1
|
Liu X, Shi Q, Qi P, Wang Z, Zhang T, Zhang S, Wu J, Guo Z, Chen J, Zhang Q. Recent advances in living cell nucleic acid probes based on nanomaterials for early cancer diagnosis. Asian J Pharm Sci 2024; 19:100910. [PMID: 38948397 PMCID: PMC11214190 DOI: 10.1016/j.ajps.2024.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 07/02/2024] Open
Abstract
The early diagnosis of cancer is vital for effective treatment and improved prognosis. Tumor biomarkers, which can be used for the early diagnosis, treatment, and prognostic evaluation of cancer, have emerged as a topic of intense research interest in recent years. Nucleic acid, as a type of tumor biomarker, contains vital genetic information, which is of great significance for the occurrence and development of cancer. Currently, living cell nucleic acid probes, which enable the in situ imaging and dynamic monitoring of nucleic acids, have become a rapidly developing field. This review focuses on living cell nucleic acid probes that can be used for the early diagnosis of tumors. We describe the fundamental design of the probe in terms of three units and focus on the roles of different nanomaterials in probe delivery.
Collapse
Affiliation(s)
- Xuyao Liu
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Qi Shi
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Peng Qi
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Ziming Wang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Tongyue Zhang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Sijia Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiayan Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Qiang Zhang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
2
|
Wang J, Li Q, Li W, Méndez-Sánchez N, Liu X, Qi X. Stem Cell Therapy for Liver Diseases: Current Perspectives. FRONT BIOSCI-LANDMRK 2023; 28:359. [PMID: 38179765 DOI: 10.31083/j.fbl2812359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 01/06/2024]
Abstract
Stem cell therapy offers a promising avenue for advanced liver disease cases as an alternative to liver transplantation. Clinical studies are underway to explore the potential of stem cells from various sources in treating different liver diseases. However, due to the variability among current studies, further validation is needed to ensure the safety and effectiveness of stem cell therapy. To establish a strong foundation for optimal stem cell therapy applications, selection of suitable stem cell sources, standardization of transplantation protocols, and patient criteria are vital. This review comprehensively examines existing literature on stem cell sources, transplantation methods, and patient selection. Additionally, we discuss novel strategies, including stem cell preconditioning, cell-free therapy, genetic modification of stem cells, and the use of liver organoids, addressing the limitations of current stem cell therapies. Nevertheless, these innovative approaches require further validation.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gastroenterology, The 960th Hospital of the PLA, 250000 Jinan, Shandong, China
| | - Qun Li
- Department of Gastroenterology, The 960th Hospital of the PLA, 250000 Jinan, Shandong, China
| | - Wenbo Li
- Department of Gastroenterology, The 960th Hospital of the PLA, 250000 Jinan, Shandong, China
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation and Faculty of Medicine, National Autonomous University of Mexico, 14050 Mexico City, Mexico
| | - Xiaofeng Liu
- Department of Gastroenterology, The 960th Hospital of the PLA, 250000 Jinan, Shandong, China
| | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), 110840 Shenyang, Liaoning, China
| |
Collapse
|
3
|
Ding L, Tang S, Yu A, Wang A, Tang W, Jia H, Oupický D. Nanoemulsion-Assisted siRNA Delivery to Modulate the Nervous Tumor Microenvironment in the Treatment of Pancreatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10015-10029. [PMID: 35188730 PMCID: PMC9153289 DOI: 10.1021/acsami.1c21997] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pancreatic cancer (PC) is a fatal human cancer, whose progression is highly dependent on the nervous tumor microenvironment. In the present study, cationic perfluorocarbon nanoemulsions were employed as an intraperitoneal delivery platform to facilitate the delivery and penetration of a therapeutic small interfering RNA (siRNA) to orthotopic pancreatic tumors. The nanoemulsion was used to silence the expression of the nerve growth factor (NGF) as a way of favorably modulating the tumor-neuronal interactions in pancreatic tumors. The nanoemulsions exhibited deep tumor penetration that was dependent on exocytosis and enhanced NGF gene silencing in vitro and in vivo when compared with control polycation/siRNA polyplexes, leading to the effective and safe suppression of tumor growth in orthotopic PC. Overall, emulsion-assisted delivery of NGF siRNA is a promising treatment approach for PC by targeting the interactions between the tumor cells and the nervous microenvironment.
Collapse
Affiliation(s)
- Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Ao Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Anlin Wang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Huizhen Jia
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| |
Collapse
|
4
|
Yang F, Lu H, Meng X, Dong H, Zhang X. Shedding Light on DNA-Based Nanoprobes for Live-Cell MicroRNA Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106281. [PMID: 34854567 DOI: 10.1002/smll.202106281] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 06/13/2023]
Abstract
DNA-based nanoprobes integrated with various imaging signals have been employed for fabricating versatile biosensor platforms for the study of intracellular biological process and biomarker detection. The nanoprobes developments also provide opportunities for endogenous microRNA (miRNA) in situ analysis. In this review, the authors are primarily interested in various DNA-based nanoprobes for miRNA biosensors and declare strategies to reveal how to customize the desired nanoplatforms. Initially, various delivery vehicles for nanoprobe architectures transmembrane transport are delineated, and their biosecurity and ability for resisting the complex cellular environment are evaluated. Then, the novel strategies for designing DNA sequences as target miRNA specific recognition and signal amplification modules for miRNA detection are presented. Afterward, recent advances in imaging technologies to accurately respond and produce significant signal output are summarized. Finally, the challenges and future directions in the field are discussed.
Collapse
Affiliation(s)
- Fan Yang
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, P. R. China
- School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Huiting Lu
- School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Xiangdan Meng
- School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
- School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Xueji Zhang
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
| |
Collapse
|
5
|
Research Trends in the Efficacy of Stem Cell Therapy for Hepatic Diseases Based on MicroRNA Profiling. Int J Mol Sci 2020; 22:ijms22010239. [PMID: 33383629 PMCID: PMC7795580 DOI: 10.3390/ijms22010239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023] Open
Abstract
Liver diseases, despite the organ’s high regenerative capacity, are caused by several environmental factors and persistent injuries. Their optimal treatment is a liver transplantation. However, this option is limited by donor shortages and immune response issues. Therefore, many researchers have been interested in identifying the therapeutic potential in treating irreversible liver damage based on stem cells and developing suitable therapeutic agents. Mesenchymal stem cells (MSCs), which are representative multipotent stem cells, are known to be highly potential stem cell therapy compared to other stem cells in the clinical trial worldwide. MSCs have therapeutic potentials for several hepatic diseases such as anti-fibrosis, proliferation of hepatocytes injured, anti-inflammation, autophagic mechanism, and inactivation of hepatic stellate cells. There are much data regarding clinical treatments, however, the data for examining the efficacy of stem cell treatment and the correlation between the stem cell engraftment and the efficacy in liver diseases is limited due to the lack of monitoring system for treatment effectiveness. Therefore, this paper introduces the characteristics of microRNAs (miRNAs) and liver disease-specific miRNA profiles, and the possibility of a biomarker that miRNA can monitor stem cell treatment efficacy by comparing miRNAs changed in liver diseases following stem cell treatment. Additionally, we also discuss the miRNA profiling in liver diseases when treated with stem cell therapy and suggest the candidate miRNAs that can be used as a biomarker that can monitor treatment efficacy in liver diseases based on MSCs therapy.
Collapse
|
6
|
Ebrahimi SB, Samanta D, Mirkin CA. DNA-Based Nanostructures for Live-Cell Analysis. J Am Chem Soc 2020; 142:11343-11356. [DOI: 10.1021/jacs.0c04978] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Samanta D, Ebrahimi SB, Mirkin CA. Nucleic-Acid Structures as Intracellular Probes for Live Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901743. [PMID: 31271253 PMCID: PMC6942251 DOI: 10.1002/adma.201901743] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/08/2019] [Indexed: 05/02/2023]
Abstract
The chemical composition of cells at the molecular level determines their growth, differentiation, structure, and function. Probing this composition is powerful because it provides invaluable insight into chemical processes inside cells and in certain cases allows disease diagnosis based on molecular profiles. However, many techniques analyze fixed cells or lysates of bulk populations, in which information about dynamics and cellular heterogeneity is lost. Recently, nucleic-acid-based probes have emerged as a promising platform for the detection of a wide variety of intracellular analytes in live cells with single-cell resolution. Recent advances in this field are described and common strategies for probe design, types of targets that can be identified, current limitations, and future directions are discussed.
Collapse
Affiliation(s)
- Devleena Samanta
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sasha B Ebrahimi
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
8
|
Ghasemi A, Hashemy SI, Azimi-Nezhad M, Dehghani A, Saeidi J, Mohtashami M. The cross-talk between adipokines and miRNAs in health and obesity-mediated diseases. Clin Chim Acta 2019; 499:41-53. [PMID: 31476303 DOI: 10.1016/j.cca.2019.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Multiple studies have revealed a direct correlation between obesity and the development of multiple comorbidities, including metabolic diseases, cardiovascular disorders, chronic inflammatory disease, and cancers. However, the molecular mechanism underlying the link between obesity and the progression of these diseases is not completely understood. Adipokines are factors that are secreted by adipocytes and play a key role in whole body homeostasis. Collaboratively, miRNAs are suggested to have key functions in the development of obesity and obesity-related disorders. Based on recently emerging evidence, obesity leads to the dysregulation of both adipokines and obesity-related miRNAs. In the present study, we described the correlations between obesity and its related diseases that are mediated by the mutual regulatory effects of adipokines and miRNAs. METHODS We reviewed current knowledge of the modulatory effects of adipokines on miRNAs activity and their relevant functions in pathological conditions and vice versa. RESULTS Our research reveals the ability of adipokines and miRNAs to control the expression and activity of the other class of molecules, and their effects on obesity-related diseases. CONCLUSIONS This study may help researchers develop a roadmap for future investigations and provide opportunities to develop new therapeutic and diagnostic methods for treating obesity-related diseases.
Collapse
Affiliation(s)
- Ahmad Ghasemi
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohsen Azimi-Nezhad
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran; UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment en Physiopathologie Cardiovascular Université de Lorraine, France
| | - Alireza Dehghani
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
9
|
Ki J, Lee HY, Son HY, Huh YM, Haam S. Sensitive Plasmonic Detection of miR-10b in Biological Samples Using Enzyme-Assisted Target Recycling and Developed LSPR Probe. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18923-18929. [PMID: 31066266 DOI: 10.1021/acsami.9b03005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A portable and nonlabeled plasmonic biosensor was advanced to enable the sensitive and selective detection of microRNA (miRNA) in a biological sample. miRNAs can act on several key cellular processes, including cell differentiation, cell cycle progression, and function as oncogenes. Detection of circulating miRNAs, especially in blood or urine samples, allows noninvasive and simple diagnosis of diseases. Herein, we report a localized surface plasmon resonance sensor (LSPR) based on an enzyme-assisted target recycling system and a developed LSPR probe for the detection of gastric cancer relevant miRNAs, miR-10b. The sensitivity of the sensor was improved by increasing the concentration of the signal-amplifying agent using the duplex-specific nuclease and by strongly binding the developed LSPR probe, tannic acid capping gold nanoparticles, to the DNA. Under optimal conditions, miR-10b detection could be realized in the range of 5 pM-10 nM with a detection limit of 2.45 pM. This integrated detection system represents an approach to sensitive detection of miRNAs and offers great applications in personalized medicine and monitoring of cancer.
Collapse
Affiliation(s)
- Jisun Ki
- Department of Chemical and Biomolecular Engineering , Yonsei University , Yonsei-ro 50 , Seoul 120-749 , South Korea
| | - Hyo Young Lee
- Department of Chemical and Biomolecular Engineering , Yonsei University , Yonsei-ro 50 , Seoul 120-749 , South Korea
| | - Hye Young Son
- Department of Radiology, College of Medicine , Yonsei University , Seoul 120-752 , South Korea
| | - Yong-Min Huh
- Department of Radiology, College of Medicine , Yonsei University , Seoul 120-752 , South Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering , Yonsei University , Yonsei-ro 50 , Seoul 120-749 , South Korea
| |
Collapse
|