1
|
Nanocomposite Hydrogels as Functional Extracellular Matrices. Gels 2023; 9:gels9020153. [PMID: 36826323 PMCID: PMC9957407 DOI: 10.3390/gels9020153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Over recent years, nano-engineered materials have become an important component of artificial extracellular matrices. On one hand, these materials enable static enhancement of the bulk properties of cell scaffolds, for instance, they can alter mechanical properties or electrical conductivity, in order to better mimic the in vivo cell environment. Yet, many nanomaterials also exhibit dynamic, remotely tunable optical, electrical, magnetic, or acoustic properties, and therefore, can be used to non-invasively deliver localized, dynamic stimuli to cells cultured in artificial ECMs in three dimensions. Vice versa, the same, functional nanomaterials, can also report changing environmental conditions-whether or not, as a result of a dynamically applied stimulus-and as such provide means for wireless, long-term monitoring of the cell status inside the culture. In this review article, we present an overview of the technological advances regarding the incorporation of functional nanomaterials in artificial extracellular matrices, highlighting both passive and dynamically tunable nano-engineered components.
Collapse
|
2
|
Ko MJ, Hong H, Choi H, Kang H, Kim D. Multifunctional Magnetic Nanoparticles for Dynamic Imaging and Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Min Jun Ko
- Department of Radiology Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
| | - Hyunsik Hong
- Department of Materials Science and Engineering Korea University Seoul 02841 Republic of Korea
| | - Hyunjun Choi
- Department of Radiology Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
- Department of Bioengineering University of Illinois at Chicago Chicago IL 60607 USA
| | - Heemin Kang
- Department of Materials Science and Engineering Korea University Seoul 02841 Republic of Korea
- College of Medicine Korea University Seoul 02841 Republic of Korea
| | - Dong‐Hyun Kim
- Department of Radiology Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
- Department of Bioengineering University of Illinois at Chicago Chicago IL 60607 USA
- Department of Biomedical Engineering McCormick School of Engineering Northwestern University Evanston IL 60208 USA
- Robert H. Lurie Comprehensive Cancer Center Northwestern University Chicago Illinois 60611 USA
| |
Collapse
|
3
|
Liu X, Wang N, Liu X, Deng R, Kang R, Xie L. Vascular Repair by Grafting Based on Magnetic Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14071433. [PMID: 35890328 PMCID: PMC9320478 DOI: 10.3390/pharmaceutics14071433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022] Open
Abstract
Magnetic nanoparticles (MNPs) have attracted much attention in the past few decades because of their unique magnetic responsiveness. Especially in the diagnosis and treatment of diseases, they are mostly involved in non-invasive ways and have achieved good results. The magnetic responsiveness of MNPs is strictly controlled by the size, crystallinity, uniformity, and surface properties of the synthesized particles. In this review, we summarized the classification of MNPs and their application in vascular repair. MNPs mainly use their unique magnetic properties to participate in vascular repair, including magnetic stimulation, magnetic drive, magnetic resonance imaging, magnetic hyperthermia, magnetic assembly scaffolds, and magnetic targeted drug delivery, which can significantly affect scaffold performance, cell behavior, factor secretion, drug release, etc. Although there are still challenges in the large-scale clinical application of MNPs, its good non-invasive way to participate in vascular repair and the establishment of a continuous detection process is still the future development direction.
Collapse
Affiliation(s)
| | | | | | | | | | - Lin Xie
- Correspondence: (R.K.); (L.X.)
| |
Collapse
|
4
|
Liu Y, Sun Q, Hao M, Tan WS, Cai H. A novel magnetically controlled bioreactor for ex vivo expansion of NK-92 cells. BIORESOUR BIOPROCESS 2022; 9:50. [PMID: 38647827 PMCID: PMC10992792 DOI: 10.1186/s40643-022-00537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
The application of natural killer (NK) cells as potential antitumor effector cells appears to be valuable for immunotherapies. However, the clinical use of NK cells is limited because the technical difficulties associated with mass production NK cells at sufficiently high numbers represents a great challenge. Ex vivo expansion of NK cells is a key technology for cell therapy. Bioreactor systems can generate homogeneous culture condition and modulate the environmental and biochemical cues. In this study, a novel magnetically controlled bioreactor was developed for supporting NK cells ex vivo expansion. Using synthetic magnetic beads, the stirring device of the magnetically controlled bioreactor generated reduced shearing force. The intermittent magnetic field was applied for magnetic beads movement to homogenize the culture system. NK-92 cells were cultured in the magnetically controlled bioreactor and the expansion and function of expanded cells were investigated on day 8. The results showed that the expansion of NK-92 cells in the bioreactor was 67.71 ± 10.60-fold, which was significantly higher than that of the T25 culture flask (P < 0.05). Moreover, the proportions of CD3-CD56+ cells and cell killing activity of expanded cells in the bioreactor did not reveal any differences compared to T25 flasks. Taken together, this study demonstrated the possibility of magnetically controlled bioreactor as a potent strategy in NK cells production for facilitating cancer immunotherapy.
Collapse
Affiliation(s)
- Yangyang Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qihao Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mengyang Hao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
5
|
Zippel S, Dilger N, Chatterjee C, Raic A, Brenner-Weiß G, Schadzek P, Rapp BE, Lee-Thedieck C. A parallelized, perfused 3D triculture model of leukemia for in vitro drug testing of chemotherapeutics. Biofabrication 2022; 14. [PMID: 35472717 DOI: 10.1088/1758-5090/ac6a7e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 04/26/2022] [Indexed: 11/11/2022]
Abstract
Leukemia patients undergo chemotherapy to combat the leukemic cells (LCs) in the bone marrow. During therapy not only the LCs, but also the blood-producing hematopoietic stem and progenitor cells (HSPCs) may be destroyed. Chemotherapeutics targeting only the LCs are urgently needed to overcome this problem and minimize life-threatening side-effects. Predictive in vitro drug testing systems allowing simultaneous comparison of various experimental settings would enhance the efficiency of drug development. Here, we present a 3D human leukemic bone marrow model perfused using a magnetic, parallelized culture system to ensure media exchange. Chemotherapeutic treatment of the acute myeloid leukemia cell line KG-1a in 3D magnetic hydrogels seeded with mesenchymal stem/stromal cells (MSCs) revealed a greater resistance of KG-1a compared to 2D culture. In 3D tricultures with HSPCs, MSCs and KG-1a, imitating leukemic bone marrow, HSPC proliferation decreased while KG-1a cells remained unaffected post treatment. Non-invasive metabolic profiling enabled continuous monitoring of the system. Our results highlight the importance of using biomimetic 3D platforms with proper media exchange and co-cultures for creating in vivo-like conditions to enable in vitro drug testing. This system is a step towards drug testing in biomimetic, parallelized in vitro approaches, facilitating the discovery of new anti-leukemic drugs.
Collapse
Affiliation(s)
- Sabrina Zippel
- Institute of Cell Biology and Biophysics, Leibniz Universitat Hannover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| | - Nadine Dilger
- Institute of Cell Biology and Biophysics, Leibniz University Hanover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| | - Chandralekha Chatterjee
- Institute of Cell Biology and Biophysics, Leibniz Universitat Hannover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| | - Annamarija Raic
- Institute of Cell Biology and Biophysics, Leibniz Universitat Hannover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| | - Gerald Brenner-Weiß
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Baden-Württemberg, 76344, GERMANY
| | - Patrik Schadzek
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School, Stadtfelddamm 34, Hannover, Niedersachsen, 30625, GERMANY
| | - Bastian E Rapp
- Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universitat Freiburg, Georges-Köhler-Allee 103, Freiburg im Breisgau, Baden-Württemberg, 79110, GERMANY
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Leibniz Universitat Hannover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| |
Collapse
|
6
|
The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 2022; 181:114069. [PMID: 34838648 PMCID: PMC8860232 DOI: 10.1016/j.addr.2021.114069] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Comprehensive overview of different classes of ECM molecules in the HSC niche. Overview of current knowledge on role of biophysics of the HSC niche. Description of approaches to create artificial stem cell niches for several application. Importance of considering ECM in drug development and testing.
Hematopoietic stem cells (HSCs) are the life-long source of all types of blood cells. Their function is controlled by their direct microenvironment, the HSC niche in the bone marrow. Although the importance of the extracellular matrix (ECM) in the niche by orchestrating niche architecture and cellular function is widely acknowledged, it is still underexplored. In this review, we provide a comprehensive overview of the ECM in HSC niches. For this purpose, we first briefly outline HSC niche biology and then review the role of the different classes of ECM molecules in the niche one by one and how they are perceived by cells. Matrix remodeling and the emerging importance of biophysics in HSC niche function are discussed. Finally, the application of the current knowledge of ECM in the niche in form of artificial HSC niches for HSC expansion or targeted differentiation as well as drug testing is reviewed.
Collapse
|
7
|
Liu X, Fu S, Jiao Y, Hu M, Li C, Wang F, Wang L. A loofah-inspired scaffold with enhanced mimicking mechanics and tumor cells distribution for in vitro tumor cell culture platform. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112672. [DOI: 10.1016/j.msec.2022.112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/17/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
|
8
|
Micro-scaffolds as synthetic cell niches: recent advances and challenges. Curr Opin Biotechnol 2021; 73:290-299. [PMID: 34619481 DOI: 10.1016/j.copbio.2021.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 01/01/2023]
Abstract
Micro-fabrication and nano-fabrication provide useful approaches to address fundamental biological questions by mimicking the physiological microenvironment in which cells carry out their functions. In particular, 2D patterns and 3D scaffolds obtained via lithography, direct laser writing, and other techniques allow for shaping hydrogels, synthetic polymers and biologically derived materials to create structures for (single) cell culture. Applications of micro-scaffolds mimicking cell niches include stem cell self-renewal, differentiation, and lineage specification. This review moves from technological aspects of scaffold microfabrication for cell biological applications to a broad overview of advances in (stem) cell research: achievements for embryonic, induced pluripotent, mesenchymal, and neural stem cells are treated in detail, while a particular section is dedicated to micro-scaffolds used to study single cells in basic cell biology.
Collapse
|
9
|
Rebuilding the hematopoietic stem cell niche: Recent developments and future prospects. Acta Biomater 2021; 132:129-148. [PMID: 33813090 DOI: 10.1016/j.actbio.2021.03.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cells (HSCs) have proven their clinical relevance in stem cell transplantation to cure patients with hematological disorders. Key to their regenerative potential is their natural microenvironment - their niche - in the bone marrow (BM). Developments in the field of biomaterials enable the recreation of such environments with increasing preciseness in the laboratory. Such artificial niches help to gain a fundamental understanding of the biophysical and biochemical processes underlying the interaction of HSCs with the materials in their environment and the disturbance of this interplay during diseases affecting the BM. Artificial niches also have the potential to multiply HSCs in vitro, to enable the targeted differentiation of HSCs into mature blood cells or to serve as drug-testing platforms. In this review, we will introduce the importance of artificial niches followed by the biology and biophysics of the natural archetype. We will outline how 2D biomaterials can be used to dissect the complexity of the natural niche into individual parameters for fundamental research and how 3D systems evolved from them. We will present commonly used biomaterials for HSC research and their applications. Finally, we will highlight two areas in the field of HSC research, which just started to unlock the possibilities provided by novel biomaterials, in vitro blood production and studying the pathophysiology of the niche in vitro. With these contents, the review aims to give a broad overview of the different biomaterials applied for HSC research and to discuss their potentials, challenges and future directions in the field. STATEMENT OF SIGNIFICANCE: Hematopoietic stem cells (HSCs) are multipotent cells responsible for maintaining the turnover of all blood cells. They are routinely applied to treat patients with hematological diseases. This high clinical relevance explains the necessity of multiplication or differentiation of HSCs in the laboratory, which is hampered by the missing natural microenvironment - the so called niche. Biomaterials offer the possibility to mimic the niche and thus overcome this hurdle. The review introduces the HSC niche in the bone marrow and discusses the utility of biomaterials in creating artificial niches. It outlines how 2D systems evolved into sophisticated 3D platforms, which opened the gateway to applications such as, expansion of clinically relevant HSCs, in vitro blood production, studying niche pathologies and drug testing.
Collapse
|
10
|
Kronstein-Wiedemann R, Thiel J, Tonn T. Blood Pharming – eine realistische Option? TRANSFUSIONSMEDIZIN 2021. [DOI: 10.1055/a-1342-0820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ZusammenfassungDie Bluttransfusion ist ein wesentlicher und unersetzlicher Teil der modernen Medizin. Jedoch stellt vor allem bei Patienten mit sehr seltenen Blutgruppenkonstellationen der Mangel an Blutprodukten auch heute noch ein wichtiges Gesundheitsproblem weltweit dar. Um diesem Problem entgegenzutreten, versucht man seit einiger Zeit künstlich rote Blutzellen zu generieren. Diese haben potenzielle Vorteile gegenüber Spenderblut, wie z. B. ein verringertes Risiko für die Übertragung von Infektionskrankheiten. Diese Übersicht fasst die aktuellen Entwicklungen über den Prozess der Erythropoese, die Expansionsstrategien der erythrozytären Zellen, der verschiedenen Quellen für ex vivo expandierte Erythrozyten, die Hürden für die klinische Anwendung und die zukünftigen Möglichkeiten der Anwendung zusammen.
Collapse
Affiliation(s)
- Romy Kronstein-Wiedemann
- DRK-Blutspendedienst Nord-Ost gGmbH/Institut Dresden
- Experimentelle Transfusionsmedizin, Medizinische Fakultät Universitätsklinikum Carl Gustav Carus
| | - Jessica Thiel
- DRK-Blutspendedienst Nord-Ost gGmbH/Institut Dresden
- Experimentelle Transfusionsmedizin, Medizinische Fakultät Universitätsklinikum Carl Gustav Carus
| | - Torsten Tonn
- DRK-Blutspendedienst Nord-Ost gGmbH/Institut Dresden
- Experimentelle Transfusionsmedizin, Medizinische Fakultät Universitätsklinikum Carl Gustav Carus
| |
Collapse
|
11
|
Bessy T, Itkin T, Passaro D. Bioengineering the Bone Marrow Vascular Niche. Front Cell Dev Biol 2021; 9:645496. [PMID: 33996805 PMCID: PMC8113773 DOI: 10.3389/fcell.2021.645496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/23/2021] [Indexed: 01/01/2023] Open
Abstract
The bone marrow (BM) tissue is the main physiological site for adult hematopoiesis. In recent years, the cellular and matrix components composing the BM have been defined with unprecedent resolution, both at the molecular and structural levels. With the expansion of this knowledge, the possibility of reproducing a BM-like structure, to ectopically support and study hematopoiesis, becomes a reality. A number of experimental systems have been implemented and have displayed the feasibility of bioengineering BM tissues, supported by cells of mesenchymal origin. Despite being known as an abundant component of the BM, the vasculature has been largely disregarded for its role in regulating tissue formation, organization and determination. Recent reports have highlighted the crucial role for vascular endothelial cells in shaping tissue development and supporting steady state, emergency and malignant hematopoiesis, both pre- and postnatally. Herein, we review the field of BM-tissue bioengineering with a particular focus on vascular system implementation and integration, starting from describing a variety of applicable in vitro models, ending up with in vivo preclinical models. Additionally, we highlight the challenges of the field and discuss the clinical perspectives in terms of adoptive transfer of vascularized BM-niche grafts in patients to support recovering hematopoiesis.
Collapse
Affiliation(s)
- Thomas Bessy
- Leukemia and Niche Dynamics Laboratory, Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris, France
| | - Tomer Itkin
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Diana Passaro
- Leukemia and Niche Dynamics Laboratory, Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
12
|
Hao M, Xiong M, Liu Y, Tan WS, Cai H. Magnetic-driven dynamic culture promotes osteogenesis of mesenchymal stem cell. BIORESOUR BIOPROCESS 2021; 8:15. [PMID: 38650266 PMCID: PMC10992147 DOI: 10.1186/s40643-021-00368-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/03/2021] [Indexed: 01/03/2023] Open
Abstract
Effective nutrient transport and appropriate mechanical stimulation play important roles in production of tissue-engineered bone grafts. In this study, an experimental set-up for magnetic-driven dynamic culture of cells was designed to mimic the microenvironment of the bone tissue. Here, its ability to contribute to osteogenic differentiation was investigated by inoculating human umbilical cord mesenchymal stem cells (HUMSCs) on magnetic scaffolds. The cytocompatibility of the developed magnetic scaffolds was verified for HUMSCs. Magnetic scaffolds seeded with HUMSCs were exposed to magnetic fields. The results showed that magnetic fields did not affect cell activity and promoted HUMSCs osteogenic differentiation. The magnetic scaffolds were magnetically driven for dynamic culture in the experimental set-up to evaluate the influence of HUMSCs osteoblast differentiation. The results indicated that magnetic-driven dynamic culture increased cell alkaline phosphatase (ALP) activity (p < 0.05) and calcium release (p < 0.05) compared with static culture. The effect was demonstrated in the expression of bone-associated genes. Overall, this study showed that magnetic-driven dynamic culture is a promising tool for regenerative bone engineering.
Collapse
Affiliation(s)
- Mengyang Hao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, People's Republic of China
| | - Minghao Xiong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, People's Republic of China
| | - Yangyang Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, People's Republic of China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, People's Republic of China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
13
|
Advanced 3D Cell Culture Techniques in Micro-Bioreactors, Part II: Systems and Applications. Processes (Basel) 2020. [DOI: 10.3390/pr9010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this second part of our systematic review on the research area of 3D cell culture in micro-bioreactors we give a detailed description of the published work with regard to the existing micro-bioreactor types and their applications, and highlight important results gathered with the respective systems. As an interesting detail, we found that micro-bioreactors have already been used in SARS-CoV research prior to the SARS-CoV2 pandemic. As our literature research revealed a variety of 3D cell culture configurations in the examined bioreactor systems, we defined in review part one “complexity levels” by means of the corresponding 3D cell culture techniques applied in the systems. The definition of the complexity is thereby based on the knowledge that the spatial distribution of cell-extracellular matrix interactions and the spatial distribution of homologous and heterologous cell–cell contacts play an important role in modulating cell functions. Because at least one of these parameters can be assigned to the 3D cell culture techniques discussed in the present review, we structured the studies according to the complexity levels applied in the MBR systems.
Collapse
|
14
|
Advanced 3D Cell Culture Techniques in Micro-Bioreactors, Part I: A Systematic Analysis of the Literature Published between 2000 and 2020. Processes (Basel) 2020. [DOI: 10.3390/pr8121656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bioreactors have proven useful for a vast amount of applications. Besides classical large-scale bioreactors and fermenters for prokaryotic and eukaryotic organisms, micro-bioreactors, as specialized bioreactor systems, have become an invaluable tool for mammalian 3D cell cultures. In this systematic review we analyze the literature in the field of eukaryotic 3D cell culture in micro-bioreactors within the last 20 years. For this, we define complexity levels with regard to the cellular 3D microenvironment concerning cell–matrix-contact, cell–cell-contact and the number of different cell types present at the same time. Moreover, we examine the data with regard to the micro-bioreactor design including mode of cell stimulation/nutrient supply and materials used for the micro-bioreactors, the corresponding 3D cell culture techniques and the related cellular microenvironment, the cell types and in vitro models used. As a data source we used the National Library of Medicine and analyzed the studies published from 2000 to 2020.
Collapse
|
15
|
Zheng Z, Yu C, Wei H. Injectable Hydrogels as Three-Dimensional Network Reservoirs for Osteoporosis Treatment. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:430-454. [PMID: 33086984 DOI: 10.1089/ten.teb.2020.0168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite tremendous progresses made in the field of tissue engineering over the past several decades, it remains a significant challenge for the treatment of osteoporosis (OP) due to the lack of appropriate carriers to improve the bioavailability of therapeutic agents and the unavailability of artificial bone matrix with desired properties for the replacement of damaged bone regions. Encouragingly, the development of injectable hydrogels for the treatment of OP has attracted increasing attention in recent years because they can serve either as a reservoir for various therapeutic species or as a perfect filler for bone injuries with irregular shapes. However, the relationship between the complicated pathological mechanism of OP and the properties of diverse polymeric materials lacks elucidation, which clearly hampers the clinical application of injectable hydrogels for the efficient treatment of OP. To clarify this relationship, this article summarized both localized and systematic treatment of OP using an injectable hydrogel-based strategy. Specifically, the pathogenesis of OP and the limitations of current treatment approaches were first analyzed. We further focused on the use of hydrogels loaded with various therapeutic substances following a classification standard of the encapsulated cargoes for OP treatment with an emphasis on the application and precautions of each category. A concluding remark on existing challenges and future directions of this rapidly developing research area was finally made. Impact statement Effective osteoporosis (OP) treatment remains a significant challenge due substantially to the unavailability of appropriate drug carriers and artificial matrices with desired properties to promote bone repair and replace damaged regions. For this purpose, this review focused on the development of diverse injectable hydrogel systems for the delivery of various therapeutic agents, including drugs, stem cells, and nucleic acids, for effective increase in bone mass and favorable osteogenesis. The summarized important guidelines are believed to promote clinical development and translation of hydrogels for the efficient treatment of OP and OP-related bone damages toward improved life quality of millions of patients.
Collapse
Affiliation(s)
- Zhi Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study and School of Pharmaceutical Science, University of South China, Hengyang, China
| | - Cuiyun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study and School of Pharmaceutical Science, University of South China, Hengyang, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study and School of Pharmaceutical Science, University of South China, Hengyang, China
| |
Collapse
|
16
|
Rapid gelation of oxidized hyaluronic acid and succinyl chitosan for integration with insulin-loaded micelles and epidermal growth factor on diabetic wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111273. [PMID: 32919637 DOI: 10.1016/j.msec.2020.111273] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/21/2020] [Accepted: 07/04/2020] [Indexed: 12/15/2022]
Abstract
In this work, poly(ethylene glycol)-b-poly[3-acrylamidophenylboronic acid-co-styrene] (PEG-b-P(PBA-co-St) has been firstly synthesized for loading of insulin to form insulin-loaded micelles. Insulin-loaded micelles (ILM) and epidermal growth factor (EGF) are further embedded into the composite hydrogels that can be rapidly gelled by mixing of oxidized hyaluronic acid (OHA) and succinyl chitosan (SCS). Then, the morphology, rheology, degradation, swelling and cytotoxicity properties of the as-prepared composite hydrogels are further investigated to evaluate their physical properties and biocompatibility of as the wound dressing. The as-prepared composite hydrogels show the excellent cell compatibility and low toxicity. To evaluate the wound healing ability of as-prepared composite hydrogels, the tests of wound healing in vivo are conducted on streptozotocin-induced rat models. And the as-prepared composite hydrogels with ILM and EGF show an excellent wound healing performance for promotion of fibroblast proliferation and tissue internal structure integrity, as well as the deposition of collagen and myofibrils. These results suggest that the as-prepared composite hydrogels with loading of ILM and EGF could be a promising candidate for wound healing applications.
Collapse
|
17
|
Sun L, Feng X, Zhong T, Zhang X. Preparation of supermacroporous cryogels with improved mechanical strength for efficient purification of lysozyme from chicken egg white. J Sep Sci 2020; 43:3315-3326. [DOI: 10.1002/jssc.202000255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Lifen Sun
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| | - Xiyun Feng
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| | - Tianyi Zhong
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| | - Xufeng Zhang
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| |
Collapse
|
18
|
Shi Y, Li Y, Coradin T. Magnetically-oriented type I collagen-SiO2@Fe3O4 rods composite hydrogels tuning skin cell growth. Colloids Surf B Biointerfaces 2020; 185:110597. [DOI: 10.1016/j.colsurfb.2019.110597] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/05/2019] [Accepted: 10/16/2019] [Indexed: 01/23/2023]
|
19
|
Severn CE, Eissa AM, Langford CR, Parker A, Walker M, Dobbe JGG, Streekstra GJ, Cameron NR, Toye AM. Ex vivo culture of adult CD34 + stem cells using functional highly porous polymer scaffolds to establish biomimicry of the bone marrow niche. Biomaterials 2019; 225:119533. [PMID: 31610389 DOI: 10.1016/j.biomaterials.2019.119533] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022]
Abstract
Haematopoiesis, the process of blood production, occurs from a tiny contingent of haematopoietic stem cells (HSC) in highly specialised three-dimensional niches located within the bone marrow. When haematopoiesis is replicated using in vitro two-dimensional culture, HSCs rapidly differentiate, limiting self-renewal. Emulsion-templated highly porous polyHIPE foam scaffolds were chosen to mimic the honeycomb architecture of human bone. The unmodified polyHIPE material supports haematopoietic stem and progenitor cell (HSPC) culture, with successful culture of erythroid progenitors and neutrophils within the scaffolds. Using erythroid culture methodology, the CD34+ population was maintained for 28 days with continual release of erythroid progenitors. These cells are shown to spontaneously repopulate the scaffolds, and the accumulated egress can be expanded and grown at large scale to reticulocytes. We next show that the polyHIPE scaffolds can be successfully functionalised using activated BM(PEG)2 (1,8-bismaleimido-diethyleneglycol) and then a Jagged-1 peptide attached in an attempt to facilitate notch signalling. Although Jagged-1 peptide had no detectable effect, the BM(PEG)2 alone significantly increased cell egress when compared to controls, without depleting the scaffold population. This work highlights polyHIPE as a novel functionalisable material for mimicking the bone marrow, and also that PEG can influence HSPC behaviour within scaffolds.
Collapse
Affiliation(s)
- C E Severn
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK; National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK
| | - A M Eissa
- Department of Polymers, Chemical Industries Research Division, National Research Centre, El Bohouth St. 33, Dokki, Giza, 12622, Cairo, Egypt; School of Engineering, University of Warwick, Coventry, CV4 7AL, UK; Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - C R Langford
- Department of Materials Science and Engineering, Monash University, Clayton, 3800, Victoria, Australia
| | - A Parker
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - M Walker
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - J G G Dobbe
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - G J Streekstra
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - N R Cameron
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK; Department of Materials Science and Engineering, Monash University, Clayton, 3800, Victoria, Australia
| | - A M Toye
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK; National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK.
| |
Collapse
|
20
|
Liu Q, Li H, Lam KY. Modeling of a fast-response magnetic-sensitive hydrogel for dynamic control of microfluidic flow. Phys Chem Chem Phys 2019; 21:1852-1862. [PMID: 30629060 DOI: 10.1039/c8cp06556j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A magnetic-sensitive hydrogel-based microfluidic system is designed via a magneto-chemo-hydro-mechanical model for replicating various physiological and pathological conditions in the human body, by which the desired flow patterns can be generated in real time due to the fast-response deformation of the magnetic hydrogel. In the model, the fluid-structure interaction is characterized between the deformable magnetic hydrogel and surrounding fluid flow through the fully coupled arbitrary Lagrangian-Eulerian (ALE) method. Moreover, the physicochemical mechanisms including hydrogel magnetization, fluid diffusion, fluid flow, and hydrogel large deformation are characterized. After validation of the present model with both the finite difference and experimental results in the open literature, the transient behavior of the magnetic hydrogel is investigated, and the results show that the response time for the magnetic hydrogel is improved significantly in a uniform magnetic field compared with that of a hydrogel without the magnetic effect. Furthermore, various patterns of pulsatile flow are generated for mimicking the cell physiological microenvironment experienced by bone marrow stromal cells, and also for the pathological condition at the femoral artery during diastole and systole, respectively. Therefore, the present magnetic-sensitive hydrogel-based microfluidic system via the multiphysics model may provide a relevant humanized manipulation platform to investigate cell behavior and function through microfluidic chips.
Collapse
Affiliation(s)
- Qimin Liu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore.
| | | | | |
Collapse
|
21
|
Liu Q, Li H, Lam KY. Optimization of Deformable Magnetic-Sensitive Hydrogel-Based Targeting System in Suspension Fluid for Site-Specific Drug Delivery. Mol Pharm 2018; 15:4632-4642. [DOI: 10.1021/acs.molpharmaceut.8b00626] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Qimin Liu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Hua Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - K. Y. Lam
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| |
Collapse
|
22
|
Yi T, Huang S, Liu G, Li T, Kang Y, Luo Y, Wu J. Bioreactor Synergy with 3D Scaffolds: New Era for Stem Cells Culture. ACS APPLIED BIO MATERIALS 2018; 1:193-209. [DOI: 10.1021/acsabm.8b00057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tianqi Yi
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Shaoxiong Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Guiting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Tiancheng Li
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Kang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuxi Luo
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory of Polymer Composites and Functional Materials of Ministry of Education, , Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|