1
|
Shan J, Cheng L, Li X, Liu W, Liu Z, Chai Y, Yu Y, Wang X, Wen G. End-tail soaking strategy toward robust and biomimetic sandwich-layered hydrogels for full-thickness bone regeneration. Bioact Mater 2025; 49:486-501. [PMID: 40206197 PMCID: PMC11979482 DOI: 10.1016/j.bioactmat.2025.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/10/2025] [Accepted: 02/28/2025] [Indexed: 04/11/2025] Open
Abstract
Despite an increasing number of tissue-engineered scaffolds have been developing for bone regeneration, simple and universal fabrication of biomimetic bone microstructure to repair full-thickness bone defects remains a challenge and an acute clinical demand due to the negligence of microstructural differences within the cortex of cancellous bone. In this work, a biomimetic sandwich-layered PACG-CS@Mn(III) hydrogel (SL hydrogel) was facilely fabricated in an end-tail soaking strategy by simply post-crosslinking of poly(acryloyl 2-glycine)-chitosan (PACG-CS) composite hydrogel using trivalent manganese solutions. Taking the merits of in-situ formation and flexible adjustment of chain entanglements, hydrogen bonds and metal chelate interactions, SL hydrogel with sandwich-like three-layered structures and anisotropic mechanical performance was easily customized through control of the manganese concentration and soaking time in fore-and-aft sides, simulating the structurally and mechanically biomimetic characteristics of cortical and cancellous bone. Furthermore, the produced SL hydrogel also demonstrated favorable biocompatibility and enhanced MnSOD activity via a peroxidase-like reaction, which enabled the excellent radical scavenging efficiency and anti-inflammatory regulation for facilitating the activity, proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). In vivo studies further revealed that these SL hydrogels achieved restrictive pro-vascular regeneration through their stratified structure, thereby promoting the differentiation of osteoblasts. Simultaneously, the mechanical cues of stratified structure could mediate macrophage phenotype transitions in accordance with stem cell-osteoblast differentiation process via the PI3K-AKT pathway, resulting in robust osteogenesis and high-quality bone reconstruction. This facile yet efficient strategy of turning anisotropic hydrogel offers a promising alternative for full-thickness repair of bone defects, which is also significantly imperative to achieve high-performance scaffolds with specific usage requirements and expand their clinic applicability in more complex anisotropic tissues.
Collapse
Affiliation(s)
- Jianyang Shan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Center for Orthopaedic Medicine, Shanghai, 200233, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liang Cheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Center for Orthopaedic Medicine, Shanghai, 200233, China
| | - Xiang Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Center for Orthopaedic Medicine, Shanghai, 200233, China
| | - Wenhao Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Center for Orthopaedic Medicine, Shanghai, 200233, China
- Shanghai Ocean University, College of Fisheries and Life Science, Shanghai, 201306, China
| | - Zhihua Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Center for Orthopaedic Medicine, Shanghai, 200233, China
- Shanghai Ocean University, College of Fisheries and Life Science, Shanghai, 201306, China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Center for Orthopaedic Medicine, Shanghai, 200233, China
| | - Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Center for Orthopaedic Medicine, Shanghai, 200233, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Center for Orthopaedic Medicine, Shanghai, 200233, China
| |
Collapse
|
2
|
Cao X, Sun K, Luo J, Chen A, Wan Q, Zhou H, Zhou H, Liu Y, Chen X. Enhancing Osteogenesis and Mechanical Properties through Scaffold Design in 3D Printed Bone Substitutes. ACS Biomater Sci Eng 2025; 11:710-729. [PMID: 39818724 DOI: 10.1021/acsbiomaterials.4c01661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
In the context of regenerative medicine, the design of scaffolds to possess excellent osteogenesis and appropriate mechanical properties has gained significant attention in bone tissue engineering. In this review, we categorized materials into metallic, inorganic, nonmetallic, organic polymer, and composite materials. This review provides a more integrated and multidimensional analysis of scaffold design for bone tissue engineering. Unlike previous works that often focus on single aspects, such as material type or fabrication technique, our review takes a broader approach. It analyzes the interaction between scaffold materials, 3D printing techniques, scaffold structural designs, modification methods, porosities, and pore sizes, and the composition of materials (particularly composite materials). Meanwhile, it focuses on their impacts on scaffolds' osteogenic potential and mechanical performance. This review also provides suggested ranges for porosity and pore size for different materials and outlines recommended surface modification methods. This approach not only consolidates current knowledge but also highlights the interdependencies among various factors affecting scaffold efficacy, offering deeper insights into optimization strategies tailored for specific clinical conditions. Furthermore, we introduce recent advancements in innovative 3D printing techniques and novel composite materials, which are rarely addressed in previous reviews, thereby providing a forward-looking perspective that informs future research directions and clinical applications.
Collapse
Affiliation(s)
- Xinyi Cao
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 201199, China
| | - Kexin Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Junyue Luo
- Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Andi Chen
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Qi Wan
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Hongyi Zhou
- Research School of Management, ANU College of Business and Economics, The Australian National University, Canberra, ACT 2601, Australia
| | - Hongbo Zhou
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 201199, China
| | - Xiaojing Chen
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| |
Collapse
|
3
|
Bose S, Chaudhari VS, Kushram P. 3D printed scaffolds with quercetin and vitamin D3 nanocarriers: In vitro cellular evaluation. J Biomed Mater Res A 2024; 112:2110-2123. [PMID: 38894584 PMCID: PMC11464199 DOI: 10.1002/jbm.a.37756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Increasing bone diseases and anomalies significantly challenge bone regeneration, necessitating the development of innovative implantable devices for effective healing. This study explores the potential of 3D-printed calcium phosphate (CaP) scaffolds functionalized with natural medicine to address this issue. Specifically, quercetin and vitamin D3 (QVD) encapsulated solid lipid nanoparticles (QVD-SLNs) are incorporated into the scaffold to enhance bone regeneration. The melt emulsification method is utilized to achieve high drug encapsulation efficiency (~98%) and controlled biphasic release kinetics. The process-structure-property performance of these systems allows more controlled release while maintaining healthy cell-material interactions. The functionalized scaffolds show ~1.3- and ~-1.6-fold increase in osteoblast cell proliferation and differentiation, respectively, as compared with the control. The treated scaffold demonstrates a reduction in osteoclastic activity as compared with the control. The QVD-SLN-loaded scaffolds show ~4.2-fold in vitro chemopreventive potential against osteosarcoma cells. Bacterial assessment with both Staphylococcus aureus and Pseudomonas aeruginosa shows a significant reduction in bacterial colony growth over the treated scaffold. These findings summarize that the release of QVD-SLNs through a 3D-printed CaP scaffold can treat various bone-related disorders for low or non-load-bearing applications.
Collapse
Affiliation(s)
- Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Vishal Sharad Chaudhari
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Priya Kushram
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
4
|
de Carvalho ABG, Rahimnejad M, Oliveira RLMS, Sikder P, Saavedra GSFA, Bhaduri SB, Gawlitta D, Malda J, Kaigler D, Trichês ES, Bottino MC. Personalized bioceramic grafts for craniomaxillofacial bone regeneration. Int J Oral Sci 2024; 16:62. [PMID: 39482290 PMCID: PMC11528123 DOI: 10.1038/s41368-024-00327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 11/03/2024] Open
Abstract
The reconstruction of craniomaxillofacial bone defects remains clinically challenging. To date, autogenous grafts are considered the gold standard but present critical drawbacks. These shortcomings have driven recent research on craniomaxillofacial bone reconstruction to focus on synthetic grafts with distinct materials and fabrication techniques. Among the various fabrication methods, additive manufacturing (AM) has shown significant clinical potential. AM technologies build three-dimensional (3D) objects with personalized geometry customizable from a computer-aided design. These layer-by-layer 3D biomaterial structures can support bone formation by guiding cell migration/proliferation, osteogenesis, and angiogenesis. Additionally, these structures can be engineered to degrade concomitantly with the new bone tissue formation, making them ideal as synthetic grafts. This review delves into the key advances of bioceramic grafts/scaffolds obtained by 3D printing for personalized craniomaxillofacial bone reconstruction. In this regard, clinically relevant topics such as ceramic-based biomaterials, graft/scaffold characteristics (macro/micro-features), material extrusion-based 3D printing, and the step-by-step workflow to engineer personalized bioceramic grafts are discussed. Importantly, in vitro models are highlighted in conjunction with a thorough examination of the signaling pathways reported when investigating these bioceramics and their effect on cellular response/behavior. Lastly, we summarize the clinical potential and translation opportunities of personalized bioceramics for craniomaxillofacial bone regeneration.
Collapse
Affiliation(s)
- Ana Beatriz G de Carvalho
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Rodrigo L M S Oliveira
- Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA
| | - Guilherme S F A Saavedra
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Sarit B Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH, USA
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Jos Malda
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eliandra S Trichês
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Liu Q, Zhang Y, Yu S, Zhao C, Yang Y, Yan J, Wang Y, Liu D, Liu Y, Zhang X. Proanthocyanidins modification of the mineralized collagen scaffold based on synchronous self-assembly/mineralization for bone regeneration. Colloids Surf B Biointerfaces 2024; 245:114290. [PMID: 39383582 DOI: 10.1016/j.colsurfb.2024.114290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Proteoglycans (PG) is crucial for regulating collagen formation and mineralization during bone tissue development. A wide variety of PG-modified collagen scaffolds have been proposed for bone engineering application to promote biological responses and work as artificial matrices that guide tissue regeneration. However, poor performance of theses biomaterials against infections has led to an unmet need for clinical prevention. Therefore, we utilized proanthocyanidins (PA) to simulate the functions of PG, including mediating the collagen assembly and intrafibrillar mineralization, to optimize scaffolds performance. The excellent antibacterial properties of PA can endow the scaffolds with anti-infection effects in the process of tissue regeneration. When PA was added during fibrillogenesis, the collagen fibrils appeared irregular aggregation and the mineralization degree was reduced. In contrast, the addition of PA after collagen self-assembly improved the latter's ability to act as a deposition template and remarkably promoted mineral ions infiltration, thus enhancing intrafibrillar mineralization. The PA-modified scaffold displayed a highly hydrophilicity behaviour and long-term resistance to degradation. The sustained release of PA effectively inhibited the activity of Staphylococcus aureus. The scaffold also showed excellent biocompatibility and improved bone regeneration in calvarial critical-size defect models. The application of PA enables a dual-function scaffold with favourable intrafibrillar mineralization and anti-bacterial properties for bone regeneration.
Collapse
Affiliation(s)
- Qing Liu
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Ye Zhang
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China; Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Shuxian Yu
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Chuanze Zhao
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yuqing Yang
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Jianyu Yan
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yuge Wang
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Dayong Liu
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Ying Liu
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - Xu Zhang
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China; Tianjin Medical University Institute of Stomatology, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China.
| |
Collapse
|
6
|
Minervini G. Dentistry and Cranio Facial District: The Role of Biomimetics. Biomimetics (Basel) 2024; 9:389. [PMID: 39056830 PMCID: PMC11274693 DOI: 10.3390/biomimetics9070389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Biomimetics has emerged as a pivotal field, bridging fundamental research and practical applications [...].
Collapse
Affiliation(s)
- Giuseppe Minervini
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, Tamil Nadu, India;
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania, Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
7
|
Kim SH, Ki MR, Han Y, Pack SP. Biomineral-Based Composite Materials in Regenerative Medicine. Int J Mol Sci 2024; 25:6147. [PMID: 38892335 PMCID: PMC11173312 DOI: 10.3390/ijms25116147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Regenerative medicine aims to address substantial defects by amplifying the body's natural regenerative abilities and preserving the health of tissues and organs. To achieve these goals, materials that can provide the spatial and biological support for cell proliferation and differentiation, as well as the micro-environment essential for the intended tissue, are needed. Scaffolds such as polymers and metallic materials provide three-dimensional structures for cells to attach to and grow in defects. These materials have limitations in terms of mechanical properties or biocompatibility. In contrast, biominerals are formed by living organisms through biomineralization, which also includes minerals created by replicating this process. Incorporating biominerals into conventional materials allows for enhanced strength, durability, and biocompatibility. Specifically, biominerals can improve the bond between the implant and tissue by mimicking the micro-environment. This enhances cell differentiation and tissue regeneration. Furthermore, biomineral composites have wound healing and antimicrobial properties, which can aid in wound repair. Additionally, biominerals can be engineered as drug carriers, which can efficiently deliver drugs to their intended targets, minimizing side effects and increasing therapeutic efficacy. This article examines the role of biominerals and their composite materials in regenerative medicine applications and discusses their properties, synthesis methods, and potential uses.
Collapse
Affiliation(s)
- Sung Ho Kim
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea
| | - Youngji Han
- Biological Clock-Based Anti-Aging Convergence RLRC, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea;
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
| |
Collapse
|
8
|
Sadeghian Dehkord E, De Carvalho B, Ernst M, Albert A, Lambert F, Geris L. Influence of physicochemical characteristics of calcium phosphate-based biomaterials in cranio-maxillofacial bone regeneration. A systematic literature review and meta-analysis of preclinical models. Mater Today Bio 2024; 26:101100. [PMID: 38854953 PMCID: PMC11157282 DOI: 10.1016/j.mtbio.2024.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024] Open
Abstract
Objectives Calcium phosphate-based biomaterials (CaP) are the most widely used biomaterials to enhance bone regeneration in the treatment of alveolar bone deficiencies, cranio-maxillofacial and periodontal infrabony defects, with positive preclinical and clinical results reported. This systematic review aimed to assess the influence of the physicochemical properties of CaP biomaterials on the performance of bone regeneration in preclinical animal models. Methods The PubMed, EMBASE and Web of Science databases were searched to retrieve the preclinical studies investigating physicochemical characteristics of CaP biomaterials. The studies were screened for inclusion based on intervention (physicochemical characterization and in vivo evaluation) and reported measurable outcomes. Results A total of 1532 articles were retrieved and 58 studies were ultimately included in the systematic review. A wide range of physicochemical characteristics of CaP biomaterials was found to be assessed in the included studies. Despite a high degree of heterogeneity, the meta-analysis was performed on 39 studies and evidenced significant effects of biomaterial characteristics on their bone regeneration outcomes. The study specifically showed that macropore size, Ca/P ratio, and compressive strength exerted significant influence on the formation of newly regenerated bone. Moreover, factors such as particle size, Ca/P ratio, and surface area were found to impact bone-to-material contact during the regeneration process. In terms of biodegradability, the amount of residual graft was determined by macropore size, particle size, and compressive strength. Conclusion The systematic review showed that the physicochemical characteristics of CaP biomaterials are highly determining for scaffold's performance, emphasizing its usefulness in designing the next generation of bone scaffolds to target higher rates of regeneration.
Collapse
Affiliation(s)
- Ehsan Sadeghian Dehkord
- GIGA In Silico Medicine, Biomechanics Research Unit (Biomech), University of Liège, Belgium
- Prometheus, The R&D Division for Skeletal Tissue Engineering, KU Leuven, Belgium
| | - Bruno De Carvalho
- Department of Periodontology, Oral-Dental and Implant Surgery, CHU of Liège, Belgium
- Dental Biomaterials Research Unit (d-BRU), University of Liège, Belgium
| | - Marie Ernst
- Biostatistics and Research Method Center (B-STAT), CHU of Liège and University of Liège, Belgium
| | - Adelin Albert
- Biostatistics and Research Method Center (B-STAT), CHU of Liège and University of Liège, Belgium
- Department of Public Health Sciences, University of Liège, Belgium
| | - France Lambert
- Department of Periodontology, Oral-Dental and Implant Surgery, CHU of Liège, Belgium
- Dental Biomaterials Research Unit (d-BRU), University of Liège, Belgium
| | - Liesbet Geris
- GIGA In Silico Medicine, Biomechanics Research Unit (Biomech), University of Liège, Belgium
- Prometheus, The R&D Division for Skeletal Tissue Engineering, KU Leuven, Belgium
- Department of Mechanical Engineering, Biomechanics Section (BMe), KU Leuven, Belgium
| |
Collapse
|
9
|
Lee JK, Kim DS, Park SY, Jung JW, Baek SW, Lee S, Kim JH, Ahn TK, Han DK. Osteoporotic Bone Regeneration via Plenished Biomimetic PLGA Scaffold with Sequential Release System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310734. [PMID: 38143290 DOI: 10.1002/smll.202310734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Achieving satisfactory bone tissue regeneration in osteoporotic patients with ordinary biomaterials is challenging because of the decreased bone mineral density and aberrant bone microenvironment. In addressing this issue, a biomimetic scaffold (PMEH/SP), incorporating 4-hexylresorcinol (4HR), and substance P (SP) into the poly(lactic-go-glycolic acid) (PLGA) scaffold with magnesium hydroxide (M) and extracellular matrix (E) is introduced, enabling the consecutive release of bioactive agents. 4HR and SP induced the phosphorylation of p38 MAPK and ERK in human umbilical vein endothelial cells (HUVECs), thereby upregulating VEGF expression level. The migration and tube-forming ability of endothelial cells can be promoted by the scaffold, which accelerates the formation and maturation of the bone. Moreover, 4HR played a crucial role in the inhibition of osteoclastogenesis by interrupting the IκB/NF-κB signaling pathway and exhibiting SP, thereby enhancing the migration and angiogenesis of HUVECs. Based on such a synergistic effect, osteoporosis can be suppressed, and bone regeneration can be achieved by inhibiting the RANKL pathway in vitro and in vivo, which is a commonly known mechanism of bone physiology. Therefore, the study presents a promising approach for developing a multifunctional regenerative material for sophisticated osteoporotic bone regeneration.
Collapse
Affiliation(s)
- Jun-Kyu Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| | - So-Yeon Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Ji-Won Jung
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Semi Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jun Hyuk Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Tae-Keun Ahn
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| |
Collapse
|
10
|
Yao C, Pripatnanont P, Zhang J, Suttapreyasri S. Fabrication and characterization of a bioactive composite scaffold based on polymeric collagen/gelatin/nano β-TCP for alveolar bone regeneration. J Mech Behav Biomed Mater 2024; 153:106500. [PMID: 38484429 DOI: 10.1016/j.jmbbm.2024.106500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
One strategy to correct alveolar bone defects is use of bioactive bone substitutes to maintain the structure of defect site and facilitate cells and vessels' ingrowth. This study aimed to fabricate and characterize the freeze-dried bone regeneration scaffolds composed of polymeric Type I collagen, nano Beta-tricalcium phosphate (β-TCP), and gelatin. The stable structures of scaffolds were obtained by thermal crosslinking and EDC/NHS ((1-ethyl-3-(3-dimethylaminopropyl) carbodiimide)/(N-hydroxysuccinimide)) chemical crosslinking processes. Subsequently, the physicochemical and biological properties of the scaffolds were characterized and assessed. The results indicated the bioactive composite scaffolds containing 10% and 20% (w/v) nano β-TCP exhibited suitable porosity (84.45 ± 25.43 nm, and 94.51 ± 14.69 nm respectively), a rapid swelling property (reaching the maximum swelling rate at 1 h), excellent degradation resistance (residual mass percentage of scaffolds higher than 80% on day 90 in PBS and Type I collagenase solution respectively), and sustained calcium release capabilities. Moreover, they displayed outstanding biological properties, including superior cell viability, cell adhesion, and cell proliferation. Additionally, the scaffolds containing 10% and 20% (w/v) nano β-TCP could promote the osteogenic differentiation of MC3T3-E1. Therefore, the bioactive composite scaffolds containing 10% and 20% (w/v) nano β-TCP could be further studied for being used to treat alveolar bone defects in vivo.
Collapse
Affiliation(s)
- Chao Yao
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Prisana Pripatnanont
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Junbiao Zhang
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand; Guiyang Hospital of Stomatology, Guiyang, 550002, People's Republic of China
| | - Srisurang Suttapreyasri
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, 90112, Thailand.
| |
Collapse
|
11
|
Amid R, Kadkhodazadeh M, Kheiri A, Esfandiari S. Comparison of the healing process of xenografts with three different sources in critical-size bone defects: An in vivo study. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2024; 16:22-29. [PMID: 39027209 PMCID: PMC11252156 DOI: 10.34172/japid.2024.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/26/2024] [Indexed: 07/20/2024]
Abstract
Background Xenograft bone substitutes can be obtained from different animals and processed using various methods. The present in vivo study evaluated bone regeneration after using three types of xenografts with different sources in critical-sized bone defects in rabbit calvaria. Methods Four 8-mm defects were created in calvaria of 14 New Zealand and white male rabbits. Three out of four defects were filled with xenografts of bovine, camel, and ostrich sources. The fourth defect was left unfilled as the control group. Seven rabbits were sacrificed after eight weeks and seven others after 12 weeks. Micro-CT imaging and histologic evaluation were further performed on dissected calvarias. Results After 8 and 12 weeks, the highest and lowest percentages of new bone formation were observed in the camel (27.71% and 41.92%) and control (11.33% and 15.96%) groups, respectively. In the case of residual material, the ostrich group had the most value after eight weeks (53%), while after 12 weeks, it was highest in the camel group (37%). Micro-CT findings were consistent with histologic results. Conclusion Although all three xenografts can be good choices for treating bone defects, camel-sourced xenograft seemed to be better than the other two groups. The origin and processing procedures of xenografts affected their final characteristics, which should be considered for clinical use.
Collapse
Affiliation(s)
- Reza Amid
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Kadkhodazadeh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aida Kheiri
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Esfandiari
- Department of Biology, School of Science, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
12
|
Bai B, Liu Y, Huang J, Wang S, Chen H, Huo Y, Zhou H, Liu Y, Feng S, Zhou G, Hua Y. Tolerant and Rapid Endochondral Bone Regeneration Using Framework-Enhanced 3D Biomineralized Matrix Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305580. [PMID: 38127989 PMCID: PMC10916654 DOI: 10.1002/advs.202305580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/01/2023] [Indexed: 12/23/2023]
Abstract
Tissue-engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microenvironment after bone injury, especially the avascular and hypoxic conditions. Inspired by the bone developmental mode of endochondral ossification, a novel strategy is proposed for tolerant and rapid endochondral bone regeneration using framework-enhanced 3D biomineralized matrix hydrogels. First, it is meticulously designed 3D biomimetic hydrogels with both hypoxic and osteoinductive microenvironment, and then integrated 3D-printed polycaprolactone framework to improve their mechanical strength and structural fidelity. The inherent hypoxic 3D matrix microenvironment effectively activates bone marrow mesenchymal stem cells self-regulation for early-stage chondrogenesis via TGFβ/Smad signaling pathway due to the obstacle of aerobic respiration. Meanwhile, the strong biomineralized microenvironment, created by a hybrid formulation of native-constitute osteogenic inorganic salts, can synergistically regulate both bone mineralization and osteoclastic differentiation, and thus accelerate the late-stage bone maturation. Furthermore, both in vivo ectopic osteogenesis and in situ skull defect repair successfully verified the high efficiency and mechanical maintenance of endochondral bone regeneration mode, which offers a promising treatment for craniofacial bone defect repair.
Collapse
Affiliation(s)
- Baoshuai Bai
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
- Department of OrthopaedicsAdvanced Medical Research InstituteQilu Hospital of Shangdong University Centre for OrthopaedicsShandong UniversityJinanShandong250100P. R. China
- Department of OrthopaedicsCheeloo College of MedicineThe Second Hospital of Shandong UniversityShandong UniversityJinanShandong250033P. R. China
| | - Yanhan Liu
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
- Department of OphthalmologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Jinyi Huang
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Sinan Wang
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Hongying Chen
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Yingying Huo
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Hengxing Zhou
- Department of OrthopaedicsAdvanced Medical Research InstituteQilu Hospital of Shangdong University Centre for OrthopaedicsShandong UniversityJinanShandong250100P. R. China
- Department of OrthopaedicsCheeloo College of MedicineThe Second Hospital of Shandong UniversityShandong UniversityJinanShandong250033P. R. China
| | - Yu Liu
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Shiqing Feng
- Department of OrthopaedicsAdvanced Medical Research InstituteQilu Hospital of Shangdong University Centre for OrthopaedicsShandong UniversityJinanShandong250100P. R. China
- Department of OrthopaedicsCheeloo College of MedicineThe Second Hospital of Shandong UniversityShandong UniversityJinanShandong250033P. R. China
| | - Guangdong Zhou
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Yujie Hua
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| |
Collapse
|
13
|
Miao Y, Liu X, Luo J, Yang Q, Chen Y, Wang Y. Double-Network DNA Macroporous Hydrogel Enables Aptamer-Directed Cell Recruitment to Accelerate Bone Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303637. [PMID: 37949678 PMCID: PMC10767401 DOI: 10.1002/advs.202303637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Indexed: 11/12/2023]
Abstract
Recruiting endogenous bone marrow mesenchymal stem cells (BMSCs) in vivo to bone defect sites shows great promise in cell therapies for bone tissue engineering, which tackles the shortcomings of delivering exogenous stem cells, including limited sources, low retention, stemness loss, and immunogenicity. However, it remains challenging to efficiently recruit stem cells while simultaneously directing cell differentiation in the dynamic microenvironment and promoting neo-regenerated tissue ingrowth to achieve augmented bone regeneration. Herein, a synthetic macroporous double-network hydrogel presenting nucleic acid aptamer and nano-inducer enhances BMSCs recruitment, and osteogenic differentiation is demonstrated. An air-in-water template enables the rapid construction of highly interconnective macroporous structures, and the physical self-assembly of DNA strands and chemical cross-linking of gelatin chains synergistically generate a resilient double network. The aptamer Apt19S and black phosphorus nanosheets-specific macroporous hydrogel demonstrate highly efficient endogenous BMSCs recruitment, cell differentiation, and extracellular matrix mineralization. Notably, the enhanced calvarial bone healing with promising matrix mineralization and new bone formation is accompanied by adapting this engineered hydrogel to the bone defects. The findings suggest an appealing material approach overcoming the traditional limitations of cell-delivery therapy that can inspire the future design of next-generation hydrogel for enhanced bone tissue regeneration.
Collapse
Affiliation(s)
- Yali Miao
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
- Department of OrthopedicsGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Xiao Liu
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
| | - Jinshui Luo
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
| | - Qian Yang
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
| | - Yunhua Chen
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of EducationSouth China University of TechnologyGuangzhou510006China
| | - Yingjun Wang
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of EducationSouth China University of TechnologyGuangzhou510006China
| |
Collapse
|
14
|
Timofticiuc IA, Călinescu O, Iftime A, Dragosloveanu S, Caruntu A, Scheau AE, Badarau IA, Didilescu AC, Caruntu C, Scheau C. Biomaterials Adapted to Vat Photopolymerization in 3D Printing: Characteristics and Medical Applications. J Funct Biomater 2023; 15:7. [PMID: 38248674 PMCID: PMC10816811 DOI: 10.3390/jfb15010007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Along with the rapid and extensive advancements in the 3D printing field, a diverse range of uses for 3D printing have appeared in the spectrum of medical applications. Vat photopolymerization (VPP) stands out as one of the most extensively researched methods of 3D printing, with its main advantages being a high printing speed and the ability to produce high-resolution structures. A major challenge in using VPP 3D-printed materials in medicine is the general incompatibility of standard VPP resin mixtures with the requirements of biocompatibility and biofunctionality. Instead of developing completely new materials, an alternate approach to solving this problem involves adapting existing biomaterials. These materials are incompatible with VPP 3D printing in their pure form but can be adapted to the VPP chemistry and general process through the use of innovative mixtures and the addition of specific pre- and post-printing steps. This review's primary objective is to highlight biofunctional and biocompatible materials that have been adapted to VPP. We present and compare the suitability of these adapted materials to different medical applications and propose other biomaterials that could be further adapted to the VPP 3D printing process in order to fulfill patient-specific medical requirements.
Collapse
Affiliation(s)
- Iosif-Aliodor Timofticiuc
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
| | - Octavian Călinescu
- Department of Biophysics, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
| | - Adrian Iftime
- Department of Biophysics, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
| | - Andreea Cristiana Didilescu
- Department of Embryology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
15
|
Miao Q, Yang X, Diao J, Ding H, Wu Y, Ren X, Gao J, Ma M, Yang S. 3D printed strontium-doped calcium phosphate ceramic scaffold enhances early angiogenesis and promotes bone repair through the regulation of macrophage polarization. Mater Today Bio 2023; 23:100871. [PMID: 38179229 PMCID: PMC10765239 DOI: 10.1016/j.mtbio.2023.100871] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
The vascularization of bone repair materials is one of the key issues that urgently need to be addressed in the process of bone repair. The changes in macrophage phenotype and function play an important role in the process of vascularization, and endowing bone repair materials with immune regulatory characteristics to enhance angiogenesis is undoubtedly a new strategy to improve the effectiveness of bone repair. In order to improve the effect of tricalcium phosphate (TCP) on vascularization and bone repair, we doped strontium ions (Sr) into TCP (SrTCP) and prepared porous 3D printed SrTCP scaffolds using 3D printing technology, and studied the scaffold mediated macrophage polarization and subsequent vascularization and bone regeneration. The results of the interaction between the scaffold and macrophages showed that the SrTCP scaffold can promote the polarization of macrophages from M1 to M2 and secrete high concentrations of VEGF and PDGF-bb cytokines, which shows excellent angiogenic potential. When human umbilical vein endothelial cells (HUVECs) were co-cultured with macrophage-conditioned medium of SrTCP scaffold, HUVECs exhibited excellent early angiogenesis-promoting effects in terms of scratch healing, angiogenic gene expression, and in vitro tube formation performance. The results of in vivo bone repair experiments showed that the SrTCP scaffold formed a vascular network with high density and quantity in the bone defect area, which could increase the rate of new bone formation and advance the period of bone formation, and finally achieved a better bone repair effect. We observed a cascade effect in which Sr-doped SrTCP scaffold regulate macrophage polarization to enhance angiogenesis and promote bone repair, which may provide a new strategy for the repair of clinical bone defects.
Collapse
Affiliation(s)
- Qiuju Miao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xiaopeng Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Jingjing Diao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Huanwen Ding
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Yan Wu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xiangyang Ren
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Jianbo Gao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Mengze Ma
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Shenyu Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| |
Collapse
|
16
|
Lin H, Zhang L, Zhang Q, Wang Q, Wang X, Yan G. Mechanism and application of 3D-printed degradable bioceramic scaffolds for bone repair. Biomater Sci 2023; 11:7034-7050. [PMID: 37782081 DOI: 10.1039/d3bm01214j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Bioceramics have attracted considerable attention in the field of bone repair because of their excellent osteogenic properties, degradability, and biocompatibility. To resolve issues regarding limited formability, recent studies have introduced 3D printing technology for the fabrication of bioceramic bone repair scaffolds. Nevertheless, the mechanisms by which bioceramics promote bone repair and clinical applications of 3D-printed bioceramic scaffolds remain elusive. This review provides an account of the fabrication methods of 3D-printed degradable bioceramic scaffolds. In addition, the types and characteristics of degradable bioceramics used in clinical and preclinical applications are summarized. We have also highlighted the osteogenic molecular mechanisms in biomaterials with the aim of providing a basis and support for future research on the clinical applications of degradable bioceramic scaffolds. Finally, new developments and potential applications of 3D-printed degradable bioceramic scaffolds are discussed with reference to experimental and theoretical studies.
Collapse
Affiliation(s)
- Hui Lin
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Liyun Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qiyue Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Xue Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
| | - Guangqi Yan
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
| |
Collapse
|
17
|
Pei B, Hu M, Wu X, Lu D, Zhang S, Zhang L, Wu S. Investigations into the effects of scaffold microstructure on slow-release system with bioactive factors for bone repair. Front Bioeng Biotechnol 2023; 11:1230682. [PMID: 37781533 PMCID: PMC10537235 DOI: 10.3389/fbioe.2023.1230682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
In recent years, bone tissue engineering (BTE) has played an essential role in the repair of bone tissue defects. Although bioactive factors as one component of BTE have great potential to effectively promote cell differentiation and bone regeneration, they are usually not used alone due to their short effective half-lives, high concentrations, etc. The release rate of bioactive factors could be controlled by loading them into scaffolds, and the scaffold microstructure has been shown to significantly influence release rates of bioactive factors. Therefore, this review attempted to investigate how the scaffold microstructure affected the release rate of bioactive factors, in which the variables included pore size, pore shape and porosity. The loading nature and the releasing mechanism of bioactive factors were also summarized. The main conclusions were achieved as follows: i) The pore shapes in the scaffold may have had no apparent effect on the release of bioactive factors but significantly affected mechanical properties of the scaffolds; ii) The pore size of about 400 μm in the scaffold may be more conducive to controlling the release of bioactive factors to promote bone formation; iii) The porosity of scaffolds may be positively correlated with the release rate, and the porosity of 70%-80% may be better to control the release rate. This review indicates that a slow-release system with proper scaffold microstructure control could be a tremendous inspiration for developing new treatment strategies for bone disease. It is anticipated to eventually be developed into clinical applications to tackle treatment-related issues effectively.
Collapse
Affiliation(s)
- Baoqing Pei
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Mengyuan Hu
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xueqing Wu
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Da Lu
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shijia Zhang
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Le Zhang
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shuqin Wu
- School of Big Data and Information, Shanxi College of Technology, Taiyuan, Shanxi, China
| |
Collapse
|
18
|
Tsubosaka M, Maruyama M, Lui E, Moeinzadeh S, Huang EE, Kushioka J, Hirata H, Jain C, Storaci HW, Chan C, Toya M, Gao Q, Teissier V, Shen H, Li X, Zhang N, Matsumoto T, Kuroda R, Goodman SB, Yang YP. The efficiency of genetically modified mesenchymal stromal cells combined with a functionally graded scaffold for bone regeneration in corticosteroid-induced osteonecrosis of the femoral head in rabbits. J Biomed Mater Res A 2023; 111:1120-1134. [PMID: 36606330 PMCID: PMC10277231 DOI: 10.1002/jbm.a.37495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
Core decompression (CD) with mesenchymal stromal cells (MSCs) is an effective therapy for early-stage osteonecrosis of the femoral head (ONFH). Preconditioning of MSCs, using inflammatory mediators, is widely used in immunology and various cell therapies. We developed a three-dimensional printed functionally graded scaffold (FGS), made of β-TCP and PCL, for cell delivery at a specific location. The present study examined the efficacy of CD treatments with genetically modified (GM) MSCs over-expressing PDGF-BB (PDGF-MSCs) or GM MSCs co-over-expressing IL-4 and PDGF-BB and preconditioned for three days of exposure to lipopolysaccharide and tumor necrosis factor-alpha (IL-4-PDGF-pMSCs) using the FGS for treating steroid-induced ONFH in rabbits. We compared CD without cell-therapy, with IL-4-PDGF-pMSCs alone, and with FGS loaded with PDGF-MSCs or IL-4-PDGF-pMSCs. For the area inside the CD, the bone volume in the CD alone was higher than in both FGS groups. The IL-4-PDGF-pMSCs alone and FGS + PDGF-MSCs reduced the occurrence of empty lacunae and improved osteoclastogenesis. There was no significant difference in angiogenesis among the four groups. The combined effect of GM MSCs or pMSCs and the FGS was not superior to the effect of each alone. To establish an important adjunctive therapy for CD for early ONFH in the future, it is necessary and essential to develop an FGS that delivers biologics appropriately and provides structural and mechanical support.
Collapse
Affiliation(s)
- Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Elaine Lui
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Seyedsina Moeinzadeh
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Elijah Ejun Huang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Charu Jain
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hunter W. Storaci
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Calvin Chan
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Victoria Teissier
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Material Science and Engineering, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
19
|
Feng J, Liu J, Wang Y, Diao J, Kuang Y, Zhao N. Beta-TCP scaffolds with rationally designed macro-micro hierarchical structure improved angio/osteo-genesis capability for bone regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:36. [PMID: 37486393 PMCID: PMC10366319 DOI: 10.1007/s10856-023-06733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/08/2023] [Indexed: 07/25/2023]
Abstract
The design of hierarchical porous structure in scaffolds is crucial for bone defect regenerative repair. However, bioceramic materials present a challenge in precisely constructing designed micropores owing to the limitation of forming process. To investigate micropore shape influences bone regeneration in bioceramic scaffolds with macropores, hierarchical porous scaffolds with interconnective macropores (~400 μm) and two types of micropores (spherical and fibrous) were prepared using a combination of direct ink writing (DIW) and template sacrifice methods. Compared to the scaffold with spherical micropores, the scaffold with highly interconnected fibrous micropores significantly improved cell adhesion and upregulated osteogenic and angiogenetic-related gene expression in mBMSCs and HUVECs, respectively. Furthermore, in vivo implantation experiments showed that hierarchical scaffolds with fibrous micropores accelerated the bone repair process significantly. This result can be attributed to the high interconnectivity of fibrous micropores, which promotes the transportation of nutrients and waste during bone regeneration. Our work demonstrates that hierarchical porous scaffold design, especially one with a fibrous micropore structure, is a promising strategy for improving the bone regeneration performance of bioceramic scaffolds.
Collapse
Affiliation(s)
- Jianlang Feng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- NMPA Key Laboratory for Research and Evaluation of Innovative Biomaterials for Medical Devices, Guangzhou, 510006, PR China
| | - Junjie Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- NMPA Key Laboratory for Research and Evaluation of Innovative Biomaterials for Medical Devices, Guangzhou, 510006, PR China
| | - Yingqu Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
| | - Jingjing Diao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- Medical Devices Research & Testing Center of SCUT, Guangzhou, 510006, PR China
| | - Yudi Kuang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China.
- Guangdong Institute of Advanced Biomaterials and Medical Devices, Guangzhou, 510535, PR China.
| | - Naru Zhao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China.
- NMPA Key Laboratory for Research and Evaluation of Innovative Biomaterials for Medical Devices, Guangzhou, 510006, PR China.
| |
Collapse
|
20
|
Silva-Barroso AS, Cabral CSD, Ferreira P, Moreira AF, Correia IJ. Lignin-enriched tricalcium phosphate/sodium alginate 3D scaffolds for application in bone tissue regeneration. Int J Biol Macromol 2023; 239:124258. [PMID: 37003376 DOI: 10.1016/j.ijbiomac.2023.124258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
The bone is a connective, vascularized, and mineralized tissue that confers protection to organs, and participates in the support and locomotion of the human body, maintenance of homeostasis, as well as in hematopoiesis. However, throughout the lifetime, bone defects may arise due to traumas (mechanical fractures), diseases, and/or aging, which when too extensive compromise the ability of the bone to self-regenerate. To surpass such clinical situation, different therapeutic approaches have been pursued. Rapid prototyping techniques using composite materials (consisting of ceramics and polymers) have been used to produce customized 3D structures with osteoinductive and osteoconductive properties. In order to reinforce the mechanical and osteogenic properties of these 3D structures, herein, a new 3D scaffold was produced through the layer-by-layer deposition of a tricalcium phosphate (TCP), sodium alginate (SA), and lignin (LG) mixture using the Fab@Home 3D-Plotter. Three different TCP/LG/SA formulations, LG/SA ratio 1:3, 1:2, or 1:1, were produced and subsequently evaluated to determine their suitability for bone regeneration. The physicochemical assays demonstrated that the LG inclusion improved the mechanical resistance of the scaffolds, particularly in the 1:2 ratio, since a 15 % increase in the mechanical strength was observed. Moreover, all TCP/LG/SA formulations showed an enhanced wettability and maintained their capacity to promote the osteoblasts' adhesion and proliferation as well as their bioactivity (formation of hydroxyapatite crystals). Such results support the LG inclusion and application in the development of 3D scaffolds aimed for bone regeneration.
Collapse
Affiliation(s)
- A S Silva-Barroso
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Cátia S D Cabral
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Paula Ferreira
- CIEPQPF-Departamento de Engenharia Química, Universidade de Coimbra, Rua Silvio Lima, 3030-790 Coimbra, Portugal; Instituto Superior de Engenharia de Coimbra, Instituto Politécnico de Coimbra, Rua Pedro Nunes, 3030-199 Coimbra, Portugal
| | - André F Moreira
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CPIRN-UDI/IPG-Center of Potential and Innovation in Natural Resources, Research Unit for Inland Development, Instituto Politécnico da Guarda, Avenida Dr. Francisco de Sá Carneiro, 6300-559 Guarda, Portugal
| | - Ilídio J Correia
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
21
|
Chen B, Lin Z, Saiding Q, Huang Y, Sun Y, Zhai X, Ning Z, Liang H, Qiao W, Yu B, Yeung KW, Shen J. Enhancement of critical-sized bone defect regeneration by magnesium oxide-reinforced 3D scaffold with improved osteogenic and angiogenic properties. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 2023; 135:186-198. [DOI: 10.1016/j.jmst.2022.06.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
22
|
Kudoh K, Fukuda N, Akita K, Kudoh T, Takamaru N, Kurio N, Hayashi K, Ishikawa K, Miyamoto Y. Reconstruction of rabbit mandibular bone defects using carbonate apatite honeycomb blocks with an interconnected porous structure. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 34:2. [PMID: 36586041 PMCID: PMC9805415 DOI: 10.1007/s10856-022-06710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Carbonate apatite (CO3Ap) granules are useful as a bone substitute because they can be remodeled to new natural bone in a manner that conforms to the bone remodeling process. However, reconstructing large bone defects using CO3Ap granules is difficult because of their granular shape. Therefore, we fabricated CO3Ap honeycomb blocks (HCBs) with continuous unidirectional pores. We aimed to elucidate the tissue response and availability of CO3Ap HCBs in the reconstruction of rabbit mandibular bone defects after marginal mandibulectomy. The percentages of the remaining CO3Ap area and calcified bone area (newly formed bone) were estimated from the histological images. CO3Ap area was 49.1 ± 4.9%, 30.3 ± 3.5%, and 25.5 ± 8.8%, whereas newly formed bone area was 3.0 ± 0.6%, 24.3 ± 3.3%, and 34.7 ± 4.8% at 4, 8, and 12 weeks, respectively, after implantation. Thus, CO3Ap HCBs were gradually resorbed and replaced by new bone. The newly formed bone penetrated most of the pores in the CO3Ap HCBs at 12 weeks after implantation. By contrast, the granulation tissue scarcely invaded the CO3Ap HCBs. Some osteoclasts invaded the wall of CO3Ap HCBs, making resorption pits. Furthermore, many osteoblasts were found on the newly formed bone, indicating ongoing bone remodeling. Blood vessels were also formed inside most of the pores in the CO3Ap HCBs. These findings suggest that CO3Ap HCBs have good osteoconductivity and can be used for the reconstruction of large mandibular bone defects. The CO3Ap HCB were gradually resorbed and replaced by newly formed bone.
Collapse
Affiliation(s)
- Keiko Kudoh
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Naoyuki Fukuda
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuya Akita
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takaharu Kudoh
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Natsumi Takamaru
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Naito Kurio
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Hayashi
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Youji Miyamoto
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
23
|
Performance of Polydioxanone-Based Membrane in Association with 3D-Printed Bioceramic Scaffolds in Bone Regeneration. Polymers (Basel) 2022; 15:polym15010031. [PMID: 36616379 PMCID: PMC9823904 DOI: 10.3390/polym15010031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
This study evaluated the bioactivity of 3D-printed β-tricalcium phosphate (β-TCP) scaffolds or hydroxyapatite (HA) scaffolds associated with polydioxanone (PDO) membrane (Plenum® Guide) for guided bone regeneration in rats. Fifty-four rats were divided into three groups (n = 18 animals): autogenous bone + PDO membrane (Auto/PG); 3D-printed β-TCP + PDO membrane (TCP/PG); and 3D-printed HA + PDO membrane (HA/PG). A surgical defect in the parietal bone was made and filled with the respective scaffolds and PDO membrane. The animals were euthanized 7, 30, and 60 days after the surgical procedure for micro-CT, histomorphometric, and immunolabeling analyses. Micro-CT showed an increase in trabecular thickness and a decrease in trabecular separation, even with similar bone volume percentages between TCP/PG and HA/PG vs. Auto/PG. Histometric analysis showed increased bone formation at 30 days in the groups compared to 7 days postoperatively. Immunolabeling analysis showed an increase in proteins related to bone formation at 30 days, and both groups showed a similar immunolabeling pattern. This study concludes that 3D-printed scaffolds associated with PDO membrane (Plenum® Guide) present similar results to autogenous bone for bone regeneration.
Collapse
|
24
|
Nadine S, Fernandes IJ, Correia CR, Mano JF. Close-to-native bone repair via tissue-engineered endochondral ossification approaches. iScience 2022; 25:105370. [PMID: 36339269 PMCID: PMC9626746 DOI: 10.1016/j.isci.2022.105370] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In order to solve the clinical challenges related to bone grafting, several tissue engineering (TE) strategies have been proposed to repair critical-sized defects. Generally, the classical TE approaches are designed to promote bone repair via intramembranous ossification. Although promising, strategies that direct the osteogenic differentiation of mesenchymal stem/stromal cells are usually characterized by a lack of functional vascular supply, often resulting in necrotic cores. A less explored alternative is engineering bone constructs through a cartilage-mediated approach, resembling the embryological process of endochondral ossification. The remodeling of an intermediary hypertrophic cartilaginous template triggers vascular invasion and bone tissue deposition. Thus, employing this knowledge can be a promising direction for the next generation of bone TE constructs. This review highlights the most recent biomimetic strategies for applying endochondral ossification in bone TE while discussing the plethora of cell types, culture conditions, and biomaterials essential to promote a successful bone regeneration process.
Collapse
|
25
|
Akbari S, Saberi EA, Fakour SR, Heidari Z. Immediate to short-term inflammatory response to biomaterial implanted in calvarium of mice. Eur J Transl Myol 2022; 33:10785. [PMID: 36153859 PMCID: PMC10141743 DOI: 10.4081/ejtm.2022.10785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 11/23/2022] Open
Abstract
Scaffolds made of biodegradable materials play a very important role in repairing bone defects. Our study was conducted with the aim of investigating inflammation, vascular changes, and tissue necrosis after the placement of 3D printed scaffolds composed of beta-tricalcium phosphate (TCP-β) on the calvarial bone defect of mice. Eight samples of scalp tissue in mice were examined in four groups (one-week control, two-week control, one-week experiment, and two-week experiment). Mice with routine bone defects were selected as the control group and mice with bone defects with β-TCP scaffolds were selected as the experimental group (TCP). The groups were evaluated in terms of inflammatory cells, osteoblast and osteoclast cells, vascular changes, and the number of resorption pit and empty lacuna. The results demonstrated a decrease in inflammatory cells and an increase in osteoclast and osteoblast cells in bone defect sites placed with TCP-β scaffolds (p<0.05). The results of histological staining showed pit resorption and further vascularization in the place of TCP-β scaffolds, but these changes were not statistically significant (p>0.05). Examining the number of empty lacunae in the bone defect site showed that TCP-β could significantly reduce the number of these lacunae in the bone defect sites placed with TCP-β scaffolds (p<0.05). 3D printed scaffolds composed of TCP-β that were implanted in bone defect sites were effective in reducing the inflammatory responses, emptying lacunae and increasing bone regeneration.
Collapse
Affiliation(s)
- Saba Akbari
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Zahedan University of Medical Science, Zahedan.
| | - Eshagh Ali Saberi
- Oral and Dental Diseases Research Center, Department of Endodontics, Faculty of Dentistry, Zahedan University of Medical Sciences, Zahedan.
| | - Sirous Risbaf Fakour
- Department of Oral and Maxillofacial Surgery, Zahedan University of Medical Sciences, Zahedan.
| | - Zahra Heidari
- Department of Histology, School of Medical Sciences, Zahedan University of Medical Sciences, Zahedan.
| |
Collapse
|
26
|
Xu Z, Sun Y, Dai H, Ma Y, Bing H. Engineered 3D-Printed Polyvinyl Alcohol Scaffolds Incorporating β-Tricalcium Phosphate and Icariin Induce Bone Regeneration in Rat Skull Defect Model. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144535. [PMID: 35889410 PMCID: PMC9318678 DOI: 10.3390/molecules27144535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022]
Abstract
The skull defects are challenging to self-heal, and autologous bone graft repair has numerous drawbacks. The scaffolds for the rapid and effective repair of skull defects have become an important research topic. In this study, polyvinyl alcohol (PVA)/β-tricalcium phosphate(β-TCP) composite scaffolds containing icariin (ICA) were prepared through direct-ink three-dimensional (3D) printing technology. β-TCP in the composite scaffold had osteoconductive capability, and the ICA molecule had osteoinductive capacity. The β-TCP and ICA components in the composite scaffold can enhance the capability to repair skull defects. We show that ICA exhibited a slow-release behaviour within 80 days. This behaviour helped the scaffold to continuously stimulate the formation of new bone. The results of in vitro cell compatibility experiments showed that the addition of ICA molecules contributed to the adhesion and proliferation of MC-3T3-E1 cells. The level of alkaline phosphatase secretion demonstrated that the slow release of ICA can promote the osteogenic differentiation of MC-3T3-E1 cells. The introduction of ICA molecules accelerated the in situ bone regeneration in in vivo. It is concluded that the 3D-printed PVA scaffold with β-TCP and ICA has a wide range of potential applications in the field of skull defect treatment.
Collapse
|
27
|
Multi-objective Shape Optimization of Bone Scaffolds: Enhancement of Mechanical Properties and Permeability. Acta Biomater 2022; 146:317-340. [PMID: 35533924 DOI: 10.1016/j.actbio.2022.04.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
Abstract
Porous scaffolds have recently attracted attention in bone tissue engineering. The implanted scaffolds are supposed to satisfy the mechanical and biological requirements. In this study, two porous structures named MFCC-1 (modified face centered cubic-1) and MFCC-2 (modified face centered cubic-2) are introduced. The proposed porous architectures are evaluated, optimized, and tested to enhance mechanical and biological properties. The geometric parameters of the scaffolds with porosities ranging from 70% to 90% are optimized to find a compromise between the effective Young's modulus and permeability, as well as satisfying the pore size and specific surface area requirements. To optimize the effective Young's modulus and permeability, we integrated a mathematical formulation, finite element analysis, and computational fluid dynamics simulations. For validation, the optimized scaffolds were 3D-printed, tested, and compared with two different orthogonal cylindrical struts (OCS) scaffold architectures. The MFCC designs are preferred to the generic OCS scaffolds from various perspectives: a) the MFCC architecture allows scaffold designs with porosities up to 96%; b) the very porous architecture of MFCC scaffolds allows achieving high permeabilities, which could potentially improve the cell diffusion; c) despite having a higher porosity compared to the OCS scaffolds, MFCC scaffolds improve mechanical performance regarding Young's modulus, stress concentration, and apparent yield strength; d) the proposed structures with different porosities are able to cover all the range of permeability for the human trabecular bones. The optimized MFCC designs have simple architectures and can be easily fabricated and used to improve the quality of load-bearing orthopedic scaffolds. STATEMENT OF SIGNIFICANCE: Porous scaffolds are increasingly being studied to repair large bone defects. A scaffold is supposed to withstand mechanical loads and provide an appropriate environment for bone cell growth after implantation. These mechanical and biological requirements are usually contradicting; improving the mechanical performance would require a reduction in porosity and a lower porosity is likely to reduce the biological performance of the scaffold. Various studies have shown that the mechanical and biological performance of bone scaffolds can be improved by internal architecture modification. In this study, we propose two scaffold architectures named MFCC-1 and MFCC-2 and provide an optimization framework to simultaneously optimize their stiffness and permeability to improve their mechanical and biological performances.
Collapse
|
28
|
Seo YW, Park JY, Lee DN, Jin X, Cha JK, Paik JW, Choi SH. Three-dimensionally printed biphasic calcium phosphate blocks with different pore diameters for regeneration in rabbit calvarial defects. Biomater Res 2022; 26:25. [PMID: 35706067 PMCID: PMC9199220 DOI: 10.1186/s40824-022-00271-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background Biphasic calcium phosphate (BCP) is the most frequently used synthetic bone substitutes, which comprises a combination of hydroxyapatite (HA) and beta-tricalcium phosphate (b-TCP). Thanks to the recent advances in digital dentistry and three-dimensional (3D) printing technology, synthetic block bone substitutes can be customized to fit individual defect morphologies. The diameter of the pores can influence the rate of bone formation and material resorption. The aim of this study was to compare three-dimensionally printed biphasic calcium phosphate (BCP) block bone substitutes with different pore diameters (0.8-, 1.0-, and 1.2- mm) for use in the regeneration of rabbit calvarial defects. Methods Four circular defects were formed on the calvaria of ten rabbits. Each defect was randomly allocated to one of the following study groups: (i) control group, (ii) 0.8-mm group, (iii) 1.0-mm group, and (iv) 1.2-mm group. All specimens were postoperatively harvested at 2 and 8 weeks, and radiographic and histomorphometric analyses were performed on the samples. Results Histologically, the BCP blocks remained unresorbed up to 8 weeks, and new bone formation occurred within the porous structures of the blocks. After the short healing period of 2 weeks, histomorphometric analysis indicated that new bone formation was significantly greater in the BCP groups compared with the control (p < 0.05). However, there were no significant differences between the groups with different pore diameters (p > 0.05). At 8 weeks, only the 1.0-mm group (3.42 ± 0.48 mm2, mean ± standard deviation) presented a significantly larger area of new bone compared with the control (2.26 ± 0.59 mm2) (p < 0.05). Among the BCP groups, the 1.0- and 1.2-mm groups exhibited significantly larger areas of new bone compared with the 0.8-mm group (3.42 ± 0.48 and 3.04 ± 0.66 vs 1.60 ± 0.70 mm2, respectively). Conclusions Within the limitations of this study, the BCP block bone substitutes can be applied to bone defects for successful bone regeneration. Future studies should investigate more-challenging defect configurations prior to considering clinical applications.
Collapse
Affiliation(s)
- Young-Wook Seo
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Jin-Young Park
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Da-Na Lee
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Xiang Jin
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Jae-Kook Cha
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Jeong-Won Paik
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Seong-Ho Choi
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea.
| |
Collapse
|
29
|
Laser Sintering Approaches for Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14122336. [PMID: 35745911 PMCID: PMC9229946 DOI: 10.3390/polym14122336] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
The adoption of additive manufacturing (AM) techniques into the medical space has revolutionised tissue engineering. Depending upon the tissue type, specific AM approaches are capable of closely matching the physical and biological tissue attributes, to guide tissue regeneration. For hard tissue such as bone, powder bed fusion (PBF) techniques have significant potential, as they are capable of fabricating materials that can match the mechanical requirements necessary to maintain bone functionality and support regeneration. This review focuses on the PBF techniques that utilize laser sintering for creating scaffolds for bone tissue engineering (BTE) applications. Optimal scaffold requirements are explained, ranging from material biocompatibility and bioactivity, to generating specific architectures to recapitulate the porosity, interconnectivity, and mechanical properties of native human bone. The main objective of the review is to outline the most common materials processed using PBF in the context of BTE; initially outlining the most common polymers, including polyamide, polycaprolactone, polyethylene, and polyetheretherketone. Subsequent sections investigate the use of metals and ceramics in similar systems for BTE applications. The last section explores how composite materials can be used. Within each material section, the benefits and shortcomings are outlined, including their mechanical and biological performance, as well as associated printing parameters. The framework provided can be applied to the development of new, novel materials or laser-based approaches to ultimately generate bone tissue analogues or for guiding bone regeneration.
Collapse
|
30
|
Liu X, Miao Y, Liang H, Diao J, Hao L, Shi Z, Zhao N, Wang Y. 3D-printed bioactive ceramic scaffolds with biomimetic micro/nano-HAp surfaces mediated cell fate and promoted bone augmentation of the bone–implant interface in vivo. Bioact Mater 2022; 12:120-132. [PMID: 35087968 PMCID: PMC8777208 DOI: 10.1016/j.bioactmat.2021.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 01/07/2023] Open
Abstract
Calcium phosphate bio-ceramics are osteo-conductive, but it remains a challenge to promote the induction of bone augmentation and capillary formation. The surface micro/nano-topography of materials can be recognized by cells and then the cell fate are mediated. Traditional regulation methods of carving surface structures on bio-ceramics employ mineral reagents and organic additives, which might introduce impurity phases and affect the biological results. In a previous study, a facile and novel method was utilized with ultrapure water as the unique reagent for hydrothermal treatment, and a uniform hydroxyapatite (HAp) surface layer was constructed on composite ceramics (β-TCP/CaSiO3) in situ. Further combined with 3D printing technology, biomimetic hierarchical structure scaffolds were fabricated with interconnected porous composite ceramic scaffolds as the architecture and micro/nano-rod hybrid HAp as the surface layer. The obtained HAp surface layer favoured cell adhesion, alleviated the cytotoxicity of precursor scaffolds, and upregulated the cellular differentiation of mBMSCs and gene expression of HUVECs in vitro. In vivo studies showed that capillary formation, bone augmentation and new bone matrix formation were upregulated after the HAp surface layer was obtained, and the results confirmed that the fabricated biomimetic hierarchical structure scaffold could be an effective candidate for bone regeneration. Simple and practical process to construct surface structure layer in situ with little impurities. Combined with the 3D printing technology to fabricate architecture of the pre-treated matrix. Study the angiogenesis and osteogenesis (for mesenchymal stem cells) separately. Improving tissue growth in vivo: capillary formation, bone-augmentation and new bone matrix formation.
Collapse
|
31
|
Yao S, Shang Y, Ren B, Deng S, Wang Z, Peng Y, Huang Z, Ma S, Peng C, Hou S. A novel natural-derived tilapia skin collagen mineralized with hydroxyapatite as a potential bone-grafting scaffold. J Biomater Appl 2022; 37:219-237. [PMID: 35345923 DOI: 10.1177/08853282221086246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Collagen is widely used in medical field because of its excellent biocompatibility and bioactivity. To date, collagen for biomedical use is always derived from bovine or swine. The purpose of this study was to evaluate collagen-based biomaterials from non-mammalian donors for bone repair. Thus, tilapia skin collagen-hydroxyapatite (T-col/HAp) scaffolds were fabricated in three different proportions and then cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide-N-hydroxysuccinimide (EDC-NHS). The scaffolds were evaluated for their microstructure, chemical and physical properties, mechanical strength and degradability. Then the in vitro responses of bone mesenchymal stem cells (BMSCs) to the scaffolds were investigated in terms of cellular proliferation, differentiation, and mineralization. At last, the scaffolds were implanted into rat skull critical defections to investigate the potential of osteogenic activities. As a result, the pore sizes and the porosities of the scaffolds were approximately 106.67–196.67 μm and 81.5%–66.7%. Pure collagen group showed a mechanical strength of 0.065 MPa, and the mechanical strength was significantly enhanced almost 17 times and 32 times in collagen/HAp ratio 1:4 and 1:9 groups. In vitro studies revealed the most prominent and healthy growth of BMSCs in collagen/HAp ratio 1:4 group. All the scaffolds showed certain osteogenic activities and those loaded with small amount of hydroxyapatite showed the strongest bioactivities. The micro-CT showed that the critical bone defect was almost filled with generated bone 6 months after implantation in collagen/HAp ratio 1:4 group. The biomechanics tests further confirmed the highest generated bone strength was in the collagen/HAp ratio 1:4 group. This study indicated aquatic collagen might be a potential alternative for type I collagen from mammals in bone tissue engineering. The combination of collagen and inorganic materials was also important and appropriate inorganic component loading can achieve both osteogenic quality and osteogenic efficiency to a certain extent.
Collapse
Affiliation(s)
- Shiyu Yao
- Tianjin Medical University Second Hospital, Tianjin, China
| | - Yuli Shang
- Tianjin Medical University Second Hospital, Tianjin, China
| | - Bo Ren
- Knee and Ankle Ward of Sports Medicine Center, Xi’an, China
| | - Shu Deng
- The Forsyth Institute, Cambridge, MA, USA
| | - Zhe Wang
- Tianjin Medical University Second Hospital, Tianjin, China
| | - Yang Peng
- Tianjin Medical University Second Hospital, Tianjin, China
| | - Zhaohui Huang
- Yantai Desheng Marine Biotechnology Co, Ltd, Yantai, China
| | - Shiqing Ma
- Tianjin Medical University Second Hospital, Tianjin, China
| | - Cheng Peng
- Tianjin Medical University Second Hospital, Tianjin, China
| | - Shuai Hou
- Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
32
|
Three-Dimensional Printing of a Hybrid Bioceramic and Biopolymer Porous Scaffold for Promoting Bone Regeneration Potential. MATERIALS 2022; 15:ma15051971. [PMID: 35269209 PMCID: PMC8911960 DOI: 10.3390/ma15051971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 12/18/2022]
Abstract
In this study, we proposed a three-dimensional (3D) printed porous (termed as 3DPP) scaffold composed of bioceramic (beta-tricalcium phosphate (β-TCP)) and thermoreversible biopolymer (pluronic F-127 (PF127)) that may provide bone tissue ingrowth and loading support for bone defect treatment. The investigated scaffolds were printed in three different ranges of pore sizes for comparison (3DPP-1: 150−200 μm, 3DPP-2: 250−300 μm, and 3DPP-3: 300−350 μm). The material properties and biocompatibility of the 3DPP scaffolds were characterized using scanning electron microscopy, X-ray diffractometry, contact angle goniometry, compression testing, and cell viability assay. In addition, micro-computed tomography was applied to investigate bone regeneration behavior of the 3DPP scaffolds in the mini-pig model. Analytical results showed that the 3DPP scaffolds exhibited well-defined porosity, excellent microstructural interconnectivity, and acceptable wettability (θ < 90°). Among all groups, the 3DPP-1 possessed a significantly highest compressive force 273 ± 20.8 Kgf (* p < 0.05). In vitro experiment results also revealed good cell viability and cell attachment behavior in all 3DPP scaffolds. Furthermore, the 3DPP-3 scaffold showed a significantly higher percentage of bone formation volume than the 3DPP-1 scaffold at week 8 (* p < 0.05) and week 12 (* p < 0.05). Hence, the 3DPP scaffold composed of β-TCP and F-127 is a promising candidate to promote bone tissue ingrowth into the porous scaffold with decent biocompatibility. This scaffold particularly fabricated with a pore size of around 350 μm (i.e., 3DPP-3 scaffold) can provide proper loading support and promote bone regeneration in bone defects when applied in dental and orthopedic fields.
Collapse
|
33
|
Hatt LP, Thompson K, Helms JA, Stoddart MJ, Armiento AR. Clinically relevant preclinical animal models for testing novel cranio-maxillofacial bone 3D-printed biomaterials. Clin Transl Med 2022; 12:e690. [PMID: 35170248 PMCID: PMC8847734 DOI: 10.1002/ctm2.690] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022] Open
Abstract
Bone tissue engineering is a rapidly developing field with potential for the regeneration of craniomaxillofacial (CMF) bones, with 3D printing being a suitable fabrication tool for patient-specific implants. The CMF region includes a variety of different bones with distinct functions. The clinical implementation of tissue engineering concepts is currently poor, likely due to multiple reasons including the complexity of the CMF anatomy and biology, and the limited relevance of the currently used preclinical models. The 'recapitulation of a human disease' is a core requisite of preclinical animal models, but this aspect is often neglected, with a vast majority of studies failing to identify the specific clinical indication they are targeting and/or the rationale for choosing one animal model over another. Currently, there are no suitable guidelines that propose the most appropriate animal model to address a specific CMF pathology and no standards are established to test the efficacy of biomaterials or tissue engineered constructs in the CMF field. This review reports the current clinical scenario of CMF reconstruction, then discusses the numerous limitations of currently used preclinical animal models employed for validating 3D-printed tissue engineered constructs and the need to reduce animal work that does not address a specific clinical question. We will highlight critical research aspects to consider, to pave a clinically driven path for the development of new tissue engineered materials for CMF reconstruction.
Collapse
Affiliation(s)
- Luan P. Hatt
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
- Department of Health Sciences and TechonologyInstitute for BiomechanicsETH ZürichZürichSwitzerland
| | - Keith Thompson
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
| | - Jill A. Helms
- Division of Plastic and Reconstructive SurgeryDepartment of Surgery, Stanford School of MedicineStanford UniversityPalo AltoCalifornia
| | - Martin J. Stoddart
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
| | - Angela R. Armiento
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
| |
Collapse
|
34
|
A 3D-printed bioactive polycaprolactone scaffold assembled with core/shell microspheres as a sustained BMP2-releasing system for bone repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112619. [PMID: 35034816 DOI: 10.1016/j.msec.2021.112619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022]
Abstract
Integration of biological factors and hierarchical rigid scaffolds is of great interest in bone tissue engineering for fabrication of biomimetic constructs with high physical and biological performance for enhanced bone repair. Core/shell microspheres (CSMs) delivering bone morphogenetic protein-2 (BMP-2) and a strategy to integrate CSMs with 3D-printed scaffolds were developed herein to form a hybrid 3D system for bone repair. The scaffold was printed with polycaprolactone (PCL) and then coated with polydopamine. Shells of CSMs were electrosprayed with alginate. Cores were heparin-coated polylactic acid (PLA) microparticles fabricated via simple emulsion and heparin coating strategy. Assembly of microspheres and scaffolds was realized via a self-locking method with the assistance of controlled expansion of CSMs. The hybrid system was evaluated in the rat critical-sized bone defect model. CSMs released BMP-2 in a tunable manner and boosted osteogenic performance in vitro. CSMs were then successfully integrated inside the scaffolds. The assembled system effectively promoted osteogenesis in vitro and in vivo. These observations show the importance of how BMP-2 is delivered, and the core/shell microspheres represent effective BMP-2 carriers that could be integrated into scaffolds, together forming a hybrid system as a promising candidate for enhanced bone regeneration.
Collapse
|
35
|
Shape optimization of orthopedic porous scaffolds to enhance mechanical performance. J Mech Behav Biomed Mater 2022; 128:105098. [DOI: 10.1016/j.jmbbm.2022.105098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022]
|
36
|
Bahraminasab M, Janmohammadi M, Arab S, Talebi A, Nooshabadi VT, Koohsarian P, Nourbakhsh MS. Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomater Sci Eng 2021; 7:5397-5431. [PMID: 34797061 DOI: 10.1021/acsbiomaterials.1c00920] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Large injuries to bones are still one of the most challenging musculoskeletal problems. Tissue engineering can combine stem cells, scaffold biomaterials, and biofactors to aid in resolving this complication. Therefore, this review aims to provide information on the recent advances made to utilize the potential of biomaterials for making bone scaffolds and the assisted stem cell therapy and use of biofactors for bone tissue engineering. The requirements and different types of biomaterials used for making scaffolds are reviewed. Furthermore, the importance of stem cells and biofactors (growth factors and extracellular vesicles) in bone regeneration and their use in bone scaffolds and the key findings are discussed. Lastly, some of the main obstacles in bone tissue engineering and future trends are highlighted.
Collapse
Affiliation(s)
- Marjan Bahraminasab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Mahsa Janmohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan 3513119111, Iran
| | - Samaneh Arab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Athar Talebi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Parisa Koohsarian
- Department of Biochemistry and Hematology, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | | |
Collapse
|
37
|
No YJ, Nguyen T, Lu Z, Mirkhalaf M, Fei F, Foley M, Zreiqat H. Development of a bioactive and radiopaque bismuth doped baghdadite ceramic for bone tissue engineering. Bone 2021; 153:116147. [PMID: 34389477 DOI: 10.1016/j.bone.2021.116147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 11/23/2022]
Abstract
Baghdadite (Ca3ZrSi2O9, BAG), is a Zr-doped calcium silicate that has outstanding bioactivity both in vitro and in vivo. Bioceramic scaffolds should be sufficiently radiopaque to be distinguishable in vivo from surrounding bone structures. To enhance the radiopacity of BAG, this study investigated the effect of incorporating bismuth ions into its crystalline structure (BixCa3-xZrSi2O9, x = 0, 0.1, 0.2, 0.5; BAG, Bi0.1-BAG, Bi0.2-BAG, Bi0.5-BAG, respectively). Monophasic baghdadite was retained after bismuth ion incorporation up to x = 0.2 at calcination temperatures of 1350 °C. When pressed and sintered, energy dispersive x-ray spectroscopy showed that BAG and Bi0.1-BAG retained crystalline homogeneity, but Bi0.2-BAG formed zirconium-rich crystalline regions. BAG, Bi0.1-BAG and Bi0.2-BAG exhibited non-degradation after 56 days of immersion in culture medium. Bi0.1-BAG exhibited the lowest change in culture medium pH (+0.0), compared to BAG (+0.7) and Bi0.2-BAG (+0.2) after 56 days of culture media immersion. Bi0.1-BAG exhibited similar strength and modulus to BAG (σ: 200-290 MPa; E: 4-5 GPa), and significantly higher compressive strength and modulus versus Bi0.2-BAG (σ: 150-200 MPa; E: 3.5-4 GPa) across 56 days of aqueous immersion. In vitro studies using primary human bone derived cells (HOBs) demonstrated a significant increase in HOBs proliferation when cultured on Bi0.1-BAG for seven days compared to BAG and Bi0.2-BAG. Importantly, Bi0.1-BAG showed increased radiopacity by ~33%, when compared to BAG, and by ~115% when compared to biphasic calcium phosphate. The properties of Bi0.1-BAG show promise for its use as a bioactive ceramic with sufficient radiopacity for treatment of bone defects.
Collapse
Affiliation(s)
- Young Jung No
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; ARC Training Centre for Innovative BioEngineering, The University of Sydney, NSW 2006, Australia.
| | - Tien Nguyen
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; ARC Training Centre for Innovative BioEngineering, The University of Sydney, NSW 2006, Australia
| | - Zufu Lu
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; ARC Training Centre for Innovative BioEngineering, The University of Sydney, NSW 2006, Australia
| | - Mohammad Mirkhalaf
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; ARC Training Centre for Innovative BioEngineering, The University of Sydney, NSW 2006, Australia
| | - Frank Fei
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; ARC Training Centre for Innovative BioEngineering, The University of Sydney, NSW 2006, Australia
| | - Matthew Foley
- Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia
| | - Hala Zreiqat
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; ARC Training Centre for Innovative BioEngineering, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
38
|
Lin C, Wang Y, Huang Z, Wu T, Xu W, Wu W, Xu Z. Advances in Filament Structure of 3D Bioprinted Biodegradable Bone Repair Scaffolds. Int J Bioprint 2021; 7:426. [PMID: 34805599 PMCID: PMC8600304 DOI: 10.18063/ijb.v7i4.426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Conventional bone repair scaffolds can no longer meet the high standards and requirements of clinical applications in terms of preparation process and service performance. Studies have shown that the diversity of filament structures of implantable scaffolds is closely related to their overall properties (mechanical properties, degradation properties, and biological properties). To better elucidate the characteristics and advantages of different filament structures, this paper retrieves and summarizes the state of the art in the filament structure of the three-dimensional (3D) bioprinted biodegradable bone repair scaffolds, mainly including single-layer structure, double-layer structure, hollow structure, core-shell structure and bionic structures. The eximious performance of the novel scaffolds was discussed from different aspects (material composition, ink configuration, printing parameters, etc.). Besides, the additional functions of the current bone repair scaffold, such as chondrogenesis, angiogenesis, anti-bacteria, and anti-tumor, were also concluded. Finally, the paper prospects the future material selection, structural design, functional development, and performance optimization of bone repair scaffolds.
Collapse
Affiliation(s)
- Chengxiong Lin
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China
| | - Yaocheng Wang
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China.,School of Railway Tracks and Transportation, Wuyi University, Jiangmen 529020, China
| | - Zhengyu Huang
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China.,School of Railway Tracks and Transportation, Wuyi University, Jiangmen 529020, China
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China
| | - Weikang Xu
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China
| | - Wenming Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China
| | - Zhibiao Xu
- School of Railway Tracks and Transportation, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
39
|
Zhang H, Zhang H, Xiong Y, Dong L, Li X. Development of hierarchical porous bioceramic scaffolds with controlled micro/nano surface topography for accelerating bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112437. [PMID: 34702522 DOI: 10.1016/j.msec.2021.112437] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/01/2022]
Abstract
Mimicking hierarchical porous architecture of bone has been considered as a valid approach to promote bone regeneration. In this study, hierarchical porous β-tricalcium phosphate (β-TCP) scaffolds were constructed by combining digital light processing (DLP) printing technique and in situ growth crystal process. Macro/micro hierarchical scaffolds with designed macro pores for facilitating the ingrowth of bone tissue were fabricated by DLP printing. Three types of micro/nano surface topography were obtained by in situ growth crystal process to regulate stem cells behavior. The attachment and proliferation of rat bone marrow mesenchymal stem cells (rBMSCs) were strongly dependent on the surface roughness and the specific surface area. The micro/nano surface topography distinctly facilitated the differentiation of rBMSCs by targeting MAPK, STAT and AKT signaling pathways, in which the sodium hydroxide treatment group showed the highest promoting effect. Furthermore, in vivo results of skull defect repair model of rats indicated that hierarchical scaffolds with micro/nano topographies exhibited appealing bone regeneration capacity. The hierarchical porous bioceramic scaffolds constructed by integrating structural design and physical stimulation of the external surface topography have great potential for rapid bone repair via modulation of microenvironmental regulatory pathways at the bone defect site.
Collapse
Affiliation(s)
- Hang Zhang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Zhang
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, China
| | - Yinze Xiong
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lanlan Dong
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Li
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
40
|
Liu J, Cui Y, Kuang Y, Xu S, Lu Q, Diao J, Zhao N. Hierarchically porous calcium-silicon nanosphere-enabled co-delivery of microRNA-210 and simvastatin for bone regeneration. J Mater Chem B 2021; 9:3573-3583. [PMID: 33909742 DOI: 10.1039/d1tb00063b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The regenerative repair of large bone defects is a major problem in orthopedics and clinical medicine. The key problem is the lack of ability of existing bone graft materials to promote osteogenesis and angiogenesis. Previous studies have shown that the osteogenic or angiogenic abilities of these materials could be significantly improved by adding miRNA or small-molecule drugs to bone graft materials; however, the synergistic effect arising from this combination is not clear. Therefore, we proposed to construct a dual drug delivery system that could simultaneously achieve the co-encapsulation and co-delivery of miRNA and small-molecule drugs to explore the effect of a dual drug delivery system on bone repair. In this study, we constructed dual-sized pore structure calcium-silicon nanospheres (DPNPs) and achieved the co-encapsulation of miR-210, angiogenic gene drugs, and simvastatin (Siv), a small-molecule osteogenic drug, through metal-ion coordination and physical adsorption. In vitro and in vivo osteogenic and angiogenic experiments showed that the dual drug delivery system (Siv/DPNP/miR-210) exhibited better properties than those of the individual unloaded and single drug-loaded systems and could significantly accelerate the process of bone repair, which provides a novel strategy for the regeneration and repair of bone defects.
Collapse
Affiliation(s)
- Junjie Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China. and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Yihang Cui
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China. and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Yudi Kuang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China. and School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Shan Xu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China. and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Qiji Lu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China. and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Jingjing Diao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China. and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China and Medical Devices Research & Testing Center of SCUT, Guangzhou, 510006, P. R. China
| | - Naru Zhao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China. and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China. and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
41
|
Xie C, Ye J, Liang R, Yao X, Wu X, Koh Y, Wei W, Zhang X, Ouyang H. Advanced Strategies of Biomimetic Tissue-Engineered Grafts for Bone Regeneration. Adv Healthc Mater 2021; 10:e2100408. [PMID: 33949147 DOI: 10.1002/adhm.202100408] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/16/2021] [Indexed: 12/21/2022]
Abstract
The failure to repair critical-sized bone defects often leads to incomplete regeneration or fracture non-union. Tissue-engineered grafts have been recognized as an alternative strategy for bone regeneration due to their potential to repair defects. To design a successful tissue-engineered graft requires the understanding of physicochemical optimization to mimic the composition and structure of native bone, as well as the biological strategies of mimicking the key biological elements during bone regeneration process. This review provides an overview of engineered graft-based strategies focusing on physicochemical properties of materials and graft structure optimization from macroscale to nanoscale to further boost bone regeneration, and it summarizes biological strategies which mainly focus on growth factors following bone regeneration pattern and stem cell-based strategies for more efficient repair. Finally, it discusses the current limitations of existing strategies upon bone repair and highlights a promising strategy for rapid bone regeneration.
Collapse
Affiliation(s)
- Chang Xie
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
- Department of Sports Medicine Zhejiang University School of Medicine Hangzhou 310058 China
| | - Jinchun Ye
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Renjie Liang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Xudong Yao
- The Fourth Affiliated Hospital Zhejiang University School of Medicine Yiwu 322000 China
| | - Xinyu Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Yiwen Koh
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Wei Wei
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
- China Orthopedic Regenerative Medicine Group (CORMed) Hangzhou 310058 China
| | - Xianzhu Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
- Department of Sports Medicine Zhejiang University School of Medicine Hangzhou 310058 China
- China Orthopedic Regenerative Medicine Group (CORMed) Hangzhou 310058 China
| |
Collapse
|
42
|
Huang X, Dai H, Hu Y, Zhuang P, Shi Z, Ma Y. Development of a high solid loading β-TCP suspension with a low refractive index contrast for DLP -based ceramic stereolithography. Ann Ital Chir 2021. [DOI: 10.1016/j.jeurceramsoc.2020.12.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Ishizuka S, Dong QN, Ngo HX, Bai Y, Sha J, Toda E, Okui T, Kanno T. Bioactive Regeneration Potential of the Newly Developed Uncalcined/Unsintered Hydroxyapatite and Poly-l-Lactide-Co-Glycolide Biomaterial in Maxillofacial Reconstructive Surgery: An In Vivo Preliminary Study. MATERIALS 2021; 14:ma14092461. [PMID: 34068558 PMCID: PMC8126161 DOI: 10.3390/ma14092461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/25/2022]
Abstract
Uncalcined/unsintered hydroxyapatite (HA) and poly-l-lactide-co-glycolide (u-HA/PLLA/PGA) are novel bioresorbable bioactive materials with bone regeneration characteristics and have been used to treat mandibular defects in a rat model. However, the bone regenerative interaction with the periosteum, the inflammatory response, and the degradation of this material have not been examined. In this study, we used a rat mandible model to compare the above features in u-HA/PLLA/PGA and uncalcined/unsintered HA and poly-l-lactic acid (u-HA/PLLA). We divided 11 male Sprague–Dawley rats into 3- and 16-week groups. In each group, we assessed the characteristics of a u-HA/PLLA/PGA sheet covering the right mandibular angle and a u-HA/PLLA sheet covering the left mandibular angle in three rats each, and one rat was used as a sham control. The remaining three rats in the 16-week group were used for a degradation assessment and received both sheets of material as in the material assessment subgroup. At 3 and 16 weeks after surgery, the rats were sacrificed, and mandible specimens were subjected to micro-computed tomography, histological analysis, and immunohistochemical staining. The results indicated that the interaction between the periosteum and u-HA/PLLA/PGA material produced significantly more new bone regeneration with a lower inflammatory response and a faster resorption rate compared to u-HA/PLLA alone. These findings may indicate that this new biomaterial has ideal potential in treating maxillofacial defects of the midface and orbital regions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Takahiro Kanno
- Correspondence: ; Tel.: +81-(0)853-20-2301; Fax: +81-(0)853-20-2299
| |
Collapse
|
44
|
Organic mesh template-based laminated object manufacturing to fabricate ceramics with regular micron scaled pore structures. Ann Ital Chir 2021. [DOI: 10.1016/j.jeurceramsoc.2020.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Maruyama M, Pan CC, Moeinzadeh S, Storaci HW, Guzman RA, Lui E, Ueno M, Utsunomiya T, Zhang N, Rhee C, Yao Z, Takagi M, Goodman SB, Yang YP. Effect of porosity of a functionally-graded scaffold for the treatment of corticosteroid-associated osteonecrosis of the femoral head in rabbits. J Orthop Translat 2021; 28:90-99. [PMID: 33816112 PMCID: PMC7995660 DOI: 10.1016/j.jot.2021.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/24/2020] [Accepted: 01/07/2021] [Indexed: 11/24/2022] Open
Abstract
Background/Objective: Core decompression (CD) with scaffold and cell-based therapies is a promising strategy for providing both mechanical support and regeneration of the osteonecrotic area for early stage osteonecrosis of the femoral head (ONFH). We designed a new 3D printed porous functionally-graded scaffold (FGS) with a central channel to facilitate delivery of transplanted cells in a hydrogel to the osteonecrotic area. However, the optimal porous structural design for the FGS for the engineering of bone in ONFH has not been elucidated. The aim of this study was to fabricate and evaluate two different porous structures (30% or 60% porosity) of the FGSs in corticosteroid-associated ONFH in rabbits. Methods Two different FGSs with 30% or 60% porosity containing a 1-mm central channel were 3D printed using polycaprolactone and β-tricalcium phosphate. The FGS was 3-mm diameter and 32-mm length and was composed of three segments: 1-mm in length for the non-porous proximal segment, 22-mm in length for the porous (30% versus 60%) middle segment, and 9-mm in length for the 15% porous distal segment. Eighteen male New Zealand White rabbits were given a single dose of 20 mg/kg methylprednisolone acetate intramuscularly. Four weeks later, rabbits were divided into three groups: the CD group, the 30% porosity FGS group, and the 60% porosity FGS group. In the CD group, a 3-mm diameter drill hole was created into the left femoral head. In the FGS groups, a 30% or 60% porosity implant was inserted into the bone tunnel. Eight weeks postoperatively, femurs were harvested and microCT, mechanical, and histological analyses were performed. Results The actual porosity and pore size of the middle segments were 26.4% ± 2.3% and 699 ± 56 μm in the 30% porosity FGS, and 56.0% ± 4.5% and 999 ± 71 μm in the 60% porosity FGS, respectively using microCT analysis. Bone ingrowth ratio in the 30% porosity FGS group was 73.9% ± 15.8%, which was significantly higher than 39.5% ± 13.0% in the CD group on microCT (p < 0.05). Bone ingrowth ratio in the 60% porosity FGS group (61.3% ± 30.1%) showed no significant differences compared to the other two groups. The stiffness at the bone tunnel site in the 30% porosity FGS group was 582.4 ± 192.3 N/mm3, which was significantly higher than 338.7 ± 164.6 N/mm3 in the 60% porosity FGS group during push-out testing (p < 0.05). Hematoxylin and eosin staining exhibited thick and mature trabecular bone around the porous FGS in the 30% porosity FGS group, whereas thinner, more immature trabecular bone was seen around the porous FGS in the 60% porosity FGS group. Conclusion These findings indicate that the 30% porosity FGS may enhance bone regeneration and have superior biomechanical properties in the bone tunnel after CD in ONFH, compared to the 60% porosity FGS. Translation potential statement The translational potential of this article: This FGS implant holds promise for improving outcomes of CD for early stage ONFH.
Collapse
Affiliation(s)
- Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Chi-Chun Pan
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.,Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, CA, USA
| | - Seyedsina Moeinzadeh
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hunter W Storaci
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Roberto Alfonso Guzman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Elaine Lui
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.,Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, CA, USA
| | - Masaya Ueno
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Claire Rhee
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.,Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.,Material Science and Engineering, Stanford University School of Medicine, Stanford, CA, USA.,Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
46
|
Gu J, Zhang Q, Geng M, Wang W, Yang J, Khan AUR, Du H, Sha Z, Zhou X, He C. Construction of nanofibrous scaffolds with interconnected perfusable microchannel networks for engineering of vascularized bone tissue. Bioact Mater 2021; 6:3254-3268. [PMID: 33778203 PMCID: PMC7970223 DOI: 10.1016/j.bioactmat.2021.02.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Vascularization and bone regeneration are two closely related processes during bone reconstruction. A three-dimensional (3D) scaffold with porous architecture provides a suitable microenvironment for vascular growth and bone formation. Here, we present a simple and general strategy to construct a nanofibrous poly(l-lactide)/poly(ε-caprolactone) (PLLA/PCL) scaffold with interconnected perfusable microchannel networks (IPMs) based on 3D printing technology by combining the phase separation and sacrificial template methods. The regular and customizable microchannel patterns within the scaffolds (spacings: 0.4 mm, 0.5 mm, and 0.6 mm; diameters: 0.8 mm, 1 mm, and 1.2 mm) were made to investigate the effect of microchannel structure on angiogenesis and osteogenesis. The results of subcutaneous embedding experiment showed that 0.5/0.8-IPMs (spacing/diameter = 0.5/0.8) and 0.5/1-IPMs (spacing/diameter = 0.5/1) scaffolds exhibited more vascular network formation as compared with other counterparts. After loading with vascular endothelial growth factor (VEGF), VEGF@IPMs-0.5/0.8 scaffold prompted better human umbilical vein endothelial cells (HUVECs) migration and neo-blood vessel formation, as determined by Transwell migration, scratch wound healing, and chorioallantoic membrane (CAM) assays. Furthermore, the microangiography and rat cranial bone defects experiments demonstrated that VEGF@IPMs-0.5/0.8 scaffold exhibited better performance in vascular network formation and new bone formation compared to VEGF@IPMs-0.5/1 scaffold. In summary, our results suggested that the microchannel structure within the scaffolds could be tailored by an adjustable caramel-based template strategy, and the combination of interconnected perfusion microchannel networks and angiogenic factors could significantly enhance vascularization and bone regeneration. 3D-printed sacrificial templates are used to construct the scaffold with interconnected perfusable microchannel networks. The microchannel structure within scaffolds can be tailored by changing the template specifications. The introduction of VEGF in the microchannel of scaffold promotes the vascular network formation. Microchannel structure and angiogenic factor within scaffold significantly enhance vascularization and bone regeneration.
Collapse
Affiliation(s)
- Jiani Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Qianqian Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Mengru Geng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Weizhong Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Jin Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Atta Ur Rehman Khan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Haibo Du
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Zhou Sha
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| |
Collapse
|
47
|
Islam MT, Macri-Pellizzeri L, Sottile V, Ahmed I. Rapid conversion of highly porous borate glass microspheres into hydroxyapatite. Biomater Sci 2021; 9:1826-1844. [PMID: 33459732 DOI: 10.1039/d0bm01776k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports on the rapid development of porous hydroxyapatite (HA) microspheres with large external pores and fully interconnected porosity. These porous microspheres were produced by converting borates glasses (namely 45B5, B53P4 and 13-93B) into HA by immersing them in potassium phosphate media and simulated body fluid (SBF). Solid (SGMS) non-porous and highly porous (PGMS) microspheres were prepared from borate glasses via a novel flame spheroidisation process and their physicochemical properties including in vitro biological response were investigated. Morphological and physical characterisation of the PGMS showed interconnected porosity (up to 75 ± 5%) with average external pore sizes of 50 ± 5 μm. Mass loss, ion release, X-ray diffraction (XRD) and Scanning electron microscopy (SEM) analysis confirmed complete conversion to HA in 0.02 M K2HPO4 solution for the PGMS (with exception of 13-93B glass) and at significantly faster rates compared to their SGMS counterparts. However, 13-93B microspheres only converted to HA in Na2HPO4 solution. The in vitro SBF bioactivity studies for all the borate compositions showed HA formation and much earlier for PGMS compared to SGMS. Direct cell culture studies using hMSCs revealed that the converted porous HA microspheres showed enhanced pro-osteogenic properties compared to their unconverted counterparts and such are considered as highly promising candidate materials for bone repair (and orthobiological) applications.
Collapse
Affiliation(s)
- Md Towhidul Islam
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK. and Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | | | - Virginie Sottile
- School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK and Department of Molecular Medicine, The University of Pavia, 27100 Pavia, Italy
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
48
|
Glaeser JD, Behrens P, Stefanovic T, Salehi K, Papalamprou A, Tawackoli W, Metzger MF, Eberlein S, Nelson T, Arabi Y, Kim K, Baloh RH, Ben-David S, Cohn-Schwartz D, Ryu R, Bae HW, Gazit Z, Sheyn D. Neural crest-derived mesenchymal progenitor cells enhance cranial allograft integration. Stem Cells Transl Med 2021; 10:797-809. [PMID: 33512772 PMCID: PMC8046069 DOI: 10.1002/sctm.20-0364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/10/2020] [Accepted: 11/09/2020] [Indexed: 01/17/2023] Open
Abstract
Replacement of lost cranial bone (partly mesodermal and partly neural crest‐derived) is challenging and includes the use of nonviable allografts. To revitalize allografts, bone marrow‐derived mesenchymal stromal cells (mesoderm‐derived BM‐MSCs) have been used with limited success. We hypothesize that coating of allografts with induced neural crest cell‐mesenchymal progenitor cells (iNCC‐MPCs) improves implant‐to‐bone integration in mouse cranial defects. Human induced pluripotent stem cells were reprogramed from dermal fibroblasts, differentiated to iNCCs and then to iNCC‐MPCs. BM‐MSCs were used as reference. Cells were labeled with luciferase (Luc2) and characterized for MSC consensus markers expression, differentiation, and risk of cellular transformation. A calvarial defect was created in non‐obese diabetic/severe combined immunodeficiency (NOD/SCID) mice and allografts were implanted, with or without cell coating. Bioluminescence imaging (BLI), microcomputed tomography (μCT), histology, immunofluorescence, and biomechanical tests were performed. Characterization of iNCC‐MPC‐Luc2 vs BM‐MSC‐Luc2 showed no difference in MSC markers expression and differentiation in vitro. In vivo, BLI indicated survival of both cell types for at least 8 weeks. At week 8, μCT analysis showed enhanced structural parameters in the iNCC‐MPC‐Luc2 group and increased bone volume in the BM‐MSC‐Luc2 group compared to controls. Histology demonstrated improved integration of iNCC‐MPC‐Luc2 allografts compared to BM‐MSC‐Luc2 group and controls. Human osteocalcin and collagen type 1 were detected at the allograft‐host interphase in cell‐seeded groups. The iNCC‐MPC‐Luc2 group also demonstrated improved biomechanical properties compared to BM‐MSC‐Luc2 implants and cell‐free controls. Our results show an improved integration of iNCC‐MPC‐Luc2‐coated allografts compared to BM‐MSC‐Luc2 and controls, suggesting the use of iNCC‐MPCs as potential cell source for cranial bone repair.
Collapse
Affiliation(s)
- Juliane D Glaeser
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Phillip Behrens
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tina Stefanovic
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Khosrowdad Salehi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Angela Papalamprou
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Melodie F Metzger
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Orthopaedic Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Samuel Eberlein
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Trevor Nelson
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yasaman Arabi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kevin Kim
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Orthopaedic Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Robert H Baloh
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shiran Ben-David
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Doron Cohn-Schwartz
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Division of Internal Medicine, Rambam Health Care Campus, Haifa, Israel
| | - Robert Ryu
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hyun W Bae
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zulma Gazit
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
49
|
Jensen MB, Slots C, Ditzel N, Kolstrup S, Kassem M, Thygesen T, Andersen MØ. Treating mouse skull defects with 3D-printed fatty acid and tricalcium phosphate implants. J Tissue Eng Regen Med 2020; 14:1858-1868. [PMID: 33098263 DOI: 10.1002/term.3146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 11/09/2022]
Abstract
Skull surgery, also known as craniectomy, is done to treat trauma or brain diseases and may require the use of an implant to reestablish skull integrity. This study investigates the performance of 3D printed bone implants in a mouse model of craniectomy with the aim of making biodegradable porous implants that can ultimately be fitted to a patient's anatomy. A nonpolymeric thermoplastic bioink composed of fatty acids and β-tricalcium phosphate was used to 3D print the skull implants. Some of these were sintered to yield pure β-tricalcium phosphate implants. The performance of nonsintered and sintered implants was then compared in two semi-quantitative murine calvarial defect models using computed tomography, histology, and luciferase activity. Both types of implants were biocompatible, but only sintered implants promoted defect healing, with osseointegration to adjacent bone and the formation of new bone and bone marrow tissue in the implant pores. Luciferase scanning and histology showed that mesenchymal stem cells seeded onto the implants engraft and proliferate on the implants after implantation and contribute to forming bone. The experiments indicate that fatty acid-based 3D printing enables the creation of biocompatible and bone-forming β-tricalcium phosphate implants.
Collapse
Affiliation(s)
- Martin Bonde Jensen
- Section for Biotechnology (SDU Biotechnology), Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Odense, Denmark.,Particle3D ApS, Odense, Denmark
| | - Casper Slots
- Section for Biotechnology (SDU Biotechnology), Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Odense, Denmark.,Particle3D ApS, Odense, Denmark
| | - Nicholas Ditzel
- Department of Endocrinology and Metabolism, Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Stefanie Kolstrup
- The Biomedical Laboratory, University of Southern Denmark, Odense, Denmark
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Torben Thygesen
- Department of Oral and Maxillofacial Surgery, Odense University Hospital, Odense, Denmark
| | - Morten Østergaard Andersen
- Section for Biotechnology (SDU Biotechnology), Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
50
|
Rojas-Paulús JE, Manfredi GGP, Salmeron S, Consolaro A, Sant'Ana ACP, Zangrando MSR, Damante CA, Greghi SLA, Rezende MLR. Citric acid, but not tetracycline, improves the microscopic pattern of healing of particulate autogenous bone grafts in critical-size defects. J Periodontol 2020; 92:678-688. [PMID: 32902871 DOI: 10.1002/jper.20-0363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/24/2020] [Accepted: 08/14/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Bone demineralization has shown to be advantageous in autogenous onlay bone grafts and in pre-osteoblasts cultures, but such procedure has never been evaluated in particulate bone grafts. This study aimed to investigate the role of two demineralizing agents in the repair of the 8-mm critical-size defects in rats' calvaria. METHODS Eighty adult male Wistar rats were randomly assigned to one of eight groups as follows: particulate autogenous bone demineralized with citric acid for 15 seconds (CA15), 30 seconds (CA30), or 60 seconds (CA60); particulate autogenous bone demineralized with tetracycline hydrochloride for 15 seconds (TCN15), 30 seconds (TCN30), or 60 seconds (TCN60); blood clot (NC), and non-demineralized autogenous bone (PC). The calvariae were harvested at 30 and 60 postoperative days (n = 5) for blinded histological and histometric analysis of the percentage area of newly formed bone within the defects. RESULTS In the NC and TCN groups, bone formation was limited to the margins of the defects at 30 postoperative days, whereas complete closure was present in all the specimens from CA15 group. Both at 30 and 60 postoperative days, histomorphometry showed significant higher area of newly formed bone in specimens demineralized with CA than in those demineralized with TCN or non-demineralized (P < 0.05). TCN appeared to impair bone neoformation, as its use produced similar or inferior results compared to blood clot. CONCLUSIONS Demineralization of particulate bone grafts with CA during 15s enhanced the regeneration of critical-size defects and may be a promising adjuvant in regenerative procedures. TCN seems to be improper for this purpose.
Collapse
Affiliation(s)
- Jefrey E Rojas-Paulús
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Gustavo G P Manfredi
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Samira Salmeron
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Alberto Consolaro
- Department of Stomatology, Division of Pathology, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Adriana C P Sant'Ana
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Mariana S R Zangrando
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Carla A Damante
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Sebastião L A Greghi
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Maria L R Rezende
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| |
Collapse
|