1
|
Bao H, Wu M, Xing J, Li Z, Zhang Y, Wu A, Li J. Enzyme-like nanoparticle-engineered mesenchymal stem cell secreting HGF promotes visualized therapy for idiopathic pulmonary fibrosis in vivo. SCIENCE ADVANCES 2024; 10:eadq0703. [PMID: 39167646 PMCID: PMC11338238 DOI: 10.1126/sciadv.adq0703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
Stem cell therapy is being explored as a potential treatment for idiopathic pulmonary fibrosis (IPF), but its effectiveness is hindered by factors like reactive oxygen species (ROS) and inflammation in fibrotic lungs. Moreover, the distribution, migration, and survival of transplanted stem cells are still unclear, impeding the clinical advancement of stem cell therapy. To tackle these challenges, we fabricate AuPtCoPS trimetallic-based nanocarriers (TBNCs), with enzyme-like activity and plasmid loading capabilities, aiming to efficiently eradicate ROS, facilitate delivery of therapeutic genes, and ultimately improve the therapeutic efficacy. TBNCs also function as a computed tomography contrast agent for tracking mesenchymal stem cells (MSCs) during therapy. Accordingly, we enhanced the antioxidant stress and anti-inflammatory capabilities of engineered MSCs and successfully visualized their biological behavior in IPF mice in vivo. Overall, this study provides an efficient and forward-looking treatment approach for IPF and establishes a framework for a stem cell-based therapeutic system aimed at addressing lung disease.
Collapse
Affiliation(s)
- Hongying Bao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, CAS Key Laboratory of Magnetic Materials and Devices, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Manxiang Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, CAS Key Laboratory of Magnetic Materials and Devices, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jie Xing
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, CAS Key Laboratory of Magnetic Materials and Devices, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Zihou Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, CAS Key Laboratory of Magnetic Materials and Devices, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Yuenan Zhang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, CAS Key Laboratory of Magnetic Materials and Devices, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, CAS Key Laboratory of Magnetic Materials and Devices, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, CAS Key Laboratory of Magnetic Materials and Devices, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| |
Collapse
|
2
|
Sun T, Zhao H, Hu L, Shao X, Lu Z, Wang Y, Ling P, Li Y, Zeng K, Chen Q. Enhanced optical imaging and fluorescent labeling for visualizing drug molecules within living organisms. Acta Pharm Sin B 2024; 14:2428-2446. [PMID: 38828150 PMCID: PMC11143489 DOI: 10.1016/j.apsb.2024.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/07/2024] [Accepted: 01/25/2024] [Indexed: 06/05/2024] Open
Abstract
The visualization of drugs in living systems has become key techniques in modern therapeutics. Recent advancements in optical imaging technologies and molecular design strategies have revolutionized drug visualization. At the subcellular level, super-resolution microscopy has allowed exploration of the molecular landscape within individual cells and the cellular response to drugs. Moving beyond subcellular imaging, researchers have integrated multiple modes, like optical near-infrared II imaging, to study the complex spatiotemporal interactions between drugs and their surroundings. By combining these visualization approaches, researchers gain supplementary information on physiological parameters, metabolic activity, and tissue composition, leading to a comprehensive understanding of drug behavior. This review focuses on cutting-edge technologies in drug visualization, particularly fluorescence imaging, and the main types of fluorescent molecules used. Additionally, we discuss current challenges and prospects in targeted drug research, emphasizing the importance of multidisciplinary cooperation in advancing drug visualization. With the integration of advanced imaging technology and molecular design, drug visualization has the potential to redefine our understanding of pharmacology, enabling the analysis of drug micro-dynamics in subcellular environments from new perspectives and deepening pharmacological research to the levels of the cell and organelles.
Collapse
Affiliation(s)
- Ting Sun
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huanxin Zhao
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Luyao Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xintian Shao
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- School of Life Sciences, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Zhiyuan Lu
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yuli Wang
- Tianjin Pharmaceutical DA REN TANG Group Corporation Limited Traditional Chinese Pharmacy Research Institute, Tianjin 300457, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemistry Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Peixue Ling
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan 250098, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kewu Zeng
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qixin Chen
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| |
Collapse
|
3
|
Feng Q, Zhou X, He C. NIR light-facilitated bone tissue engineering. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1925. [PMID: 37632228 DOI: 10.1002/wnan.1925] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023]
Abstract
In the last decades, near-infrared (NIR) light has attracted considerable attention due to its unique properties and numerous potential applications in bioimaging and disease treatment. Bone tissue engineering for bone regeneration with the help of biomaterials is currently an effective means of treating bone defects. As a controlled light source with deeper tissue penetration, NIR light can provide real-time feedback of key information on bone regeneration in vivo utilizing fluorescence imaging and be used for bone disease treatment. This review provides a comprehensive overview of NIR light-facilitated bone tissue engineering, from the introduction of NIR probes as well as NIR light-responsive materials, and the visualization of bone regeneration to the treatment of bone-related diseases. Furthermore, the existing challenges and future development directions of NIR light-based bone tissue engineering are also discussed. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Qian Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| |
Collapse
|
4
|
Yang J, Yan M, Wang Z, Zhang C, Guan M, Sun Z. Optical and MRI Multimodal Tracing of Stem Cells In Vivo. Mol Imaging 2023; 2023:4223485. [PMID: 38148836 PMCID: PMC10751174 DOI: 10.1155/2023/4223485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023] Open
Abstract
Stem cell therapy has shown great clinical potential in oncology, injury, inflammation, and cardiovascular disease. However, due to the technical limitations of the in vivo visualization of transplanted stem cells, the therapeutic mechanisms and biosafety of stem cells in vivo are poorly defined, which limits the speed of clinical translation. The commonly used methods for the in vivo tracing of stem cells currently include optical imaging, magnetic resonance imaging (MRI), and nuclear medicine imaging. However, nuclear medicine imaging involves radioactive materials, MRI has low resolution at the cellular level, and optical imaging has poor tissue penetration in vivo. It is difficult for a single imaging method to simultaneously achieve the high penetration, high resolution, and noninvasiveness needed for in vivo imaging. However, multimodal imaging combines the advantages of different imaging modalities to determine the fate of stem cells in vivo in a multidimensional way. This review provides an overview of various multimodal imaging technologies and labeling methods commonly used for tracing stem cells, including optical imaging, MRI, and the combination of the two, while explaining the principles involved, comparing the advantages and disadvantages of different combination schemes, and discussing the challenges and prospects of human stem cell tracking techniques.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Min Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zhong Wang
- Affiliated Mental Health Center of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Cong Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Miao Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Zhenglong Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| |
Collapse
|
5
|
Jia S, Lin EY, Mobley EB, Lim I, Guo L, Kallepu S, Low PS, Sletten EM. Water-soluble chromenylium dyes for shortwave infrared imaging in mice. Chem 2023; 9:3648-3665. [PMID: 38283614 PMCID: PMC10817055 DOI: 10.1016/j.chempr.2023.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
In vivo imaging using shortwave infrared light (SWIR, 1000-2000 nm) benefits from deeper penetration and higher resolution compared to using visible and near-infrared wavelengths. However, the development of biocompatible SWIR contrast agents remains challenging. Despite recent advancements, small molecule SWIR fluorophores are often hindered by their significant hydrophobicity. We report a platform for generating a panel of soluble and functional dyes for SWIR imaging by late-stage functionalization of a versatile fluorophore intermediate, affording water-soluble dyes with bright SWIR fluorescence in serum. Specifically, a tetra-sulfonate derivative enables clear video-rate imaging of vasculature with only 0.05 nmol dye, and a tetra-ammonium dye shows strong cellular retention for tracking of tumor growth. Additionally, incorporation of phosphonate functionality enables imaging of bone in awake mice. This modular design provides insights for facile derivatization of existing SWIR fluorophores to introduce both solubility and bioactivity towards in vivo bioimaging.
Collapse
Affiliation(s)
- Shang Jia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Present address: Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Fayetteville, AR 72701, United States
| | - Eric Y. Lin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Emily B. Mobley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Irene Lim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Lei Guo
- Linde-Robinson Laboratories, California Institute of Technology, Pasadena, CA 91125, United States
- Present address: Department of Civil Engineering, University of Arkansas, Fayetteville, Fayetteville, AR 72701, United States
| | - Shivakrishna Kallepu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Philip S. Low
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Ellen M. Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Lead contact
| |
Collapse
|
6
|
Li J, Tan R, Bian X, Ge Z, Li J, Li Z, Liao L, Yang L, Zhang R, Zhou P. Design of carbon dots for bioimaging and behavior regulation of stem cells. Nanomedicine (Lond) 2023; 18:1109-1134. [PMID: 37610118 DOI: 10.2217/nnm-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Carbon dots (CDs) have been widely used in bioimaging, biosensing and biotherapy because of their good biocompatibility, optical properties and stability. In this review, we comprehensively summarize the research on CDs in terms of synthesis methods, optical properties and biotoxicity. We describe and envisage the directions for CDs application in stem cell imaging and differentiation, with the aim of stimulating the design of future related CDs. We used 'carbon dots', 'stem cells', 'cell imaging', 'cell differentiation' and 'fate control' as keywords to search for important articles. The Web of Science database was used to extract vital information from a total of 357 papers, 126 review articles and 231 article proceedings within 12 years (2011-2022).
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, 730000, People's Republic of China
| | - Rongshuang Tan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, 730000, People's Republic of China
| | - Xueru Bian
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, 730000, People's Republic of China
| | - Zhangjie Ge
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, 730000, People's Republic of China
| | - Jiamin Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, 730000, People's Republic of China
| | - Zhihui Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, 730000, People's Republic of China
| | - Lingzi Liao
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, 730000, People's Republic of China
| | - Ling Yang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, 730000, People's Republic of China
| | - Rui Zhang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, 730000, People's Republic of China
| | - Ping Zhou
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, 730000, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, 730000, People's Republic of China
| |
Collapse
|
7
|
Guo J, Chen L, Xiong F, Zhang Y, Wang R, Zhang X, Wen Q, Gao S, Zhang Y. Bidirectional near-infrared regulation of motor behavior using orthogonal emissive upconversion nanoparticles. NANOSCALE 2023; 15:7845-7853. [PMID: 37057392 DOI: 10.1039/d3nr00009e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bidirectional optogenetic manipulation enables specific neural function dissection and animal behaviour regulation with high spatial-temporal resolution. It relies on the respective activation of two or more visible-light responsive optogenetic sensors, which inevitably induce signal crosstalk due to their spectral overlap, low photoactivation efficiency and potentially high biotoxicity. Herein, a strategy that combines dual-NIR-excited orthogonal emissive upconversion nanoparticles (OUCNPs) with a single dual-colour sensor, BiPOLES, is demonstrated to achieve bidirectional, crosstalk-free NIR manipulation of motor behaviour in vivo. Core@shell-structured OUCNPs with Tm3+ and Er3+ dopants in isolated layers exhibit orthogonal blue and red emissions in response to excitation at 808 and 980 nm, respectively. The OUCNPs subsequently activate BiPOLES-expressing excitatory cholinergic motor neurons in C. elegans, leading to significant inhibition and excitation of motor neurons and body bends, respectively. Importantly, these OUCNPs exhibit negligible toxicity toward neural development, motor function and reproduction. Such an OUCNP-BiPOLES system not only greatly facilitates independent, bidirectional NIR activation of a specific neuronal population and functional dissection, but also greatly simplifies the bidirectional NIR optogenetics toolset, thus endowing it with great potential for flexible upconversion optogenetic manipulation.
Collapse
Affiliation(s)
- Jingxuan Guo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lili Chen
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Feihong Xiong
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yongning Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Ruipeng Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xuefei Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Quan Wen
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Shangbang Gao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
8
|
Yang H, Wu Q, Li J, Chen Q, Su L, He X, Li J, Qiu X. In Vivo Fate of CXCR2-Overexpressing Mesenchymal Stromal/Stem Cells in Pulmonary Diseases Monitored by Near-Infrared Region 2 Imaging. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20742-20752. [PMID: 37071603 DOI: 10.1021/acsami.3c01741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Lung-associated diseases pose a huge threat to human society. Mesenchymal stromal/stem cells (MSCs) hold great promise in the treatment of pulmonary diseases through cell transdifferentiation, paracrine factors, immune regulation, EV secretion, and drug loading. However, intravenous injection of MSCs often resulted in limited lesion tropism and apparent off-target accumulation. The IL-8-CXCR1/2 chemokine axis has been shown to be involved in progression of diseases including lung cancer and acute lung injury (ALI). Herein, we took advantage of this chemokine axis to enhance the homing of MSCs to cancerous and inflammation lesions. The in vivo distribution of MSCs was further monitored real-time by near-infrared region 2 (NIR-II) imaging owing to its outstanding performance in deep tissue imaging. Specifically, a new high-brightness D-A-D NIR-II dye, LJ-858, was synthesized and coprecipitated with a poly(d,l-lactic acid) polymer to form LJ-858 nanoparticles (NPs) with a relative quantum yield of 14.978%. LJ-858 NPs can efficiently label MSCs, and the NIR-II signal can be stable for 14 days without compromising the cell viability. Subcutaneous tracking of labeled MSCs showed no significant decline of NIR-II intensity within 24 h. The enhanced tropism of CXCR2-overexpressing MSCs to A549 tumor cells and the inflamed lung tissue was demonstrated through transwell models. The in vivo and ex vivo NIR-II imaging results further validated the significantly enhanced lesion retention of MSCCXCR2 in the lung cancer and ALI models. Taken together, this work reported a robust strategy to enhance the pulmonary disease tropism by the IL-8-CXCR1/2 chemokine axis. In addition, in vivo distribution of MSCs was successfully visualized by NIR-II imaging, which provides more insights into optimizing protocols for MSC-based therapies in the future.
Collapse
Affiliation(s)
- Huiying Yang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qingxia Wu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jinwei Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qimingxing Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lili Su
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyan He
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianfeng Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyan Qiu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
9
|
Sarker S, Colton A, Wen Z, Xu X, Erdi M, Jones A, Kofinas P, Tubaldi E, Walczak P, Janowski M, Liang Y, Sochol RD. 3D-Printed Microinjection Needle Arrays via a Hybrid DLP-Direct Laser Writing Strategy. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201641. [PMID: 37064271 PMCID: PMC10104452 DOI: 10.1002/admt.202201641] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 06/19/2023]
Abstract
Microinjection protocols are ubiquitous throughout biomedical fields, with hollow microneedle arrays (MNAs) offering distinctive benefits in both research and clinical settings. Unfortunately, manufacturing-associated barriers remain a critical impediment to emerging applications that demand high-density arrays of hollow, high-aspect-ratio microneedles. To address such challenges, here, a hybrid additive manufacturing approach that combines digital light processing (DLP) 3D printing with "ex situ direct laser writing (esDLW)" is presented to enable new classes of MNAs for fluidic microinjections. Experimental results for esDLW-based 3D printing of arrays of high-aspect-ratio microneedles-with 30 μm inner diameters, 50 μm outer diameters, and 550 μm heights, and arrayed with 100 μm needle-to-needle spacing-directly onto DLP-printed capillaries reveal uncompromised fluidic integrity at the MNA-capillary interface during microfluidic cyclic burst-pressure testing for input pressures in excess of 250 kPa (n = 100 cycles). Ex vivo experiments perform using excised mouse brains reveal that the MNAs not only physically withstand penetration into and retraction from brain tissue but also yield effective and distributed microinjection of surrogate fluids and nanoparticle suspensions directly into the brains. In combination, the results suggest that the presented strategy for fabricating high-aspect-ratio, high-density, hollow MNAs could hold unique promise for biomedical microinjection applications.
Collapse
Affiliation(s)
- Sunandita Sarker
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Adira Colton
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Ziteng Wen
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Xin Xu
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Metecan Erdi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Anthony Jones
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Peter Kofinas
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Eleonora Tubaldi
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Piotr Walczak
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Miroslaw Janowski
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yajie Liang
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ryan D Sochol
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
10
|
Goel M, Mackeyev Y, Krishnan S. Radiolabeled nanomaterial for cancer diagnostics and therapeutics: principles and concepts. Cancer Nanotechnol 2023; 14:15. [PMID: 36865684 PMCID: PMC9968708 DOI: 10.1186/s12645-023-00165-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
In the last three decades, radiopharmaceuticals have proven their effectiveness for cancer diagnosis and therapy. In parallel, the advances in nanotechnology have fueled a plethora of applications in biology and medicine. A convergence of these disciplines has emerged more recently with the advent of nanotechnology-aided radiopharmaceuticals. Capitalizing on the unique physical and functional properties of nanoparticles, radiolabeled nanomaterials or nano-radiopharmaceuticals have the potential to enhance imaging and therapy of human diseases. This article provides an overview of various radionuclides used in diagnostic, therapeutic, and theranostic applications, radionuclide production through different techniques, conventional radionuclide delivery systems, and advancements in the delivery systems for nanomaterials. The review also provides insights into fundamental concepts necessary to improve currently available radionuclide agents and formulate new nano-radiopharmaceuticals.
Collapse
Affiliation(s)
- Muskan Goel
- Amity School of Applied Sciences, Amity University, Gurugram, Haryana 122413 India
| | - Yuri Mackeyev
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030 USA
| | - Sunil Krishnan
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030 USA
| |
Collapse
|
11
|
Chen J, Li D, Li H, Zhu K, Shi L, Fu X. Cell membrane-targeting NIR fluorescent probes with large Stokes shifts for ultralong-term transplanted neural stem cell tracking. Front Bioeng Biotechnol 2023; 11:1139668. [PMID: 36845195 PMCID: PMC9948019 DOI: 10.3389/fbioe.2023.1139668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
There is an emerging therapeutic strategy to transplant stem cells into diseased host tissue for various neurodegenerative diseases, owing to their self-renewal ability and pluripotency. However, the traceability of long-term transplanted cells limits the further understanding of the mechanism of the therapy. Herein, we designed and synthesized a quinoxalinone scaffold-based near-infrared (NIR) fluorescent probe named QSN, which exhibits ultra-strong photostability, large Stokes shift, and cell membrane-targeting capacity. It could be found that QSN-labeled human embryonic stem cells showed strong fluorescent emission and photostability both in vitro and in vivo. Additionally, QSN would not impair the pluripotency of embryonic stem cells, indicating that QSN did not perform cytotoxicity. Moreover, it is worth mentioning that QSN-labeled human neural stem cells held cellular retention for at least 6 weeks in the mouse brain striatum post transplantation. All these findings highlight the potential application of QSN for ultralong-term transplanted cell tracking.
Collapse
Affiliation(s)
- Jing Chen
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dan Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongfu Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Kongkai Zhu
- Advanced Medical Research Institute, Shandong University, Jinan, China,*Correspondence: Kongkai Zhu, ; Leilei Shi, ; Xuemei Fu,
| | - Leilei Shi
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China,*Correspondence: Kongkai Zhu, ; Leilei Shi, ; Xuemei Fu,
| | - Xuemei Fu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China,*Correspondence: Kongkai Zhu, ; Leilei Shi, ; Xuemei Fu,
| |
Collapse
|
12
|
Wang R, Shi J, Zhang Q, Peng Q, Sun X, Song L, Zhang Y. Dual-Triggered Near-Infrared Persistent Luminescence Nanoprobe for Autofluorescence-Free Imaging-Guided Precise Therapy of Rheumatoid Arthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205320. [PMID: 36461720 PMCID: PMC9896051 DOI: 10.1002/advs.202205320] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/12/2022] [Indexed: 06/17/2023]
Abstract
Rheumatoid arthritis (RA) is a common, chronic, and highly disabling autoimmune disease characterized by difficult treatment, long disease duration, and easy recurrence. The development and application of high-sensitivity theranostic probes for RA that will facilitate precise monitoring of disease progression and enable effective treatment are currently hotspots in the field of RA theranostics. In this study, mZMI@HA, a dual-triggered theranostics nanoprobe, is constructed based on near-infrared persistent luminescence nanoparticles (NIR-PLNPs) for precise RA treatment and therapeutic evaluation. This is the first reported use of high-sensitivity autofluorescence-free imaging based on NIR-PLNPs for precise RA treatment and therapeutic evaluation. Compared with the NIR fluorescence imaging probe-indocyanine green, the signal-to-background ratio of persistent luminescence (PersL) imaging is improved nearly 14-fold. Using PersL imaging to guide photothermal therapy and controllable drug release through NIR/pH-responsiveness, the progress of collagen-induced RA is relieved. Additionally, the therapeutic evaluation of RA by PersL imaging is consistent with clinical micro-computed tomography and histological analyses. This study demonstrates the potential of NIR-PLNPs for high-sensitivity imaging-guided RA treatment, providing a new strategy for RA precise theranostics.
Collapse
Affiliation(s)
- Ruoping Wang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou, FujianChina
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth Materials, Haixi InstituteChinese Academy of SciencesXiamen, Fujian361021China
- University of Chinese Academy of SciencesBeijing100049China
| | - Junpeng Shi
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou, FujianChina
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth Materials, Haixi InstituteChinese Academy of SciencesXiamen, Fujian361021China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qian Zhang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou, FujianChina
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth Materials, Haixi InstituteChinese Academy of SciencesXiamen, Fujian361021China
| | - Qiang Peng
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou, FujianChina
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth Materials, Haixi InstituteChinese Academy of SciencesXiamen, Fujian361021China
| | - Xia Sun
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhou, Fujian350108China
| | - Liang Song
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou, FujianChina
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth Materials, Haixi InstituteChinese Academy of SciencesXiamen, Fujian361021China
| | - Yun Zhang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou, FujianChina
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth Materials, Haixi InstituteChinese Academy of SciencesXiamen, Fujian361021China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
13
|
Wang T, Chen Y, Wang B, Wu M. Recent progress of second near-infrared (NIR-II) fluorescence microscopy in bioimaging. Front Physiol 2023; 14:1126805. [PMID: 36895633 PMCID: PMC9990761 DOI: 10.3389/fphys.2023.1126805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Visualizing biological tissues in vivo at a cellular or subcellular resolution to explore molecular signaling and cell behaviors is a crucial direction for research into biological processes. In vivo imaging can provide quantitative and dynamic visualization/mapping in biology and immunology. New microscopy techniques combined with near-infrared region fluorophores provide additional avenues for further progress in vivo bioimaging. Based on the development of chemical materials and physical optoelectronics, new NIR-II microscopy techniques are emerging, such as confocal and multiphoton microscopy, light-sheet fluorescence microscopy (LSFM), and wide-field microscopy. In this review, we introduce the characteristics of in vivo imaging using NIR-II fluorescence microscopy. We also cover the recent advances in NIR-II fluorescence microscopy techniques in bioimaging and the potential for overcoming current challenges.
Collapse
Affiliation(s)
- Tian Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingfu Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Yang S, Dai W, Zheng W, Wang J. Non-UV-activated persistent luminescence phosphors for sustained bioimaging and phototherapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Liang Y, Yang C, Ye F, Cheng Z, Li W, Hu Y, Hu J, Zou L, Jiang H. Repair of the Urethral Mucosa Defect Model Using Adipose-Derived Stem Cell Sheets and Monitoring the Fate of Indocyanine Green-Labeled Sheets by Near Infrared-II. ACS Biomater Sci Eng 2022; 8:4909-4920. [PMID: 36201040 DOI: 10.1021/acsbiomaterials.2c00695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Treatment of urethral mucosa defects is a major challenge in urology. Synthetic materials or autologous mucosa does not provide satisfactory treatment options for long-term or large urethral mucosa defects. In response to this problem, we used autologous adipose-derived stem cells (ADSCs) to synthesize cell sheets in vitro for repairing urethral mucosa defect models. In order to monitor the localization and distribution of cell sheets in vivo, cells and sheets were labeled with indocyanine green (ICG) and the second near-infrared (NIR-II) fluorescence imaging was performed. ICG-based NIR-II imaging can successfully track ADSCs and sheets in vivo up to 8 W. Then, rabbit urethral mucosa defect models were repaired with ICG-ADSCs sheets. At 3 months after operation, retrograde urethrography showed that ADSC sheets could effectively repair urethral mucosa defect and restore urethral patency. Histological analysis showed that in ADSC sheet groups, continuous epithelial cells covered the urethra at the transplantation site, and a large number of vascular endothelial cells could also be seen. In the cell-free sheet group, there was no continuous epithelial cell coverage at the repair site of the urethra, and the expression of pro-inflammatory factor TNF-α was increased. It shows that the extracellular matrix alone without cells is not suitable for repairing urethral defects. Surviving ADSCs in the sheets may play a key role in the repair process. This study provides a new tracing method for tissue engineering to dynamically track grafts using an NIR-II imaging system. The ADSC sheets can effectively restore the structure and function of the urethra. It provides a new option for the repair of urethral mucosa defects.
Collapse
Affiliation(s)
- Yingchun Liang
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Zhang Cheng
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Weijian Li
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Yun Hu
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Jimeng Hu
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Lujia Zou
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China.,National Clinical Research Center for Aging and Medicine, Fudan University, 200040 Shanghai, China
| |
Collapse
|
16
|
Li D, Liu Y, Wu N. Application progress of nanotechnology in regenerative medicine of diabetes mellitus. Diabetes Res Clin Pract 2022; 190:109966. [PMID: 35718019 DOI: 10.1016/j.diabres.2022.109966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/20/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
In recent years, the development of diabetic regenerative medicine has led to new developments and progress for the clinical treatment of diabetes mellitus and its various complications. Besides, the emergence of nanotechnology has injected new vitality into diabetic regenerative medicine. Nano-stent provides an appropriate direction for the regeneration of islet β cells, retinal tissue, nerve tissue, and wound tissue cells. Conductive nanomaterials promote various tissues' growth. Many nanoparticles also promote wound healing and present other advantages that have solved many potential problems in the practical application of regenerative medicine. In this review, we will summarize the application of nanotechnology in diabetic regenerative medicine.
Collapse
Affiliation(s)
- Danyang Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Yuxin Liu
- Student Affairs Department, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China; Clinical Skills Practice Teaching Center, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| |
Collapse
|
17
|
Nanodiamonds as Possible Tools for Improved Management of Bladder Cancer and Bacterial Cystitis. Int J Mol Sci 2022; 23:ijms23158183. [PMID: 35897760 PMCID: PMC9329713 DOI: 10.3390/ijms23158183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
Nanodiamonds (NDs) are a class of carbon nanomaterials with sizes ranging from a few nm to micrometres. Due to their excellent physical, chemical and optical properties, they have recently attracted much attention in biomedicine. In addition, their exceptional biocompatibility and the possibility of precise surface functionalisation offer promising opportunities for biological applications such as cell labelling and imaging, as well as targeted drug delivery. However, using NDs for selective targeting of desired biomolecules within a complex biological system remains challenging. Urinary bladder cancer and bacterial cystitis are major diseases of the bladder with high incidence and poor treatment options. In this review, we present: (i) the synthesis, properties and functionalisation of NDs; (ii) recent advances in the study of various NDs used for better treatment of bladder cancer and (iii) bacterial cystitis; and (iv) the use of NDs in theranostics of these diseases.
Collapse
|
18
|
Zhao S, Xu M, Liu R, Xue Y, Nie J, Chang Y. NIR-II Fluorescent Probe for Detecting Trimethylamine Based on Intermolecular Charge Transfer. Chemistry 2022; 28:e202200113. [PMID: 35324048 DOI: 10.1002/chem.202200113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/28/2022]
Abstract
A new kind of small organic NIR-II fluorophore molecule (ZS-1010) based on intermolecular charge transfer was developed as a NIR-II fluorescent probe for trimethylamine (TMA) detection, which is important for the diagnosis of cardiovascular disease, chronic kidney disease and diabetes. ZS-1010 has a strong push-pull electron system composed of electron donor unit and electron acceptor unit, exhibiting strong absorption and emission in the NIR-II region. When mixed with TMA which possesses strong electron-donating characteristics, the push-pull system of ZS-1010 will be affected along with the dipole moment change, leading to the quenching of fluorescence. This is the first example of TMA fluorescent probe in the NIR-II window showing deep penetration, fast response speed, high selectivity and pH stability.
Collapse
Affiliation(s)
- Shuai Zhao
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Chemical Resource Engineering, Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Manman Xu
- Department of Oncology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, 100053, Beijing, P. R. China
| | - Ruixin Liu
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Chemical Resource Engineering, Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Yonggan Xue
- Department of General Surgery, Chinese PLA General Hospital, 100053, Beijing, P. R. China
| | - Jun Nie
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Chemical Resource Engineering, Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Yincheng Chang
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Chemical Resource Engineering, Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| |
Collapse
|
19
|
Wang X, Cao Q, Wu S, Bahrani Fard MR, Wang N, Cao J, Zhu W. Magnetic Nano-Platform Enhanced iPSC-Derived Trabecular Meshwork Delivery and Tracking Efficiency. Int J Nanomedicine 2022; 17:1285-1307. [PMID: 35345785 PMCID: PMC8957401 DOI: 10.2147/ijn.s346141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/09/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Transplantation of stem cells to remodel the trabecular meshwork (TM) has become a new option for restoring aqueous humor dynamics and intraocular pressure homeostasis in glaucoma. In this study, we aimed to design a nanoparticle to label induced pluripotent stem cell (iPSC)-derived TM and improve the delivery accuracy and in vivo tracking efficiency. Methods PLGA-SPIO-Cypate (PSC) NPs were designed with polylactic acid-glycolic acid (PLGA) polymers as the backbone, superparamagnetic iron oxide (SPIO) nanoparticles, and near-infrared (NIR) dye cypate. In vitro assessment of cytotoxicity, iron content after NPs labeling, and the dual-model monitor was performed on mouse iPSC-derived TM (miPSC-TM) cells, as well as immortalized and primary human TM cells. Cell function after labeling, the delivery accuracy, in vivo tracking efficiency, and its effect on lowering IOP were evaluated following miPSC-TM transplantation in mice. Results Initial in vitro experiments showed that a single-time nanoparticles incubation was sufficient to label iPSC-derived TM and was not related to any change in both cell viability and fate. Subsequent in vivo evaluation revealed that the use of this nanoparticle not only improves the delivery accuracy of the transplanted cells in live animals but also benefits the dual-model tracking in the long term. More importantly, the use of the magnet triggers a temporary enhancement in the effectiveness of cell-based therapy in alleviating the pathologies associated with glaucoma. Conclusion This study provided a promising approach for enhancing both the delivery and in vivo tracking efficiency of the transplanted cells, which facilitates the clinical translation of stem cell-based therapy for glaucoma.
Collapse
Affiliation(s)
- Xiangji Wang
- School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Qilong Cao
- Qingdao Haier Biotech Co. Ltd, Qingdao, People's Republic of China
| | - Shen Wu
- Beijing Tongren Hospital Eye Center, Capital Medical University, Beijing, People's Republic of China
| | | | - Ningli Wang
- Beijing Tongren Hospital Eye Center, Capital Medical University, Beijing, People's Republic of China
| | - Jie Cao
- School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Wei Zhu
- School of Pharmacy, Qingdao University, Qingdao, People's Republic of China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
20
|
Tracking Neural Stem Cells in vivo: Achievements and Limitations. Stem Cell Rev Rep 2022; 18:1774-1788. [PMID: 35122628 DOI: 10.1007/s12015-022-10333-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 12/12/2022]
Abstract
Neural stem cell (NSC) therapies are developing rapidly and have been proposed as a treatment option for various neurological diseases, such as stroke, Parkinson's disease and multiple sclerosis. However, monitoring transplanted NSCs, exploring their location and migration, and evaluating their efficacy and safety have all become serious and important issues. Two main problems in tracking NSCs have been noted: labeling them for visibility and imaging them. Direct labeling and reporter gene labeling are the two main methods for labeling stem cells. Magnetic resonance imaging and nuclear imaging, including positron emission tomography, single-photon emission computed tomography, and optical imaging, are the most commonly used imaging techniques. Each has its strengths and weaknesses. Thus, multimodal imaging, which combines two or more imaging methods to complement the advantages and disadvantages of each, has garnered increased attention. Advances in image fusion and nanotechnology, as well as the exploration of new tracers and new imaging modalities have substantially facilitated the development of NSC tracking technology. However, the safety issues related to tracking and long-term tracking of cell viability are still challenges. In this review, we discuss the merits and defects of different labeling and imaging methods, as well as recent advances, challenges and prospects in NSC tracking.
Collapse
|
21
|
Hariharan A, Iyer J, Wang A, Tran SD. Tracking of Oral and Craniofacial Stem Cells in Tissue Development, Regeneration, and Diseases. Curr Osteoporos Rep 2021; 19:656-668. [PMID: 34741728 DOI: 10.1007/s11914-021-00705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE OF REVIEW The craniofacial region hosts a variety of stem cells, all isolated from different sources of bone and cartilage. However, despite scientific advancements, their role in tissue development and regeneration is not entirely understood. The goal of this review is to discuss recent advances in stem cell tracking methods and how these can be advantageously used to understand oro-facial tissue development and regeneration. RECENT FINDINGS Stem cell tracking methods have gained importance in recent times, mainly with the introduction of several molecular imaging techniques, like optical imaging, computed tomography, magnetic resonance imaging, and ultrasound. Labelling of stem cells, assisted by these imaging techniques, has proven to be useful in establishing stem cell lineage for regenerative therapy of the oro-facial tissue complex. Novel labelling methods complementing imaging techniques have been pivotal in understanding craniofacial tissue development and regeneration. These stem cell tracking methods have the potential to facilitate the development of innovative cell-based therapies.
Collapse
Affiliation(s)
- Arvind Hariharan
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada
| | - Janaki Iyer
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada
| | - Athena Wang
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
22
|
Sun L, Ouyang J, Ma Y, Zeng Z, Zeng C, Zeng F, Wu S. An Activatable Probe with Aggregation-Induced Emission for Detecting and Imaging Herbal Medicine Induced Liver Injury with Optoacoustic Imaging and NIR-II Fluorescence Imaging. Adv Healthc Mater 2021; 10:e2100867. [PMID: 34160144 DOI: 10.1002/adhm.202100867] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/06/2021] [Indexed: 12/15/2022]
Abstract
Whilte herbal medicines are widely used for health promotion and therapy for chronic conditions, inappropriate use of them may cause adverse effects like liver injury, and accurately evaluating their hepatotoxicity is of great significance for public health. Herein, an activatable probe QY-N for diagnosing herbal-medicine-induced liver injury by detecting hepatic NO with NIR-II fluorescence and multispectral optoacoustic tomography (MSOT) imaging is demonstrated. The probe includes a bismethoxyphenyl-amine-containing dihydroxanthene serving as electron donor, a quinolinium as electron acceptor, and a butylamine as recognition group and fluorescence quencher. The hepatic level of NO reacts with butylamine, thereby generating the activated probe QY-NO which exhibits a red-shifted absorption band (700-850 nm) for optoacoustic imaging and generates strong emission (910-1110 nm) for NIR-II fluorescence imaging. QY-NO is aggregation-induced-emission (AIE) active, which ensures strong emission in aggregated state. QY-N is utilized in the triptolide-induced liver injury mouse model, and experimental results demonstrate the QY-N can be activated by hepatic NO and thus be used in detecting herbal-medicine-induced liver injury. The temporal and spatial information provided by three-dimensional MSOT images well delineates the site and size of liver injury. Moreover, QY-N has also been employed to monitor rehabilitation of liver injury during treatment process.
Collapse
Affiliation(s)
- Lihe Sun
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates College of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Juan Ouyang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates College of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Yunqing Ma
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates College of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Zhuo Zeng
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates College of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Cheng Zeng
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates College of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates College of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates College of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
23
|
Ma H, Wang J, Zhang XD. Near-infrared II emissive metal clusters: From atom physics to biomedicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Liu Z, Tang X, Zhu Z, Ma X, Zhou W, Guan W. Recent Advances in Fluorescence Imaging of Pulmonary Fibrosis in Animal Models. Front Mol Biosci 2021; 8:773162. [PMID: 34796202 PMCID: PMC8592921 DOI: 10.3389/fmolb.2021.773162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary fibrosis (PF) is a lung disease that may cause impaired gas exchange and respiratory failure while being difficult to treat. Rapid, sensitive, and accurate detection of lung tissue and cell changes is essential for the effective diagnosis and treatment of PF. Currently, the commonly-used high-resolution computed tomography (HRCT) imaging has been challenging to distinguish early PF from other pathological processes in the lung structure. Magnetic resonance imaging (MRI) using hyperpolarized gases is hampered by the higher cost to become a routine diagnostic tool. As a result, the development of new PF imaging technologies may be a promising solution. Here, we summarize and discuss recent advances in fluorescence imaging as a talented optical technique for the diagnosis and evaluation of PF, including collagen imaging, oxidative stress, inflammation, and PF-related biomarkers. The design strategies of the probes for fluorescence imaging (including multimodal imaging) of PF are briefly described, which can provide new ideas for the future PF-related imaging research. It is hoped that this review will promote the translation of fluorescence imaging into a clinically usable assay in PF.
Collapse
Affiliation(s)
- Zongwei Liu
- Department of Respiratory Medicine, Lianyungang Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Xiaofang Tang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Zongling Zhu
- Department of Respiratory Medicine, Pukou District Hospital of Chinese Medicine, Pukou Branch of Nanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xunxun Ma
- Department of Respiratory Medicine, Lianyungang Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Wenjuan Zhou
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
25
|
Chen X, Zhang Y, Yuan Q, Li M, Bian Y, Su D, Gao X. Bioorthogonal chemistry in metal clusters: a general strategy for the construction of multifunctional probes for bioimaging in living cells and in vivo. J Mater Chem B 2021; 9:6614-6622. [PMID: 34378627 DOI: 10.1039/d1tb00836f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multifunctional bioimaging probes based on metal clusters have multiple characteristics of metal clusters and functional conjugates, and their development has broad application prospects in the fields of biomedical imaging and tumor diagnosis. However, current bioconjugation methods on metal clusters are time-consuming and have low reaction efficiency, which hinders the construction of bioimaging probes with multifunctional components. Here, we report a concise and promising design strategy to realize the simple and efficient introduction of functional conjugates through bioorthogonal reactions based on azido-functionalized metal clusters. Based on this strategy, taking the probe FA-CuC@BSA-Cy5 as an example, we demonstrated the design of a copper cluster-based multifunctional near-infrared (NIR) fluorescent probe and its real-time imaging application in vivo. Through the strain-promoted azide-alkyne cycloaddition (SPAAC) reaction, the tumor-specific targeting ligand folic acid (FA) and fluorophore (Cy5) can be chemically conjugated to azido-functionalized CuC@BSA-N3 quickly and efficiently under biocompatible conditions. The prepared probe showed numerous advantages of metal clusters, including good stability, ultra-small particle size and low toxicity and rapid renal clearance. At the same time, FA-modified FA-CuC@BSA-Cy5 can specifically target KB cells with high FR expression, and in vivo fluorescence imaging shows higher tumor accumulation. The construction of the azido functional metal cluster platform can be extended to various metal clusters with functional probes and prodrugs, thereby providing more promising candidates for future medical diagnoses.
Collapse
Affiliation(s)
- Xueqian Chen
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Ding C, Huang Y, Shen Z, Chen X. Synthesis and Bioapplications of Ag 2 S Quantum Dots with Near-Infrared Fluorescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007768. [PMID: 34117805 DOI: 10.1002/adma.202007768] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Quantum dots (QDs) with near-infrared fluorescence (NIR) are an emerging class of QDs with unique capabilities owing to the deeper tissue penetrability of NIR light compared with visible light. NIR light also effectively overcomes organism autofluorescence, making NIR QDs particularly attractive in biological imaging applications for disease diagnosis. Considering latest developments, Ag2 S QDs are a rising star among NIR QDs due to their excellent NIR fluorescence properties and biocompatibility. This review presents the various methods to synthesize NIR Ag2 S QDs, and systematically discusses their applications in biosensing, bioimaging, and theranostics. Major challenges and future perspectives concerning the synthesis and bioapplications of NIR Ag2 S QDs are discussed.
Collapse
Affiliation(s)
- Caiping Ding
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Youju Huang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zheyu Shen
- Department of Medical Imaging Center, Nanfang Hospital, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
27
|
Dahal D, Ray P, Pan D. Unlocking the power of optical imaging in the second biological window: Structuring near-infrared II materials from organic molecules to nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1734. [PMID: 34159753 DOI: 10.1002/wnan.1734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Biomedical imaging techniques play a crucial role in clinical diagnosis, surgical intervention, and prognosis. Fluorescence imaging in the second biological window (second near-infrared [NIR-II]; 1000-1700 nm) has attracted attention recently. NIR-II fluorescence imaging offers unique advantages in terms of reduced photon scattering, deep tissue penetration, high sensitivity, and many others. A host of materials, including small organic molecules, single-walled carbon nanotubes, polymeric and rare-earth-doped nanoparticles, have been explored as NIR-II emitting fluorescent probes. Efficient and viable approaches to design and develop fluorescence probes with tunable photophysical properties without compromising other key features are of paramount importance. Various chemical strategies are explored to increase the quantum yield of these imaging agents without compromising their spatiotemporal resolution, specificity, and tissue penetration capabilities. This review summarizes the strategies implemented to design and synthesize NIR-II emitting nanoparticles and small organic molecule-based fluorescent probes for applications in the biomedical field. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Dipendra Dahal
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| | - Priyanka Ray
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Dipanjan Pan
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA.,Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA.,Department of Diagnostic Radiology and Nuclear Medicine, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Kim SH, Kwon JS, Cho JG, Park KG, Lim TH, Kim MS, Choi HS, Park CH, Lee SJ. Non-invasive in vivo monitoring of transplanted stem cells in 3D-bioprinted constructs using near-infrared fluorescent imaging. Bioeng Transl Med 2021; 6:e10216. [PMID: 34027098 PMCID: PMC8126817 DOI: 10.1002/btm2.10216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Cell-based tissue engineering strategies have been widely established. However, the contributions of the transplanted cells within the tissue-engineered scaffolds to the process of tissue regeneration remain poorly understood. Near-infrared (NIR) fluorescence imaging systems have great potential to non-invasively monitor the transplanted cell-based tissue constructs. In this study, labeling mesenchymal stem cells (MSCs) using a lipophilic pentamethine indocyanine (CTNF127, emission at 700 nm) as a NIR fluorophore was optimized, and the CTNF127-labeled MSCs (NIR-MSCs) were printed embedding in gelatin methacryloyl bioink. The NIR-MSCs-loaded bioink showed excellent printability. In addition, NIR-MSCs in the 3D constructs showed high cell viability and signal stability for an extended period in vitro. Finally, we were able to non-invasively monitor the NIR-MSCs in constructs after implantation in a rat calvarial bone defect model, and the transplanted cells contributed to tissue formation without specific staining. This NIR-based imaging system for non-invasive cell monitoring in vivo could play an active role in validating the cell fate in cell-based tissue engineering applications.
Collapse
Affiliation(s)
- Soon Hee Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center BoulevardWinston‐SalemNorth CarolinaUSA
- Nano‐Bio Regenerative Medical Institute, College of Medicine, Hallym UniversityChuncheonRepublic of Korea
| | - Jin Seon Kwon
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center BoulevardWinston‐SalemNorth CarolinaUSA
- Department of Molecular Science and TechnologyAjou UniversitySuwonRepublic of Korea
| | - Jae Gu Cho
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center BoulevardWinston‐SalemNorth CarolinaUSA
- Department of Otolaryngology‐Head and Neck SurgeryKorea University College of MedicineSeoulRepublic of Korea
| | - Kate G. Park
- Gordon Center for Medical Imaging, Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Tae Hyeon Lim
- Nano‐Bio Regenerative Medical Institute, College of Medicine, Hallym UniversityChuncheonRepublic of Korea
| | - Moon Suk Kim
- Department of Molecular Science and TechnologyAjou UniversitySuwonRepublic of Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Chan Hum Park
- Nano‐Bio Regenerative Medical Institute, College of Medicine, Hallym UniversityChuncheonRepublic of Korea
- Department of Otorhinolaryngology‐Head and Neck SurgeryChuncheon Sacred Heart Hospital, School of Medicine, Hallym UniversityChuncheonRepublic of Korea
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center BoulevardWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
29
|
Su Y, Yu B, Wang S, Cong H, Shen Y. NIR-II bioimaging of small organic molecule. Biomaterials 2021; 271:120717. [PMID: 33610960 DOI: 10.1016/j.biomaterials.2021.120717] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
In recent years, people have been actively exploring new imaging methods with high biological imaging performance because the clinical image definition and depth in vivo cannot meet the requirements of early diagnosis and prognosis. Based on the traditional near-infrared region I (NIR-I), the molecular probe of the near-infrared region II (NIR-II) is further explored and developed. In the NIR-II region due to the wavelength is longer than the NIR-I region can effectively reduce the molecular scattering, optical absorption of the organization, the organization of spontaneous fluorescence negligible, thus the NIR-II Fluorescence imaging (FI) can get deeper penetration depth, higher signal-to-background ratio (SBR) and better spatiotemporal resolution, FI in NIR-II region are an important and rapidly developing research region for future imaging. In the NIR-II fluorophore, small organic molecule fluorophore has attracted much attention because of its good biocompatibility and good pharmacokinetic properties. In this review, we briefly introduced the existing NIR-II organic small molecule fluorophores, and introduced the existing relatively mature methods for improving quantum yield and water solubility, and the small molecule dyes on FI of various improvement methods, also briefly introduces the small molecules of photoacoustic imaging (PAI), and a brief introduction of imaging-guided surgery (IGS) for some small organic molecules, finally, a reasonable prospect is made for the development of small organic molecules.
Collapse
Affiliation(s)
- Yingbin Su
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Song Wang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
30
|
Chen G, Li C, Zhang Y, Wang Q. Whole-Body Fluorescence Imaging in the Near-Infrared Window. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 3233:83-108. [PMID: 34053024 DOI: 10.1007/978-981-15-7627-0_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fluorescence imaging is one of the most widely used in vivo imaging methods for both fundamental research and clinical practice. Due to the reduced photon scattering, absorption, and autofluorescence in tissues, the emerging near-infrared (NIR) imaging (650-1700 nm) can afford deep tissue imaging with high spatiotemporal resolution and in vivo report the anatomical structures as well as the physiological activities in a whole-body level. Here, we give a brief introduction to fluorescence imaging in the first NIR (NIR-I, 650-950 nm) and second NIR (NIR-II, 1000-1700 nm) windows, summarize the recently developed NIR fluorophores and their applications in whole-body vascular system imaging, precision cancer theranostics, and regenerative medicine. Finally, the clinical applications and future prospects of in vivo NIR fluorescence imaging are also discussed.
Collapse
Affiliation(s)
- Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.
| |
Collapse
|
31
|
Chowdhury S, Ghosh S. Nanoparticles and Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Cai W, Sun J, Sun Y, Zhao X, Guo C, Dong J, Peng X, Zhang R. NIR-II FL/PA dual-modal imaging long-term tracking of human umbilical cord-derived mesenchymal stem cells labeled with melanin nanoparticles and visible HUMSC-based liver regeneration for acute liver failure. Biomater Sci 2020; 8:6592-6602. [PMID: 33231594 DOI: 10.1039/d0bm01221a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acetaminophen (APAP) has been widely used for relieving pain and fever, whilst overdose would lead to the occurrence of acute liver failure (ALF). Currently, few effective treatments are available for ALF in clinic, especially for severe, advanced- or end-stage patients who need liver transplantation. Human umbilical cord-derived mesenchymal stem cells (hUMSCs), as one of the mesenchymal stem cells, not only contribute to relieving hepatotoxicity and promoting hepatocyte regeneration due to their self-renewing, multi-differentiation potential, anti-inflammatory, immunomodulatory and paracrine properties, but possess lower immunomodulatory effects, faster self-renewal properties and noncontroversial ethical concerns, which may play a better role in the treatment of ALF. In this work, hUMSCs were rapidly labeled with near-infrared II fluorescent dye-modified melanin nanoparticles (MNP-PEG-H2), which could realize long-term tracking of hUMSCs by NIR-II fluorescent (FL)/photoacoustic (PA) dual-modal imaging and could visualize hUMSC-based liver regeneration in ALF. The nanoparticles exhibited good dispersibility and biocompatibility, high labeling efficiency for hUMSCs and excellent NIR-II FL/PA imaging performance. Moreover, the MNP-PEG-H2 labeled hUMSCs could be continuously traced in vivo for up to 21 days. After intravenous delivery, the NIR-II FL and PA images revealed that labeled hUMSCs were able to engraft in the injured liver and repair damaged tissue in ALF mice. Therefore, the hUMSCs labeled with endogenous melanin nanoparticles solve the key tracing problem of MSC-based regenerative medicine and realize the visualization of the treatment process, which may provide an efficient, safe and potential choice for ALF.
Collapse
Affiliation(s)
- Wenwen Cai
- Imaging Department, The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ye F, Huang W, Li C, Li G, Yang W, Liu SH, Yin J, Sun Y, Yang G. Near‐Infrared Fluorescence/Photoacoustic Agent with an Intensifying Optical Performance for Imaging‐Guided Effective Photothermal Therapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fengying Ye
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education); Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Weijing Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Chonglu Li
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education); Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Guangjin Li
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education); Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Wen‐Chao Yang
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education); Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education); Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education); Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Yao Sun
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education); Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Guang‐Fu Yang
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education); Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| |
Collapse
|
34
|
Li Y, Hu D, Sheng Z, Min T, Zha M, Ni JS, Zheng H, Li K. Self-assembled AIEgen nanoparticles for multiscale NIR-II vascular imaging. Biomaterials 2020; 264:120365. [PMID: 32971372 DOI: 10.1016/j.biomaterials.2020.120365] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/18/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022]
Abstract
In the recent decades, fluorogens with aggregation-induced emission (AIEgens) have been intensively explored in biomedical applications. One main strategy to bring these hydrophobic AIEgens into the aqueous biological environment is to encapsulate them in nanoparticles with functionalized polymeric matrices. However, exploration of reliable strategies that can afford AIE nanoparticles with uniform size and stable loading efficiency with minimized variation still remains a challenge. Here, we rationally designed amphiphilic AIEgens, constructed by a hydrophobic donor-acceptor-donor (D-A-D) core and hydrophilic polyethylene glycol (PEG) chain. The afforded amphiphilic AIEgens can self-assemble into uniform nanoparticles with average sizes of ~35 nm, showing an emission maximum beyond 1000 nm and quantum yields (QYs) above 10%. We then used the bright AIE nanoparticles for multiscale intravital vascular fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) in mouse and rabbit models with a high-resolution of ~38 μm and a penetration depth of ~1 cm. As such, our results demonstrate an efficient self-assembly strategy to construct advanced AIE nanoparticles for angiography.
Collapse
Affiliation(s)
- Yaxi Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; School of Science, Harbin Institute of Technology, Harbin, 150001, China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS key laboratory of health informatics, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS key laboratory of health informatics, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tianliang Min
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Menglei Zha
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jen-Shyang Ni
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS key laboratory of health informatics, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Kai Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
35
|
Li C, Chen G, Zhang Y, Wu F, Wang Q. Advanced Fluorescence Imaging Technology in the Near-Infrared-II Window for Biomedical Applications. J Am Chem Soc 2020; 142:14789-14804. [DOI: 10.1021/jacs.0c07022] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Feng Wu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- University of Science and Technology of China, Hefei 230036, China
| |
Collapse
|
36
|
Zhao T, Han J, Duan P, Liu M. New Perspectives to Trigger and Modulate Circularly Polarized Luminescence of Complex and Aggregated Systems: Energy Transfer, Photon Upconversion, Charge Transfer, and Organic Radical. Acc Chem Res 2020; 53:1279-1292. [PMID: 32649172 DOI: 10.1021/acs.accounts.0c00112] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chiral functional materials with circularly polarized luminescence (CPL) have risen rapidly in recent years because of their fascinating characteristics and potential applications in various research fields. CPL refers to the differential spontaneous emission of left (L)- and right (R)-handed circularly polarized light upon photon or electron excitation. Generally, an outstanding CPL-active material needs to possess a high luminescence dissymmetry factor (glum) (defined as 2(IL - IR)/(IL + IR) where I is the emission intensity), which is between -2 and +2. Although the exciting development in CPL-active materials was achieved, the modulation of CPL signs is still a challenge. For small organic systems, a relatively small glum value, one of the key parameters of CPL, limits their practical applications. Searching for efficient approaches for amplifying glum is important. Therefore, over the past decades, besides optimizing the structure of small molecules, many other strategies to obtain efficient CPL-active materials have been developed. For instance, self-assembly has been well demonstrated as an effective approach to amplify the supramolecular chirality as well as the glum values. On the other hand, chiral liquid crystals (CLCs), which are capable of selective reflection of left- and right-handed circularly polarized light, also to serve as a host matrix for endowing guest emitters with CPL activity and high glum values. However, self-assembly focuses on modulating the conformation and spatial arrangement of chiral emitters. And the CPL of a luminophore-doped CLC matrix depends on the helix pitch and band gap positions. Lately, novel photophysical approaches to modulate CPL signs have gradually emerged.In this Account, we discuss the recent progress of excited-state-regulation involved CPL-active materials. The emergence, amplification, and inversion of CPL can be adjusted through regulation of the excited state of chiral emitters. For example, Förster resonance energy transfer (FRET) can amplify the glum values of chiral energy acceptors in chiral supramolecular assemblies. By combining the concepts of photon upconversion and CPL, high-energy upconverted circularly polarized emission was achieved under excitation of low-energy light, accompanied by an amplified glum. In addition, the organic systems with unpaired electrons, i.e., charge transfer (CT) system and open-shell π-radical, show favorable CPL properties, which can be flexibly tuned with an applied magnetic field. It should be noted that these photophysical process are associated with the excited state of chiral emitters. So far, while the main focus is on the regulation of the molecular and supramolecular nanostructures, direct regulation of the excited state of the chiral system will serve as a new platform to understand and regulate the CPL activity and will be helpful to develop smart chiroptical materials.
Collapse
Affiliation(s)
- Tonghan Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P.R. China
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Minghua Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P.R. China
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No.2, ZhongGuanCun BeiYiJie, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
37
|
Shi Y, Zhang J, Huang H, Cao C, Yin J, Xu W, Wang W, Song X, Zhang Y, Dong X. Fe-Doped Polyoxometalate as Acid-Aggregated Nanoplatform for NIR-II Photothermal-Enhanced Chemodynamic Therapy. Adv Healthc Mater 2020; 9:e2000005. [PMID: 32181991 DOI: 10.1002/adhm.202000005] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 11/07/2022]
Abstract
The combination of reactive oxygen species-involved chemodynamic therapy (CDT) and photothermal therapy (PTT) holds great promise in enhancing anticancer effects. Herein, a multifunctional Fe-doped polyoxometalate (Fe-POM) cluster is fabricated via a simple method. The Fe-POM can not only be utilized as PTT agents to generate a hyperthermia effect for cancer cell killing under near-infrared (NIR) II laser (1060 nm) irradiation, but also can be used as CDT agents to convert endogenous less-reactive H2 O2 into harmful ·OH and simultaneously deplete glutathione for an amplified CDT effect. Notably, the hyperthermia induced by PTT can further enhance the CDT effect, achieving a synergistic PTT/CDT effect. Owing to the self-assembling properties at lowered pH values, the Fe-POM exhibits high tumor accumulation as revealed by photoacoustic imaging. More importantly, Fe-POM enables effective destruction of tumors without inducing noticeable damage to normal tissues under 1060 nm laser irradiation. The work presents a new type of multifunctional agent with high PTT/CDT efficacy, providing promising methods for PTT-enhanced CDT in a NIR-II biowindow.
Collapse
Affiliation(s)
- Yunhao Shi
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)School of Physical and Mathematical SciencesNanjing Tech University (NanjingTech) Nanjing 211800 China
| | - Jiaojiao Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)School of Physical and Mathematical SciencesNanjing Tech University (NanjingTech) Nanjing 211800 China
| | - Han Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)School of Physical and Mathematical SciencesNanjing Tech University (NanjingTech) Nanjing 211800 China
| | - Changyu Cao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)School of Physical and Mathematical SciencesNanjing Tech University (NanjingTech) Nanjing 211800 China
| | - Jiajia Yin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)School of Physical and Mathematical SciencesNanjing Tech University (NanjingTech) Nanjing 211800 China
| | - Wenjing Xu
- Department of Hepatobiliary and Pancreatic SurgeryZhongda HospitalMedical SchoolSoutheast University Nanjing 210009 China
| | - Wenjun Wang
- School of Physical Science and Information TechnologyLiaocheng University Liaocheng 252059 China
| | - Xuejiao Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)School of Physical and Mathematical SciencesNanjing Tech University (NanjingTech) Nanjing 211800 China
| | - Yewei Zhang
- Department of Hepatobiliary and Pancreatic SurgeryZhongda HospitalMedical SchoolSoutheast University Nanjing 210009 China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)School of Physical and Mathematical SciencesNanjing Tech University (NanjingTech) Nanjing 211800 China
- School of Chemistry and Materials ScienceNanjing University of Information Science & Technology Nanjing 210044 China
| |
Collapse
|
38
|
Dinnyes A, Schnur A, Muenthaisong S, Bartenstein P, Burcez CT, Burton N, Cyran C, Gianello P, Kemter E, Nemeth G, Nicotra F, Prepost E, Qiu Y, Russo L, Wirth A, Wolf E, Ziegler S, Kobolak J. Integration of nano- and biotechnology for beta-cell and islet transplantation in type-1 diabetes treatment. Cell Prolif 2020; 53:e12785. [PMID: 32339373 PMCID: PMC7260069 DOI: 10.1111/cpr.12785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/30/2019] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
Regenerative medicine using human or porcine β‐cells or islets has an excellent potential to become a clinically relevant method for the treatment of type‐1 diabetes. High‐resolution imaging of the function and faith of transplanted porcine pancreatic islets and human stem cell–derived beta cells in large animals and patients for testing advanced therapy medicinal products (ATMPs) is a currently unmet need for pre‐clinical/clinical trials. The iNanoBIT EU H2020 project is developing novel highly sensitive nanotechnology‐based imaging approaches allowing for monitoring of survival, engraftment, proliferation, function and whole‐body distribution of the cellular transplants in a porcine diabetes model with excellent translational potential to humans. We develop and validate the application of single‐photon emission computed tomography (SPECT) and optoacoustic imaging technologies in a transgenic insulin‐deficient pig model to observe transplanted porcine xeno‐islets and in vitro differentiated human beta cells. We are progressing in generating new transgenic reporter pigs and human‐induced pluripotent cell (iPSC) lines for optoacoustic imaging and testing them in transplantable bioartificial islet devices. Novel multifunctional nanoparticles have been generated and are being tested for nuclear imaging of islets and beta cells using a new, high‐resolution SPECT imaging device. Overall, the combined multidisciplinary expertise of the project partners allows progress towards creating much needed technological toolboxes for the xenotransplantation and ATMP field, and thus reinforces the European healthcare supply chain for regenerative medicinal products.
Collapse
Affiliation(s)
- Andras Dinnyes
- Biotalentum Ltd, Hungary, Godollo, Hungary.,Sichuan University, College of Life Sciences, Chengdu, China.,Department of Dermatology and Allergology, Research Institute of Translational Biomedicine, University of Szeged, Szeged, Hungary
| | | | | | - Peter Bartenstein
- Department of Nuclear Medicine, Faculty of Medicine, Ludwig-Maximilians University, Munchen, Germany
| | | | | | - Clemens Cyran
- Department of Clinical Radiology, Faculty of Medicine, Ludwig-Maximilians University, Munchen, Germany
| | - Pierre Gianello
- Health Science Sector - Laboratory of Experimental Surgery and Transplantation, Université Catholique de Louvain, Brussels, Belgium
| | - Elisabeth Kemter
- Faculty of Veterinary Medicine, Gene Center and Department of Biochemistry, Ludwig-Maximilians University, Munchen, Germany
| | - Gabor Nemeth
- Mediso Medical Imaging Systems, Budapest, Hungary
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | - Yi Qiu
- iThera Medical GmbH, Munchen, Germany
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Andras Wirth
- Mediso Medical Imaging Systems, Budapest, Hungary
| | - Eckhard Wolf
- Faculty of Veterinary Medicine, Gene Center and Department of Biochemistry, Ludwig-Maximilians University, Munchen, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, Faculty of Medicine, Ludwig-Maximilians University, Munchen, Germany
| | | |
Collapse
|
39
|
He L, Qing F, Li M, Lan D. Paclitaxel/IR1061-Co-Loaded Protein Nanoparticle for Tumor-Targeted and pH/NIR-II-Triggered Synergistic Photothermal-Chemotherapy. Int J Nanomedicine 2020; 15:2337-2349. [PMID: 32308385 PMCID: PMC7135189 DOI: 10.2147/ijn.s240707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The aim of this study was to develop an "all-in-one" nanoplatform that integrates at the second near-infrared (NIR-II) region dye IR1061 and anticancer drug paclitaxel (PTX) into an apoferritin (AFN) nanocage (IR-AFN@PTX). Simultaneously, folic acid (FA), tumor target molecule, was conjugated onto IR-AFN@PTX to be IR-AFN@PTX-FA for tumor-targeted and pH/NIR-II-triggered synergistic photothermal-chemotherapy. METHODS IR1061 was firstly reacted with PEG and then conjugated with AFN to be IR-AFN. Then, FA was conjugated onto the surface of IR-AFN to be IR-AFN-FA. At last, PTX was incorporated into IR-AFN-FA to fabricate a nanoplatform IR-AFN@PTX-FA. The NIR-II photothermal properties and pH/NIR-II triggered drug release were evaluated. The ability of IR-AFN@PTX-FA to target tumors was estimated using optical bioluminescence. In vitro and in vivo synergistic therapeutic effects of pH/NIR-II-triggered and tumor-targeted photothermal-chemotherapy were investigated in 4T1 tumor model. RESULTS IR-AFN@PTX-FA showed excellent water solubility and physiological stability, which significantly enhanced the solubility of both IR1061 and PTX. After 5 min of laser irradiation at 1064 nm, IR-AFN@PTX-FA exhibited an effective photothermal effect compared with laser irradiation at 808 nm, even when blocked with 0.6 cm thick chicken breast. Cellular uptake experiments showed IR-AFN@PTX-FA utilized clathrin-mediated and caveolae-mediated endocytosis pathways to enter 4T1 cells, and was then delivered by the endosome to the lysosome. NIR-II laser irradiation and pH could synergistically trigger PTX release, inducing significant tumor inhibition in vitro and in vivo. CONCLUSION As a novel "all-in-one" nanoplatform, IR-AFN@PTX-FA was found to selectively target tumors and showed very efficient NIR-II photothermal effects and pH/NIR-II triggered drug release effects, showing a remarkable, synergistic photothermal-chemotherapy effect.
Collapse
Affiliation(s)
- Li He
- Department of Thyroid and Breast Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital (East Hospital), Chengdu610100, Sichuan, People’s Republic of China
| | - Fangzhen Qing
- Department of Stomatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital (East Hospital), Chengdu610100, Sichuan, People’s Republic of China
| | - Maode Li
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital (East Hospital), Chengdu610100, Sichuan, People’s Republic of China
| | - Daitian Lan
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital (East Hospital), Chengdu610100, Sichuan, People’s Republic of China
| |
Collapse
|
40
|
Chen G, Cao Y, Tang Y, Yang X, Liu Y, Huang D, Zhang Y, Li C, Wang Q. Advanced Near-Infrared Light for Monitoring and Modulating the Spatiotemporal Dynamics of Cell Functions in Living Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903783. [PMID: 32328436 PMCID: PMC7175256 DOI: 10.1002/advs.201903783] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/06/2020] [Indexed: 05/07/2023]
Abstract
Light-based technique, including optical imaging and photoregulation, has become one of the most important tools for both fundamental research and clinical practice, such as cell signal sensing, cancer diagnosis, tissue engineering, drug delivery, visual regulation, neuromodulation, and disease treatment. In particular, low energy near-infrared (NIR, 700-1700 nm) light possesses lower phototoxicity and higher tissue penetration depth in living systems as compared with ultraviolet/visible light, making it a promising tool for in vivo applications. Currently, the NIR light-based imaging and photoregulation strategies have offered a possibility to real-time sense and/or modulate specific cellular events in deep tissues with subcellular accuracy. Herein, the recent progress with respect to NIR light for monitoring and modulating the spatiotemporal dynamics of cell functions in living systems are summarized. In particular, the applications of NIR light-based techniques in cancer theranostics, regenerative medicine, and neuroscience research are systematically introduced and discussed. In addition, the challenges and prospects for NIR light-based cell sensing and regulating techniques are comprehensively discussed.
Collapse
Affiliation(s)
- Guangcun Chen
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabCAS Center for Excellence in Brain ScienceSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
- Suzhou Key Laboratory of Functional Molecular Imaging TechnologySuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
| | - Yuheng Cao
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabCAS Center for Excellence in Brain ScienceSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
- Suzhou Key Laboratory of Functional Molecular Imaging TechnologySuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Yanxing Tang
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabCAS Center for Excellence in Brain ScienceSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
- Suzhou Key Laboratory of Functional Molecular Imaging TechnologySuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Xue Yang
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabCAS Center for Excellence in Brain ScienceSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
- Suzhou Key Laboratory of Functional Molecular Imaging TechnologySuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
| | - Yongyang Liu
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabCAS Center for Excellence in Brain ScienceSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
- Suzhou Key Laboratory of Functional Molecular Imaging TechnologySuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
| | - Dehua Huang
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabCAS Center for Excellence in Brain ScienceSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
- Suzhou Key Laboratory of Functional Molecular Imaging TechnologySuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
| | - Yejun Zhang
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabCAS Center for Excellence in Brain ScienceSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
- Suzhou Key Laboratory of Functional Molecular Imaging TechnologySuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
| | - Chunyan Li
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabCAS Center for Excellence in Brain ScienceSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
- Suzhou Key Laboratory of Functional Molecular Imaging TechnologySuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabCAS Center for Excellence in Brain ScienceSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
- Suzhou Key Laboratory of Functional Molecular Imaging TechnologySuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- College of Materials Sciences and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
41
|
Dong Y, Suo H, Yang X, Zhao X, Zhou X. Eu(III) complex based on nonsteroidal anti-inflammatory drugs loxoprofen as the ligand: A novel low-toxic luminescent material for cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:118014. [PMID: 31923791 DOI: 10.1016/j.saa.2019.118014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Eu(III) 2-{4-[(2-oxocyclopentyl)methyl]phenyl}propanoic acid complex (Eu-LPF), a novel low-toxic luminescent material based on energy transfer between the LPF ligand and Eu3+ ion, was synthesized and characterized by means of elemental analysis, thermogravimetric analyses, and FT-IR spectra. The spectroscopic properties of Eu-LPF were studied using UV-vis absorption spectroscopy and steady/transient state luminescence spectroscopy. Furthermore, the cytotoxicity of Eu-LPF on MCF-7 cells was investigated by MTT assay and flow cytometry. Its biocompatibility and utilization for cell imaging were studied as well. The results showed that Eu-LPF exhibited favorable luminescence properties, low toxicity and good biocompatibility, which endowed Eu-LPF with a potential capability for bioimaging and optical detection.
Collapse
Affiliation(s)
- Yu Dong
- Collaborative Innovation Center of Rare-Earth Optical Functional Materials and Devices Development & College of Physics and Optoelectronic Technology, Baoji University of Arts and Sciences, Baoji 721016, China
| | - Hao Suo
- Hebei Key Lab of Optic-Electronic Information and Materials, College of Physics Science & Technology, Hebei University, Baoding 071002, China
| | - Xing Yang
- Collaborative Innovation Center of Rare-Earth Optical Functional Materials and Devices Development & College of Physics and Optoelectronic Technology, Baoji University of Arts and Sciences, Baoji 721016, China
| | - Xiaoqi Zhao
- Collaborative Innovation Center of Rare-Earth Optical Functional Materials and Devices Development & College of Physics and Optoelectronic Technology, Baoji University of Arts and Sciences, Baoji 721016, China.
| | - Xianju Zhou
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| |
Collapse
|
42
|
Cao J, Zhu B, Zheng K, He S, Meng L, Song J, Yang H. Recent Progress in NIR-II Contrast Agent for Biological Imaging. Front Bioeng Biotechnol 2020; 7:487. [PMID: 32083067 PMCID: PMC7002322 DOI: 10.3389/fbioe.2019.00487] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022] Open
Abstract
Fluorescence imaging technology has gradually become a new and promising tool for in vivo visualization detection. Because it can provide real-time sub-cellular resolution imaging results, it can be widely used in the field of biological detection and medical detection and treatment. However, due to the limited imaging depth (1-2 mm) and self-fluorescence background of tissue emitted in the visible region (400-700 nm), it fails to reveal biological complexity in deep tissues. The traditional near infrared wavelength (NIR-I, 650-950 nm) is considered as the first biological window, because it reduces the NIR absorption and scattering from blood and water in organisms. NIR fluorescence bioimaging's penetration is larger than that of visible light. In fact, NIR-I fluorescence bioimaging is still interfered by tissue autofluorescence (background noise), and the existence of photon scattering, which limits the depth of tissue penetration. Recent experimental and simulation results show that the signal-to-noise ratio (SNR) of bioimaging can be significantly improved at the second region near infrared (NIR-II, 1,000-1,700 nm), also known as the second biological window. NIR-II bioimaging is able to explore deep-tissues information in the range of centimeter, and to obtain micron-level resolution at the millimeter depth, which surpass the performance of NIR-I fluorescence imaging. The key of fluorescence bioimaging is to achieve highly selective imaging thanks to the functional/targeting contrast agent (probe). However, the progress of NIR-II probes is very limited. To date, there are a few reports about NIR-II fluorescence probes, such as carbon nanotubes, Ag2S quantum dots, and organic small molecular dyes. In this paper, we surveyed the development of NIR-II imaging contrast agents and their application in cancer imaging, medical detection, vascular bioimaging, and cancer diagnosis. In addition, the hotspots and challenges of NIR-II bioimaging are discussed. It is expected that our findings will lay a foundation for further theoretical research and practical application of NIR-II bioimaging, as well as the inspiration of new ideas in this field.
Collapse
Affiliation(s)
- Jie Cao
- Fuzhou University Postdoctoral Research Station of Chemical Engineering and Technology, Fuzhou University, Fuzhou, China
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou, China
- Fujian Police College Judicial Expertise Center, Fuzhou, China
| | - Binling Zhu
- Fujian Police College Judicial Expertise Center, Fuzhou, China
- Department of Forensic Science, Fujian Police College, Fuzhou, China
- Engineering Research Center, Fujian Police College, Fuzhou, China
| | - Kefang Zheng
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou, China
- Fujian Police College Judicial Expertise Center, Fuzhou, China
| | - Songguo He
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou, China
- Fujian Police College Judicial Expertise Center, Fuzhou, China
| | - Liang Meng
- Department of Forensic Science, Fujian Police College, Fuzhou, China
- Engineering Research Center, Fujian Police College, Fuzhou, China
| | - Jibin Song
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Huanghao Yang
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China
| |
Collapse
|
43
|
Ni JS, Li Y, Yue W, Liu B, Li K. Nanoparticle-based Cell Trackers for Biomedical Applications. Theranostics 2020; 10:1923-1947. [PMID: 32042345 PMCID: PMC6993224 DOI: 10.7150/thno.39915] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
The continuous or real-time tracking of biological processes using biocompatible contrast agents over a certain period of time is vital for precise diagnosis and treatment, such as monitoring tissue regeneration after stem cell transplantation, understanding the genesis, development, invasion and metastasis of cancer and so on. The rationally designed nanoparticles, including aggregation-induced emission (AIE) dots, inorganic quantum dots (QDs), nanodiamonds, superparamagnetic iron oxide nanoparticles (SPIONs), and semiconducting polymer nanoparticles (SPNs), have been explored to meet this urgent need. In this review, the development and application of these nanoparticle-based cell trackers for a variety of imaging technologies, including fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, magnetic particle imaging, positron emission tomography and single photon emission computing tomography are discussed in detail. Moreover, the further therapeutic treatments using multi-functional trackers endowed with photodynamic and photothermal modalities are also introduced to provide a comprehensive perspective in this promising research field.
Collapse
Affiliation(s)
- Jen-Shyang Ni
- Department of Biomedical Engineering, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Yaxi Li
- Department of Biomedical Engineering, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Wentong Yue
- Department of Biomedical Engineering, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Kai Li
- Department of Biomedical Engineering, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
44
|
Kong X, Wan G, Li B, Wu L. Recent advances of polyoxometalates in multi-functional imaging and photothermal therapy. J Mater Chem B 2020; 8:8189-8206. [DOI: 10.1039/d0tb01375g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The recent advances of polyoxometalate clusters in terms of near infrared photothermal properties for targeted tumor therapy have been summarized while the combined applications with various bio-imaging techniques and chemotherapies are reviewed.
Collapse
Affiliation(s)
- Xueping Kong
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Guofeng Wan
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| |
Collapse
|
45
|
Luo Y, Yang H, Zhou YF, Hu B. Dual and multi-targeted nanoparticles for site-specific brain drug delivery. J Control Release 2019; 317:195-215. [PMID: 31794799 DOI: 10.1016/j.jconrel.2019.11.037] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/26/2022]
Abstract
In recent years, nanomedicines have emerged as a promising method for central nervous system drug delivery, enabling the drugs to overcome the blood-brain barrier and accumulate preferentially in the brain. Despite the current success of brain-targeted nanomedicines, limitations still exist in terms of the targeting specificity. Based on the molecular mechanism, the exact cell populations and subcellular organelles where the injury occurs and the drugs take effect have been increasingly accepted as a more specific target for the next generation of nanomedicines. Dual and multi-targeted nanoparticles integrate different targeting functionalities and have provided a paradigm for precisely delivering the drug to the pathological site inside the brain. The targeting process often involves the sequential or synchronized navigation of the targeting moieties, which allows highly controlled drug delivery compared to conventional targeting strategies. Herein, we focus on the up-to-date design of pathological site-specific nanoparticles for brain drug delivery, highlighting the dual and multi-targeting strategies that were employed and their impact on improving targeting specificity and therapeutic effects. Furthermore, the background discussion of the basic properties of a brain-targeted nanoparticle and the common lesion features classified by neurological pathology are systematically summarized.
Collapse
Affiliation(s)
- Yan Luo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hang Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi-Fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
46
|
Yao Y, Hou CL, Yang ZS, Ran G, Kang L, Li C, Zhang W, Zhang J, Zhang JL. Unusual near infrared (NIR) fluorescent palladium(ii) macrocyclic complexes containing M-C bonds with bioimaging capability. Chem Sci 2019; 10:10170-10178. [PMID: 32055371 PMCID: PMC6979397 DOI: 10.1039/c9sc04044g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Near infrared (NIR) luminescent metal complexes are promising probes in bioimaging and biosensing, however they generally suffer from oxygen interference arising from heavy metal effects. We designed new tetradentate macrocyclic benzitripyrrin (C^N^N^N) ligands by combination of M-C bond formation and reducing the π-conjugation to achieve NIR fluorescent Pd complexes (700-1000 nm) with quantum yields up to 14%. To understand the origin of NIR fluorescence, detailed analyses by density functional theory/time-dependent density functional theory (DFT/TDDFT) calculations together with femtosecond and nanosecond transient absorption spectroscopies suggest that M-C bond formation indeed leads to destabilization of the d-d excited state and less effective quenching of emission; and importantly, small spin-orbital coupling (SOC) and the large singlet-triplet energy gap are the primary causes of the non-population of triplet states. Comparison of PdII and PtII analogues shows that the non-radiative channel of the out-plane vibration of the tripyrrin plane effectively quenches the fluorescence of the PtII complex but not the PdII congener. We also demonstrate the proof-of-concept applications of PdII complexes (Pd-1 and Pd-3) encapsulated in silica nanoparticles, in both in vitro and in vivo bioimaging experiments without oxygen interference. Moreover, pH-induced reversible switching of NIR fluorescence was achieved even intracellularly using the Pd complex (Pd-2), which shows the potential to further develop perspective stimuli-responsive NIR materials.
Collapse
Affiliation(s)
- Yuhang Yao
- Beijing National Laboratory for Molecular Sciences , State Key Laboratory of Rare Earth Materials Chemistry and Applications , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China .
| | - Chun-Liang Hou
- Center of Materials Science and Optoelectronics Engineering , College of Materials Science and Opto-Electronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China .
| | - Zi-Shu Yang
- Beijing National Laboratory for Molecular Sciences , State Key Laboratory of Rare Earth Materials Chemistry and Applications , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China .
| | - Guangliu Ran
- Center for Advanced Quantum Studies , Department of Physics and Applied Optics Beijing Area Major Laboratory , Beijing Normal University , Beijing 100875 , P. R. China .
| | - Lei Kang
- Department of Nuclear Medicine , Peking University First Hospital , Beijing 100034 , P. R. China
| | - Cuicui Li
- Department of Nuclear Medicine , Peking University First Hospital , Beijing 100034 , P. R. China
| | - Wenkai Zhang
- Center for Advanced Quantum Studies , Department of Physics and Applied Optics Beijing Area Major Laboratory , Beijing Normal University , Beijing 100875 , P. R. China .
| | - Jing Zhang
- Center of Materials Science and Optoelectronics Engineering , College of Materials Science and Opto-Electronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China .
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences , State Key Laboratory of Rare Earth Materials Chemistry and Applications , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China .
| |
Collapse
|
47
|
Ge J, Zhang Q, Zeng J, Gu Z, Gao M. Radiolabeling nanomaterials for multimodality imaging: New insights into nuclear medicine and cancer diagnosis. Biomaterials 2019; 228:119553. [PMID: 31689672 DOI: 10.1016/j.biomaterials.2019.119553] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022]
Abstract
Nuclear medicine imaging has been developed as a powerful diagnostic approach for cancers by detecting gamma rays directly or indirectly from radionuclides to construct images with beneficial characteristics of high sensitivity, infinite penetration depth and quantitative capability. Current nuclear medicine imaging modalities mainly include single-photon emission computed tomography (SPECT) and positron emission tomography (PET) that require administration of radioactive tracers. In recent years, a vast number of radioactive tracers have been designed and constructed to improve nuclear medicine imaging performance toward early and accurate diagnosis of cancers. This review will discuss recent progress of nuclear medicine imaging tracers and associated biomedical imaging applications. Radiolabeling nanomaterials for rational development of tracers will be comprehensively reviewed with highlights on radiolabeling approaches (surface coupling, inner incorporation and interface engineering), providing profound understanding on radiolabeling chemistry and the associated imaging functionalities. The applications of radiolabeled nanomaterials in nuclear medicine imaging-related multimodality imaging will also be summarized with typical paradigms described. Finally, key challenges and new directions for future research will be discussed to guide further advancement and practical use of radiolabeled nanomaterials for imaging of cancers.
Collapse
Affiliation(s)
- Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Qianyi Zhang
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China; Institute of Chemistry, Chinese Academy of Sciences/School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
48
|
Ding F, Fan Y, Sun Y, Zhang F. Beyond 1000 nm Emission Wavelength: Recent Advances in Organic and Inorganic Emitters for Deep-Tissue Molecular Imaging. Adv Healthc Mater 2019; 8:e1900260. [PMID: 30983165 DOI: 10.1002/adhm.201900260] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/23/2019] [Indexed: 12/29/2022]
Abstract
In vivo second near-infrared (NIR-II, 1.0-1.7 µm) bioimaging , a rapidly expanding imaging tool for preclinical diagnosis and prognosis, is of great importance to afford precise dynamic actions in vivo with high spatiotemporal resolution, deeper penetration, and decreasing light absorption and scattering. In the course of preclinical practices, organic and inorganic emitters with NIR-II signals are indispensable keys to open the invisible biological window. In this review, NIR-II emitters, including but not limited to organic emitters like organic small molecules and copolymers, and inorganic emitters such as lanthanide-based nanocrystals, quantum dots like Ag2 S dots, and carbon nanotubes, are described, especially regarding their unique optical features and noteworthy functions for animal bioimaging. Along with these existing advances, the challenges and potential spaces for further progress are discussed to offer an approximate direction for future researches.
Collapse
Affiliation(s)
- Feng Ding
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yong Fan
- State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Fan Zhang
- State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
49
|
Chen T, Chen Z, Liu R, Zheng S. A NIR fluorescent probe for detection of viscosity and lysosome imaging in live cells. Org Biomol Chem 2019; 17:6398-6403. [PMID: 31210240 DOI: 10.1039/c9ob01222b] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lysosomes, as the cellular recycling center, are filled with numerous hydrolases that can degrade most cellular macromolecules. Studies have shown that the abnormality of viscosity in lysosomes will disrupt the normal function of lysosomes. Herein, a D-π-A structure near-infrared fluorescent probe containing N,N-dimethylamino benzene as an electron donor, benzothiozole as an electron acceptor, and a vinyl group as a π unit, Lyso-BTC, is explored for fluorescence imaging of lysosomes and detection of lysosomal viscosity changes. Lyso-BTC exhibits a large Stokes shift (∼180 nm), NIR emission (685 nm), good biocompatibility, excellent photostability, and fluorescence response to viscosity. Moreover, the results of in vitro studies reveal that Lyso-BTC is lysosome-targeted and could be applied for the detection of viscosity changes in lysosomes caused by chloroquine treatment. These results confirm that Lys-BTC could be employed to monitor lysosomal viscosity changes in living cells.
Collapse
Affiliation(s)
- Tong Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P.R. China.
| | - Zikang Chen
- BiomaterialsResearchCenter, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P.R. China.
| | - Ruiyuan Liu
- BiomaterialsResearchCenter, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P.R. China.
| | - Shaobing Zheng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P.R. China.
| |
Collapse
|
50
|
Zhu S, Tian R, Antaris AL, Chen X, Dai H. Near-Infrared-II Molecular Dyes for Cancer Imaging and Surgery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900321. [PMID: 31025403 PMCID: PMC6555689 DOI: 10.1002/adma.201900321] [Citation(s) in RCA: 538] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/03/2019] [Indexed: 05/05/2023]
Abstract
Fluorescence bioimaging affords a vital tool for both researchers and surgeons to molecularly target a variety of biological tissues and processes. This review focuses on summarizing organic dyes emitting at a biological transparency window termed the near-infrared-II (NIR-II) window, where minimal light interaction with the surrounding tissues allows photons to travel nearly unperturbed throughout the body. NIR-II fluorescence imaging overcomes the penetration/contrast bottleneck of imaging in the visible region, making it a remarkable modality for early diagnosis of cancer and highly sensitive tumor surgery. Due to their convenient bioconjugation with peptides/antibodies, NIR-II molecular dyes are desirable candidates for targeted cancer imaging, significantly overcoming the autofluorescence/scattering issues for deep tissue molecular imaging. To promote the clinical translation of NIR-II bioimaging, advancements in the high-performance small molecule-derived probes are critically important. Here, molecules with clinical potential for NIR-II imaging are discussed, summarizing the synthesis and chemical structures of NIR-II dyes, chemical and optical properties of NIR-II dyes, bioconjugation and biological behavior of NIR-II dyes, whole body imaging with NIR-II dyes for cancer detection and surgery, as well as NIR-II fluorescence microscopy imaging. A key perspective on the direction of NIR-II molecular dyes for cancer imaging and surgery is also discussed.
Collapse
Affiliation(s)
- Shoujun Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Rui Tian
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | | | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Hongjie Dai
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|