populations of gel beads. Overall, these results show that strand responsive DNA gels have tantalizing potentials to enhance and expand traditional hydrogels, in particular for applications in sequencing and drug delivery.
Collapse
Affiliation(s)
- Shu Okumura
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, University of Tokyo, Tokyo 153-8505, Japan; (S.O.); (N.L.-D.); (A.B.); (S.H.K.); (T.F.)
- Department of Bioengineering, The University of Tokyo 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan; (B.N.H.); (M.S.)
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Benediktus Nixon Hapsianto
- Department of Bioengineering, The University of Tokyo 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan; (B.N.H.); (M.S.)
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Nicolas Lobato-Dauzier
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, University of Tokyo, Tokyo 153-8505, Japan; (S.O.); (N.L.-D.); (A.B.); (S.H.K.); (T.F.)
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Yuto Ohno
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan; (Y.O.); (S.B.); (Y.T.)
| | - Seiju Benner
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan; (Y.O.); (S.B.); (Y.T.)
| | - Yosuke Torii
- Faculty of Agriculture, The University of Tokyo 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan;
| | - Yuuka Tanabe
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan; (Y.O.); (S.B.); (Y.T.)
| | - Kazuki Takada
- Faculty of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan;
| | - Alexandre Baccouche
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, University of Tokyo, Tokyo 153-8505, Japan; (S.O.); (N.L.-D.); (A.B.); (S.H.K.); (T.F.)
| | - Marie Shinohara
- Department of Bioengineering, The University of Tokyo 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan; (B.N.H.); (M.S.)
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Soo Hyeon Kim
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, University of Tokyo, Tokyo 153-8505, Japan; (S.O.); (N.L.-D.); (A.B.); (S.H.K.); (T.F.)
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Teruo Fujii
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, University of Tokyo, Tokyo 153-8505, Japan; (S.O.); (N.L.-D.); (A.B.); (S.H.K.); (T.F.)
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Anthony Genot
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, University of Tokyo, Tokyo 153-8505, Japan; (S.O.); (N.L.-D.); (A.B.); (S.H.K.); (T.F.)
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| |
Collapse
|
47
|
Widener AE, Bhatta M, Angelini TE, Phelps EA. Guest-host interlinked PEG-MAL granular hydrogels as an engineered cellular microenvironment. Biomater Sci 2021; 9:2480-2493. [PMID: 33432940 DOI: 10.1039/d0bm01499k] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report the development of a polyethylene glycol (PEG) hydrogel scaffold that provides the advantages of conventional bulk PEG hydrogels for engineering cellular microenvironments and allows for rapid cell migration. PEG microgels were used to assemble a densely packed granular system with an intrinsic interstitium-like negative space. In this material, guest-host molecular interactions provide reversible non-covalent linkages between discrete PEG microgel particles to form a cohesive bulk material. In guest-host chemistry, different guest molecules reversibly and non-covalently interact with their cyclic host molecules. Two species of PEG microgels were made, each with one functional group at the end of the four arm PEG-MAL functionalized using thiol click chemistry. The first was functionalized with the host molecule β-cyclodextrin, a cyclic oligosaccharide of repeating d-glucose units, and the other functionalized with the guest molecule adamantane. These two species provide a reversible guest-host interaction between microgel particles when mixed, generating an interlinked network with a percolated interstitium. We showed that this granular configuration, unlike conventional bulk PEG hydrogels, enabled the rapid migration of THP-1 monocyte cells. The guest-host microgels also exhibited shear-thinning behavior, providing a unique advantage over current bulk PEG hydrogels.
Collapse
Affiliation(s)
- Adrienne E Widener
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| | | | | | | |
Collapse
|
48
|
Zhang J, Chen Y, Huang Y, Wu W, Deng X, Liu H, Li R, Tao J, Li X, Liu X, Gou M. A 3D-Printed Self-Adhesive Bandage with Drug Release for Peripheral Nerve Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002601. [PMID: 33304766 PMCID: PMC7709979 DOI: 10.1002/advs.202002601] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/01/2020] [Indexed: 02/05/2023]
Abstract
Peripheral nerve injury is a common disease that often causes disability and challenges surgeons. Drug-releasable biomaterials provide a reliable tool to regulate the nerve healing-associated microenvironment for nerve repair. Here, a self-adhesive bandage is designed that can form a wrap surrounding the injured nerve to promote nerve regeneration and recovery. Via a 3D printing technique, the bandage is prepared with a special structure and made up of two different hydrogel layers that can adhere to each other by a click reaction. The nanodrug is encapsulated in one layer with a grating structure. Wrapping the injured nerve, the grating layer of the bandage is closed to the injured site. The drug can be mainly released to the inner area of the wrap to promote the nerve repair by improving the proliferation and migration of Schwann cells. In this study, the bandage is used to assist the neurorrhaphy for the treatment of complete sciatic nerve transection without obvious defect in rats. Results indicate that the self-adhesive capacity can simplify the installation process and the drug-loaded bandage can promote the repairing of injured nerves. The demonstrated 3D-printed self-adhesive bandage has potential application in assisting the neurorrhaphy for nerve repair.
Collapse
Affiliation(s)
- Jiumeng Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Yuwen Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Yulan Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Wenbi Wu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102P. R. China
| | - Haofan Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Rong Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Jie Tao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Xiang Li
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Xuesong Liu
- Department of NeurosurgeryWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| |
Collapse
|
49
|
Li F, Levinson C, Truong VX, Laurent-Applegate LA, Maniura-Weber K, Thissen H, Forsythe JS, Zenobi-Wong M, Frith JE. Microencapsulation improves chondrogenesis in vitro and cartilaginous matrix stability in vivo compared to bulk encapsulation. Biomater Sci 2020; 8:1711-1725. [PMID: 31994552 DOI: 10.1039/c9bm01524h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The encapsulation of cells into microgels is attractive for applications in tissue regeneration. While cells are protected against shear stress during injection, the assembly of microgels after injection into a tissue defect also forms a macroporous scaffold that allows effective nutrient transport throughout the construct. However, in most of current strategies that form microgel-based macroporous scaffold or higher-order structures, cells are seeded during or post the assembly process and not microencapsulated in situ. The objective of this study is to investigate the chondrogenic phenotype of microencapsulated fetal chondrocytes in a biocompatible, assembled microgel system vs. bulk gels and to test the stability of the constructs in vivo. Here, we demonstrate that cell microencapsulation leads to increased expression of cartilage-specific genes in a TGF-β1-dependent manner. This correlates, as shown by histological staining, with the ability of microencapsulated cells to deposit cartilaginous matrix after migrating to the surface of the microgels, while keeping a macroscopic granular morphology. Implantation of precultured scaffolds in a subcutaneous mouse model results in vessel infiltration in bulk gels but not in assembled microgels, suggesting a higher stability of the matrix produced by the cells in the assembled microgel constructs. The cells are able to remodel the microgels as demonstrated by the gradual disappearance of the granular structure in vivo. The biocompatible microencapsulation and microgel assembly system presented in this article therefore hold great promise as an injectable system for cartilage repair.
Collapse
Affiliation(s)
- Fanyi Li
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia. and CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Clara Levinson
- Tissue Engineering + Biofabrication, Department of Health Sciences and Technology, ETH Zürich, Switzerland.
| | - Vinh X Truong
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
| | | | - Katharina Maniura-Weber
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biointerfaces, St. Gallen, Switzerland
| | - Helmut Thissen
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication, Department of Health Sciences and Technology, ETH Zürich, Switzerland.
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
| |
Collapse
|
50
|
Caldwell AS, Aguado BA, Anseth KS. Designing Microgels for Cell Culture and Controlled Assembly of Tissue Microenvironments. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1907670. [PMID: 33841061 PMCID: PMC8026140 DOI: 10.1002/adfm.201907670] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Indexed: 05/04/2023]
Abstract
Micron-sized hydrogels, termed microgels, are emerging as multifunctional platforms that can recapitulate tissue heterogeneity in engineered cell microenvironments. The microgels can function as either individual cell culture units or can be assembled into larger scaffolds. In this manner, individual microgels can be customized for single or multi-cell co-culture applications, or heterogeneous populations can be used as building blocks to create microporous assembled scaffolds that more closely mimic tissue heterogeneities. The inherent versatility of these materials allows user-defined control of the microenvironments, from the order of singly encapsulated cells to entire three-dimensional cell scaffolds. These hydrogel scaffolds are promising for moving towards personalized medicine approaches and recapitulating the multifaceted microenvironments that exist in vivo.
Collapse
Affiliation(s)
- Alexander S. Caldwell
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, USA, 80303
- BioFrontiers Institute, University of Colorado – Boulder, USA, 80303
| | - Brian A. Aguado
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, USA, 80303
- BioFrontiers Institute, University of Colorado – Boulder, USA, 80303
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, USA, 80303
- BioFrontiers Institute, University of Colorado – Boulder, USA, 80303
| |
Collapse
|