1
|
El-Said WA, Akhdhar A, Al-Bogami AS, Saleh TS. Design and green synthesis of carbon Dots/Gold nanoparticles Composites and their applications for neurotransmitters sensing based on emission Spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125402. [PMID: 39515228 DOI: 10.1016/j.saa.2024.125402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Changes in the neurotransmitters are indications for several diseases. Several sensors were reported for monitoring dopamine (DA), but the simple and accurate DA detection in biological samples still faces many challenges. The research proposal aims to develop an optical sensor for detecting neurotransmitters based on luminescence emission spectra in different biological samples. Carbon dots (CDs) were fabricated based on a green synthesis route. Then the prepared CDs were decorated with varying concentrations of gold nanoparticles (Au NPs). The synthesis process was optimized, and the obtained CDs/Au NPs nanocomposites were applied as neurotransmitters' optical nanosensors. The optical nanosensor approach provides easy and sensitive multiplex analysis. A wide range of neurotransmitters was monitored. The developed sensor's sensitivity, selectivity, and reproducibility were investigated. Au NPs act as CDs' stabilizers, enhancing the emission effect, and scaffolds for binding DA with CDs' surface. DA moieties bind to CDs through the interaction between the DA-NH2 groups and Au NPS. Due to electron transfer, the bonding of DA molecules leads to fluorescence quenching of AuNPs/CDs. The Au-CDs-based DA fluorescence showed high sensitivity with adetection limit, and limit quantification of 2.04 nM and 6.18 nM, respectively. Furthermore, the selectivity of the sensor was investigated in the presence of glucose, uric acid (UA), and ascorbic acid (AA), which showed no interference effect at 10 times higher concentrations. Moreover, the proposed sensor has been successfully utilized for DA detection in human serum samples with a high recovery efficiency between 98.83 % and 103.5 %.
Collapse
Affiliation(s)
- Waleed A El-Said
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia.
| | - Abdullah Akhdhar
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Abdullah S Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Tamer S Saleh
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Emran MY, Miran W, Gomaa H, Ibrahim I, Belessiotis GV, Abdelwahab AA, Othman MB. Biowaste Materials for Advanced Biodegradable Packaging Technology. HANDBOOK OF BIODEGRADABLE MATERIALS 2023:861-897. [DOI: 10.1007/978-3-031-09710-2_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
3
|
PC-12 Cell Line as a Neuronal Cell Model for Biosensing Applications. BIOSENSORS 2022; 12:bios12070500. [PMID: 35884303 PMCID: PMC9313070 DOI: 10.3390/bios12070500] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022]
Abstract
PC-12 cells have been widely used as a neuronal line study model in many biosensing devices, mainly due to the neurogenic characteristics acquired after differentiation, such as high level of secreted neurotransmitter, neuron morphology characterized by neurite outgrowth, and expression of ion and neurotransmitter receptors. For understanding the pathophysiology processes involved in brain disorders, PC-12 cell line is extensively assessed in neuroscience research, including studies on neurotoxicity, neuroprotection, or neurosecretion. Various analytical technologies have been developed to investigate physicochemical processes and the biosensors based on optical and electrochemical techniques, among others, have been at the forefront of this development. This article summarizes the application of different biosensors in PC-12 cell cultures and presents the modern approaches employed in neuronal networks biosensing.
Collapse
|
4
|
Kamyabi MA, Moharramnezhad M. Single-step microwave synthesis of a novel ternary nanocomposite as an efficient luminophore and boron nitride quantum dots as a new coreactant for a cathodic ECL monitoring of chlorpyrifos. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:750-762. [PMID: 35112124 DOI: 10.1039/d1ay01687c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, a novel and innovative enzyme-free electrochemiluminescence (ECL) pesticide probe based on a ternary nanocomposite, CuS/CQDs/g-C3N4NS, was demonstrated for the accurate monitoring of chlorpyrifos. Boron nitride quantum dots were introduced as a new and effective coreactant in comparison with other coreactants, such as hydrogen peroxide, peroxydisulfate, and tripropylamine, in the negative potential range for the first time. The nanocomposite as a promoted luminophore was synthesized by a one-pot microwave route. Carbon quantum dots and copper sulfide nanostructures were truly incorporated on the porous graphitized carbon nitride, which displayed a good cooperative effect on the signal improvement. CuS as a co-reaction accelerator and CQDs with a superior luminescence effect produced more radical species, and thus, the ECL signal was amplified. Upon increasing the appropriate concentration of this coreactant in electrolyte media, the signal intensity of the nanocomposite increases. A low detection limit of 3.0 × 10-16 M and a wide range from 2.0 × 10-15 to 7.0 × 10-9 M were gained. Also, the fabricated pesticide sensor presented excellent repeatability for 20 consecutive optical signals, with a RSD of about 1.4%. Owing to its high proficiency, the developed sensor was applied as a new probe for chlorpyrifos analysis in water and fruit samples.
Collapse
Affiliation(s)
- Mohammad Ali Kamyabi
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Postal Code 45371-38791, Zanjan, Iran.
| | - Mohsen Moharramnezhad
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Postal Code 45371-38791, Zanjan, Iran.
| |
Collapse
|
5
|
Emran MY, Miran W, Gomaa H, Ibrahim I, Belessiotis GV, Abdelwahab AA, Othman MB. Biowaste Materials for Advanced Biodegradable Packaging Technology. HANDBOOK OF BIODEGRADABLE MATERIALS 2022:1-37. [DOI: 10.1007/978-3-030-83783-9_46-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/14/2022] [Indexed: 09/01/2023]
|
6
|
Crosslinker polycarbazole supported magnetite MOF@CNT hybrid material for synergetic and selective voltammetric determination of adenine and guanine. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115963] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Emran MY, Shenashen MA, Elmarakbi A, Selim MM, El-Safty SA. Hierarchical engineering of Mn 2O 3/carbon nanostructured electrodes for sensitive screening of acetylcholine in biological samples. NEW J CHEM 2022; 46:15557-15566. [DOI: 10.1039/d2nj02390c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Enzymeless electrochemical sensors have received considerable interest for the direct, sensitive, and selective monitoring of biomolecules in a complex biological environment.
Collapse
Affiliation(s)
- Mohammed Y. Emran
- National Institute for Materials Science (NIMS), Research Center for Functional Materials, 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS), Research Center for Functional Materials, 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan
- Department of Petrochemical, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt
| | - Ahmed Elmarakbi
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Mahmoud M. Selim
- Al-Aflaj College of Science and Human Studies, Prince Sattam Bin Abdulaziz University, Al-Aflaj, 710-11912, Saudi Arabia
| | - Sherif A. El-Safty
- National Institute for Materials Science (NIMS), Research Center for Functional Materials, 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan
| |
Collapse
|
8
|
Reddy N, Dicce A, ma Y, Chen L, Chai K, Fang J. Crystalline H-Aggregate Nanoparticles for Detecting Dopamine Release from M17 Human Neuroblastoma Cells. J Mater Chem B 2022; 10:8024-8032. [DOI: 10.1039/d2tb01450e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dopamine (DA) is an important neurotransmitter, which is essential for transmitting signals in neuronal communications. The deficiency of DA release from neurons is implicated in neurological disorders. Therefore, there has...
Collapse
|
9
|
Emran MY, El‐Safty SA, Elmarakbi A, Reda A, El Sabagh A, Shenashen MA. Chipset Nanosensor Based on N‐Doped Carbon Nanobuds for Selective Screening of Epinephrine in Human Samples. ADVANCED MATERIALS INTERFACES 2022; 9. [DOI: 10.1002/admi.202101473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 09/01/2023]
Abstract
AbstractChipset nanosensor design and fabrication are important for healthcare research and development. Herein, a functionalized chipset nanosensor is designed to monitor neurotransmitters (i.e., epinephrine (EP)) in human fluids. An interdigitated electrode array (IDA) is functionalized by N‐doped carbon nanobud (N‐CNB) and N‐doped carbon nanostructure (N‐CNS). The surface morphology of N‐CNB shows the formation of nanotubular‐like branches on sheets and micrometer‐size tubes. The N‐CNS design consists of the formation of aggregated sheets and particles in nanometer size. The irregular shape formation provides surface heterogeneity and numerous free spaces between the stacked nanostructures. N‐atoms ascertain highly active N‐CNS with multifunctional active centers, electron‐rich charged surface, and short distance pathway. The N‐CNB/IDA exhibits the best performance for EP signaling with high sensitivity and selectivity. The N‐CNB/IDA sensing performance for EP detection indicates the successful design of a highly selective and sensitive assay with low detection limit of 0.011 × 10−6 m and a broad linear range of 0.5 × 10−6 to 3 × 10−6 m. The N‐CNB/IDA exhibits a high degree of accuracy and reproducibility with RSD of 2.7% and 3.9%, respectively. Therefore, the chipset nanosensor of N‐CNB/IDA can be used for on‐site monitoring of EP in human serum samples and further used in daily monitoring of neuronal disorders.
Collapse
Affiliation(s)
- Mohammed Y. Emran
- National Institute for Materials Science (NIMS) Research Center for Functional Materials 1‐2‐1 Sengen Tsukuba‐shi Ibaraki‐ken 305‐0047 Japan
| | - Sherif A. El‐Safty
- National Institute for Materials Science (NIMS) Research Center for Functional Materials 1‐2‐1 Sengen Tsukuba‐shi Ibaraki‐ken 305‐0047 Japan
| | - Ahmed Elmarakbi
- Faculty of Engineering and Environment Northumbria University Newcastle upon Tyne NE1 8ST UK
| | - Abduallah Reda
- National Institute for Materials Science (NIMS) Research Center for Functional Materials 1‐2‐1 Sengen Tsukuba‐shi Ibaraki‐ken 305‐0047 Japan
| | - Ayman El Sabagh
- Department of Field Crops Faculty of Agriculture Siirt University Siirt 56100 Turkey
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS) Research Center for Functional Materials 1‐2‐1 Sengen Tsukuba‐shi Ibaraki‐ken 305‐0047 Japan
- Department of Petrochemical Egyptian Petroleum Research Institute (EPRI) Nasr City Cairo 11727 Egypt
| |
Collapse
|
10
|
Zhao L, Niu G, Gao F, Lu K, Sun Z, Li H, Stenzel M, Liu C, Jiang Y. Gold Nanorods (AuNRs) and Zeolitic Imidazolate Framework-8 (ZIF-8) Core-Shell Nanostructure-Based Electrochemical Sensor for Detecting Neurotransmitters. ACS OMEGA 2021; 6:33149-33158. [PMID: 34901666 PMCID: PMC8655944 DOI: 10.1021/acsomega.1c05529] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/12/2021] [Indexed: 05/04/2023]
Abstract
The development of novel electrode materials for rapid and sensitive detection of neurotransmitters in the human body is of great significance for early disease diagnosis and personalized therapy. Herein, gold nanorod@zeolitic imidazolate framework-8 (AuNR@ZIF-8) core-shell nanostructures were prepared by controlled encapsulation of gold nanorods within a ZIF-8 assembly. The designed AuNR@ZIF-8 nanostructures have uniform morphology, good dispersion, a large specific surface area, and an average size of roughly 175 nm. Compared with individual ZIF-8 and AuNR-modified electrodes, the obtained core-shell-structured AuNR@ZIF-8 nanocomposite structure-modified electrode shows excellent electrocatalytic performance in the determination of dopamine (DA) and serotonin (ST). The designed AuNR@ZIF-8 exhibited a wide linear range of 0.1-50 μM and low detection limit (LOD, 0.03 μM, S/N = 3) for the determination of DA, as well as a linear range of 0.1-25 μM and low LOD (0.007 μM, S/N = 3) for monitoring ST. The improved performance is attributed to the synergistic effect of the high conductivity of AuNRs and multiple catalytic sites of ZIF-8. The good electroanalytical ability of AuNR@ZIF-8 for detection of DA and ST can provide a guide to efficiently and rapidly monitor other neurotransmitters and construct novel electrochemical sensors.
Collapse
Affiliation(s)
- Li Zhao
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Guiming Niu
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
- Shenzhen
Research Institute of Shandong University, Shenzhen, Guangdong 518057, P. R. China
| | - Fucheng Gao
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Kaida Lu
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Zhiwei Sun
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Hui Li
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Martina Stenzel
- School
of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chao Liu
- Department
of Oromaxillofacial Head and Neck Oncology, Shanghai Jiao Tong University School of Medicine Affiliated Ninth
People’s Hospital, Shanghai 200011, P. R. China
| | - Yanyan Jiang
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
- Shenzhen
Research Institute of Shandong University, Shenzhen, Guangdong 518057, P. R. China
| |
Collapse
|
11
|
Emran MY, Shenashen MA, El-Safty SA, Selim MM. Design of porous S-doped carbon nanostructured electrode sensor for sensitive and selective detection of guanine from DNA samples. MICROPOROUS AND MESOPOROUS MATERIALS 2021; 320:111097. [DOI: 10.1016/j.micromeso.2021.111097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
12
|
Reda A, El-Safty SA, Selim MM, Shenashen MA. Optical glucose biosensor built-in disposable strips and wearable electronic devices. Biosens Bioelectron 2021; 185:113237. [PMID: 33932881 DOI: 10.1016/j.bios.2021.113237] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/25/2021] [Accepted: 04/06/2021] [Indexed: 01/19/2023]
Abstract
On-demand screening, real-time monitoring and rapid diagnosis of ubiquitous diseases, such as diabetes, at early stages are indispensable in personalised treatment. Emerging impacts of nano/microscale materials on optical and portable biosensor strips and devices have become increasingly important in the remarkable development of sensitive visualisation (i.e. visible inspection by the human eye) assays, low-cost analyses and personalised home testing of patients with diabetes. With the increasing public attention regarding the self-monitoring of diabetes, the development of visual readout, easy-to-use and wearable biosensors has gained considerable interest. Our comprehensive review bridges the practical assessment gap between optical bio-visualisation assays, disposable test strips, sensor array designs and full integration into flexible skin-based or contact lens devices with the on-site wireless signal transmission of glucose detection in physiological fluids. To date, the fully modulated integration of nano/microscale optical biosensors into wearable electronic devices, such as smartphones, is critical to prolong periods of indoor and outdoor clinical diagnostics. Focus should be given to the improvements of invasive, wireless and portable sensing technologies to improve the applicability and reliability of screen display, continuous monitoring, dynamic data visualisation, online acquisition and self and in-home healthcare management of patients with diabetes.
Collapse
Affiliation(s)
- Abdullah Reda
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan
| | - Sherif A El-Safty
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan.
| | - Mahmoud M Selim
- Prince Sattam Bin Abdulaziz University, P. O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Mohamed A Shenashen
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan
| |
Collapse
|
13
|
Emran MY, El-Safty SA, Selim MM, Reda A, Morita H, Shenashen MA. Electrochemical sensors-based phosphorus-doped carbon for determination of adenine DNA-nucleobases in living cells. CARBON 2021; 173:1093-1104. [DOI: 10.1016/j.carbon.2020.10.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
14
|
Emran MY, El-Safty SA, Selim MM, Shenashen MA. Selective monitoring of ultra-trace guanine and adenine from hydrolyzed DNA using boron-doped carbon electrode surfaces. SENSORS AND ACTUATORS B: CHEMICAL 2021; 329:129192. [DOI: 10.1016/j.snb.2020.129192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
15
|
Emran MY, Talat E, El-Safty SA, Shenashen MA, Saad EM. Influence of hollow sphere surface heterogeneity and geometry of N-doped carbon on sensitive monitoring of acetaminophen in human fluids and pharmaceutical products. NEW J CHEM 2021; 45:5452-5462. [DOI: 10.1039/d0nj05442a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A sensitive and selective acetaminophen sensor assay was designed based on N-HCCS. The surface morphology, and composition of open hollow conjugated spheres of N-HCCS resulted in facile AC diffusion/loading and electrocatalytic oxidation.
Collapse
Affiliation(s)
- Mohammed Y. Emran
- National Institute for Materials Science (NIMS)
- Ibaraki-ken
- Japan
- Department of Chemistry
- Faculty of Science
| | - Eslam Talat
- Department of Chemistry
- Faculty of Science
- Suez University
- Suez
- Egypt
| | | | | | - Eman M. Saad
- Department of Chemistry
- Faculty of Science
- Suez University
- Suez
- Egypt
| |
Collapse
|
16
|
Ali SH, Emran MY, Gomaa H. Rice Husk-Derived Nanomaterials for Potential Applications. WASTE RECYCLING TECHNOLOGIES FOR NANOMATERIALS MANUFACTURING 2021:541-588. [DOI: 10.1007/978-3-030-68031-2_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
17
|
Cho YW, Park JH, Lee KH, Lee T, Luo Z, Kim TH. Recent advances in nanomaterial-modified electrical platforms for the detection of dopamine in living cells. NANO CONVERGENCE 2020; 7:40. [PMID: 33351161 PMCID: PMC7755953 DOI: 10.1186/s40580-020-00250-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/10/2020] [Indexed: 05/28/2023]
Abstract
Dopamine is a key neurotransmitter that plays essential roles in the central nervous system, including motor control, motivation, arousal, and reward. Thus, abnormal levels of dopamine directly cause several neurological diseases, including depressive disorders, addiction, and Parkinson's disease (PD). To develop a new technology to treat such diseases and disorders, especially PD, which is currently incurable, dopamine release from living cells intended for transplantation or drug screening must be precisely monitored and assessed. Owing to the advantages of miniaturisation and rapid detection, numerous electrical techniques have been reported, mostly in combination with various nanomaterials possessing specific nanoscale geometries. This review highlights recent advances in electrical biosensors for dopamine detection, with a particular focus on the use of various nanomaterials (e.g., carbon-based materials, hybrid gold nanostructures, metal oxides, and conductive polymers) on electrode surfaces to improve both sensor performance and biocompatibility. We conclude that this review will accelerate the development of electrical biosensors intended for the precise detection of metabolite release from living cells, which will ultimately lead to advances in therapeutic materials and techniques to cure various neurodegenerative disorders.
Collapse
Affiliation(s)
- Yeon-Woo Cho
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Joon-Ha Park
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kwang-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, 01899, Seoul, Republic of Korea
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, China
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
- Integrative Research Center for Two-dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
18
|
Abdel‐Rahim RD, Emran MY, Nagiub AM, Farghaly OA, Taher MA. Silver nanowire size‐dependent effect on the catalytic activity and potential sensing of H
2
O
2. ELECTROCHEMICAL SCIENCE ADVANCES 2020. [DOI: 10.1002/elsa.202000031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
| | - Mohammed Y. Emran
- Chemistry Department Faculty of Science, Al‐Azhar University Assiut Asyut Egypt
| | - Adham M. Nagiub
- Chemistry Department Faculty of Science, Al‐Azhar University Assiut Asyut Egypt
| | - Osman A. Farghaly
- Chemistry Department Faculty of Science, Al‐Azhar University Assiut Asyut Egypt
| | - Mahmoud A. Taher
- Chemistry Department Faculty of Science, Al‐Azhar University Assiut Asyut Egypt
| |
Collapse
|
19
|
Emran MY, Shenashen MA, El-Safty SA, Selim MM, Minowa T, Elmarakbi A. Three-Dimensional Circular Surface Curvature of a Spherule-Based Electrode for Selective Signaling and Dynamic Mobility of Norepinephrine in Living Cells. ACS APPLIED BIO MATERIALS 2020; 3:8496-8506. [DOI: 10.1021/acsabm.0c00882] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mohammed Y. Emran
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan
| | - Mohamed A. Shenashen
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan
| | - Sherif A. El-Safty
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan
| | - Mahmoud M. Selim
- Department of Mathematics, Al-Aflaj College of Science and Human Studies, Prince Sattam Bin Abdulaziz University, Al-Aflaj 710-11912, Saudi Arabia
| | - Takashi Minowa
- Nanotechnology Innovation Station, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Ahmed Elmarakbi
- Department of Mechanical & Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| |
Collapse
|
20
|
Non-metal sensory electrode design and protocol of DNA-nucleobases in living cells exposed to oxidative stresses. Anal Chim Acta 2020; 1142:143-156. [PMID: 33280692 DOI: 10.1016/j.aca.2020.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 01/26/2023]
Abstract
Sensory protocols for evaluation of DNA distortion due to exposure to various harmful chemicals and environments in living cells are needed for research and clinical investigations. Here, a design of non-metal sensory (NMS) electrode was built by using boron-doped carbon spherules for detection of DNA nucleobases, namely, guanine (Gu), adenine (Ad), and thymine (Th) in living cells. The key-electrode based nanoscale NMS structures lead to voids with a facile diffusion, and strong binding events of the DNA nucleobases. Furthermore, the NMS geometric structures would significantly create electrode surfaces with numerous centrally active sites, curvature topographies, and anisotropic spherules. The NMS shows potential as sensitive protocol for DNA-nucleobases in living cells exposed to oxidative stresses. In one-step signaling assay, NMS shows high signaling transduction of Gu-, Ad-, and Th-DNA nucleobases targets with ultra-sensitive and low detection limits of 3.0, 0.36, and 0.34 nM, respectively, and a wide linear range of up to 1 μM. The NMS design and protocol show evidence of the role of surface construction features and B-atoms incorporated into the graphitic carbon network for creating abundant active sites with facile electron diffusion and heavily target loads along with within-/out-plane circular spheres. Indeed NMS, with spherule-rich interstitial surfaces can be used for sensitive and selective evaluation of damaged-DNA to various dysfunctional metabolism in the human body.
Collapse
|
21
|
Chen TW, Tamilalagan E, Al Farraj DA, Chen SM, Muthumariappan A, Maheshwaran S, Elshikh MS. Improving sensitivity of antimicrobial drug nitrofurazone detection in food and biological samples based on nanostructured anatase-titania sheathed reduced graphene oxide. NANOTECHNOLOGY 2020; 31:445502. [PMID: 32796153 DOI: 10.1088/1361-6528/aba784] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we have prepared anatase titanium (IV) oxide warped reduced graphene oxide nanocomposites (TiO2-rGO NC) using ultrasonic methodology. The morphology of the TiO2-rGO NC was studied using FESEM and TEM. In addition, XRD, Raman, thermogravimetric analysis (TGA) and XPS are used to analyze the crystallinity and chemical composition of the TiO2-rGO NC. We have also investigated the electrochemical behavior of the as-prepared NCs with electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and different pulse voltammetry techniques (DPV). The TiO2-rGO NC modified electrode shows the lower charge transfer resistance (R ct ) of 62.87 Ω. Next, the glassy carbon electrode (GCE) was modified with sonochemically prepared TiO2-rGO NC and used to determine the electrocatalytic reduction of nitrofurazone (NTF). Thus, the proposed sensor established the wider covering range (WCR) of 0.01 to 380 µM and an excellent detection limit of 2.28 nM. Finally, the TiO2-rGO NC/GCE was applied to determine the NTF in real samples, including crayfish and human blood serum samples, which acquired good found and recovery values.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan. Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan. Department of Materials, Imperial College London, London SW72AZ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
22
|
Moghzi F, Soleimannejad J, Sañudo EC, Janczak J. Dopamine Sensing Based on Ultrathin Fluorescent Metal-Organic Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44499-44507. [PMID: 32931235 DOI: 10.1021/acsami.0c13166] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The importance of dopamine (DA) detection as a biomarker for several diseases, especially Parkinson''s disease, has persuaded scientists to develop new nanomaterials for efficient sensing of DA in clinical samples. Ultrathin metal-organic nanosheets due to their exceptional thickness, large surface area, and flexibility are endowed with many accessible active sites and optimal surface interaction with the target analyte molecules. In this regard, a novel layered fluorescent metal-organic nanomaterial with a honeycomb topology based on europium, [Eu(pzdc)(Hpzdc)(H2O)]n (ECP) (H2pzdc = 2,3-pyrazine dicarboxylic acid), was synthesized. X-ray crystallography revealed that the 3D supramolecular architecture of ECP is constructed from noncovalent interactions of coordinated water molecules between the 2D layers along the b axis. These layers that are only ∼4 nm thick were conveniently separated through ultrasound-induced liquid phase exfoliation. Optical studies show that the reduction of ECP thickness enhances the fluorescence intensity and serves as an efficient optical marker for DA detection. ECP nanoflakes exhibited fast response and high selectivity for DA detection in clinical samples. Good linearity for DA detection in the range of 0.1-10 μM with a detection limit of 21 nM proves the potential of ECP nanoflakes in DA sensing applications.
Collapse
Affiliation(s)
- Faezeh Moghzi
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155 6455, Tehran, Iran
| | - Janet Soleimannejad
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155 6455, Tehran, Iran
| | - Eva Carolina Sañudo
- Departament de Química Inorgànica i Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Jan Janczak
- Institute of Low Temperature and Structure Research, Polish Academy of Science, P.O. Box 1410, 50950 Wrocław, Poland
| |
Collapse
|
23
|
Abdelwahab AA, Naggar AH, Abdelmotaleb M, Emran MY. Ruthenium Nanoparticles Uniformly‐designed Chemically Treated Graphene Oxide Nanosheets for Simultaneous Voltammetric Determination of Dopamine and Acetaminophen. ELECTROANAL 2020; 32:2156-2165. [DOI: 10.1002/elan.202060126] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Adel A. Abdelwahab
- Department of Chemistry Faculty of Science and Arts Jouf University Al Qurayyat 75911 Saudi Arabia
- Department of Chemistry Faculty of Science Al-Azhar University Assiut 71524 Egypt
| | - Ahmed H. Naggar
- Department of Chemistry Faculty of Science and Arts Jouf University Al Qurayyat 75911 Saudi Arabia
- Department of Chemistry Faculty of Science Al-Azhar University Assiut 71524 Egypt
| | - Mohamed Abdelmotaleb
- Department of Chemistry Faculty of Science Al-Azhar University Assiut 71524 Egypt
| | - Mohammed Y. Emran
- Department of Chemistry Faculty of Science Al-Azhar University Assiut 71524 Egypt
| |
Collapse
|
24
|
Mostafiz B, Fotouhi L, Dorraji PS. An electrochemical sensor based on an Eriochrome Black T polymer and deep eutectic solvent for the simultaneous determination of omeprazole and lansoprazole. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4072-4079. [PMID: 32760946 DOI: 10.1039/d0ay01078b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here we report the fabrication of an electrochemical sensor for the simultaneous determination of the concentrations of omeprazole (OMZ) and lansoprazole (LAN) in biological fluids and pharmaceuticals in Britton-Robinson buffer solution (pH 6.0). The sensor was prepared by bulk modifying a carbon paste electrode with deep eutectic solvent (DES), followed by carrying out electropolymerization of Eriochrome Black T (EBT) at this electrode. The presence of DES increased the extent of the polymerization of EBT on the surface of the electrode, and this increase led to better OMZ and LAN electron transfer kinetics at the electrode surface. The modified electrode was evaluated and characterized by performing cyclic voltammetry, electrochemical impedance spectroscopy, scanning electronic microscopy, and Fourier-transform infrared spectroscopy. The best responses were obtained in drug-free Britton-Robinson buffer solution (pH 6.0) after 600 s of stirring at the open circuit potential. Linear relationships were obtained between the anodic peak currents and the concentrations of OMZ and LAN in the ranges of 0.010-0.276 and 0.010-0.300 μM, with detection limits of 0.006 and 0.009 μM, respectively. Satisfactory results were also obtained for the analysis of OMZ and LAN in real samples. The excellent sensitivity and easy regeneration and modification of this electrode with DES followed by the polymerization of EBT make this electrode relatively highly applicable for flow methods.
Collapse
Affiliation(s)
- Bahar Mostafiz
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran.
| | | | | |
Collapse
|
25
|
Senel M, Dervisevic E, Alhassen S, Dervisevic M, Alachkar A, Cadarso VJ, Voelcker NH. Microfluidic Electrochemical Sensor for Cerebrospinal Fluid and Blood Dopamine Detection in a Mouse Model of Parkinson’s Disease. Anal Chem 2020; 92:12347-12355. [DOI: 10.1021/acs.analchem.0c02032] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mehmet Senel
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States
| | - Esma Dervisevic
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Sammy Alhassen
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States
| | - Muamer Dervisevic
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States
| | - Victor J. Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Victorian Node of the Australian National Fabrication Facility, Melbourne Centre for Nanofabrication (MCN), Clayton, Victoria 3168, Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia
- Victorian Node of the Australian National Fabrication Facility, Melbourne Centre for Nanofabrication (MCN), Clayton, Victoria 3168, Australia
| |
Collapse
|
26
|
Khalifa H, El-Safty SA, Reda A, Eid A, Elmarakbi A, Shenashen MA. Mesoscopic open-eye core-shell spheroid carved anode/cathode electrodes for fully reversible and dynamic lithium-ion battery models. NANOSCALE ADVANCES 2020; 2:3525-3541. [PMID: 36134271 PMCID: PMC9418016 DOI: 10.1039/d0na00203h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/19/2020] [Indexed: 06/16/2023]
Abstract
We report on the key influence of mesoscopic super-open-eye core-shell spheroids of TiO2- and LiFePO4-wrapped nanocarbon carved anode/cathode electrodes with uniform interior accommodation/storage pockets for the creation of fully reversible and dynamic Li-ion power battery (LIB) models. The mesoscopic core-shell anode/cathode electrodes provide potential half- and full-cell LIB-CR2032 configuration designs, and large-scale pouch models. In these variable mesoscopic LIB models, the broad-free-access and large-open-eye like gate-in-transport surfaces featured electrodes are key factors of built-in LIBs with excellent charge/discharge capacity, energy density performances, and outstanding cycling stability. Mesoscopic open-eye spheroid full-LIB-CR2032 configuration models retain 77.8% of the 1st cycle discharge specific capacity of 168.68 mA h g-1 after multiple cycling (i.e., 1st to 2000th cycles), efficient coulombic performance of approximately 99.6% at 0.1C, and high specific energy density battery of approximately 165.66 W h kg-1 at 0.1C. Furthermore, we have built a dynamic, super-open-mesoeye pouch LIB model using dense packing sets that are technically significant to meet the tradeoff requirements and long-term driving range of electric vehicles (EVs). The full-pouch package LIB models retain a powerful gate-in-transport system for heavy loaded electron/Li+ ion storage, diffusion, and truck movement through open-ended out/in and then up/downward eye circular/curvy folds, thereby leading to substantial durability, and remarkable electrochemical performances even after long-life charge/discharge cycling.
Collapse
Affiliation(s)
- H Khalifa
- National Institute for Materials Science (NIMS) Sengen 1-2-1 Tsukuba Ibaraki 305-0047 Japan https://www.samurai.nims.go.jp/profiles/sherif_elsafty
| | - S A El-Safty
- National Institute for Materials Science (NIMS) Sengen 1-2-1 Tsukuba Ibaraki 305-0047 Japan https://www.samurai.nims.go.jp/profiles/sherif_elsafty
| | - A Reda
- National Institute for Materials Science (NIMS) Sengen 1-2-1 Tsukuba Ibaraki 305-0047 Japan https://www.samurai.nims.go.jp/profiles/sherif_elsafty
| | - A Eid
- National Institute for Materials Science (NIMS) Sengen 1-2-1 Tsukuba Ibaraki 305-0047 Japan https://www.samurai.nims.go.jp/profiles/sherif_elsafty
| | - A Elmarakbi
- Department of Mechanical & Construction Engineering, Faculty of Engineering and Environment, Northumbria University Newcastle upon Tyne NE1 8ST UK
| | - M A Shenashen
- National Institute for Materials Science (NIMS) Sengen 1-2-1 Tsukuba Ibaraki 305-0047 Japan https://www.samurai.nims.go.jp/profiles/sherif_elsafty
| |
Collapse
|
27
|
Senel M, Dervisevic M, Alhassen S, Alachkar A, Voelcker NH. Electrochemical Micropyramid Array-Based Sensor for In Situ Monitoring of Dopamine Released from Neuroblastoma Cells. Anal Chem 2020; 92:7746-7753. [PMID: 32367711 DOI: 10.1021/acs.analchem.0c00835] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abnormal dopamine neurotransmission is associated with several neurological and psychiatric disorders such as Parkinson's disease, schizophrenia, attention deficiency and hyperactivity disorder, and addiction. Developing highly sensitive, selective, and fast dopamine monitoring methods is of high importance especially for the early diagnosis of these diseases. Herein, we report a new ultrasensitive electrochemical sensing platform for in situ monitoring of cell-secreted dopamine using Au-coated arrays of micropyramid structures integrated directly into a Petri dish. This approach enables the monitoring of dopamine released from cells in real-time without the need for relocating cultured cells. According to the electrochemical analyses, our dopamine sensing platform exhibits excellent analytical characteristics with a detection limit of 0.50 ± 0.08 nM, a wide linear range of 0.01-500 μM, and a sensitivity of 0.18 ± 0.01 μA/μM. The sensor also has remarkable selectivity toward DA in the presence of different potentially interfering small molecules. The developed electrochemical sensor has great potential for in vitro analysis of neuronal cells as well as early diagnosis of different neurological diseases related to abnormal levels of dopamine.
Collapse
Affiliation(s)
- Mehmet Senel
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States
| | - Muamer Dervisevic
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia
| | - Sammy Alhassen
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia.,Victorian Node of the Australian National Fabrication Facility, Melbourne Centre for Nanofabrication (MCN), Clayton, Victoria 3168, Australia
| |
Collapse
|
28
|
Jandas PJ, Luo J, Quan A, Li C, Fu C, Fu YQ. Graphene oxide-Au nano particle coated quartz crystal microbalance biosensor for the real time analysis of carcinoembryonic antigen. RSC Adv 2020; 10:4118-4128. [PMID: 35492675 PMCID: PMC9049092 DOI: 10.1039/c9ra09963h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
A label-free quartz crystal microbalance (QCM) biosensor was developed for the selective and real-time estimation of carcinoembryonic antigen (CEA) through the present study. Graphene oxide-Au nanoparticles (GO-AuNPs) was in situ synthesised on the surface of the QCM electrode and the antibody of CEA (monoclonal anti-CEA from mouse) was covalently immobilized on this layer as the bioreceptor for CEA. Mercaptoacetic acid-EDC-NHS reaction mechanism was used for anti-CEA immobilization. The effect of oxygen plasma treatment of the QCM electrode surface before bioreceptor preparation on the performance of the biosensor was tested and was found promising. CEA solutions with various concentrations were analysed using the bioreceptors to estimate the sensitivity and detection limit of the biosensor. The biosensors selectively recognized and captured CEA biomolecules with a detection limit of 0.06 and 0.09 ng mL-1 of CEA for oxygen plasma-treated (E2) and untreated (E1) bioreceptors, respectively. The sensitivity was estimated at 102 and 79 Hz, respectively, for E2 and E1. Clinical serum samples were analysed and the results were found in good agreement with the ELISA analysis. Long term stability was also found to be excellent. Langmuir adsorption isotherm was also conducted using the experimental results.
Collapse
Affiliation(s)
- P J Jandas
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Energy, Shenzhen University 518060 Shenzhen PR China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University 518060 Shenzhen PR China
| | - Jingting Luo
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Energy, Shenzhen University 518060 Shenzhen PR China
| | - Aojie Quan
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Energy, Shenzhen University 518060 Shenzhen PR China
| | - Chong Li
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Energy, Shenzhen University 518060 Shenzhen PR China
| | - Chen Fu
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Energy, Shenzhen University 518060 Shenzhen PR China
| | - Y Q Fu
- Faculty of Engineering and Environment, Northumbria University Newcastle upon Tyne NE1 8ST UK
| |
Collapse
|
29
|
El-Safty S, Shenashen M. Nanoscale dynamic chemical, biological sensor material designs for control monitoring and early detection of advanced diseases. Mater Today Bio 2020; 5:100044. [PMID: 32181446 PMCID: PMC7066237 DOI: 10.1016/j.mtbio.2020.100044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/25/2022] Open
Abstract
Early detection and easy continuous monitoring of emerging or re-emerging infectious, contagious or other diseases are of particular interest for controlling healthcare advances and developing effective medical treatments to reduce the high global cost burden of diseases in the backdrop of lack of awareness regarding advancing diseases. Under an ever-increasing demand for biosensor design reliability for early stage recognition of infectious agents or contagious diseases and potential proteins, nanoscale manufacturing designs had developed effective nanodynamic sensing assays and compact wearable devices. Dynamic developments of biosensor technology are also vital to detect and monitor advanced diseases, such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), diabetes, cancers, liver diseases, cardiovascular diseases (CVDs), tuberculosis, and central nervous system (CNS) disorders. In particular, nanoscale biosensor designs have indispensable contribution to improvement of health concerns by early detection of disease, monitoring ecological and therapeutic agents, and maintaining high safety level in food and cosmetics. This review reports an overview of biosensor designs and their feasibility for early investigation, detection, and quantitative determination of many advanced diseases. Biosensor strategies are highlighted to demonstrate the influence of nanocompact and lightweight designs on accurate analyses and inexpensive sensing assays. To date, the effective and foremost developments in various nanodynamic designs associated with simple analytical facilities and procedures remain challenging. Given the wide evolution of biosensor market requirements and the growing demand in the creation of early stage and real-time monitoring assays, precise output signals, and easy-to-wear and self-regulating analyses of diseases, innovations in biosensor designs based on novel fabrication of nanostructured platforms with active surface functionalities would produce remarkable biosensor devices. This review offers evidence for researchers and inventors to focus on biosensor challenge and improve fabrication of nanobiosensors to revolutionize consumer and healthcare markets.
Collapse
Affiliation(s)
- S.A. El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken, 305-0047, Japan
| | | |
Collapse
|
30
|
Selim MS, El-Safty SA, Shenashen MA, Higazy SA, Elmarakbi A. Progress in biomimetic leverages for marine antifouling using nanocomposite coatings. J Mater Chem B 2020; 8:3701-3732. [DOI: 10.1039/c9tb02119a] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Because of the environmental and economic casualties of biofouling on maritime navigation, modern studies have been devoted toward formulating advanced nanoscale composites in the controlled development of effective marine antifouling self-cleaning surfaces.
Collapse
Affiliation(s)
- Mohamed S. Selim
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
- Petroleum Application Department
- Egyptian Petroleum Research Institute
| | - Sherif A. El-Safty
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
- Petroleum Application Department
- Egyptian Petroleum Research Institute
| | - Shimaa A. Higazy
- Petroleum Application Department
- Egyptian Petroleum Research Institute
- Cairo
- Egypt
| | - Ahmed Elmarakbi
- Department of Mechanical & Construction Engineering
- Faculty of Engineering and Environment
- Northumbria University
- Newcastle upon Tyne
- UK
| |
Collapse
|
31
|
Kamyabi MA, Moharramnezhad M. Highly Sensitive Electrochemiluminescent Insecticide Sensor Based on ZnO Nanocrystals Anchored Nickel Foam for Determination of Imidacloprid in Real Samples. ELECTROANAL 2019. [DOI: 10.1002/elan.201900388] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mohammad Ali Kamyabi
- Department of Chemistry, College of Science University of Zanjan P.O. BOX 19395-4697 Zanjan Iran
| | - Mohsen Moharramnezhad
- Department of Chemistry, College of Science University of Zanjan P.O. BOX 19395-4697 Zanjan Iran
| |
Collapse
|
32
|
Mansouri M, Khalilzadeh B, Barzegari A, Shoeibi S, Isildak S, Bargahi N, Omidi Y, Dastmalchi S, Rashidi MR. Design a highly specific sequence for electrochemical evaluation of meat adulteration in cooked sausages. Biosens Bioelectron 2019; 150:111916. [PMID: 31818752 DOI: 10.1016/j.bios.2019.111916] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 01/16/2023]
Abstract
A specific and unique sequence probe was designed for detection of donkey adulteration in cooked sausages and its species specificity was confirmed bioinformatically in the common software and website (ClustalX and NCBI). Subsequently, a novel species-specific electrochemical DNA probe (locked nucleic acid, LNA) was synthesized and implemented in a construction of DNA-based electrochemical genosensor for sensitive, convenient and selective detection of donkey adulteration. The electrochemical behavior of the fabricated genosensor was studied by linear sweep, square wave, differential pulse voltammetry and electrochemical impedance spectroscopy techniques. Due to inherent optimal hybridization conditions, the lower limit of quantification (LLOQ) was obtained as 148 pM with a relative standard deviation of 0.16%. Eventually, as a proof of concept, the designed biosensor was successfully used for detection of donkey genetic element in consumable beef sausages preparations, as a real sample. It is predicted that the proposed biosensor will provide a sensitive, inexpensive, fast, and reliable bioassay for application in food analysis, forensic investigations, genetic screening and biodiagnostics. As a prominent feature of this study, the recorded results were confirmed by quantitative real time-polymerase chain reaction (QRT-PCR) as a standard method in adulteration analysis. Our future perspective is minutralization of the development bioassay for making on-desk device and specially merging the designed system by microfluidic systems for accelerating the analysis time.
Collapse
Affiliation(s)
- Maryam Mansouri
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Biosensors and Bioelectronics Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Aboulfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Shoeibi
- Food and Drug Laboratories Research Center (FDLRC), Iran Food and Drug Administration (IFDA), Ministry of Health and Medical Education (MOH), Tehran, Iran
| | - Selim Isildak
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210, Esenler, Istanbul, Turkey
| | - Nasrin Bargahi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Electrochemical determination of urinary dopamine from neuroblastoma patients based on Cu nanoplates encapsulated by alginate-derived carbon. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Khalifa H, El-Safty SA, Reda A, Shenashen MA, Selim MM, Alothman OY, Ohashi N. Meso/macroscopically multifunctional surface interfaces, ridges, and vortex-modified anode/cathode cuticles as force-driven modulation of high-energy density of LIB electric vehicles. Sci Rep 2019; 9:14701. [PMID: 31605015 PMCID: PMC6789099 DOI: 10.1038/s41598-019-51345-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/16/2019] [Indexed: 11/20/2022] Open
Abstract
Modulation of lithium-ion battery (LIB) anodes/cathodes with three-dimensional (3D) topographical hierarchy ridges, surface interfaces, and vortices promotes the power tendency of LIBs in terms of high-energy density and power density. Large-scale meso-geodesics offer a diverse range of spatial LIB models along the geodetically shaped downward/upward curvature, leading to open-ended movement gate options, and diffusible space orientations. Along with the primary 3D super-scalable hierarchy, the formation of structural features of building block egress/ingress, curvature cargo-like sphere vehicles, irregularly located serrated cuticles with abundant V-undulated rigidness, feathery tube pipe conifers, and a band of dagger-shaped needle sticks on anode/cathode electrode surfaces provides high performance LIB modules. The geodetically-shaped anode/cathode design enables the uniqueness of all LIB module configurations in terms of powerful lithium ion (Li+) movement revolving in out-/in- and up-/downward diffusion regimes and in hovering electron density for high-speed discharge rates. The stability of built-in anode//cathode full-scale LIB-model meso-geodesics affords an outstanding long-term cycling performance. The full-cell LIB meso-geodesics offered 91.5% retention of the first discharge capacity of 165.8 mAhg-1 after 2000 cycles, Coulombic efficiency of ~99.6% at the rate of 1 C and room temperature, and high specific energy density of ≈119 Wh kg-1. This LIB meso-geodesic module configuration may align perfectly with the requirements of the energy density limit mandatory for long-term EV driving range and the scale-up commercial manufactures.
Collapse
Affiliation(s)
- H Khalifa
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan
| | - S A El-Safty
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan.
| | - A Reda
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan
| | - M A Shenashen
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan
| | - M M Selim
- Department of Mathematics, Al-Aflaj College of Science and Human Studies, Prince Sattam Bin Abdulaziz University, Al-Aflaj, 710-11912, Saudi Arabia
| | - O Y Alothman
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - N Ohashi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
35
|
Real-Time and Online Monitoring of Glucose Contents by Using Molecular Imprinted Polymer-Based IDEs Sensor. Appl Biochem Biotechnol 2019; 189:1156-1166. [DOI: 10.1007/s12010-019-03049-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/10/2019] [Indexed: 01/18/2023]
|
36
|
Selim MS, Yang H, El-Safty SA, Fatthallah NA, Shenashen MA, Wang FQ, Huang Y. Superhydrophobic coating of silicone/β–MnO2 nanorod composite for marine antifouling. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Abdelwahab AA, Abdel‐Hakim M, Abdelmottaleb M, Elshahawy AS. Palladium Nanoclusters Uniformly Enveloped Electrochemically Activated Graphene for Highly Sensitive Hydrogen Peroxide Sensor. ELECTROANAL 2019. [DOI: 10.1002/elan.201900119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Adel A. Abdelwahab
- Chemistry Department, Faculty of Science and ArtsJouf University Qurayyat 75911 Saudi Arabia E-mail: aabdelwahab
- Chemistry Department, Faculty of ScienceAl-Azhar University Assiut 71524 Egypt
| | - M. Abdel‐Hakim
- Chemistry Department, Faculty of ScienceAl-Azhar University Assiut 71524 Egypt
| | | | - Anwar S. Elshahawy
- Chemistry Department, Faculty of ScienceAssiut University Assiut 71524 Egypt
| |
Collapse
|
38
|
Yang W, Li X, Li Y, Zhu R, Pang H. Applications of Metal-Organic-Framework-Derived Carbon Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804740. [PMID: 30548705 DOI: 10.1002/adma.201804740] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/05/2018] [Indexed: 05/18/2023]
Abstract
Carbon materials derived from metal-organic frameworks (MOFs) have attracted much attention in the field of scientific research in recent years because of their advantages of excellent electron conductivity, high porosity, and diverse applications. Tremendous efforts are devoted to improving their chemical and physical properties, including optimizing the morphology and structure of the carbon materials, compositing them with other materials, and so on. Here, many kinds of carbon materials derived from metal-organic frameworks are introduced with a particular focus on their promising applications in batteries (lithium-ion batteries, lithium-sulfur batteries, and sodium-ion batteries), supercapacitors (metal oxide/carbon and metal sulfide/carbon), electrocatalytic reactions (oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction), water treatment (MOF-derived carbon and other techniques), and other possible fields. To close, some existing problem and corresponding possible solutions are proposed based on academic knowledge from the reported literature, along with a great deal of experimental experience.
Collapse
Affiliation(s)
- Wenping Yang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Xiaxia Li
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Yan Li
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Rongmei Zhu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| |
Collapse
|